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The book of nature is written in the language of mathematics.
Galileo Galilei

INTRODUCTION

Mankind has always been attracted by the idea of being able to fly. Flying
seemed to be an unreachable goal, which is clearly exemplified by the myth of
Ikarus.

One of the first men who tried to change this situation was famous Leonardo
da Vinci. In 1505 he drew the first designs of flying machines with an aviator in
horizontal or vertical position. However he realized that human power was not
sufficient to move these flying machines.

Many others tried to continue in this work but they did not succeed. Next 400
years it was believed that flying with a motor will not be possible.

The first who actually left the ground were Wright brothers in 1903. The secret
of their success was hidden in using of a wind-tunnel in the design of their aeroplane.

From this time the using of wind-tunnels for experimental purposes increases.
During the Second World War the first simple mathematical models were computed
on large machines to simulate flow problems.

Nowadays Computational Fluid Dynamics (CFD) plays an important role. Due
to the development of highly efficient computers we are able to obtain the behaviour
of a flow passing any part of machine. This allows us to choose the best numerical
design of plane which is then experimentally tested.

But the application of CFD does not lie only in the aeroplane industry. Liquids
have also very similar behaviour as gases, and CFD techniques are used for study of
motion of water, blood or oil. We can meet its application in the design of turbines,
constructions of ships, oil pipelines, channels or in special part of medicine, dealing
with flow of blood, hemodynamics.

To the long list of applications of CFD we can add one more that is very impor-
tant from theoretical point of view. There are still some open theoretical problems
concerning the fundamental questions on existence and uniqueness of a solution to
equations describing the motion of fluids. Numerical experiments can help us to
understand behaviour of various types of flows and to give at least some “verified”
hypothesis concerning the answers to these open problems.

This scriptum is devoted to the study of numerical solution of inviscid com-
pressible flow. It is governed by the system of conservation laws consisting of the
continuity equation, the Euler equations of motion of inviscid flow, the energy equa-
tion and the state equation. If the viscous effects are included we get the so-called
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Navier-Stokes equations. Nowadays there are well-developed numerical techniques,
such as the finite volume methods, and finite element methods, which play an im-
portant role for mathematical and engineering modelling of technical problems.

The aim of this scriptum is to give an introduction and brief description of sev-
eral numerical techniques used in the computational fluid dynamics of compressible
inviscid flows. These lecture notes were developed from my notes on Mathematical
Methods in Fluid Dynamics, which I have taught at the Mathematical Institute,
University of Technology in Brno for students of mathematical engineering (9th se-
mester). The overall emphasis of this notes is on studying the mathematical tools
that are essential in developing, analyzing, and successfully using numerical meth-
ods for nonlinear systems of conservation laws, particularly for inviscid problems
involving shock waves. An understanding of mathematical structure of the gov-
erning equations is first required. Afterwards a reasonable scheme for solving the
system of partial differential equations can be suggested and studied. In this notes
I have stressed the underlying ideas used in various classes of methods rather than
presenting the most sophisticated methods in great details. My aim was to pro-
vide a sufficient background that students could then approach the current research
literature with the necessary tools for understanding.

Some sections have been reworked several times by now, some are still prelimi-
nary. I can only hope that the errors will not cause misunderstanding. I hope of
eventually expanding the presented notes into a book, going in deep discussions in
some areas. For these reasons I am interested in receiving suggestions, comments
and corrections. I can be reached via email at lukacova@tu-harburg.de.

This notes are organized as follows. In Chapter I we will introduce some basic
notation and physical quantities describing the motion of fluids. We will formulate
the system of conservation laws which govern inviscid as well as viscous compressible
flow.

In Chapter II we will deal with the Euler equations. We summarize known
theoretical results for existence and uniqueness for hyperbolic conservations laws.
Particularly, we deal with multidimensional scalar equation and one-dimensional
system. Further we study the specific so-called Riemann problem for linear as well
as nonlinear systems.

For numerical solution, the finite volume method (FVM), applied on fully un-
structured grid consisting of the so-called dual finite volumes, is used. We will
discuss typical problems of finding the weak solution satisfying the entropy in-
equality. This is in a close relation to the second law of thermodynamics. Further,
we will present results of numerical experiments where the Vijayasundaram FVM
is used to compute the Euler equations in 2D. We will particularly discuss some
improvements obtained by the second order TVD-MUSCL Vijayasundaram scheme
and by the suitable mesh refinement. There is a wide class of literature concern-
ing hyperbolic conservation laws and/or their numerical solution. See, e.g., [Feis-
tauer], [Godlewski, Raviart(1),(2)], [Hirsch], [Kröner], [LeVeque(1)], [LeVeque(2)],
[Morton, Mayers], [Smoller], [Sonar(1),(2)], [Toro], [Warnecke] to mention some of
them.
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In Chapter III we will give a list of unsolved problems which can be used in
seminars and for students’ individual work. Some other problems, which corre-
sponds to particular theorems of Chapter I, II were already included therein.

Finally I would like to thank Alexander Žeńı̌sek, Technical University Brno, for
his support and encouragement in writing these lecture notes. They were further
developed during my visiting Sofia-Kovalevskaja professorship at the Institute of
Computational Mathematics, University of Kaiserslautern. I want to express my
thank to Helmut Neunzert for initiating a valuable project of Sofia-Kovalevskaja
professorship in order to support female mathematicians. I also wish to thank Libor
Čermák and Jitka Saibertová, Technical University Brno, for reading of several ver-
sions of the manuscripts, fruitful discussions and helpful comments which improved
the final version of the notes substantially.

I want to express my thanks to my academic teacher, Miloslav Feistauer, Charles
University Prague, for introducing me to a fascinated field of mathematical and nu-
merical modelling in fluid dynamics. Further, I want to express my deep thank to
Gerald Warnecke, Otto-von-Guericke-Univerität Magdeburg for the hours he de-
voted me in various discussions, for his continual support and encouragement. I
also wish to thank Bill Morton, Bath/Oxford Universities, for his valuable advices,
informations and fruitful discussions.

At the end I would like to thank my husband L’ubo and my parents for their
unfailing support, great patience and intuitive understanding of my work.

Hamburg, summer 2003 Mária Lukáčová
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CHAPTER I

BASIC EQUATIONS DESCRIBING FLOWS

Throughout this scriptum we will deal with the complete system of equations
describing the motion of compressible viscous and inviscid fluids. In this chapter
we will give physical and mathematical formulation of conservation laws, which
accompanied by the constitutive relations and thermodynamical state equations
lead to the system of Navier–Stokes or Euler equations describing the motion of
viscous or inviscid fluids, respectively. We will formulate the initial-boundary value
problems for considered compressible flows.

At the beginning we write a list of some symbols and notations we will use:

Ω ⊂ Rd . . . bounded domain occupied by the fluid
d ∈ N . . . dimension, in practice d = 2,3
〈0, T 〉 . . . time interval, T > 0
x = (x1, . . . , xd) ∈ Ω . . . any point from Ω
t ∈ 〈0, T 〉 . . . time instant from time interval 〈0, T 〉
QT = Ω × (0, T ) . . . space-time cylinder
v = v (x, t) = (v1, . . . , vd) . . . velocity vector
ρ = ρ (x, t) . . . density
p = p (x, t) . . . pressure
θ = θ (x, t) . . . absolute temperature
ε = ε (x, t) . . . total specific energy

i.e. per unit of mass
f = f (x, t) = (f1, . . . , fd) . . . vector of external (volume) forces

per unit of mass (given)
q = q (x, t) . . . rate of external heat sources (given)
q = q (x, t) . . . heat flux.

These are basic physical quantities describing the moving fluid, other quantities
will be defined later. Let us note that we will often use the summation convention,
i.e. one has to sum up over the index occurring twice in some term. We will recall
a well-known definition of the following operators.

For a vector function u = (u1, . . . , un) : Rm → Rn we put

grad ui :=
( ∂ui

∂x1
, . . . ,

∂ui

∂xm

)
, i = 1, 2, . . . n;

grad u := ( grad u1, . . . , grad un)T
,
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( note that grad u is an n×m matrix, having in the i-th row a vector grad ui )

if m = n then div u :=
n∑

i=1

∂ui

∂xi
.

In what follows we will assume that the students are familiar with definitions
and properties of Lp -spaces, Sobolev spaces and Bochner spaces. There is a lot
of literature concerning these topics (see, e.g., [Feistauer] [Kufner, Fuč́ık, John],
[Málek, Nečas, Rokyta, Růžička, [Nečas], [Žeńı̌sek], etc.).

1.1 Conservation Laws

Eulerian and Lagrangian description of fluid motion

Consider the motion of each particular fluid particle. Trajectories of the particles
can be described by the equation

x = ϕ(X, t).

Here X = (X1, . . . , Xd) represents the reference of the particle that we consider.
Thus, in d-dimensional space we have together with time variable the following so-
called Lagrangian coordinates X, t. The above equation determinates the position
of the particle given by the reference X at time t.

However, if we investigate fluid we are rarely interested in the motion of each
particular fluid particle. Instead we are interested in the state of flow and its change
in time. Therefore, we usually work with the so-called Eulerian coordinates x, t,
which are based on the determination of the velocity v(x, t) of the fluid particle
passing through the point x at time t. We can write

v(x, t) =
∂ϕ

∂t
(X, t),

where x = ϕ(X, t).
Now, let us consider some physical quantity F (e.g. temperature, density, etc.)

transported by moving particles in fluid. In the Lagrangian concept this quantity
is viewed as F (X, t), which describes the value of the quantity considered, bound
to the particular fluid particle given by X at time t.

On the other hand, in the Eulerian description the quantity is represented by
a function F (x, t), which denotes the value of quantity at the point x at time t.
Describing the path of a fluid particle by the equation x = ϕ(X, t), we can express
the rate of change of the quantity F (x, t) as

dF (x, t)
dt

=
dF (ϕ(X, t), t)

dt

=
∂F (ϕ(X, t), t)

∂t
+

d∑
i=1

∂F

∂xi
(ϕ(X, t), t)

∂ϕi(X, t)
∂t

=
∂F (x, t)

∂t
+ v(x, t) · grad F (x, t).
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We see that the rate of change of the quantity F is equal to the so-called material
derivative

d

dt
F (x, t) :=

∂F

∂t
(x, t) +

d∑
i=1

∂F

∂xi
vi (x, t) .

The local derivative ∂F/∂t results from the dependence of F on time, the convective
derivative v ·grad F is a consequence of the transport of the quantity F by moving
fluid. In this context the material derivative is also sometimes called the derivative
along a trajectory of a fluid particle.

Transport theorem

Let us consider transport of the physical quantity F (x, t) (Eulerian description)
in a control volume σ(t). The total amount of the quantity given by the function
F that is contained in the volume σ(t) at time t equals

F(t) =
∫

σ(t)

F (x, t)dx.

In what follows we will need to calculate the rate of change of the quantity F bound
on the system of particles considered. Thus, we are interested in

dF(t)
dt

=
d

dt

∫
σ(t)

F (x, t)dx.

In textbooks of mathematical analysis one can find theorems for differentiation of
integrals with respect to a parameter, but the domain is fixed. In our situation
however we have both the integrand F as well as the integration domain σ(t)
depending on t. Therefore we need to use the Reynolds transport theorem.

Theorem 1.1.1. Let F : Rd × R → R be a continuously differentiable function
and the mapping ϕ : Rd → Rd be also continuously differentiable. Then for each
control volume σ(t) the following equality holds

dF(t)
dt

=
d

dt

∫
σ(t)

F (x, t)dx =

=
∫

σ(t)

[
∂F

∂t
(x, t) + v(x, t) · grad F (x, t) + F (x, t) div v(x, t)

]
dx.

(1.1.2)

Proof. (see, e.g., [Feistauer], [Warnecke]).
�

Flux formulation of the transport theorem

It is clear that identity (1.1.2) can be rewritten in the form

dF(t)
dt

=
∫

σ(t)

[
∂F

∂t
(x, t) + div (Fv)(x, t)

]
dx.
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By Green’s theorem we get

dF(t)
dt

=
∫

σ(t)

∂F

∂t
(x, t) +

∫
∂σ(t)

F (x, t)v(x, t) · n(x)dS,

where n(x) denotes a unit outer normal to ∂σ(t) at the point x. The first integral
on the right-hand side determines the rate of change of the quantity F in virtue of
the dependence of F on t. The second integral represents the flux of the quantity F
through the boundary ∂σ(t).

Formulation of basic conservation laws

The first physical law describing the fluid motion is the law of conservation of
mass and can be formulated in the following way:

The mass of a piece of fluid formed by the same particles at any time instant is
constant in time. In other words : mass is neither created nor destroyed.

Let ρ(x, t) be the density of the fluid at a position x and time t. Then the mass
m(σ(t)) of fluid occupying the control volume σ(t) is given as

∫
σ(t)

ρ(x, t)dx. The
fact that the mass is constant in time naturally means that

d

dt

∫
σ(t)

ρ(x, t)dx = 0.

Using the Transport theorem 1.1.1 with F = ρ we get under the assumptions on
smooth density ρ ∫

σ(t)

[
∂ρ

∂t
+ div (ρv)

]
= 0.

But the above integral identity holds for any control volume σ(t) ⊂ Ω, where Ω ∈ Rd

is a fixed domain occupied by the fluid, t ∈ (0, T ). Thus the integrand must be
equal to zero itself. Now the differential form of the mass conservation, also called
the continuity equation, reads

(1.1.3)
∂ρ

∂t
+ div (ρv) = 0 in Ω × (0, T ) .

Incompressible flow

An incompressible flow is a flow in which density of each material particle remains
the same during the motion

ρ(ϕ(X, t), t) = ρ(X, 0), X = ϕ(X, 0).

Hence
dρ

dt
= 0 and because div (ρv) = ρ div v + grad ρ · v we get from (1.1.3) the

incompressibility condition

(1.1.3’) div v = 0.

Sometimes incompressibility is erroneously taken to be a property of the fluid
instead of the flow. But compressibility depends only on the speed of the flow. If
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the magnitude of the velocity of the flow is of order of the speed of sound in the fluid
(≈ 340 m/s in air) the flow is compressible. If the velocity is much smaller than the
speed of sound, incompressibility is a good approximation. It is true than in liquids
flow velocities anywhere near the speed of sound cannot normally be reached, due
to enormous pressures involved and the phenomenon of cavitation.

The balance of momentum is just the second Newton’s law F = ma, where F
denotes the vector of forces, m stays for the mass and a is the acceleration of the
fluid. It can be also formulated as follows

The rate of change of total momentum of a piece of fluid formed by the same
particles at any time instant is equal to the forces acting on this piece of fluid.

There are two types of forces acting in flows: body forces and surface forces. A
body force acts on a material particle, and is proportional to its mass. Let the
density of the body force be denoted by f(x, t), e.g. the density of gravity force is
(0, 0,−g), g is the acceleration of gravity. Then the body force acting on the fluid
in the control volume σ(t) is given as∫

σ(t)

ρf(x, t)dx.

The action of the surface forces can be expressed by means of the stress tensor
τττ = (τij)

d
i,j=1, which results from the inner interactions between fluid volumes

through their boundaries. Thus, the surface forces are expressed in the form∫
∂σ(t)

τττ · ndS ≡
∫

∂σ(t)

(τττ ijnj)d
i=1dS.

Note that we have used here the Einstein summation convention in the stress tensor
term, i.e. we sum up over the index j occurring twice in the stress tensor term. In
order to simplify expressions we will often use this convention in what follows.
Now the law of conservation of momentum can be for an arbitrary control volume
σ(t) expressed as follows

d

dt

∫
σ(t)

ρvi dx =
∫

σ(t)

ρfi dx +
∫

∂σ(t)

τijnj dS, i = 1, . . . , d.

Using the Transport theorem 1.1.1 for F = ρvi and the Gauss theorem for the
surface integral of the stress tensor we can rewrite the above identity as∫

σ(t)

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) dx =

∫
σ(t)

ρfi dx +
∫

σ(t)

∂τij

∂xj
dx, i = 1, . . . , d.

Since this holds for every control volume σ(t) ⊂ Ω, t ∈ (0, T ) we get the differential
form of the momentum conservation law

(1.1.4)
∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) = ρfi +

∂τij

∂xj
in Ω × (0, T ) , i = 1, . . . , d.

In order to specify further properties of the stress tensor we use the balance
of moment of momentum, which says:
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the rate of change of the moment of momentum of a piece of fluid occupied by
the same particles at any time instant is equal to the sum of the moments of the
forces acting on this piece of fluid.

It can be proved (see, e.g., [Gurtin]) that this law is equivalent to the symmetry
of the stress tensor τττ , i.e.

τij = τji, i, j = 1, 2, . . . , d.

In order to complete the system of the equations (1.1.3) - (1.1.4) it is necessary to
relate the stress tensor to other quantities describing the motion of the fluid. Such
a relation is called the constitutive relation and we will discuss this point in the
next section.

The law of conservation of energy, which is the last conservation law used for
description of the motion of fluid, follows directly from the first law of thermody-
namics:

The rate of change of total energy of a piece of fluid formed by the same particles
at any time instant is equal to the sum of powers of the volume and surface forces
acting on this piece of fluid and to the amount of heat transmitted to this piece of
fluid. In other words one can say: energy is neither created nor destroyed.

For an arbitrary control volume σ(t) we obtain the following integral formulation

(1.1.5)
d

dt

∫
σ(t)

ρεdx = W (σ(t)) + Q(σ(t)),

where W is the power of the body and surface forces acting on the fluid volume
σ(t) and Q denotes the rate of heat addition. The total specific energy ε consists of
the specific internal energy, denoted by u = u (x, t) , and the specific kinetic energy
1
2
|v (x, t) |2, where |v| =

(∑d
i=1 v2

i

)1/2

denotes a usual Euclidean norm of a vector.
The power of the body and surface forces can be expressed in the form

W (σ(t)) =
∫

σ(t)

ρfividx +
∫

∂σ(t)

τjinjvidS =
∫

σ(t)

ρfivi +
∂

∂xj
τjividx.

Assuming that heat is added to each material particle at a rate q per unit of mass,
and that there is a heat flux q per unit of area through ∂σ(t), we find

Q(σ(t)) =
∫

σ(t)

ρqdx −
∫

∂σ(t)

q · ndS =
∫

σ(t)

ρq − ∂

∂xi
qidx.

Substituting the above expressions into (1.1.5) and applying the Transport theo-
rem 1.1.1 on the left-hand side of (1.1.5) we get∫

σ(t)

∂

∂t
(ρε) +

∂

∂xi
(ρεvi) dx =

∫
σ(t)

ρfivi +
∂

∂xj
(τijvi) + ρq − ∂

∂xi
qidx.

Since this hold for every control volume σ(t), we have the differential formulation
of the law of conservation of energy

(1.1.6)
∂

∂t
(ρε) +

∂

∂xi
(ρεvi) = ρfivi +

∂

∂xj
(τijvi) + ρq − ∂

∂xi
qi in Ω× (0, T ) .
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1.2 Constitutive Relations

Putting (1.1.3), (1.1.4) and (1.1.6) together we see that the number of unknown
quantities is larger than the number of equations. To complete the whole system
of conservation laws we have to add some constitutive or closing relations that will
specify our fluids.

The first and natural question is the following one: What is the relation between
the stress tensor and other quantities describing the fluid motion? Such a relation
is called rheological. The simplest situation is obtained in the case of inviscid fluids,
where

(1.2.1) τij = −pδij , i, j,= 1, 2, . . . , d,

here δij is a Kronecker delta.
Substituting (1.2.1) into the equations of conservation of momentum (1.1.4) we

derive the Euler equations of motion of ideal, i.e. inviscid, fluids

(1.2.2)
∂

∂t
(ρvi) +

∂

∂xj
(ρvivj) = ρfi −

∂p

∂xi
, i = 1, . . . , d.

These equations are written in the conservative form; using the continuity equation
(1.1.3) we easily derive the convective form of the Euler equations

(1.2.2’)
∂vi

∂t
+ vj

∂vi

∂xj
= fi −

1
ρ

∂p

∂xi
, i = 1, . . . , d.

Real fluids are more or less viscous. Under the Newton’s hypothesis of linear
dependence of the stress tensor on the deformation velocity tensor e, where

e = (eij)
d
i,j=1 , eij =

1
2
( ∂vi

∂xj
+

∂vj

∂xi

)
,

one can derive the following form of τττ :

τij = −pδij + τV
ij(1.2.3)

τV
ij = λ div v δij + 2μeij , i, j = 1, 2, . . . , d.

Here τττV =
(
τV
ij

)d

i,j=1
is said to be a viscous part of stress tensor. The viscosity

is expressed by μ, λ, the first and second viscosity coefficient, respectively. μ is also
called dynamical viscosity coefficient. There is often used the following relation

(1.2.4) 3λ + 2μ = 0, μ ≥ 0,

which is derived from the kinetic theory for one-atomic gas. To simplify the situa-
tion we will suppose that viscosity coefficients μ and λ are constant. Note that in
many fluids they can depend on density ρ or temperature θ, but not on pressure p.

Fluids satisfying (1.2.3) are called Newtonian fluids. Examples are gasses and
liquid such as water or mercury. But there is a large amount of fluids, for which
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(1.2.3) do not hold. Such fluids are called non-Newtonian fluids, which are nowa-
days studied extensively from the experimental as well as theoretical point of view.
Examples of those are polymers or blood.

Substitution of (1.2.3) into the equations of conservation of momentum (1.1.4)
gives for i = 1, . . . , d

(1.2.5)
∂

∂t
(ρvi)+

∂

∂xj
(ρvivj) = ρfi−

∂p

∂xi
+

∂

∂xi
(λdiv v)+

∂

∂xj

(
μ

(
∂vi

∂xj
+

∂vj

∂xi

))
.

These are the Navier-Stokes equations, which describe the motion of viscous fluids.
Similarly as for the Euler equations (1.2.2) we can write the convective form of the
Navier-Stokes equations using the continuity equation (1.1.3)

ρ
∂vi

∂t
+ρvj

∂vi

∂xj
= ρfi−

∂p

∂xi
+

∂

∂xi
(λdiv v)+

∂

∂xj

(
μ

(
∂vi

∂xj
+

∂vj

∂xi

))
, i = 1, . . . , d.

If the flows are incompressible div v = 0 and the above identity yields the Navier-
Stokes equations for incompressible flows:

(1.2.5’)
∂vi

∂t
+ vj

∂vi

∂xj
= fi −

1
ρ

∂p

∂xi
+ νΔvi, i = 1, . . . , d,

where ν = μ/ρ is the so-called kinematic viscosity, assumed to be constant. These
equations were firstly derived by Navier in 1823 and later by Stokes in 1845. Note
that until now the question of global existence and uniqueness of the solution stays
for d = 3 a great open problem in the theory of partial differential equations.
In 2000, the year of mathematics, the Clay Mathematical Institute declared the
problem of existence and regularity of the solution to the Navier-Stokes equations
to be one of the seven greatest open problems in mathematics. For each of them
the Millennium Prize of one-million dollars was offered.

The next constitutive relation is obtained from Fourier’s law

(1.2.6) q = −k grad θ,

where k ≥ 0 is called the heat conductivity and is supposed to be constant.

The Reynolds number and similarity of flows
Let L∗, U∗ and t∗ be typical length, velocity and time scales for a given flow

problem, respectively. We introduce the following dimensionless variables

v′ =
v
U∗ , x′

i =
xi

L∗ , t′ =
t

t∗

and rewrite the continuity equation (1.1.3’) and the Navier-Stokes equations (1.2.5’)
(of incompressible flow) in the form

∂v′
i

∂x′
i

= 0(
L∗

t∗U∗

)
∂v′

i

∂t′
+ v′

j

∂v′
i

∂x′
j

=
L∗

U∗2 fi −
1

U∗2

1
ρ

∂p

∂x′
i

+
ν

L∗U∗Δv′
i, i = 1, . . . , d.
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Thus, if we set t∗ = L∗/U∗, p′ = p/(ρU∗2
), f ′

i = fiL
∗/U∗2

, ρ = 1 and ν′ =
ν/(L∗U∗), then we the continuity equation and the Navier-Stokes equations have
the same form in the variables with primes as in the original variables without
primes.

We define the dimensionless Reynolds number

(1.2.7) Re =
1
ν′ =

L∗U∗

ν

which play an important role in the theory of similarity flows.
The above transformation shows that Re is a measure of the ratio of inertial

(convective) and viscous forces in the flow. This can be seen immediately from the
equation (1.2.5’) with 1/Re instead of ν. For Re 
 1 inertia or convective term
dominates, for Re � 1 friction or viscosity term dominates. Both are balanced by
the pressure. This is an example of the convection-diffusion equation. The left-hand
side represents the transport by convection term vj ∂vi/∂xj , the term 1/Re Δvi

represents transport by diffusion. Many aspects of numerical approximation in
computational fluid dynamics already show up in the numerical analysis of relatively
simple convection-diffusion equation.

Let us consider two flows in geometrically similar domains Ω1 and Ω2 such that
Ω1 is L-times larger than Ω2 (“Ω1 = LΩ2”). We call this flow dynamically similar,
if they have the same Reynolds numbers. Then their dimensionless Navier-Stokes
equations are identical. Similarity of flows allow us to carry out computational
experiments on small models and transfer the results to the original real flows. We
see that the solution to the incompressible Navier-Stokes equation depends actually
on the single parameter Re only.

What values does Re have in practice?

In the International Civil Aviation Organization Standard Atmosphere, ν = μ/ρ =
4.9 · 10−5m2/s at 12.5 km. This gives for the flow over an aircraft wing in cruise
condition at 12.5 km with wing length L = 3 m and velocity U = 900km/h:
Re = 1.5 · 107. In a windtunnel experiment at sea level with L = 0.5m and
U = 25m/s we obtain Re = 8.3 · 105. For landing aircraft at sea level with L = 3m
and U = 220km/h we obtain Re = 1.2 · 107. For a house in a light wind with
L = 10m and U = 0.5m/s we have Re = 3.3 · 105. Air circulation in a room with
L = 4m and U = 0.1m/s gives Re = 2.7 · 104.

Large ship has Re ≈ 108, small yacht Re ≈ 107 and a small fish only Re ≈
104. All these examples have in common that Re 
 1, which is almost the rule
in all environmental and industrial flows. One might think that flow around a
given shape will be quite similar for different values of Re, as long as Re 
 1.
But nothing is farther from the truth! Therefore computational fluid dynamics
plays an important role in the prediction of flow behaviour for full scale of Re
numbers. The rich variety of solutions that evolves as Re → ∞ is one of the most
surprising and interesting features of fluid dynamics, with important consequences
for technological applications.

A ‘route to chaos’ develops as Re → ∞, resulting in turbulence. Turbulent
flow is a complicated example of chaotic dynamical system. The difficulty is that
turbulence is both nonlinear and stochastic. Since turbulence is governed by the
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Navier-Stokes equations, turbulent flow can be computed from the basic conser-
vation principles. But nowadays this is still not feasible for general engineering
computations. We will explain this more closely in what follows.

Let U and L be velocity and length scale of large eddies in a turbulent flow,
respectively, and let as define the macroscale Reynolds number by

Re = UL/ν.

The length scale of smallest eddies is called the Kolmogorov scale, and is denoted
by η. It has been shown by Kolmogorov that η/L = O(Re−3/4). Let us consider
flow in a pipe with diameter L. After some computation one can show that away
from the pipe wall

η/L ≈ O(Re−21/32), Re =
1
50

Re7/8.

To resolve the Kolmogorov scale, the mesh size h of the computational domain
must satisfy h < η. With h = η/2, we obtain for the number of grid cells in
one direction N = L/h ≈ Re21/32, so that the total number of cells for three-
dimensional computations is

N3 ≈ Re62/32 ≈ Re2.

Let us take, for example, Re = 105; this give us N3 ≈ 1010 number of mesh cells,
which is clearly not feasible on the computer infrastructures available at present
and in the foreseeable future. For complicated geometries and higher Reynolds
numbers the required number of grid cells is even larger. But at moderate Reynolds
numbers and in simple geometries direct numerical simulation is a valuable tool for
studying the fundamental properties of turbulence. However, in order to be able
to predict, at least approximately, behaviour of flows at high Reynolds numbers
several turbulence models have been developed for industrial computations. In
engineering practice in order to achieve computer time and memory requirements
that are feasible, turbulent flows are generally modelled by the Reynolds-averaged
Navier-Stokes equations with, e.g., the so-called k − ε model. See, e.g., [Wesseling]
or [Zienkiewicz, Taylor] for more details.

1.3 Thermodynamic State Equations

The relations (1.2.1) , (1.2.3) and (1.2.6) still do not give enough information
to obtain the closed system of conservation laws. Choosing as thermodynamic
unknowns the density ρ and the temperature θ, to close the system we must add
the following state equations.

(1.3.1) p = p (ρ, θ) ,
14



(1.3.2) u = u (ρ, θ) .

Remind that generally we can also assume λ, μ, k to be functions of ρ and θ, i.e.

(1.3.3) λ = λ (ρ, θ) , μ = μ (ρ, θ) , k = k (ρ, θ) .

As we have already said we will restrict to the case of constant functions.
In what follows we will always consider perfect gas, which means that (1.3.1)

can be explicitly written as

(1.3.4) p = R ρ θ.

This equation is called the state equation of perfect gas. R > 0 is the specific gas
constant and it can be expressed in the next form

(1.3.5) R = cp − cv,

where cp and cv are the specific heat at constant pressure and volume, respectively.
We assume that cp and cv are constant and it follows from experiments that cp > cv.
The quantity

(1.3.6) κ =
cp

cv
> 1

is called the Poisson adiabatic constant, κ = 1.4 for dry air.
Now we will specify the relation (1.3.2). A perfect gas is said to be polytropic, if

(1.3.7) u = cvθ.

We will work with a perfect polytropic gas, i.e. thermodynamic state equations
(1.3.4), (1.3.7) hold. Let us note that we have just closed the whole system of
conservation laws describing motion of compressible viscous fluids. We have the
same number of unknown functions as the number of equations, i.e. d + 2. Let
ρ,v, θ be unknown. Then the system of conservation laws (1.1.3), (1.1.4), and
(1.1.6) in which the constitutive relations (1.2.3) , (1.2.6) and thermodynamic state
equations (1.3.4), (1.3.7) are included, can be rewritten in the following form

(1.3.8)
∂ρ

∂t
+

∂

∂xi
(ρvi) = 0;

ρ
∂vi

∂t
+ ρvj

∂vi

∂xj
= ρfi −

∂p

∂xi
+

∂

∂xi
(λdiv v) +

∂

∂xj
(2μeij) , i = 1, 2, . . . , d;

cv

(
ρ
∂θ

∂t
+ ρvgrad θ

)
= div (kgrad θ) − pdiv v + λ (div v)2 +

1
2
μ

d∑
i,j=1

(
∂vi

∂xj
+

∂vj

∂xi

)2

+ ρq; in QT ≡ Ω × (0, T ).
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Since p is a function of ρ, θ, in virtue of the state equation (1.3.4), the system
(1.3.8) is closed. We have derived the system of Navier–Stokes equations describing
the motion of viscous compressible fluids. The motion of inviscid compressible
fluids is governed by the Euler equations, which are obtained from (1.3.8), if we
put λ = 0 = μ. Note that inviscid fluids are non-heat conductive, thus k = 0.

For incompressible flows system (1.3.8) splits into two separate subsystems. First
we have the continuity equation (1.1.3’) with the momentum equations (1.2.2’) or
(1.2.5’) for inviscid or viscous fluids, respectively. These are d + 1 equations for
unknowns: v = (v1, . . . , vd) and p. Without lost of generality we can put ρ = 1.
Next we have the energy equation for unknown temperature θ.

Speaking about thermodynamic relations one should not omit a very important
thermodynamic quantity, namely the entropy, denoted by η (specific entropy). It
is defined by the relation

(1.3.9) θ dη = du + p dV,

where V = 1/ρ is the so-called specific volume. This formula expresses the fact
that the internal energy gained by the medium during a change from one state to
another is equal to the heat contributed to the medium plus the work done on the
medium by compressive action of pressure forces. (See, e.g., [Courant, Friedrichs]).

For a perfect polytropic gas the entropy η can be expressed in the form (see
[Feistauer])

(1.3.10) η = cv ln
p/p0

(ρ/ρ0)
κ + const.,

where p0, ρ0 > 0 are some fixed values of pressure and density, respectively.
There is an important law, the second law of thermodynamics (or the so-called

Clausius–Duhem inequality), which is used for a selection of admissible processes.
Differential form of this law is

(1.3.11) ρ
dη

dt
≥ −div

(q
θ

)
+

ρq

θ
.

Every material satisfying (1.3.11) is said to be thermodynamic compatible. The
perfect polytropic gas is such a material.

1.4 Boundary and Initial Conditions

In this section we will formulate the initial-boundary value problems for con-
sidered inviscid-viscous flows. It means that the system (1.3.8) will be completed
by some boundary and initial conditions. Firstly, we will rewrite (1.3.8) in a very
useful so-called conservative form.

In what follows we omit for simplicity the heat sources (i.e. q = 0 ) and the
volume forces ( i.e. f = 0). Let us denote by e the total energy of a moving fluid, i.e.
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e = ρε. We can denote the unknown functions by the vector w = (ρ, ρv1, . . . , ρvd, e)
and rewrite the system (1.3.8) in the following way:

(1.4.1)
∂w
∂t

+
d∑

i=1

∂

∂xi
fi (w) =

d∑
i=1

∂

∂xi
Ri (w, grad w) in QT .

Here fi (w) :=

⎛
⎜⎜⎜⎜⎝

ρvi

ρviv1 + pδi1
...

ρvivd + pδid

(e + p) vi

⎞
⎟⎟⎟⎟⎠ , Ri (w, grad w) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
τV
1i
...

τV
di

τV
ij vj + k

∂θ

∂xi

⎞
⎟⎟⎟⎟⎟⎟⎠

,

i = 1, 2, . . . , d.
The functions fi (w) are called inviscid Euler fluxes and Ri (w, grad w) are

viscous fluxes.
The system (1.4.1) gives the conservative form of the complete Navier–Stokes

equations for viscous fluids. In the case of inviscid fluids, i.e. λ = μ = k = 0, we
get Ri = 0 and thus, the conservative form of the Euler equations can be written
in the following way

(1.4.2)
∂w
∂t

+
d∑

i=1

∂fi (w)
∂xi

= 0 in QT .

Moreover, the state equation should be added to close the systems (1.4.1) or
(1.4.2). Using (1.3.4) and (1.3.7) one gets

(1.4.3) p = (κ − 1)
(

e − 1
2
ρ|v|2

)
.

1.4.4 Boundary conditions. Several boundary conditions can be considered
with respect to different physical situations. In the sequel we will consider the most
frequently used, describing the motion of a fluid which flows through a rigid domain
Ω. This means that we obtain the so-called inflow-outflow problem. The problem
of a fluid moving through a channel or the problem of a flow past an air profile
belongs to this class.

We distinguish the inlet part of the boundary ∂Ω

ΓI = {x ∈ ∂Ω; v (x) · n (x) < 0, n is the unit outer normal to ∂Ω} ,

through which the fluid enters to the domain Ω , the outlet part

ΓO = {x ∈ ∂Ω; v (x) · n (x) > 0} ,

through which the fluid exits the domain Ω and the rest of the boundary ∂Ω , called
the solid, impermeable wall, denoted by ΓW .

The different structure of equations leads to the necessity of distinguishing be-
tween viscous and inviscid fluids.
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(i) Case λ > 0, μ > 0, k > 0 (viscous, conductive fluids).

In this case, the system (1.4.1) is of hyperbolic-parabolic type. The continuity
equation is hyperbolic for the unknown ρ, and the equations of motion and energy
equation are of parabolic type for the unknowns v and θ, respectively.

Due to the viscosity of fluid the particles adhere to the walls ΓW and one has to
prescribe no-slip boundary conditions, i.e.

v = 0 on ΓW × (0, T ) .

Since the continuity equation is hyperbolic, the density ρ should be prescribed
only on inlet part ΓI , while other quantities v, θ are prescribed on the whole bounda-
ry ∂Ω due to the parabolicity of equations. It is relatively easy to get information
on prescribed physical quantities on the inflow part of the domain. However it
happens frequently that physically no outflow boundary condition is known, but
this is required mathematically. In practice “artificial” boundary conditions of
Neumann type are preferred above one of Dirichlet type on outflow boundary. For
example we can assume the following boundary conditions for system (1.4.1)

on ΓI ρ = ρ∗, v = v∗, θ = θ∗, ρ∗,v∗, θ∗ are prescribed,
(1.4.5)

on ΓW : v = 0,
∂θ

∂n
= 0,

on ΓO:
d∑

i=1

τijni = 0, j = 1, 2, . . . , d,
∂θ

∂n
= 0, for any t ∈ (0, T ) .

These special conditions will be used in our numerical experiments, which we
present in Chapter III. For the temperature θ we prescribed on ΓW ,ΓO the so-called
adiabatic condition; mathematically it is the homogeneous Neumann boundary
condition. Note that we can prescribe also the Dirichlet boundary condition if, for
example, the solid wall is heated and we know temperature of a heat source.

(ii) Case λ = μ = k = 0 (inviscid, non-conductive fluids).

The system of Euler equations (1.4.2) is hyperbolic (cf. Theorem 2.1.7). In this
case the number of boundary conditions on inlet ΓI and outlet ΓO is different if the
flow is subsonic or supersonic. The local sound speed in fluid is given by

(1.4.6) a =
√

κp

ρ
.

Defining the Mach number as

M =
|v|
a

we speak about hypersonic flow if M 
 1, supersonic flow if M > 1, sonic flow
if M = 1 and subsonic if M < 1. Flow is transonic if there are regions with
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M > 1 as well as M < 1. In practice for M ≈< 0.3 the incompressibility is a good
approximation and it is satisfactory to solve the Euler equations of incompressible
flows instead of the complete system (1.4.2).

In order to prescribe boundary conditions for the Euler equations (1.4.2) we
need to take into account a local character of this hyperbolic system. The analysis
depends on the sign of eigenvalues of the associated characteristic matrix to (1.4.2).
General rule, which follows from the theory of characteristics, says:

The number of boundary conditions in a point on the boundary must be equal to
the number of incoming characteristics at that point.

This yields that the number of boundary conditions on inflow boundary must be
d + 2 or d + 1 (d = dimension) , depending on supersonic or subsonic character of
the flow. The number of boundary conditions on outflow boundary is either zero
or one, again depending if the flow is supersonic or subsonic. In fact, we prescribe
so many boundary conditions as the number of negative local eigenvalues is. Let
us postpone more detailed explanation until Section 2.3, where we will deal with
the question of boundary conditions for hyperbolic conservation laws more deeply.

On the other hand the situation on impermeable parts of boundary ΓW is easier.
Since the fluid is inviscid there is no reason for adhesion of the fluid to the walls.
We do not put any condition on the tangential component of velocity, but due to
impermeability of the wall, the normal component of the velocity must be zero, i.e.

(1.4.7) v · n = 0 on ΓW × (0, T ) .

No boundary conditions has to be imposed on θ on the solid wall since in this
case the temperature is not subjected to transport phenomena through ΓW .

1.4.8 Initial conditions. If we are concerned with non-stationary problems,
suitable initial conditions have to be added. Looking at the preceding evolution
equations (1.4.1) or (1.4.2), we see that it is necessary to assign

(1.4.9) ρ (·, 0) = ρ0, v (·, 0) = v0, θ (·, 0) = θ0 in Ω.

Let us note that the initial conditions (1.4.9) as well as the boundary conditions
(1.4.5) clearly give the initial and boundary conditions for the vector w = (ρ, ρv, e)
for the system of the Navier–Stokes equations (1.4.1). It means we get from
(1.4.5) , (1.4.9) :

a) B (w) = b on ∂Ω × (0, T ) ,(1.4.10)

b) w (·, 0) = w0 in Ω,

where B is a boundary operator and b is a R.H.S. function. Further, w0 =

(ρ0, ρ0v0, e0) ; e0 = ρ0

(
cvθ0 +

1
2
|v0|2

)
.

It is easy to see that the analogous situation is obtained for the case of the Euler
equations (1.4.2).
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CHAPTER II

EULER EQUATIONS AND THEIR NUMERICAL SOLUTION

This chapter builds the core of the notes. It is devoted to the study of hyperbolic
conservation laws and the Euler equations as their particular example. Firstly, we
will present some known theoretical results for hyperbolic conservation systems. In
the second section the finite volume numerical method on unstructured dual grids
in 2D will be described. We present theoretical results for the FVM and discuss
the discrete entropy condition and its numerical aspects. Since practical problems
are formulated on bounded domains, in the third section we will define suitable
boundary conditions for the Euler equations. The second order method based
on the TVD (total variation diminishing) approach are described in Section 2.4.
Finally, we present results on numerical experiments.

There is a wide class of literature devoted to the Euler equations and hyperbolic
conservation laws. We will give only a short list of some of them, we often use in our
study : [Feistauer], [Godlewski-Raviart (1),(2)], [Hirsch], [Kröner], [LeVeque(1)],
[LeVeque(2)], [Morton, Mayers], [Sonar(1),(2)], [Toro], [Warnecke], etc.

2.1 Theoretical Results

We will shortly discuss the problem of existence and uniqueness of a solution
to hyperbolic conservation system of PDE’s and the Euler equations. The concept
of weak solution, the Rankine–Hugoniot jump condition, Riemann problem and
entropy weak solution will be defined. We also compare the mathematical and
physical concept of entropy.

2.1.1 Euler equations as a hyperbolic system of PDE’s. The system of
Euler equations can be written in the vector form (cf. (1.4.2)).

(2.1.2)
∂w
∂t

+
d∑

j=1

∂fj (w)
∂xj

= 0 in QT ,

which is completed by the initial conditions

(2.1.3) w (·, 0) = w0 in Ω,
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and the boundary conditions

(2.1.4) B (w) = b on ∂Ω × (0, T ) .

Here w0 is a given vector function, B represents a boundary operator (which will
be defined in Section 2.3) and b is a R.H.S. function. For the sake of completeness
let us repeat that

w =

⎛
⎜⎜⎜⎜⎝

ρ
ρv1
...

ρvd

e

⎞
⎟⎟⎟⎟⎠ , fj (w) =

⎛
⎜⎜⎜⎜⎝

ρvj

ρv1vj + δ1j p
...

ρvdvj + δdj p
(e + p) vj

⎞
⎟⎟⎟⎟⎠ , j = 1, 2, . . . , d.

The vector valued function w is a mapping w : QT → D, where

D =
{
w ∈ R

d+2; w1 > 0, wd+2 >
w2

2 + · · · + w2
d+1

2w1

}
,

because we consider physically relevant situations, i.e. ρ > 0 and u > 0 . It is
easy to realize that fj ∈ C1

(
D; Rd+2

)
for all j = 1, 2, . . . , d. Thus, we can apply

the chain rule to the function fj (w) and obtain a first order quasilinear system of
PDE’s

(2.1.5)
∂w
∂t

+
d∑

j=1

Aj (w)
∂w
∂xj

= 0,

where Aj (w) =
Dfj (w)

Dw
, j = 1, 2, . . . , d, are (d + 2) × (d + 2) Jacobi matrices of

fj (w) , j = 1, 2, . . . , d.

Definition 2.1.6. System (2.1.5) is said to be hyperbolic, if for arbitrary vectors
w ∈ D and ννν = (ν1, . . . , νd) ∈ Rd the matrix

P (w, ννν) =
d∑

j=1

νj Aj (w)

has d + 2 real eigenvalues λi = λi (w, ννν) , i = 1, 2, . . . , d + 2, and is diagonalizable,
i.e. there exists a nonsingular matrix T = T (w, ννν) , s.t.

T
−1 · P · T = D (w, ννν) =

⎛
⎝λ1 . . . 0

...
. . .

...
0 . . . λd+2

⎞
⎠ .
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Theorem 2.1.7. The system of Euler equations (2.1.5) is hyperbolic.

Note that without loss of generality we can take ν ∈ Rd s.t. |ν| = 1.

Proof. (see [Feistauer], [Wada, Kubota Ishiguro, Ogawa]).
�

If d = 2 then the eigenvalues of the matrix P (w, ννν) are

λ1 = λ2 = ν1v1 + ν2v2,

λ3 = λ1 + a|ννν|, λ4 = λ1 − a|ννν|.

Here a is a local speed of sound, i.e. a =
√

κp

ρ
(cf. (1.4.6)).

The question of the existence and uniqueness of a solution to the initial-boundary
value problem (2.1.2) – (2.1.4) still remains open. There are some particular results,
e.g., the local existence and uniqueness in time of strong (classical) solutions. See,
e.g., [Beiraõ da Veiga], [Valli], [Schochet]. However, in the poblems, we meet in
practice, discontinuities, the so-called shocks and contact discontinuities may often
develop in solution, even for smooth data. This is a fundamental feature of hyper-
bolic equations. Theoretical results for the Euler equations are the consequences of
theoretical results for general hyperbolic systems.

2.1.8 Further examples of hyperbolic conservation laws. Many practical
problems in science and engineering involve conserved quantities and lead to PDEs
of this class. Although few exact solutions are known a great deal is known for the
structure of the solution, which is used to construct adequate numerical schemes.

Wave equation or acoustic equation system. Let us consider the second order
wave equation ϕtt − a2(ϕxx +ϕyy) = 0. Here we have used a subscript notation for
partial derivatives to simplify the notation. Using a substitution p = ϕt, v1 = −aϕx,
v2 = −aϕy we obtain the first order linear hyperbolic system

wt + A1wx + A2wy = 0, x = (x, y)T ∈ R
2,

where the, noncommuting, coefficient matrices A1, A2 ∈ R3×3 are defined by

A1 :=

⎛
⎝ 0 a 0

a 0 0
0 0 0

⎞
⎠ , A2 :=

⎛
⎝ 0 0 a

0 0 0
a 0 0

⎞
⎠ .

Here a ∈ R denotes the speed of sound and w = (p, v1, v2)T ∈ R3 is the vector
of dependent variables. We have three eigenvalues λ1 = −a, λ2 = 0, λ3 = a and
corresponding linear independent right eigenvectors

r1 =

⎛
⎝ −1

cos θ
sin θ

⎞
⎠ , r2 =

⎛
⎝ 0

sin θ
− cos θ,

⎞
⎠ , r3 =

⎛
⎝ 1

cos θ
sin θ

⎞
⎠
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of the matrix pencil A(ννν) := A1 cos θ + A2 sin θ for any unit vector ννν = (ν1, ν2)T =
(cos θ, sin θ)T ∈ R2. Wave equation system is sometimes called the acoustic equa-
tion system since it describes propagation of acoustic waves in air. Let us consider
linearized Euler equations written in primitive variables (ρ, v1, v2, p). Here we de-
note by u, v the x, y components of the velocity vector, respectively.

ut + B1ux + B2uy = 0, x = (x, y)T ∈ R
2,

where the vector of unknowns is

u :=

⎛
⎜⎝

ρ
v1

v2

p

⎞
⎟⎠

and the Jacobians frozen at some state (ρ′, v′1, v
′
2, p

′) are

B1 :=

⎛
⎜⎜⎜⎝

v′
1 ρ′ 0 0

0 v′
1 0

1
ρ′

0 0 v′
1 0

0 κp′ 0 v′
1

⎞
⎟⎟⎟⎠ B2 :=

⎛
⎜⎜⎜⎝

v′
2 0 ρ′ 0
0 v′

2 0 0

0 0 v′
2

1
ρ′

0 0 κp′ v′
2

⎞
⎟⎟⎟⎠ .

Both systems of the Euler equations in primitive and conservative variables are
equivalent if ρ, v1, v2, p ∈ C1. Note that it is the wave equation system, which
creates the key part of the Euler equations. Set ρ′ = 1/a′ and remove the first row
corresponding to density as well as first column from the Jacobian matrices B1, B2.
Then moving the third equation for pressure in the first row leads to the so-called
wave equation system with advection. Further, if the advection velocities are v′

1 =
v′
2 = 0 and a′ = const. we recover the above linear wave equation system. Thus,

by linearizing the Euler equations about some state (ρ′, v′1, v
′
2, p

′) we can model
propagation of sound waves, small disturbances, which propagates with speeds
v′
1 cos θ+v′

2 sin θ±a′, i.e. with the velocities ±a′ relative to the background velocity
(v′

1, v
′
2). In fact, our ears are sensitive to the small disturbances in pressure in these

waves.
Further, the wave equation system describes, for example, propagation of waves

in elastic solids. In exploration seismology one studies the propagation of small am-
plitude, man-made waves in the earth, and their reflection off geological structures.
The hope is to determine the geological structure from measurements at the surface
(for example to order oil reservoirs). Reflection of waves at interfaces can lead to
discontinuities even for linear equations. Earthquakes can cause larger amplitude
disturbances and lead to nonlinear effects.

A similar principle as in seismological exploration of the earth is used for ul-
trasound exploration of human tissue. But there are also many other biological
processes involving advection and transport, for example transport of blood cells in
vessels. As we have said hyperbolic conservation laws can typically produce shock
waves even if the coefficients and data are smooth. Of course, physiologically, a
true shock in arterial circulation is not possible since blood viscosity and elasticity
of the vessel wall preclude shock formation. However, it might be possible to gener-
ate very steep pressure gradients in the aorta, which are believed to correspond to
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the pistol-shut phenomenon, a loud cracking sound heard through a stethoscope by
patients with aortic insufficiency. Recently there exists an extensive mathematical
research in hemodynamics with the aim to help in prediction of optimal strategy
in medical treatment.

Traffic flow. Consider a simple problem of traffic flow on a single-line highway.
Let ρ(x, t) denotes the density of cars, 0 ≤ ρ ≤ ρmax, where ρmax is the maximum
density of cars staying bumper-to-bumper. Cars are moved with the velocity u =
U(ρ). There are different models to determine velocity function with respect to
density of cars. The simplest linear model is

U(ρ) = umax

(
1 − ρ

ρmax

)
.

The conservation of cars can be expressed by the following scalar conservation law

∂ρ

∂t
+

∂ρu

∂x
= 0.

Thus
∂ρ

∂t
+

∂f(ρ)
∂x

= 0,

where f(ρ) = ρumax (1 − ρ/ρmax). Now if one car suddenly stops the cars behind
start to slam into one another and a shock wave will propagate back through the
line of cars. Both density as well as velocity of cars jumps across this shock wave.
The propagating shock wave is similar to what seen in a gas tube with two different
gases modelled by the Euler equations.

Magnetohydrodynamics. Astrophysical modelling leads to systems of hyper-
bolic conservation laws. A spiral galaxy can consist of alternating arms of high
density and low density, separated by discontinuities, propagating shock waves. In
this context the shock width may be of order 105 light years. Modelling of dynamics
of a single star, or plasma in a fussion reactor, is governed by the conservation laws.
However now also electromagnetic effects together with fluid dynamics have to be
considered. The magnetohydrodynamic (MHD) equations consist of the Maxwell
equation coupled with the Euler equations. In modelling a supernova explosion one
must also include gravitational forces so that density should initially be decreasing
with radius rather than constant and such effects as radiative transfer are impor-
tant. Nonetheless, the same basic structure as in simple Riemann problem (shock
tube problem) can be found. Note that when gravitational forces directed towards
origin are included this dense shell will be separated from lighter gas below by a
contact surface. In three-dimensional model this surface would initially be spherical
but would be quickly broken up by the so-called Rayleigh-Taylor instabilities.

Shallow water equations can be found in many practical situations. For
example, turn on the kitchen faucet full blast and hold a plate or other flat surface
underneath. You will see the water rush radially away from the stream in the thin
layer along the plate at fairly high speed. At some distance away from the stream, a
circular pattern will generally form, outside of which the layer of water is suddenly
thicker and relatively slowly mowing. This discontinuity in depth and velocity is
called a hydraulic jump, and it is a nice example of a steady shock wave.
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But there are many other types of flows not necessarily involving water, which
can be characterized as shallow water flows. They describe flows of fluids with a
free surface under the influence of gravity, where the vertical dimension is much
smaller than any typical horizontal scale. Examples of shallow water are rivers with
their flood plains, flows in lakes generated by wind blows, propagation of tsunamis,
oceanographic, meteorological and geophysical flows.

Sometimes stronger discontinuities can be observed, e.g. tidal bores in some rivers
or the wave resulting from the bursting of a dam, and a moving step front develops,
which is comparable to a shock wave in aerodynamics. In this lecture notes we will
concentrate on problems involving bores or hydraulic jumps and therefore the aim
is to use such numerical schemes which take into account the hyperbolic character
of the equations and allow modelling of discontinuous flows.

For example, typical lengths of the river Rhine are: length 1000 km, width 100m,
depth 5m. As we see there is just one dominant scale and thus one-dimensional
equations will be a good model for the river flow. In what follows we derive the
one-dimensional shallow water equations.

Let us consider a fluid which is incompressible, non-viscous, non-heat conducting,
and neglect the vertical velocity as well as dependency on vertical direction due to
the shallow effects. Since the fluid is incompressible the density ρ̄ is constant. But
the height h(x, t) of the shallow water may vary. Let η(x, t) describes the free water
surface and b(x) relief of bottom solid surface. Thus h(x, t) = η(x, t) − b(x), and
the total mass in some volume σ(t) = [x1(t), x2(t)]× cross-sectional area at time t
is

m(σ(t)) =
∫ x2(t)

x1(t)

ρ̄h(x, t)dx.

The conservation of mass postulates that
∂m(σ(t))

∂t
= 0. Using the Transport the-

orem 1.1.1 and the fact that ρ̄ = const. we get

(i) ht + (hu)x = 0,

where u(x, t) denotes the velocity of the shallow water. Further, the one-dimen-
sional momentum equation (1.2.2’) with zero outer forces yields

(ii) ut + uux = −1
ρ̄
px.

Now the pressure p is determined from a hydrostatic law, stating that the pressure
at the depth y is ρ̄g(η − y), where g is the gravitational constant. Thus,

(iii) px = ρ̄gηx.

We multiply equation (i) by u and equation (ii) by h. Adding them together and
using (iii) yields the momentum equation for the one-dimensional shallow water in
conservative variables

(iv) (hu)t + (hu2 +
1
2
gh2)x = −ghbx.

Equations (i) and (iv) form the one-dimensional shallow water system.
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In more general situations, e.g. oceanography or meteorology, full three-dimen-
sional flows have to be considered. Under the assumption on shallow effects they
can be modelled mathematically by the two-dimensional shallow water equations
with a source term

∂w
∂t

+
∂f(w)

∂x
+

∂g(w)
∂y

= t(w), x = (x, y)T ∈ R
2,

where

w =

⎛
⎝ h

hu
hv

⎞
⎠ f(w) =

⎛
⎝ hu

hu2 + gh2

2
huv

⎞
⎠ ,

g(w) =

⎛
⎝ hv

huv
hv2 + gh2

2

⎞
⎠ , t(w) =

⎛
⎝ 0

−gh ∂b
∂x + fhv − ghSf1

−gh ∂b
∂y − fhu − ghSf2

⎞
⎠ .

Here u, v are the x, y components of the depth averaged velocities of the flow,
respectively. In general, there are more then just the bottom relief effects. For
example, the Coriolis forces f arise from earth’s rotation and Sf1, Sf2 are fric-
tion slopes resulting from viscosity effects. Due to the bottom friction terms the
flow is retarded. Usually it is assumed that the bottom friction stresses depend
quadratically on the depth-averaged velocities.

The eigenvalues of this hyperbolic conservation law are λ1 = u cos θ + v sin θ −√
gh, λ2 = u cos θ + v sin θ, λ3 = u cos θ + v sin θ +

√
gh, where θ ∈ [0, 2π) and√

gh = c denotes the wave celerity or the wave speed. The corresponding linearly
independent right eigenvectors are

r1 =

⎛
⎝ 1

u − c cos θ
v − c sin θ

⎞
⎠ , r2 =

⎛
⎝ 0

sin θ
− cos θ

⎞
⎠ , r3 =

⎛
⎝ 1

u + c cos θ
v + c sin θ

⎞
⎠ .

Analogously as in the gas dynamics we introduce the so-called Froude number

Fr =
|v|
c

,

which plays an important role in the classification of shallow flows. The shallow
flow is called supercritical, critical or subcritical for Fr > 1, Fr = 1, and Fr < 1,
respectively.

Exercise:
Derive the two-dimensional shallow water equations in primitive variables (h, u, v).
Which are the regularity conditions you need to assume? Compute the eigenvalues
and the corresponding eigenvectors! Explain why the eigenvalues did not change!

2.1.9 Hyperbolic systems. In this subsection the theory of multi-dimensional
hyperbolic conservation laws will be reviewed. The theory gives a good insight into
underlying properties that occur in an analytical solution of a set of conservation
laws. The aim is to get a better understanding of properties of solutions to hyper-
bolic systems such that they can be used in construction of an adequate numerical
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scheme. To simplify the situation we will consider the Cauchy problem (we elimi-
nate boundary conditions):

(2.1.10)
∂w
∂t

+
d∑

j=1

∂

∂xj
fj (w) = 0 in R

d × 〈0,∞),

(2.1.11) w (·, 0) = w0 in R
d,

where w : Rd×〈0,∞) → D, D ⊆ Rs is an open set, fj ∈ C1 (D; Rs) , j = 1, 2, . . . , d.
Here s states for the number of equations and d is a dimension.

Repeating Definition 2.1.6 for general case of vector w and fj , j = 1, 2, . . . , d,
we get the definition of hyperbolic systems. In what follows we assume that the
system (2.1.10) is hyperbolic. The concept hyperbolic conservation laws is also used
in literature. By the definition of hyperbolic system the equivalent form of (2.1.10)
is

(2.1.12)
∂w
∂t

+
d∑

j=1

Aj (w)
∂w
∂xj

= 0,

where Aj (w) =
Dfj (w)

Dw
, and the matrix P (w, ννν) =

d∑
j=1

νjAj (w) ; w ∈ D, ννν ∈ Rd;

has s real eigenvalues λi = λi (w, ννν) , i = 1, 2, . . . , s.

Definition 2.1.13. A vector valued function w ∈ C1
(
Rd × 〈0,∞);D

)
satisfy-

ing (2.1.10), (2.1.11) pointwise is called a classical solution.

We have already mentioned that an important property of hyperbolic conserva-
tion law is that it may develop discontinuities in the solution, even if the data w0

and fj are infinitely smooth. This can be shown even for very simple example of
the Cauchy problem for inviscid Burgers’ equation (d = s = 1) :

(2.1.14)
∂u

∂t
+

∂

∂x

(
u2

2

)
= 0,

u (x, 0) =

⎧⎪⎨
⎪⎩

1, x ≤ 0,

1 − x, 0 ≤ x ≤ 1,

0, 1 ≤ x.

The solution of the first order parabolic equation (2.1.14) can be found by the
method of characteristics. The characteristics x = x (t) of (2.1.14) satisfy

(2.1.15)
d

dt
x (t) = u (x (t) , t) ,

and along each characteristic u is constant, since

d

dt
u (x (t) , t) =

∂

∂t
u (x (t) , t) +

∂

∂x
u (x (t) , t) · d

dt
x (t) =

∂u

∂t
+ u

∂u

∂x
= 0.
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Fig. 2.1. Characteristics for the Burgers equation (2.1.14).

Moreover, since u is constant on each characteristic, the slope
d

dt
x (t) is constant

by (2.1.15) . Thus, the characteristics are straight lines, determined by the initial
data (see Fig. 2.1).

The characteristics do not intersect for t < 1 and the solution, constant along
characteristics, is

(2.1.16) u (x, t) =

⎧⎪⎨
⎪⎩

1, x ≤ t,

(1 − x)/(1 − t), t ≤ x ≤ 1,

0, x ≥ 1,

for t < 1.

At the point (1, 1) the characteristics intersect and the discontinuity of the solution
develops. It will be shown that for t ≥ 1 a generalized weak solution with the
discontinuity on the line x = (t + 1) /2 can be defined in the form

(2.1.16′) u (x, t) =

⎧⎪⎨
⎪⎩

1, x <
t + 1

2
,

0, x >
t + 1

2
,

for t ≥ 1.

A very suitable technique to describe such phenomena is the theory of distri-
butions. Thus, in order to admit also discontinuous solutions one has to use the
weak formulation of conservation laws. This notation is analogous to the concept
of weak solution already defined in previous courses of partial differential equa-
tions. Note however, that because of less regularity, i.e. “smoothness”, of solutions
to hyperbolic problems, the Sobolev spaces W k,l used for parabolic and elliptic
equations are inappropriate in our case. The only thing we can assume about
the solution is that it does not blow up, i.e. it is “essentially” bounded. Thus,
we need to work with the class L∞

loc of locally bounded measurable functions, i.e.
L∞

loc

(
Rd

)
≡

{
w; ‖w‖L∞(K) < ∞ ∀K ⊂ Rd, K compact

}
. See also [Kröner], [Feis-

tauer] for more details.

Definition 2.1.17. Let C∞
0

(
Rd × 〈0,∞); Rs

)
:=

{
ϕϕϕ ∈ C∞ (

Rd × 〈0,∞); Rs
)
;

supp ϕϕϕ is a compact set in Rd × 〈0,∞)
}

and w0 ∈ L∞
loc

(
Rd;D

)
. A vector valued
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function w, s.t. w ∈ L∞
loc

(
Rd × 〈0,∞);D

)
, is called a weak solution to the problem

(2.1.10), (2.1.11), if the following integral identity holds

∫ ∞

0

∫
Rd

⎛
⎝w

∂ϕϕϕ

∂t
+

d∑
j=1

fj (w)
∂ϕϕϕ

∂xj

⎞
⎠

(2.1.18)

+
∫

Rd

w0 ϕϕϕ (·, 0) = 0 ∀ϕϕϕ ∈ C∞
0

(
R

d × 〈0,∞); Rs
)
.

Exercise:

Show that the classical solution (2.1.13) is a weak one, and conversely: a weak
solution satisfies (2.1.10) , (2.1.11) in the sense of distributions on Rd × (0,∞).

Further, it follows from the weak formulation that across discontinuities the
so-called Rankine–Hugoniot relation must hold.

Definition 2.1.19. A function w : Rd × 〈0,∞) → Rs is piecewise smooth if
there is a finite number of smooth hypersurfaces Γ in Rd × 〈0,∞) s.t. the function
w is smooth in Rd ×〈0,∞) \Γ and has one-sided limits w± on Γ, i.e. w± (x, t) :=
lim

ε→0+
w ((x, t) ± εn) , where n = (nx1 , nx2 , . . . , nxd

, nt) is a normal to Γ.

Theorem 2.1.20. (Rankine–Hugoniot condition) Let w : Rd×〈0,∞) → D ⊂ Rs

be a piecewise smooth function. Then w is a solution of (2.1.10) in the sense of
distributions on Rd × (0,∞) if and only if it satisfies the following conditions :

(1) w is a classical solution in any domain where w is C1 function;
(2) jump condition: (w+ − w−) nt +

∑d
j=1

(
fj (w+)− fj (w−)

)
nj = 0 on any

hypersurface of discontinuity Γ.

Proof. Do it as an exercise!
�

Let us come back to the example (2.1.14). We can verify that the Rankine–

Hugoniot condition (2.1.20)ii) holds on Γ =
{

(x, t) ; x =
t + 1

2
, t > 1

}
. The outer

normal to the hypersurface of discontinuity Γ = {(x, t) ; x = ξ (t)} can be expressed

in the form n = (nx, nt) = (1,−s), where s =
dξ (t)

dt
. The Rankine–Hugoniot

condition becomes

(2.1.21) s
(
u+ − u−)

= f
(
u+

)
− f

(
u−)

.

From (2.1.16) we get that u+ − u− = 1, f (u+) − f (u−) = 1
2 at (x, t) = (1, 1) .

Since, by the definition of Γ, s = 1
2 , the condition (2.1.21) is satisfied.

It is easy to verify that outside Γ the function u, define in (2.1.16′), is a classical
solution. Thus, it is a weak solution on R × 〈0,∞).
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Unfortunately, there is often more than one weak solution to the conservation
law with the same initial data. For example, if we solve Burgers’ equation (2.1.14)
with the initial data

(2.1.22) u (x, 0) =

⎧⎨
⎩

0, x ≤ 0,

1, x > 0,

then there are infinitely many weak solutions. For example,

(2.1.23) u (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < smt,

um, smt ≤ x ≤ umt,
x

t
, umt ≤ x ≤ t,

1, x > t;

is a weak solution for any um s.t. 0 ≤ um ≤ 1 and sm =
um

2
. This can be easily

verified by Theorem 2.1.20.
If our conservation law is to model the real world then clearly only one of the

solutions is physically relevant. The fact, that the equations have other, spurious,
solutions is a result of the fact that our equations are only a model of reality and
some physical effects have been ignored. In particular, hyperbolic conservation laws
do not include diffusive or viscous effects. Although these effects may be negligible
throughout most of the flow, near discontinuities the effect is always strong. In fact,
the full Navier–Stokes equations have smooth solutions, for some simple problems
that we consider, and the apparent discontinuities are in reality thin regions. What
we hope to model with the Euler equations is the limit of the smooth solution to
the Navier–Stokes equations as the viscosity parameter approaches zero. This leads
to the desired weak solution of the Euler equations.

But there are also other weak solutions even to simple hyperbolic conservation
equations. We must use our knowledge of what is being ignored. This helps to pick
out the correct weak solution.

The following approach, called vanishing viscosity method, was suggested by
P. D. Lax in 1954. We introduce a missing diffusive term into the equation and
obtain an equation with a unique smooth solution. Then let the coefficient of this
term tends to zero. This idea of vanishing viscosity method is used in analysis
of conservation laws and very often for the construction of sufficiently dissipative
numerical scheme, which gives physically relevant approximate solutions.

On the other hand, this method is not optimal in order to define physically
relevant solution, since it requires study of a more complicated system of equations.
This is precisely what we wanted to avoid by introducing an inviscid fluid. But it
is a good hint in order to derive other condition that can be imposed directly
on the weak solutions of the hyperbolic system to pick out the physically correct
solution (cf. Theorem 2.1.27). Taking into account the physical background we see a
suitable candidate for such a condition, namely the second law of thermodynamics
(cf. (1.3.11)) or the entropy condition. It says that entropy is nondecreasing in
time. In fact, as molecules of a gas pass through a shock their entropy increase.
Now we approach the mathematical definition of entropy.
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Definition 2.1.24. A convex function U : Rs → R is said to be entropy of
(2.1.10), if there are some entropy fluxesF1, . . . , Fd : D ⊂ Rs → R, s.t.

(2.1.25)
(
grad U (w)

)T · Dfj (w)
Dw

= grad Fj (w) , j = 1, 2, . . . , d.

It can be verified easily that the entropy U (w) is conserved for smooth solutions
of hyperbolic conservation laws (2.1.10), thus

(2.1.26)
∂U (w)

∂t
+

d∑
j=1

∂Fj (w)
∂xj

= 0

holds in the sense of distributions on Rd × (0,∞).
But for the discontinuous solutions we cannot perform the same manipulations.

Since we are particularly interested in how the entropy behaves for the vanishing
viscosity weak solution, we look at the related viscous problem and then let the
viscosity tend to zero. This is exactly what the following theorem says.

Theorem 2.1.27. Let system (2.1.10) have a convex entropy U ∈ C2 (Rs; R)
and entropy fluxes Fj ∈ C1 (Rs, R) , j = 1, 2, . . . , d. Let {wε} be a sequence of
sufficiently smooth solutions to the pertubated Cauchy problem (2.1.10) , (2.1.11),
i.e. the R.H.S. of (2.1.10) is equal to εΔwε. Let the following conditions hold

(i) ‖wε‖
L∞

(
Rd×(0,∞);Rs

) ≤ c,

uniformly with respect to ε > 0,

(ii) wε → w as ε → 0 a.e. in R
d × 〈0,∞).

Then w is a weak solution of (2.1.10) , (2.1.11) and

(2.1.28)
∂U (w)

∂t
+

d∑
j=1

∂

∂xj
Fj (w) ≤ 0

holds in the sense of distributions on Rd × (0,∞), i.e.

(2.1.29)
∫ ∞

0

∫
Rd

U (w)
∂ϕ

∂t
+

d∑
j=1

Fj (w)
∂ϕ

∂xj
≥ 0

for all ϕ ∈ C∞
0

(
Rd × (0,∞)

)
, ϕ ≥ 0.

Proof. (see, e.g., [Kröner]).
�

Now we define an entropy solution on the basis of the result from Theorem 2.1.27.
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Definition 2.1.30. A weak solution w, s.t. w ∈ L∞
loc

(
Rd × 〈0,∞); Rs

)
, of the

Cauchy problem (2.1.10) , (2.1.11), is said to be an entropy weak solution, if for all
entropies U and corresponding entropy fluxes Fj , j = 1, 2, . . . , d,

∂U (w)
∂t

+
d∑

j=1

∂

∂xj
Fj (w) ≤ 0

holds in the sense of distributions on Rd × (0,∞).

A natural suggestion arises : what is a relation between the mathematical entropy
U and the physical entropy η (cf. (1.3.10))? In reference [Feistauer], it was shown
that for the Euler equations this relation is

(2.1.31) U = −ρ η, Fj = −ρ vj η, j = 1, 2, . . . , d.

The inequality (2.1.28) becomes

(2.1.32)
∂

∂t
(ρ η) +

d∑
j=1

∂

∂xj
(ρ vj η) ≥ 0

in the sense of distributions on Rd×(0,∞). Hence, using (2.1.32) and the continuity
equation (1.1.3) we obtain

(2.1.33) ρ
d

dt
(η) ≥ 0 (in the sense of distributions) .

This inequality is in agreement with the second law of thermodynamics (1.3.11),
where now q = 0, q = 0. Thus, (2.1.33) is the mathematical formulation of the
well-known fact: entropy of the system is not decreasing in time.

Although there is still hope that there exists the weak entropy solution even in
the case of a general hyperbolic system and consequently, of the Euler equations,
too, till now it has not been proved. As far as the uniqueness concerns, there
is a counter example to the uniqueness of entropy solution to a hyperbolic system
[Sever]. Nevertheless, it is still believed that there is a unique weak entropy solution
of the Euler equations. In the scalar case (s = 1) we have a fundamental Kruzhkov’s
result, which holds in any space dimension d.

Theorem 2.1.34. (Kruzhkov, 1970) If w0 ∈ L∞ (
Rd

)
, then the problem (2.1.10)

(2.1.11), where s = 1, has a unique weak entropy solution w ∈ L∞ (
Rd × 〈0,∞)

)
.

Proof. (see [Kruzhkov]).
�

Remark 2.1.35. This Kruzhkov solution can be found by the method of van-
ishing viscosity. By adding a term εΔwε to the R.H.S. of (2.1.10), we get the
parabolic perturbation of (2.1.10), i.e.

∂wε

∂t
+

d∑
j=1

∂

∂xj
fj (wε) = εΔwε in R

d × (0,∞) ,

wε (·, 0) = w0 in R
d, ε > 0.
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The aim is to study the behaviour of the solution wε when passing to the limit
as ε → 0. We will not go into the details of the proof, we just note that one
possible approach is based on the concept of the measure-valued solution , which
is a solution taken even in a weaker sense than the concept of the weak solutions.
This concept is often used to study the convergence of numerical methods used for
approximation of hyperbolic conservation laws; as an example see Theorem 2.2.52.

In the case of general hyperbolic systems of first order there are only particular
existence and uniqueness results for the one-dimensional situation. For the rest
of this section we assume that d = 1 and s ≥ 1. The existence of weak entropy
solution was proved by Glimm in 1965. In order to formulate this result we need
to introduce some new concepts.

Definition 2.1.36. Let w ∈ L1
loc(R). The total variation of w is given as

TV (w) ≡ suph∈R−{0}
1
h

∫
R

|w(x + h) − w(x)| dx.

The space of all functions from R to Rs with bounded total variation is defined as

BV (R) ≡ {w ∈ L1
loc(R);TV (w) < ∞},

and the associated norm is given in the following way

‖w‖BV ≡ ‖w‖L1 + TV (w).

For simplification we are using here and in what follows notations L1
loc(R), BV (R)

instead of more precise L1
loc(R; Rs), BV (R; Rs), respectively. From the definition

above it follows how to understand total variation of sequences approximating dis-
crete functions. Let w = {wj}j∈N be a sequence of discrete values wj . Then we
have for the total variation of w

TV (w) =
∞∑

j=0

|wj+1 − wj |.

In order to get better understanding of how large the BV space is, let us recall
a powerful compactness property, the well-known selection principle of Helly.

Theorem 2.1.37. (Selection principle of Helly) Let {un} be a sequence of func-
tions in L1(a, b) such that

‖un‖L∞[a,b] ≤ c, TV[a,b](un) ≤ c n ∈ N.

Then there exists a subsequence {un′} and an u ∈ L1(a, b) such that

un′ −→ u in L1(a, b).

�
In fact, we have for the BV spaces the following imbedding properties W 1,1

loc (R) ↪→
BV (R) ↪→↪→ L1

loc(R).

Let rk (w) , k = 1, 2, . . . , s, be the eigenvectors of the Jacobian matrix A (w) ,w ∈
D, and λk (w) , k = 1, 2, . . . , s, be the corresponding eigenvalues, cf. (2.1.12).
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Definition 2.1.38. An eigenvector rk is called genuinely nonlinear, if

grad λk (w) · rk (w) �= 0 ∀w ∈ D.

We say that rk is linearly degenerate, if

grad λk (w) · rk (w) = 0 ∀w ∈ D.

Now we can approach to the formulation of the existence result of Glimm.

Theorem 2.1.39. (Glimm, 1965) Let the initial data w0 ∈ L∞
loc(R) and let there

exist δ > 0, such that the total variation TV (w0) < δ. Further, let the system be
strictly hyperbolic, i.e. all eigenvalues λk(w) are distinct, and let each eigenvector is
either genuinely nonlinear or linearly degenerate. Then there exists a weak entropy
solution w ∈ L∞ ([0, T ], BV (R) ∩ L∞

loc(R)) of (2.1.10), (2.1.11), (d = 1).

In 1995 Bressan, see e.g. [Bressan], proved the uniqueness of the weak en-
tropy solution in the above class of BV solutions using the semigroup technique.
Let us note that the assumption on small total variation is necessary; namely if
TV (w0) → ∞ there exist at least two weak entropy solutions to the system (2.1.10),
(2.1.11), (d = 1).

2.1.40 Riemann problem. Many of nowadays numerical schemes used for
hyperbolic systems, cf. Godunov finite volume methods 2.2.54, are based on finding
a solution, or at least its approximation, to the Riemann problems solved in the
normal directions to the mesh cell interfaces. We will deal with this point more
deeply in the next Section 2.2, where the finite volume methods are described. The
aim of this section is to show properties of solution of the following one-dimensional
Riemann problem

∂w
∂t

+ A (w)
∂w
∂x

= 0 on R × (0,∞) ,(2.1.41)

w (x, 0) =

⎧⎨
⎩

wL, x < 0,

wR, x > 0

with given constant initial states wL, wR ∈ D. As a physical interpretation of
(2.1.41) we can imagine a long tube filled with two types of gas, e.g. rare and dense
gas. These are separated with a membrane. We are interested in the gas motion
after the membrane is suddenly removed. In Fig. 2.2 solution of the Riemann
problem for the Euler equations is plotted. Initial data are taken as follows:

ρ = 1, p = 1, v1 = v2 = 0 x ≤ 0
ρ = 0.125, p = 0.1, v1 = v2 = 0 x > 0.

We can notice all three fundamental parts of solution: rarefaction wave, contact
discontinuity and shock, which we will describe in what follows.

Theorem 2.1.42. (Self-similarity form) Let the Riemann problem (2.1.41) has
a unique piecewise smooth weak solution w, then w can be written in the similarity
form w(x, t) = w̃(x/t), where w̃ : R → Rs, t > 0.
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Fig. 2.2. Solution to the Riemann problem of the Euler equations;
plots of density, velocity, pressure and temperature at t = 0.25.

Proof. It is easy to realize that w(αx, αt) is also a solution of (2.1.41) for every
α > 0. Due to the uniqueness, we have w(αx, αt) = w(x, t), which means that w is
homogeneous of order zero. Now, taking α = 1/t, we see that w(x, t) = w(x/t, 1) =
w̃(x/t).

�

Solution to the linear Riemann problem. Assume that in (2.1.41) the Jacobian
matrix A = const. The system {rk}s

k=1 of all eigenvectors of A creates a basis in
Rs. Thus,

wL :=
s∑

k=1

αkrk, wR :=
s∑

k=1

βkrk,

and we can rewrite the initial data by means of

w0 =
s∑

k=1

[H(x)βk + (1 − H(x))αk] rk.

Here H(x) denotes the Heaviside function, i.e. H(x) = 1 for x ≥ 0 and H(x) = 0
else. Let T−1 denotes the inverse matrix to the matrix T consisting of all eigenvec-
tors rk. Further denote by u the characteristic vector, i.e.

u = T
−1w.

Multiplying system (2.1.41) by the matrix T−1 from the left leads to the diagonal
system

∂u
∂t

+ D
∂u
∂x

= 0 on R × (0,∞) ,(2.1.42)
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with D = T−1AT. This system consists of s separated linear advection equations
for each component k. Thus, analogously we can write

∂uk

∂t
+ λk

∂uk

∂x
= 0, k = 1, . . . , s,

and accompany them with the initial data

uk(x, 0) =
{

αk x < 0,

βk x ≥ 0.

Now similarly as for advection equation (2.1.14) each component uk is deter-
mined by the initial data backwards along the characteristic dx/dt = λk. Thus,

(2.1.43) uk(x, t) = uk(x − λkt, 0), k = 1, . . . , s.

Multiplying (2.1.43) by rk and summing over each k = 1, . . . , s, we obtain

w(x, t) =
s∑

k=1

uk(x, t) rk =
s∑

k=1

uk(x − λkt, 0) rk

s∑
k=1

[βkH(x − λkt) + αk(1 − H(x − λkt))] rk.(2.1.44)

If −∞ = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λs < λs+1 = ∞ and for some k ≥ 0 λk < λk+1

then w is constant in the domain Ωk = {(x, t); t > 0, λk < x/t < λk+1}:

w(x, t) = wk (x, t) ∈ Ωk,

wk =
k∑

j=1

βjrj +
s∑

j=k+1

αjrj , k = 1, . . . , s.

Exercise:
Show that the function w defined in (2.1.44) is a weak solution to the linear Riemann
problem (2.1.41).
Hint : Use Theorem 2.1.20 and show that on each discontinuity x/t = λk the
Rankine-Hugoniot conditions are satisfied.

Solution to the nonlinear Riemann problem. Above we have shown that
solution to the linear Riemann problem consists of constant states, sometimes called
waves, separated by discontinuities x/t = λk, which are also called linear shocks.
In what follows we will deal with nonlinear problem (2.1.41). We will see that the
structure of solution will be now more complex. First we have to introduce some
new concepts.

I. Shock discontinuity. Let the k-th eigenvector rk, k = 1, . . . , s, be genuinely non-
linear, cf. Definition 2.1.38. Let w be a piecewise discontinuous solution to (2.1.41),
such that

(2.1.45) w(x/t) =
{

wL x/t < λ

wR x/t > λ,
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where λ denotes the speed of propagation of discontinuity (direction of discontinu-
ity) corresponding to the eigenvector rk. The weak entropy solution in the form
of (2.1.45) have to satisfy the Rankine-Hugoniot conditions, cf. Theorem 2.1.20, as
well as the entropy condition, cf. Definition 2.1.30.
Due to the Rankine-Hugoniot conditions

(2.1.46) f(wL) − f(wR) = λ(wL − wR).

Moreover we assume that the following so-called Lax entropy condition is satisfied

(2.1.47) λk(wL) > λ > λk(wR).

It was proved by Lax [Lax (1)] that for one-dimensional systems condition (2.1.47)
is for genuinely nonlinear eigenvectors equivalent to the entropy inequality (2.1.29).

If conditions (2.1.46), (2.1.47) hold, solution (2.1.45) is called shock discontinuity
or shock.

II. Rarefaction wave. Assume again that the k-th eigenvector rk, k = 1, . . . , s, is
genuinely nonlinear. Now let w be a continuous solution to (2.1.41), constructed in
such a way that the gap between λk(wL) and λk(wR), λk(wL) < λk(wR), is filled
with a fan

(2.1.48) λk(w̃(x/t)) =

⎧⎪⎨
⎪⎩

λk(wL), x/t < λk(wL)
x/t, λk(wL) < x/t < λk(wR)
λk(wR), x/t > λk(wR).

Now, a piecewise smooth weak solution of the Riemann problem (2.1.41) satis-
fying (2.1.48) can be written in the following form

(2.1.49) w(x, t) =

⎧⎪⎨
⎪⎩

wL, x/t < λk(wL)
w̃(x/t), λk(wL) < x/t < λk(wR)
wR, x/t > λk(wR)

with C1- smooth function w̃. The weak solution given by (2.1.49) is called a weak
rarefaction wave or a simple wave. Note, that since w̃ is C1-smooth function the
entropy condition is fulfilled as equality (2.1.26).

III. Contact discontinuity. Now, let us assume that the k-th eigenvector rk is lin-
early degenerate, cf. Definition 2.1.38. We look for a piecewise discontinuous solu-
tion w to (2.1.41) in the form (2.1.45). Since w is a weak solution, the Rankine-
Hugoniot conditions (2.1.46) have to be satisfied on the discontinuity x/t = λ.
Further,

(2.1.50) λk(wL) = λ(wR) ≡ λ,

which follows from the definition of contact discontinuity. Namely,

λk(w̃(ξ))
dξ

= grad λk(w̃(ξ)) · rk(w̃(ξ)) = 0.
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The weak entropy solution (2.1.45), which corresponds to the linearly degenerate
eigenvector rk, is called a contact discontinuity or a slip contact. Note, that this
weak discontinuous solution is also an entropy one. It follows from the fact that k-
th eigenvalue λk stays constant, and thus the problem has in the k-th characteristic
field linear-like behaviour, see [Feistauer] for a precise proof.

Now we can approach to the formulation of the existence and uniqueness result for
the solution of nonlinear Riemann problem. We present this result without a proof,
the reader can find more details e.g. in [Lax (2)].

Theorem 2.1.51. (Lax solution to the Riemann problem) Let the hyperbolic sys-
tem in (2.1.41) be strictly hyperbolic and each eigenvector be either genuinely non-
linear or linearly degenerate. Let for the initial conditions of the Riemann problem
(2.1.41) the difference |wR−wL| be “sufficiently small”. Then there exists a unique
weak entropy solution to (2.1.41), which consists of at most s + 1 constant states
separated either by rarefaction waves or shock waves or contact discontinuities.

Remark 2.1.52. Let us note that the above general considerations for the
Riemann problem can be used for particular systems used in practical applications;
e.g. the shallow water equations, the Euler equations. For example, for the x-split
two-dimensional shallow water equations the vectors w and f(w) are

w =

⎛
⎝ h

hu
hv

⎞
⎠ , f(w) =

⎛
⎝ hu

hu2 + 1
2gh2

huv

⎞
⎠ .

We have three wave families, which are associated with the eigenvalues λ1 = u −
a, λ2 = u, λ3 = u + a; a =

√
gh. These three waves separate four constant states

wL,wR, which are the left and right given data, and w∗
L,w∗

R, which are the left
and right intermediate states to be determined.

The left and right waves are shocks or rarefactions, while the middle wave is
always a shear wave, i.e. the contact discontinuity wave. Across the left and right
waves both h and u change, but v remains constant. The tangential velocity v
changes across the shear wave discontinuously, other components h and u are con-
stant here. As a result we have for the intermediate star region

w∗
L =

⎛
⎝ h∗

h∗u∗

h∗vL

⎞
⎠ , w∗

R =

⎛
⎝ h∗

h∗u∗

h∗vR

⎞
⎠ .

The following conditions determine the type of the waves which occur:
h∗ > hL . . . left wave is a shock
h∗ ≤ hL . . . left wave is a rarefaction wave;
h∗ > hR . . . right wave is a shock
h∗ ≤ hR . . . right wave is a rarefaction wave.

The basic step is to derive two non-linear algebraic equations, which determine h∗

and u∗. This follows from the so-called generalised Riemann invariants, which are
the ordinary differential equations holding across the corresponding waves, cf., e.g.,
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[Toro] for details. In fact for the Riemann problems arising in most practical appli-
cations, we can compute exact solution to the one-dimensional Riemann problem.
However, due to nonlinearity of the algebraic equations, h∗ and u∗ are actually
computed by some suitable iterative methods, e.g. Newton’s iterations.

Remark 2.1.53. In the case of two-dimensional Riemann problem the initial
data consists of arbitrary many constant states prescribed in sectors around the
origin (0, 0). Note that the question of existence and uniqueness of the weak entropy
solution to the two-dimensional Riemann problem for nonlinear systems is an open
problem. Some particular results have been proven either for linear systems or
simplified nonlinear systems, see e.g. Li et al. [Li, Zhang, Yang], [Li, Lukáčová,
Warnecke].

In Figure 2.3 the two-dimensional circular analogy of the above one-dimensional
Riemann problem is modelled by a genuinely multidimensional finite volume me-
thod, the so-called evolution Galerkin method, cf. [Lukáčová, Morton, Warnecke],
[Lukáčová, Saibertová, Warnecke]. The initial data of the so-called two-dimensional
Sod problem are given as

ρ = 1, u = 0, v = 0, p = 1, ‖x‖ < 0.4
ρ = 0.125, u = 0, v = 0, p = 0.1, else.

Figure 2.3 shows the isolines of density, x−, y− velocity components and pres-
sure computed at time T = 0.2 by the second order finite volume evolution Galerkin
scheme. The solution exhibits analogous phenomena as in the one-dimensional case.
Namely, a circular shock travelling away from the center, a circular contact discon-
tinuity travelling in the same direction and a circular rarefaction wave travelling
towards the origin at (0, 0).

2.2 Finite Volume Method

In this section we derive commonly used numerical scheme for solving the Euler
equations, the so-called finite volume methods (FVM). Generally, one has three
basic numerical methods for solving PDE’s. Namely, the finite difference method,
the finite element method and the finite volume method. Advantages of the FVM
are the simplicity of the scheme and the automatic control of the conservation,
which is a crucial property.

Let us present a derivation of the FVM on the following two-dimensional (i.e.
d = 2) initial-boundary value problem

∂w
∂t

+
d∑

k=1

∂ fk (w)
∂xk

= 0 in QT ≡ Ω × (0, T ),(2.2.1)

w (·, 0) = w0 in Ω,(2.2.2)

B (w) = b on ∂Ω × (0, T ) ,(2.2.3)
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Fig. 2.3. Isolines of the solution to the circular explosion problem for
the Euler equations.

We can rewrite (2.2.1) equivalently as

(2.2.1’)
∂w
∂t

+
∂f1 (w)

∂x
+

∂f2 (w)
∂y

= 0 in QT .

The initial data are denoted by w0, B represents the boundary operator and b
is a R.H.S. function. The definition of suitable boundary conditions will be done
in Section 2.3. Particularly, we have for the Euler equations (cf. (2.1.1))

(2.2.4) w =

⎛
⎜⎝

ρ
ρv1

ρv2

e

⎞
⎟⎠ , fj (w) =

⎛
⎜⎝

ρvj

ρv1vj + pδ1j

ρv2vj + pδ2j

(e + p) vj

⎞
⎟⎠ , j = 1, 2.

We add the state equation of the form (cf. (1.4.3))

(2.2.5) p = (κ − 1)
(

e − 1
2
ρ|v|2

)
.
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Let Aj (w) =
Dfj (w)

Dw
, j = 1, 2, w ∈ D ⊂ R4, be the Jacobian matrices. It can

be shown that

A1 =
(2.2.6)

⎛
⎜⎜⎜⎜⎝

0 1 0 0
κ − 3

2
v2
1 +

κ − 1
2

v2
2 (3 − κ) v1 (1 − κ) v2 κ − 1

−v1v2 v2 v1 0

−κev1

ρ
+ (κ − 1) v1|v|2

κe

ρ
− κ − 1

2
(
3v2

1 + v2
2

)
(1 − κ) v1v2 κv1

⎞
⎟⎟⎟⎟⎠

A2 =
(2.2.7)

⎛
⎜⎜⎜⎜⎝

0 0 1 0
−v1v2 v2 v1 0

κ − 3
2

v2
2 +

κ − 1
2

v2
1 (1 − κ) v1 (3 − κ) v2 (κ − 1)

−κev2

ρ
+ (κ − 1) v2|v|2 (1 − κ) v1v2

κe

ρ
− κ − 1

2
(
3v2

2 + v2
1

)
κv2

⎞
⎟⎟⎟⎟⎠

Due to hyperbolicity of the Euler equations the matrix

(2.2.8) P (w, ννν) = ν1A1 (w) + ν2A2 (w) ,

where w ∈ D, ννν ∈ R2, is diagonalizable, i.e.

(2.2.9) P = T · D · T
−1,

T = T (w, ννν) is a nonsingular matrix

T =

⎛
⎜⎝

1 0 1/(2a2) 1/(2a2)
v1 n2 (v1 + an1)/(2a2) (v1 − an1)/(2a2)
v2 −n1 (v2 + an2)/(2a2) (v2 − an2)/(2a2)

|v|2/2 n2v1 − n1v2 (H + av · n)/(2a2) (H − av · n)/(2a2)

⎞
⎟⎠ ,

and

D =

⎛
⎜⎜⎝

λ1 . . . 0
... λ2

λ3

0 λ4

⎞
⎟⎟⎠ .

Here H = e+p
ρ denotes the total specific enthalpy, ni = νi/|ννν|, i = 1, 2, a =

√
κp

ρ
is a local speed of sound, κ is the Poisson constant, cf. (1.3.6), and the eigenvalues
are

λ1 = λ2 = ν1v1 + ν2v2,(2.2.10)

λ3 = λ1 + a|ννν|, λ4 = λ1 − a|ννν|.
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Fig. 2.4. a) Quadrilateral mesh, b) Triangular mesh, c) Dual mesh
over a triangular grid.

2.2.11 Unstructured dual finite volume mesh. In what follows we will
introduce a discretization of the computational domain, the so-called mesh, which
is used for spatial approximation. In fact, we can use arbitrary geometrical objects
for mesh cells. In practice, rectangular grids, triangulations or even polygonal
discretizations are often used, depending on a problem to be solved; see Fig. 2.4.

In what follows we will work with unstructured, the so-called dual mesh. Having
more cell interfaces, i.e. edges, it has an advantage of approximating wave prop-
agation in different directions in a better way. First, we define a basic triangular
mesh.

Definition 2.2.12. Let Ωh be a polygonal approximation of the given bounded
domain Ω ⊂ R2. The set Th = {Ti}i∈I

, where I ⊆ N is an index set and h ∈
(0, h0) , h0 > 0, will be called a basic mesh, if the following properties hold:

(i) Ti is a closed triangle for all i ∈ I;
(2.2.13)

(ii) Ωh =
⋃
i∈I

Ti, where h = sup
i∈I

diam Ti, diam denotes diameter;

(iii) for any Ti, Tj ∈ Th, s.t. Ti �= Tj there are three following possibilities :

either Ti ∩ Tj = ∅,
or Ti ∩ Tj is a common vertex,

or Ti ∩ Tj is a common edge;

in this case Ti and Tj are called neighbours.

Now we approach the construction of a dual mesh to the given basic mesh.

2.2.14 Construction of the unstructured dual mesh, which will be denoted
by Dh = {Dj}j∈J

, J ⊆ N is an index set and h ∈ (0, h0). Let Ph = {Pj , j ∈ J} be
a set of all vertices of triangles from Th. A dual volume Dj that corresponds to the
point Pj , Pj ∈ Ph, will be constructed in the following way.

Join the center of gravity of arbitrary triangle, which contains the vertex Pj , and
the center of arbitrary edge of this triangle, which again contains the vertex Pj .
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Repeat this procedure for all triangles Ti ∈ Th, s.t. Pj ∈ Ti. If the point Pj does
not lie on the boundary ∂Ωh then the result is a contour of the dual volume Dj , i.e.
the boundary ∂Dj . On the other hand, if the point Pj lies on the boundary ∂Ωh

then there are two edges that lie on ∂Ωh and contain point Pj . To get the whole
contour of the dual volume Dj , we have to add such segments of these boundary
edges, which join point Pj with the centers of the boundary edges. See Fig. 2.5.

Pj

Dl
D j

b

a jl

 
jl

Pl

 

Fig. 2.5. Dual volumes corresponding to the points Pj , P� j, � ∈ J.

By Definition 2.2.12 of the basic mesh Th, we obtain the following properties of
“our” dual mesh Dh.

(i) Dj , j ∈ J, is a closed polygon, not necessarily convex ;
(2.2.15)

(ii) Ωh =
⋃
j∈J

Dj ;

(iii) for any Dj , D� ∈ Dh, s.t. Dj �= D� there are only three possibilities :

either Dj ∩ D� = ∅,
or Dj ∩ D� = aj� ∪ bj� . . . two common edges,

or Dj ∩ D� = aj� . . . one common edge; (see Fig. 2.5) .

If Dj ∩D� �= ∅, we say that Dj and D� are neighbours. We will use the following
notation.

Notation 2.2.16.
i) |Ti| := meas (Ti) , i ∈ I; |Dj | := meas (Dj) , j ∈ J;
ii) s (j) := {� ∈ J; Dj and D� are neighbours } , j ∈ J;
iii) H := {j ∈ J, ∂Dj ∩ ∂Ωh �= ∅} . . . the set of indices of the so-called bound-

ary volumes ;
iv) ∂Dj� := ∂Dj ∩ ∂D�, � ∈ s (j) , j ∈ J;
v) if j ∈ H then we denote aj,−1 ∪ bj,−1 := ∂Ωh ∩ ∂Dj , and set ∂Dj,−1 :=

aj,−1 ∪bj,−1; the set of indices of the so-called boundary edges is defined by

γ (j) :=
{ {−1} j ∈ H,

∅ j ∈ J \ H;
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Fig. 2.6. Triangulation of the channel domain, construction of the
dual mesh over the original triangulation, and the dual finite volume
discretization.
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vi) S (j) := s (j) ∪ γ (j) , j ∈ J;
vii) na

j� :=
(
na

xj�, n
a
yj�

)
, j ∈ J, � ∈ S (j) . . . a unit outer normal to Dj on the

edge aj� ∈ ∂Dj�; analogously for the edge bj� ∈ ∂Dj� (if exists), nb
j� :=(

nb
xj�, n

b
yj�

)
;

viii) �j� := |∂Dj�|, j ∈ J, � ∈ S (j) ;
ix) d := sup

j∈J

diam Dj .

Clearly,

(2.2.17) ∂Dj =
⋃

�∈S(j)

∂Dj�, j ∈ J.

If we use suitable notation, i.e. aj� = a�j , and bj� = b�j , then

na
j� = −na

�j , nb
j� = −nb

�j , j ∈ J, � ∈ s (j) .

From the construction 2.2.14 it follows that

(i) if j ∈ J, � ∈ s (j) , then
(2.2.18)

∂Dj� =
{

aj� ∪ bj�, if j /∈ H or � /∈ H,

aj�, if j ∈ H and � ∈ H;
(ii) if Ω = R

2 then H = ∅, γ (j) = ∅, S (j) = s (j) for all j ∈ J.

Further, we will define a discretization of time.

Definition 2.2.19. Let τ ∈ (0, τ0) , τ0 > 0. The set {tk; tk = k · τ,
k = 0, . . . , N} , Nτ = T, 0 < T ≤ ∞ is called a time mesh and τ is called a
time step.

To obtain a stable and convergent finite volume scheme we need to assume some
regularity properties of the mesh, see e.g. [Ciarlet] for analogous assumptions in
the framework of the FEM.

Assumptions 2.2.20. The parameter of a mesh h → 0, whenever τ → 0, i.e.

(2.2.21) ∃ c1, c2 > 0 : 0 < c1 ≤ τ

h
≤ c2, if τ, h → 0.

The triangles do not degenerate when h → 0, i.e.

(2.2.22) ∃ c3 > 0 : ∀i ∈ I
h

ρi
≤ c3, if h → 0,

where ρi = diam Bi, Bi is the largest ball contained in Ti.

45



Remark 2.2.23. The regularity assumption (2.2.22) implies the following as-
sumption,

∃ cV > 0 : sup
i∈I

h2

|Ti|
≤ cV , if h → 0.

This can be easily verified by the fact that

|Ti| ≥ πρ2
i .

The following remark says that the regularity properties of the basic triangular
mesh are preserved for the dual one, too. Show it as an exercise!

Remark 2.2.24. If Assumptions 2.2.20 hold for the basic mesh Th, then the
following conditions are satisfied for the dual mesh Dh.

(2.2.25) ∃ c∗1, c
∗
2 > 0 : 0 < c∗1 ≤ τ

d
≤ c∗2,

if τ → 0 and d = sup
j∈J

diam Dj → 0.

(2.2.26) ∃ c∗V > 0 : sup
j∈J

d2

|Dj |
≤ c∗V , if d → 0.

2.2.27 Finite volume (FV) discretization with a cell-centered control vol-
umes. The basic principle underlying a conservation law is that the total quantity
of conservation variable in any region can be changed only due to flux through the
boundaries. Mathematically, we integrate (2.2.1) over Dj × (tk, tk+1) , Dj is a dual
control volume and (tk, tk+1) is a chosen time interval. By Green’s theorem we
obtain

(2.2.28)∫
Dj

w (x, y, tk+1) =
∫

Dj

w (x, y, tk) −
∑

�∈S(j)

∫ tk+1

tk

∫
∂Dj�

f1 (w) nx + f2 (w) ny.

In the cell-centered approach the discrete variables are associated with the grid
points Pj ∈ Ph, or in fact, with the dual control volumes Dj ∈ Dh. We approximate

(2.2.29) w (x, y, tk) ≈ wk
j = const. for any (x, y) ∈ Dj .

In the literature, see e.g. [Morton, Mayers], one can also meet a concept of cell-vertex
finite volumes. Here the discrete variables are associated with the values at vertices
of the computational grid. Actually, the cell-vertex FVM can be reformulated as
the cell-centered FVM for the corresponding dual grid.
Further, we need to approximate time integrals along the cell interfaces ∂Dj�. In
many practical problems explicit numerical schemes are used, i.e.

(2.2.30)
∫ tk+1

tk

∫
∂Dj�

f1 (w) nx + f2 (w) ny ≈ τ

∫
∂Dj�

f1
(
wk

)
nx + f2

(
wk

)
ny.
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Note that the implementation of explicit schemes is much easier than that of
implicit ones, which would lead to a solution of algebraic systems at each time step
tk. However, there is still a question how to approximate f1

(
wk

)
, f2

(
wk

)
on the

boundary ∂Dj� of the control volume Dj , j ∈ J. To this end, a numerical flux
function H

(
wk

j ,wk
� ,nj�

)
, which approximates the amount of a quantity passing

through a unit of the area of ∂Dj� per a unit of time, is introduced. An important
thing is to choose this function in an appropriate way. Some properties of a suitable
numerical flux will be specified later. Now we introduce the following notation. If
∂Dj� = aj� ∪ bj�, then the total flux through ∂Dj�, j ∈ J, � ∈ S (j), will be written
as

(2.2.31) gj� (u,v) = H
(
u,v,na

j�

)
|aj�| + H

(
u,v,nb

j�

)
|bj�|.

If ∂Dj� = aj�, j ∈ J, � ∈ s (j), which situation appears when j, � ∈ H, then

(2.2.32) gj� (u,v) = H
(
u,v,na

j�

)
|aj�|.

The above discussion leads to the following approximations of the terms in (2.2.28) .

∫
Dj

w (x, y, tk+1) ≈ |Dj |wk+1
j ,

(2.2.33)

∫
Dj

w (x, y, tk) ≈ |Dj |wk
j ,

∑
�∈S(j)

∫ tk+1

tk

∫
∂Dj�

f1 (w) nx + f2 (w) ny ≈ τ
∑

�∈S(j)

gj�

(
wk

j ,wk
�

)
.

Consequently, we derive the finite volume numerical scheme.

(2.2.34) wk+1
j := wk

j − τ

|Dj |
∑

�∈S(j)

gj�

(
wk

j ,wk
�

)
,

j ∈ J, k = 0, 1, . . . , to which the initial conditions are added

(2.2.35) w0
j :=

1
|Dj |

∫
Dj

w0 (x, y) , j ∈ J.

The scheme (2.2.34) can be rewritten as any explicit numerical scheme in the
form

(2.2.36) wk+1
j := N

(
wk

j ,
{
wk

� ; � ∈ S (j)
})

.

The numerical scheme (2.2.36) is said to be conservative , if there is a continuous
numerical flux function H, s.t. (2.2.36) can be written in the form (2.2.34) (cf.
(2.2.31), (2.2.32)).
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As we have already pointed out the numerical flux should have some suitable
properties. We will assume the following.

H (u,v,n) : D × D × S1 → R
4 is locally Lipschitz continuous :

(2.2.37)

(
∀R > 0

)(
∃ c = c (R) > 0

)(
∀u,v,u∗,v∗ ∈ BR

)
|H (u,v,n) − H (u∗,v∗,n)| ≤ c (R)

(
|u − u∗| + |v − v∗|

)
,

where S1 is a unit sphere in R2 and BR = {x ∈ D; |x| ≤ R} .

H is consistent with an original equation (2.2.1) :
(2.2.38)

H (u,u,n) = f1 (u) nx + f2 (u) ny, u ∈ D,n ∈ S1.

H is conservative :
(2.2.39)

H (u,v,n) = −H (v,u,−n) , u,v,∈ D,n ∈ S1.

One can easily realize the following result.

Lemma 2.2.40. If (2.2.37)− (2.2.39) are fulfilled for the numerical flux function
H, then the same properties hold for the numerical flux function gj�, j ∈ J, � ∈
S (j). It means that for any j ∈ J, � ∈ S (j), we have

(i) gj� : D × D → R
4 is locally Lipschitz continuous :

(2.2.41)

(
∀R > 0

)(
∃ c1 = c1 (R) > 0

)(
∀u,v,u∗,v∗ ∈ BR

)
|gj� (u,v) − gj� (u∗,v∗)| ≤ c1 (R) �j�

(
|u − u∗| + |v − v∗|

)
.

(ii) gj� is consistent :

gj� (u,u) = f1 (u) νxj� + f2 (u) νy�j , where u ∈ D,

νxj� = na
xj�|aj�| + nb

xj�|bj�| for j /∈ H or � /∈ H;

νxj� = na
xj�|aj�| for j, � ∈ H. Analogously for νy.

(iii) gj� is conservative:

gj� (u,v) = −g�j (v,u) , u,v ∈ D.

�

Theoretical results for the FVM. In the investigation of a numerical scheme
we try to answer the following questions:

a) consistency of the method with the equation (2.2.1)
b) stability
c) convergence and order of the method
d) computational costs
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In what follows we give an overview of some basic theoretical results for the FVM.
Let us consider a Cauchy problem for (2.2.1) with the initial data (2.2.2), i.e. Ω =
Rd.

We will deal first with the one-dimensional hyperbolic system (2.2.1), i.e. s ≥ 1,
d = 1. Note that if d = 1 finite volume cells Dj reduce to simple one-dimensional
intervals (xj−1/2, xj+1/2).

Given an approximate solution wk
j , j ∈ Z, k = 0, 1, . . . obtained by (2.2.34), we

introduce the piecewise constant function whτ (x, t), such that

(2.2.42) whτ (x, t) = wk
j x ∈ Dj , t ∈ [tk, tk+1).

The convergence result of the finite volume method (2.2.34), (2.2.35) is established
in the well-known Lax-Wendroff convergence theorem.

Theorem 2.2.43. (Lax, Wendroff (1960)) Let the numerical flux g�j in (2.2.34)
be conservative and consistent. Moreover, let w0 ∈ L∞(R).1 Let us consider se-
quences {hk}k, {τk}k; such that hk → 0+, τk → 0+ as k → ∞. Let us assume that
for numerical solution wk ≡ whk,τk

the following conditions hold:

‖wk‖L∞(R×(0,∞)) ≤ c, k = 1, 2, . . .(2.2.44)

wk −→ w a.e. in R × (0,∞).

Then w is a weak solution of the Cauchy problem (2.2.1), (2.2.2) on R × [0,∞).

Proof. See, e.g. [Lax, Wendroff].
�

In fact, condition (2.2.44) yields an assumption on the stability of the scheme.
More precisely, we say that the numerical scheme (2.2.36) is (strongly) stable iff
the following inequality holds in appropriate norms

‖wk+1‖ ≤ ‖wk‖.

Thus, it implies that ‖wk‖ ≤ ‖w0‖ for each k = 1, 2, . . . . Note that for linear
problems L1 or L2-norms are suitable, whereas for nonlinear hyperbolic problems
stronger assumptions are needed, and the L∞ stability is required in order to get
convergence.

It should be pointed out here that due to the fact that we work with explicit
methods some additional assumption on the mesh size parameter h ∈ (0, h0) and
time step τ ∈ (0, τ0) has to be required. This is the so-called CFL (Courant-
Friedrichs-Lewy) stability condition. It has to be taken in such a way that numerical
domain of dependence lies inside the physical one. We will explain this in the
following example.

Example: Consider the scalar one-dimensional equation

wt + awx = 0 R × [0,∞).

1Remind that we are using for the vector-valued functions simplified notation L∞(R) instead
of more precise L∞(R; Rs).
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Let us use for the evaluation of numerical fluxes on the interfaces xj±1/2 the left
sided values of the approximate solution. We obtain the one-sided method

wk+1
j = wk

j − aτ

h
(wk

j − wk
j−1), j ∈ Z, k = 0, 1, . . . .

Hence we have the following estimates in the discrete L1 norm

‖wk+1‖ = h
∑

j

|wk+1
j | ≤ h

∑
j

∣∣∣(1 − aτ

h

)
wk

j

∣∣∣ + h
∑

j

∣∣∣aτ

h
wk

j−1

∣∣∣ .
If we now assume that the Courant-Friedrichs-Lewy number

aτ

h
satisfies

(CFL) 0 ≤ aτ

h
≤ 1

the coefficients of wk
j and wk

j−1 are both nonnegative, and we obtain the stability
bound ‖wk+1‖ ≤ ‖wk‖. Note that the condition (CFL) requires in particular that
a ≥ 0, since τ, h > 0. Thus, the one-sided method can only be used when a ≥ 0.
We will recall this point also in the next subsection, where the notion of the upwind
method is introduced, cf. (2.2.55). For a system of equations we would get

0 ≤ λkτ

h
≤ 1

for all eigenvalues λk of A =
Df(w)
Dw

. This result is easily obtained from the

characteristic decomposition of the corresponding system, cf. (2.1.42).

Consider again the Cauchy problem (2.2.1), (2.2.2), i.e. Ω = R, s ≥ 1, d = 1. Let
w be its classical solution. Substituting into (2.2.36) we obtain
(2.2.45)
w(xj , tk+1) = N

(
w(xj , tk), {w(x�, tk); � ∈ S (j)}

)
+ τεεεk

j , j ∈ N, k = 1, 2, . . . .

The quantity εεεk
j is called a local truncation error of the scheme. We say that the

accuracy of the numerical scheme (2.2.36) is of order p in time and q in space, if
under the assumption that the exact solution w of (2.2.1), (2.2.2) and the flux
f ≡ f1 are sufficiently smooth, there exist constants M,h0, τ0 such that

(2.2.46) |εεεk
j | ≤ M(τp + hq), j ∈ N, k = 1, 2, . . . ; τ ∈ (0, τ0), h ∈ (0, h0).

We simply write εεεk
j = O(τp + hq). The investigation of the local truncation error

and the order of accuracy is usually carried out by the Taylor expansion.

In Theorem 2.2.43 we have assumed that we already have a convergent subse-
quence. Now we shall show how we can get it. Assume that the system (2.2.1) is
one-dimensional and linear. Thus, we consider the following situation

∂w
∂t

+ A
∂w
∂x

= 0 on R × (0,∞) ,

w(x, 0) = w0 on R.

The following fundamental Lax-Equivalence Theorem says that in the linear case
stability and the local truncation error gives the global error.
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Theorem 2.2.47. (Lax-Equivalence Theorem) Let us consider linear hyperbolic
system (2.2.1). A linear numerical scheme (2.2.36) is stable and its local truncation
error is of order q in space and p in time if and only if the global error of numerical
scheme is of order q and p in space and time, respectively, i.e.

‖w(tk) − wk‖L2(R) ≤ c(hq + τp) uniformly for k = 1, 2, . . . .

Proof. See, e.g. [Richtmeyr, Morton].
�

The study of convergence of the FVM (2.2.34), (2.2.35) for nonlinear hyper-
bolic problems is much more complicated. In fact, for general nonlinear hyperbolic
systems this question is still open. Consider nonlinear hyperbolic equation (2.2.1)
with s = 1. Since we have to approximate discontinuous solutions, the choice of the
function space in which we have to construct the converging sequence is the most
important problem. Following theoretical results of Glimm and Bressan, cf. Theo-
rem 2.1.39, we find out that the space BV of functions with bounded total variation
TV should be appropriate also in order to study convergence of discrete solutions.
First we need to fix some additional notations.

As we have already shown in Section 2.1, the hyperbolic conservation laws admit
non-physical weak solutions. The entropy inequality (cf. Definition 2.1.30) must be
satisfied in order to obtain a physically relevant solution. Similarly, in the discrete
case the discrete entropy condition is required to guarantee a physically correct
numerical solution. To this end the entropy inequality is discretize. For simplicity,
let us do this for a scalar equation (2.2.1) with s = 1.

Let U be the entropy function and Gj� be the discrete analogy of entropy flux
functions F1, F2, such that Gj�(u, u) = F1(u)νxj� +F2(u)νyj�, u ∈ D. Function Gj�

is the so-called numerical entropy flux . Discrete entropy inequality reads:

(2.2.48) U
(
wk+1

j

)
≤ U

(
wk

j

)
− τ

|Dj |
∑

�∈S(j)

Gj�

(
wk

j , wk
�

)
.

Note that the above inequality is only a discrete finite volume version of the
“continuous” entropy inequality (2.1.28). If we regard the numerical flux gj� as a

function of the flux vector f =
(

f1

f2

)
and the solution w, i.e.

gj� = g (w, f) ,

then the numerical entropy flux can be chosen in the form

Gj� = g (U,F) ,

where F =
(

F1

F2

)
denotes the entropy flux vector.

In [Sonar (2)] it was shown that the above choice of discrete entropy flux leads
to a solution consistent with the Lax entropy condition (2.1.47). The general case
of systems (s > 1) is more complicated and the reader is referred to [Van der Burg].
Practically control of discrete entropy inequality gives a very suitable tool to detect
physically incorrect features in a numerical solution, such as expansion shocks and
wiggles near shock (see, e.g., [Van der Burg]).

Now we can approach formulation of the convergence result for nonlinear equa-
tion (2.2.1) with s = d = 1. Its proof can be found e.g. in [Kröner].
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Theorem 2.2.49. (sufficient conditions for convergence)
Let w0 ∈ L1

loc(R)∩L∞(R). Let {wk ≡ whk,τk
}k be a sequence of discrete solutions,

cf. (2.2.42), such that the following hold
(1) numerical flux gj� is consistent and conservative
(2)

‖wk‖L∞(R×(0,∞)) ≤ c, k = 1, 2, . . .

(3)
TV (wk) ≤ c k = 1, 2, . . .

then there exists a w ∈ L1
loc(R × [0,∞)) and a subsequence {wk′} such that

wk′ −→ w in L1
loc(R × [0,∞)) as k′ −→ ∞

and w is a solution to (2.2.1), (2.2.2), s = d = 1, in the sense of distributions.
Additionally if wk

j , j ∈ N, k = 0, 1, . . . satisfies the discrete entropy inequal-
ity (2.2.48) then w satisfies the entropy condition (2.1.29). This solution is then
uniquely defined.

In the case of two-dimensional nonlinear scalar equation, i.e. (2.2.1) with s = 1,
d = 2 the situation is more complicated. Convergence of the FVM for meshes,
which consist of convex q−polygonals, was proved by Kröner and Rokyta [Kröner,
Rokyta]. They used techniques of the measure valued solutions, the Young measures
and the compensated compactness arguments based on [DiPerna(1), (2)], [Tartar],
etc. Its generalization to dual meshes was studied in [Lukáčová]. In what follows
we formulate the convergence result of the FVM for dual meshes. First, we need
some preliminary stability considerations.

We will suppose that the flux function g = gj� has the consistency, conservativity
and Lipschitz continuity property (cf. (2.2.41)). However, it is still not enough for
the proof of stability and convergence of the FVM. We introduce the concept of
monotonicity, which will play an important role.

Definition 2.2.50. (monotonicity) The scheme (2.2.34) is called monotone, if
the functions

Hj(w) := wj −
τ

|Dj |
∑

�∈S(j)

gj�(wj , w�) j ∈ J,

where w = {wi}i∈J, are monotonously nondecreasing on
MM = {w = {wi}i∈J, ‖w‖L∞(R2) ≤ M} for some M > 0. More precisely, if

w = {wi}i∈J, w
∗ = {w∗

i }i∈J ∈ MM and w ≤ w∗ (i.e. wi ≤ w∗
i for all i ∈ J), then

Hj(w) ≤ Hj(w∗).

Note that we have measured a sequence {wi} in the L∞ norm, instead of �∞.
This is can be done since w = {wi} can naturally be associated with a function
w ∈ L∞(R2), such that w

∣∣∣
Dj

= wj .

Clearly, monotonicity is stronger property than the boundedness of the total
variation TV . For example, if f be a Lipschitz-continuous function on [a, b], which
is monotonously increasing then TV (f) = f(b) − f(a). Thus f ∈ BV ([a, b]).

We now approach to the proof of the L∞-stability property or the discrete maximum
principle.
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Theorem 2.2.51. (maximum principle) Let the approximate solution wk, k =
0, 1, . . . , be defined by the numerical scheme (2.2.34), (2.2.35) for the scalar con-
servation law (s = 1). Let w0 = {w0

j}j∈J ∈ MM , where M > 0. Let the scheme be
consistent (cf. (2.2.41) ii)) and monotone. Then we have for all k ∈ N:

‖wk‖L∞(R2) ≤ ‖w0‖L∞(R2).

Proof will be carried out by the mathematical induction. Let the desired
inequality holds for some k ∈ N. Obviously, it holds for k = 0. We denote m =
‖wk‖L∞(R2) and construct w∗ = {w∗

j }j∈J s.t. w∗
j = m for each j ∈ J. Then w∗ ∈

MM and wk ≤ w∗. Due to the monotonicity property we obtain Hj(wk) ≤ Hj(w∗)
for each j ∈ J. Thus,

wk+1
j = Hj(wk) ≤ Hj(w∗) = w∗

j − τ

|Dj |
∑

�∈S(j)

gj�(w∗
j , w∗

� )

= (using the consistency) = m − τ

|Dj |
∑

�∈S(j)

f1(m)νxj� + f2(m)νyj�

= m − τ

|Dj |
(f1(m)

∫
∂Dj

nxdS + f2(m)
∫

∂Dj

nydS)

= (using Green’s theorem) = m − τ

|Dj |
(f1(m) · 0 + f2(m) · 0) = m.

We showed that wk+1
j ≤ m for each j ∈ J, and we can analogously prove that

wk+1
j ≥ −m by setting w∗

j = −m, j ∈ J. This leads to

|wk+1
j | ≤ m = ‖wk‖L∞(R2) for each j ∈ J,

and finally
‖wk+1‖L∞(R2) ≤ ‖wk‖L∞(R2).

�
Now we can prove the L1-stability property.

Theorem 2.2.52. (L1-estimates) Let us assume that the scheme (2.2.34),
(2.2.35), (s = 1), is conservative, consistent, monotone, with locally Lipschitz con-
tinuous numerical flux (cf. (2.2.41)). Let w0 ∈ MM and ‖w0‖L1(R2) < ∞. We will
suppose that the following CFL-like stability condition holds:

(CFL)
τc(M)|∂Dj |

|Dj |
≤ 1, j ∈ J,

where c(M) is the constant of Lipschitz continuity of flux function. Then the scheme
is L1-stable, i.e.

‖wk‖L1(R2) ≤ ‖w0‖L1(R2), k ∈ N.
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Proof.
Let us denote w∗ = {w∗

j }j∈J, w∗
j = 0. Then clearly, due to the consistency

property we have
Hj(w∗) = 0 for all j ∈ J.

Further, if we use the usual notation a+ = max(a, 0), a− = min(a, 0), then

(Hj(wk))+ ≤ Hj((wk)+)

and (Hj(wk))− ≥ Hj((wk)−), j ∈ J.

Here (wk)± = {(wk
j )±}j∈J. We obtain

|wk+1
j | = |Hj(wk)| = (Hj(wk))+ − (Hj(wk))− ≤ Hj((wk))+) − Hj((wk))−) =

= |wk
j | −

τ

|Dj |
∑

�∈S(j)

gj�((wk
j )+, (wk

� )+) +
τ

|Dj |
∑

�∈S(j)

gj�((wk
j )−, (wk

� )−).(*)

Our aim will be to show that τ
∑

j∈J

∑
�∈S(j) gj�(vj , v�) is absolutely convergent for

v = (w0)+ or v = (w0)−. Let us use Lipschitz continuity of the flux function:

τ
∑
j∈J

∑
�∈S(j)

|gj�(vj , v�)| ≤ τ
∑
j∈J

∑
�∈S(j)

|gj�(vj , v�) − gj�(w∗
j , w∗

� )|

≤ τ
∑
j∈J

∑
�∈S(j)

c(M)�j�(|vj | + |v�|)

≤ τc(M)
∑
j∈J

|∂Dj ||vj | + τc(M)
∑
j∈J

∑
�∈S(j)

|∂D�||v�|.

Now we use the stability condition (CFL). Due to the regularity of basic triangu-
lation there exist only finitely many, say q∗, neighbours of each dual volume Dj .
Thus |S(j)| ≤ q∗ and the R.H.S. of the above inequality can be estimated by∑

j∈J

|Dj ||vj | + q∗
∑
j∈J

|Dj ||vj | < ∞,

because w0 ∈ L1(R2).
By the conservativity property of gj� we find that∑

j∈J

∑
�∈S(j)

gj�((w0
j )+, (w0

� )+) =
∑
j∈J

∑
�∈S(j)

gj�((w0
j )−, (w0

� )−) = 0.

Hence, multiplying (*) by |Dj | and summing up over j ∈ J, leads to

‖w1‖L1(R2) ≤ ‖w0‖L1(R2).

The proof is finished by the mathematical induction.
�

In the following theorem we formulate convergence result of the FVM for non-
linear scalar conservation law (2.2.1), (2.2.2), s = 1, d = 2. We do not present its
proof since it would lead us behind the framework of this scriptum. Details can be
found in [Lukacova].
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Theorem 2.2.53. (convergence of the FVM on dual meshes) Let us assume
that an unstructured dual grid is constructed over general triangulation satisfying
Assumptions 2.2.20. Let w0 ∈ L∞(R2)∩L1(R2), w0 ∈ MM , the CFL-like condition
(CFL) hold and wk

j , j ∈ J, k = 0, 1, . . . , be defined by the monotone finite volume
scheme (2.2.34), (2.2.35), (s = 1). Let T > 0 be an arbitrary final time and N
such that Nτ = T. We suppose that for the numerical flux function the properties
(2.2.41) hold and that analogous conditions to (2.2.41) hold also for the numerical
entropy flux functions Gj�, j ∈ J, � ∈ S(j).

Moreover, we suppose that there exists β ∈ 〈0, 1) such that for all compact sets
K ⊂ R2 uniformly in τ, h the numerical and entropy fluxes are controlled in the
following way

τβh

N∑
k=0

∑
j∈J:

Dj∩K �=0

∑
�∈S(j)

|gj�(wk
j , wk

� ) − gj�(wk
j , wk

j )| ≤ c(K),

τβh
N∑

k=0

∑
j∈J:

Dj∩K �=0

∑
�∈S(j)

|Gj�(wk
j , wk

� ) − Gj�(wk
j , wk

j )| ≤ c(K).

Finally, let the discrete entropy inequality hold

U(wk+1
j ) − U(wk

j ) ≤ − τ

|Dj |
∑

�∈S(j)

Gj�(wk
j , wk

� )

for all entropies U and corresponding numerical entropy fluxes Gj�. Then

wk ⇀∗ w ∗-weakly in L∞(R2 × (0, T )) as k −→ ∞

and w is a Kruzhkov weak entropy solution of the problem (2.2.1), (2.2.2),
s = 1, d = 2.

In the next subsection we will introduce several numerical flux functions gj� which
are used for practical computations. For example, the Engquist–Osher numerical
scheme, cf. (2.2.59), satisfies all conditions of Theorem 2.2.53.

2.2.54 Godunov’s method. It was observed that a good numerical flux func-
tion should include information propagated along characteristics, which leads to
the so-called upwinding. To describe this phenomenon let us consider a linear
convection equation in 1D.

∂w

∂t
+ a

∂w

∂x
= 0, x ∈ R, t > 0,

where a =const. is the speed of propagation of disturbances.
Recall that in the case d = 1 the finite volumes reduce to Dj =

(
xj−1/2, xj+1/2

)
;

xj = jh, j ∈ Z, h > 0, are mesh points, and xj±1/2 =
xj + xj±1

2
. The upwind

scheme reads:

(2.2.55) wk+1
j = wk

j − τ

h
a ·

⎧⎨
⎩

(wk
j − wk

j−1), a > 0,

(wk
j+1 − wk

j ), a < 0.
55



We can see that for approximation of ∂w
∂x (xj , tk) we used finite difference approx-

imation oriented against the direction of propagation of disturbances.
For the nonlinear case a = a(w) is not constant and the same approach does

not work directly. Then the local characteristic structure, obtained by solving
a Riemann problem (cf. (2.1.41)), is used to define a natural upwind method. This
was firstly used in 1959 by Godunov, who proposed a way to make use of the
characteristic information within the framework of conservative method. Rather
than attempting to follow characteristics backward in time, he suggested solving
the following Riemann problem forward in time.

∂w

∂t
+

∂f(w)
∂x

= 0, x ∈ R, t > 0.(2.2.56)

w(x, 0) =

⎧⎨
⎩

wL, x < 0,

wR, x > 0.

Here wL, wR ∈ R are given initial conditions. We know from Theorems 2.1.42,
2.1.51 that under some assumptions on wL, wR, the Riemann problem (2.2.56) has
a unique entropy solution w (x, t) = w̃R (x/t;wL, wR). This result holds even in the
case of systems in 1D. Godunov numerical flux is defined in the following way

fG (u, v) = f
(
w̃R (0;u, v)

)
and leads to the so-called Godunov’s method:

(2.2.57) wk+1
j = wk

j − τ

h

[
f
(
w̃R

(
0;wk

j , wk
j+1

))
− f

(
w̃R

(
0;wk

j−1, w
k
j

))]
.

Although in some cases we know the exact solution w̃R of the Riemann problem
(2.2.56), it is not the thruth in general. Thus, instead of w̃R we use an approximate
solution of (2.2.56), which leads us to the introduction of Riemann numerical flux or
Riemann solver fR (u, v). The Godunov finite volume method can be then written
in the following way

wk+1
j = wk

j − τ

h

[
fR

(
wk

j , wk
j+1

)
− fR

(
wk

j−1, w
k
j

)]
.

The aim is to construct a good numerical flux function, which is now denoted
by fR(u, v). Using the method of characteristics it can be shown that if f ′ (w) =
a (w) ≥ 0 for all w ∈ R, then w̃R (x/t;wL, wR) = wL, and if f ′ (w) = a (w) < 0 for
all w ∈ R, then w̃R (x/t;wL, wR) = wR. Consequently, the Riemann numerical flux
is

fR (u, v) = f (u) if a ≥ 0,(2.2.58)

fR (u, v) = f (v) if a < 0.

This observation gives us a hint how to define Riemann numerical flux in general
nonlinear case. We split the flux function f (u) s.t.

f (u) = f+ (u) + f− (u) ,
(
f+

)′ ≥ 0,
(
f−)′ ≤ 0,
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and define
fR (u, v) := f+ (u) + f− (v) .

Finally, we obtain the following Godunov finite volume scheme:

wk+1
j = wk

j − τ

h

[
f+

(
wk

j

)
+ f−(wk

j+1) − f+(wk
j−1) − f− (

wk
j

)]
.

The numerical flux can be rewritten in the form

(2.2.59) fEO (u, v) =
1
2
(
f (u) + f (v) −

∫ v

u

|a (q) |dq
)
,

which is referred to as the Engquist–Osher numerical flux, see e.g. [Osher(1)],
[Osher-Solomon].

Now we approach the generalization of these ideas to the case of Euler equations
in two space dimensions. Let P = P (w,n) be the flux function in 2D, i.e.

(2.2.60) P (w,n) := f1 (w) nx + f2 (w) ny,

w ∈ D,n ∈ S1, and the Jacobi matrix of P will be denoted by P = P (w,n) (cf.
(2.2.8)).

One of the most useful properties of the Euler equations is the rotational invari-
ance of their flux functions, i.e. if the matrix Λ is given by

Λ (n) =

⎛
⎜⎝

1 0 0 0
0 nx ny 0
0 −ny nx 0
0 0 0 1

⎞
⎟⎠ ,

then P (w,n) = Λ−1 (n) f1
(
Λ (n)w

)
for all w ∈ D,n ∈ S1. The proof of this

statement follows from straightforward calculations. Due to this property the two-
dimensional Euler equations can be transformed to a one-dimensional system in the
direction of the normal vector to a control volume Dj , j ∈ J. It is this property that
allows us to use of one-dimensional Riemann solvers to introduce two-dimensional
flux functions. Thus, in analogy to (2.2.59) one obtains that the numerical flux
function is

(2.2.61) HEO (u,v,n) :=
1
2
(
P (u,n) + P (v,n) −

∫ v

u

|P (w,n) | dw
)
.

Of course, this formula has sense only if the integral
∫ v

u
exists, but on the other hand

this gives us a good hint to derive numerical methods by suitable approximation of
the integral

∫ v

u
.

Before developing some methods, we state the following result.

Lemma 2.2.62. Let F ∈ C1 (Rs; Rs) be a homogeneous function of order one,
i.e. F (αu) = αF (u) for all α ∈ R, α �= 0. Then

F (u) = A (u) · u,
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where A (u) =
DF (u)

Du
.

Proof.

A (u) · u =
DF (u)

Du
· u = lim

α→0

F (u + αu) − F (u)
α

=

= lim
α→0

(1 + α)F (u) − F (u)
α

= F (u) .

�
It can be verified by straightforward calculations that for the Euler equations,

the flux functions f1, f2, and consequently P are homogeneous of order one. Hence,

f1 (u) = A1 (u) · u,(2.2.63)

f2 (u) = A2 (u) · u,

P (u,n) = P (u,n) · u.

Let us denote

(2.2.64) D
± := diag

(
λ±

1 , . . . , λ±
4

)
,

where λ+
i = max (λi, 0) , λ−

i = min (λi, 0).

(2.2.65) |D| = diag
(
|λ1|, . . . , |λ4|

)
.

(2.2.66) P
± := T · D

± · T
−1, |P| = T · |D| · T

−1.

Obviously, it holds

(2.2.67) P = P
+ + P

−, |P| = P
+ − P

−.

Now we approach approximation of the R. H. S. of (2.2.61).

a)
∫ v

u

|P (w,n)| dw ≈
∣∣∣∣P

(
u + v

2
,n

)∣∣∣∣ (v − u)(2.2.68)

b)
1
2
(
P (u,n) + P (v,n)

)
≈ P

(u + v
2

,n
)

=

=
(
using (2.2.63)

)
= P

(u + v
2

,n
)u + v

2
.

These approximations give the Vijayasundaram numerical flux;
[Vijayasundaram]:

(2.2.69) HV (u,v,n) = P
+
(u + v

2
,n

)
u + P

−(u + v
2

,n
)
v.

Using (2.2.58) and analogy with the one-dimensional case, one can derive the
Steger–Warming numerical flux:

(2.2.70) HSW (u,v,n) = P
+ (u,n)u + P

− (v,n)v.

If we use (2.2.68) a) and (2.2.61) we obtain the Van Leer numerical flux :

(2.2.71) HV L (u,v,n) =
1
2

(
P (u,n) + P (v,n) −

∣∣∣∣P
(

u + v
2

,n
)∣∣∣∣ · (v − u)

)
.
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Remarks 2.2.72.
a) Let us note that in the Vijayasundaram scheme (cf. (2.2.69)) a partial upwind-

ing is included. The numerical flux between the volumes Dj and D� is computed
according to the sign of local eigenvalues λi, i = 1, . . . , 4, of the matrix P and either
wk

j or wk
� is chosen for approximation.

More precisely, we take this one, which lies against the propagation of distur-
bances. This upwinding is only partial, since the local eigenvalues are evaluated at

the central points : λi = λi

(
wk

j +wk
�

2

)
, j ∈ J, � ∈ S (j).

The fully upwind scheme is obtained by the Steger–Warming numerical flux func-
tion (2.2.70). It is known that the full upwinding leads to the so-called numerical
diffusion, i.e. the leading order truncation error in the terms with second order
derivatives. As a result, discontinuities and shocks are smeared out.

b) It is easy to realize that all these numerical fluxes (2.2.69)− (2.2.71) have the
properties (2.2.37) − (2.2.39).

c) To derive the Vijayasundaram and the Steger–Warming numerical flux one
needs the homogenity property (2.2.63) of the flux functions f1, f2. However, in the
case of a scalar conservation law (s = 1) this implies

(2.2.73) f ′
1 (u) · u = f1 (u) , f ′

2 (u) · u = f2 (u) .

But in a scalar case this is fulfilled only for linear functions. We conclude that
there makes no sense to consider these schemes for nonlinear scalar conservation
law. This restriction does not include the Van Leer numerical flux.

d) Discrete entropy condition. Numerical as well as theoretical results, obtained
at least for scalar conservation law, show that the numerical solution obtained by
the method of Godunov’s type can violate entropy condition only in the case when

λk (wL) < 0 < λk (wR)

for some k = 1, 2, . . . , s.
Clearly, the Lax entropy inequality (2.1.47) is not satisfied. Hence, discontinu-

ity, i.e. shock, is not an entropy solution. If the FVM approximates the Riemann
problem between wL and wR by means of the discontinuity it leads to an entropy
violating unphysical approximation. In this situation an exact solution of the Rie-
mann problem (2.1.41) is a continuous sonic rarefaction wave.

To obtain the numerical solution, which satisfies the entropy inequality, we need
to cure this case. This is referred to as entropy fix in literature. One approach,
proposed in [Harten], [Osher (1)] is outlined here.

If one of the eigenvalues of the flux Jacobian matrix equals zero then approximate
solution can violate entropy condition. In order to prevent entropy violating a
correction to the eigenvalue is made. For the case of the Euler equations in 2D we
have the following eigenvalues (cf. 2.2.10)

λ1 = λ2 = v · n, λ3 = v · n + a, λ4 = v · n − a.
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Let λ := |v · n| + a be the maximum absolute eigenvalue. Then the entropy fix
correction determines to put

|λk| := max
{
|λk|, δλ

}
, k = 1, . . . , 4;

where δ > 0 is an entropy fix parameter, commonly chosen s.t. δ ∈ (0, 01; 1). Sign
of λk is unchanged.

e) The present schemes fall to the wide class of flux vector splitting methods. In
literature one can meet other numerical schemes like Osher, Lax–Friedrichs, Roe,
Mac Cormarck, Jameson ones, etc.

2.3. Boundary Conditions

In this section we want to derive suitable boundary conditions for solving the
Euler equations in a bounded domain Ω ⊂ R2. In literature various approaches can
be found. We present here one, which is based on the method of characteristics.
The general finite volume scheme reads (cf.( 2.2.43)):

(2.3.1) wk+1
j = wk

j − τ

|Dj |
∑

�∈S(j)

gj�

(
wk

j ,wk
�

)
, j ∈ J, k = 0, 1, . . . .

If j ∈ H and � ∈ γ (j) (i.e. � = −1, cf. (2.2.16)) then there is a problem how to
compute gj�

(
wk

j ,wk
�

)
, since there is no dual finite volume D� outside the domain

Ωh and the question is what is wk
� ?

a) At first, if the edge S� ⊂ ∂Dj ∩ ∂Ωh, � ∈ γ (j) , (i.e. S� is either aj� or bj� (see
Fig. 2.5)) is a part of the solid, impermeable wall, then the so-called slip boundary
conditions are imposed (cf. (1.4.7)).

(2.3.2) v · nj� = 0 on S�,

where nj� is an outer normal to Dj on S�.
Then in numerical calculations we do not use numerical flux function gj�, but

we approximate the flux through S� in the following way

(2.3.3)
∫

S�

(
f1 (w) nx + f2 (w) ny

)
dS =

=
∫

S�

{
(v1 nx + v2 ny)w + p ·

⎛
⎜⎝

0
nx

ny

0

⎞
⎟⎠}

dS ≈ |S�| pj

⎛
⎜⎝

0
nx

ny

0

⎞
⎟⎠ .

Hence, we extrapolate the value of the pressure from the point Pj to the whole
boundary edge S�. The numerical flux H on the solid part of the boundary S� ⊂

60



∂Ωh ∩ ∂Dj is then defined by the formula

(2.3.4) H
(
wk

j ,wk
� ,nj�

)
:= pk

j

⎛
⎜⎝

0
nxj�

nyj�

0

⎞
⎟⎠ ,

and the numerical flux function gj� is computed in the usual way

(2.3.5) gj�

(
wk

j ,wk
�

)
= H

(
wk

j ,wk
� ,na

j�

)
|aj�| + H

(
wk

j ,wk
� ,nb

j�

)
|bj�|.

b) If the edge S� ⊂ ∂Dj ∩ ∂Ωh, � ∈ γ (j) , lies on inlet or outlet part of the
boundary, we use the heuristical approach proposed in [Feistauer]. Let a computa-
tional domain Ω be represented as (−∞, 0) and solve the linearized one-dimensional
conservation system

(2.3.6)
∂w
∂t

+ A
∂w
∂x

= 0 on (−∞, 0) × (0,∞) .

By the hyperbolicity property one gets

(2.3.7) A = T · D · T
−1, D = diag (λ1, . . . , λs) .

From (2.3.6) and (2.3.7) we find the system of s independent equations

∂zi

∂t
+ λi

∂zi

∂x
= 0, i = 1, 2, . . . , s, on (−∞, 0) × (0,∞) .

These equations can be solved by the method of characteristics. If λi > 0, then
the initial value, which is prescribed at {t = 0, x < 0}, is propagated along the
characteristics with the slope λi > 0 to the half-line {x = 0, t > 0} and the value of
the solution is uniquely determined here.

On the other hand, if λi < 0, then the characteristics starting at {t = 0, x < 0}
do not intersect the half line {x = 0, t > 0} and the boundary conditions should be
prescribed here.

These ideas are heuristically extended to the case of the Euler equations. Hence
on S� ⊂ ∂Dj ∩ ∂Ωh, a part of inlet or outlet, we prescribe np quantities charac-
terizing the state vector wk

� , which corresponds to the boundary edge S�; np is a
number of negative local eigenvalues of the matrix P

(
wk

j

)
. Further, we extrapolate

ne quantities from the point Pj to the edge S�, ne is a number of positive local
eigenvalues of P

(
wk

j

)
.

Now, there is a question : Which quantities should be prescribed and which ones
are extrapolated? There is the following classical approach.

On inlet, i.e. vk
j · nj� < 0, for the case of supersonic flow

(
−vk

j · nj� > ak
j

)
, ak

j

is a local speed of sound computed from wk
j , we have (cf. (2.2.10) for eigenvalues

of the Euler equations):

(2.3.8, i) λ1 = λ2 < 0, λ3 < 0, λ4 < 0 =⇒ np = 4, ne = 0,
61



and we prescribe boundary condition for ρ, v1, v2, p to characterize wk
� .

For the case of subsonic flow
(
−vk

j · nj� < ak
j

)
:

(2.3.8, ii) λ1 = λ2 < 0, λ3 > 0, λ4 < 0 =⇒ np = 3, ne = 1.

We prescribe ρ, v1, v2 and extrapolate p from the point Pj .
On outlet, i.e. vk

j · nj� > 0, for the case of supersonic flow
(
vk

j · nj� > ak
j

)
we

have :

(2.3.8, iii) λ1 = λ2 > 0, λ3 > 0, λ4 > 0 =⇒ np = 0, ne = 4.

We extrapolate ρ, v1, v2, p from Pj . For the case of subsonic flow
(
vk

j · nj� < ak
j

)
:

(2.3.8, iv) λ1 = λ2 > 0, λ3 > 0, λ4 < 0 =⇒ np = 1, ne = 3,

and we extrapolate ρ, v1, v2 from Pj and prescribe p.

This discussion leads to the definition of wk
� , which is the state vector corre-

sponding to the boundary edge S�. Now we can evaluate H
(
wk

j ,wk
� ,nj�

)
, i.e. the

flux through the edge S�, and consequently we compute gj�

(
wk

j ,wk
�

)
by (2.3.5).

2.4 Second Order Method

In practise it is often important to derive a good approximation of the exact,
often unknown, solution. Thus, the numerical scheme should be enough accurate
and posse an adequate rate of dissipation to give physically relevant entropy solution
and has a higher order accuracy to obtain sharp shock waves in the correct solution.
We first discuss the generalized MUSCL methodology, which is used to increase
spatial accuracy of the basic finite volume scheme (2.2.34) , (2.2.35). Thus, instead
of (2.2.34) we use the following scheme

(2.4.1) wk+1
j := wk

j − τ

|Dj |
∑

�∈S(j)

gj�

(
ŵk

j�, ŵ
k
�j

)
, j ∈ J,

where ŵk
j�, ŵ

k
�j are values of a new higher order function ŵh at the boundary ∂Dj�

at time step tk.
MUSCL approach requires to replace the piecewise constant function wh, which

is defined on dual volumes by a higher order function. Since we want to get the
second order scheme (in the sense of truncation error), we choose a piecewise linear
recovery function ŵh, which will be linear on dual volumes and discontinuous at
the boundaries of dual volumes. Thus, ŵh will be recovered from wh in such a way
that we have

(2.4.2) wh

∣∣∣
Dj

= wh (Pj) =
1

|Dj |

∫
Dj

ŵh (x, y) .
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Now we show one possibility how to construct this linear recovery not on the
conservative variables, but separately on the physical variables ρ, v1, v2, p. Let
q ∈ {ρ, v1, v2, p}, and qh be a piecewise constant function on the dual volumes,
which corresponds to some physical variable q. We will define q̂h, i.e. a piecewise
linear recovery function on the dual volumes, in the following way:

(2.4.3) q̂h (x, y) := qh

∣∣∣
Dj

+ (gradhqh)
∣∣∣
Dj

· (x − xj , y − yj)
T

,

(x, y) ∈ Dj , j ∈ J, (xj , yj) are coordinates of the point Pj ;Pj ∈ Ph. Since qh

∣∣∣
Dj

=

qh (Pj), the piecewise linear recovery function q̂h will be determined by (2.4.3) , if

we define (gradhqh)
∣∣∣
Dj

.

Now we realize that from piecewise constant function on the dual volumes qh one
can construct a continuous, piecewise linear function on triangles. More precisely,
let

(2.4.4) Xh =
{

ωh ∈ C
(
Ω̄; R

)
; ωh

∣∣∣
Ti

∈ Pi (Ti) , i ∈ I

}

be the space of linear finite element functions, and

(2.4.5) Dh =
{

qh : Ω̄ → R; qh

∣∣∣
Dj

∈ P0 (Dj) , j ∈ J

}

be the space of piecewise constant finite volume functions. Here Pk (·) denotes the
space of polynomials of order not greater than k, k = 0, 1.

The basis of Xh is formed by the functions wj , j ∈ J, s.t. wj (P�) = δj�, wj ∈ Xh.
Further, the basis of Dh is formed by the characteristic functions of dual finite
volumes Dj , denoted by dj , j ∈ J.

There exists a bijection Lh : Xh → Dh, called the mass-lumping operator and
defined in the following way

(2.4.6) Lhωh =
∑
j∈J

ωh (Pj) dj ,

where ωh =
∑

j∈J

(
ωh (Pj) · wj

)
∈ Xh. Let L (j) = {k ∈ I; ∃Tk ∈ Th : Pj ∈ Tk} .

Using the inverse mapping to Lh, i.e. Πh = L−1
h , we obtain a function Πhqh =∑

j∈J

qh

∣∣∣
Dj

wj , which is piecewise linear on triangles. This allows us to compute the

so-called averaged gradient :

(2.4.7) (gradh qh)
∣∣∣
Dj

:=
1

|Dj |
∑

k∈L(j)

∫
Tk∩Dj

grad Πh qh =

=
1

|Dj |
∑

k∈L(j)

(grad Πh qh)
∣∣∣
Tk

· |Tk ∩ Dj |.

Now we can use (2.4.3) to define the values of q̂h at the boundary ∂Dj�, � ∈ S (j),

of the dual volume Dj . Let za
j� =

(
xa

j�, y
a
j�

)
, zb

j� =
(
xb

j�, y
b
j�

)
be the midpoints of
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the edges aj�,bj�, respectively. Recall that aj� ∪ bj� = ∂Dj�, if j /∈ H or � /∈ H,
and aj� = ∂Dj�, if j, � ∈ H (cf. (2.2.18)i)). The extrapolation of q̂h at ∂Dj�, i.e. to
the midpoints za

j�, z
b
j�, is given in the following way

q̂a
j� := q̂h

(
za
j�

)
= qh

∣∣∣
Dj

+ (gradh qh)
∣∣∣
Dj

·
(
xa

j� − xj , y
a
j� − yj

)T
,

q̂b
j� := q̂h

(
zb
j�

)
= qh

∣∣∣
Dj

+ (gradh qh)
∣∣∣
Dj

·
(
xb

j� − xj , y
b
j� − yj

)T
.

(2.4.8)

From (2.4.8) a new state vector ŵh at za
j�, z

b
j� can be computed. Let us denote

(
ŵa

j�

)k := ŵk
h

(
za
j�

)
,

(
ŵb

j�

)k
:= ŵk

h

(
zb
j�

)
,

then

gj�

(
ŵk

j�, ŵ
k
�j

)
= H

((
ŵa

j�

)k
,
(
ŵa

�j

)k
,na

j�

)
|aj�|+(2.4.9)

H
((

ŵb
j�

)k
,
(
ŵb

�j

)k
,nb

j�

)
|bj�| j /∈ H or � /∈ H.

gj�

(
ŵk

j�, ŵ
k
�j

)
= H

((
ŵa

j�

)k
,
(
ŵa

�j

)k
,na

j�

)
|aj�| j, � ∈ H.

In case that aj�,bj� ⊂ ∂Dj ∩ ∂Ωh, i.e. j ∈ H, � ∈ γ (j), we compute linear
recovery only for ŵk

j� in the same way as before, and ŵk
�j = wk

� is defined by
boundary conditions as in the first order method.

It is a well-known fact that higher order methods often suffer from the lack of
dissipation which reflects in spurious oscillations near discontinuities. A possibility
how to improve this result is to use the slope limiter approach.

In [Barth, Jespersen] the following slope limiter was proposed. The idea is to
limit slopes in such a way that oscillations will be suppressed.

(2.4.10) Φj := min
�∈S(j)

(
min Φ (aj�) ,Φ (bj�)

)
,

and

(2.4.11) Φ (aj�) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, q̂a
j� − qj = 0,

min
(
1,

qmax
j − qj

q̂a
j� − qj

)
, q̂a

j� − qj > 0,

min
(
1,

qmin
j − qj

q̂a
j� − qj

)
, q̂a

j� − qj < 0;

where qmax
j := max

(
qj , max

�∈S(j)
q�

)
; qmin

j := min
(

qj , min
�∈S(j)

q�

)
. Analogously,

Φ (bj�) is defined. Finally, the linear recovery (2.4.8) will be rewritten in the form

(2.4.12) q̂a
j� = qh

∣∣∣
Dj

+ Φj (gradhqh)
∣∣∣
Dj

·
(
xa

j� − xj , y
a
j� − yj

)T
,

and in the same way for q̂b
j�.
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A discrete scheme is said to be TVD (total variation diminishing), if for the
sequence wk =

{
wk

j

}
j∈J

, k = 0, 1, . . . , the total variation, i.e. TV
(
wk

)
=∑

j∈J

�∈S(j)

|wk
j − wk

� |, satisfies the condition

(2.4.13) TV
(
wk

)
≥ TV

(
wk+1

)
, k = 0, 1, . . . .

The described construction of second order method is based on a one-dimensional
second order TVD extension of the first order scheme, it can be considered as
a second order TVD-MUSCL scheme, see e.g. [Osher(2)], [Rostard, Stoufflet] for
further results.

Although it can be even impossible to prove for fully nonlinear systems that our
multidimensional scheme is the second order, the number of numerical experiments
confirm the reliability of the method and the higher order behaviour of numerical
solutions, see e.g. [Kröner, Noelle, Rokyta] for some convergence results of the
higher order FVM. In Fig. 2.7 the comparison of the first and the second order
FVM and the corresponding exact solution is given. We have chosen the two-
dimensional Riemann problem, cf. Fig. 2.3, and plot the y = 0-cut. It can be
observed that the second order method approximates extrema of the solution in a
better way and resolves discontinuity more sharply than the first order scheme.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2
First and second order FVM vs. exact solution

rho − exact      
rho − 1st FV − 50x50
rho − 2nd FV − 50x50

Fig. 2.7. Comparison of the first and second order FVM.

In order to obtain fully higher order FVM it is further necessary to consider
better approximation in time. In fact, we apply the so-called method of lines and
treat separately spatial and time approximation. Thus, let us consider the following
system of ordinary differential equations with respect to time

(2.4.14)
dw(t)

dt
= F(w(t)),
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where the operator F represents the FV approximation of the divergence of physical
flux function, i.e. ∂xf1(w) + ∂yf2(w).

Generally, one can use any numerical scheme for ordinary differential equations
in order to approximate (2.4.14). Thus, the backward Euler method naturally leads
to the first order explicit FVM (2.2.34). In order to get the second order method
in time, we can apply two variants of the second order Runge-Kutta scheme; using
the midpoint rule or the trapezoidal rule. It was shown, e.g., in [Shu, Osher] that
the later yields to the second order FVM, which is TVD

w∗
j := wk

j − τ

|Dj |
∑

�∈S(j)

gj�

(
ŵk

j�, ŵ
k
�j

)
,

wk+1
j := wk

j − τ

2|Dj |
∑

�∈S(j)

[
gj�

(
ŵk

j�, ŵ
k
�j

)
+ gj�

(
ŵ∗

j�, ŵ
∗
�j

)]
, j ∈ J.

Some further higher order Runge-Kutta approximations leading to the FVM, which
are TVD, are presented in [Shu, Osher], [Sonar(1)].

In the following we simulated two-dimensional flow through the channel with a
circular cap (see Fig. 2.8). The length of the channel is 2 m, the height is 1 m,
the circular cap is centered at the point (0., 0.) and its height is 0.1 m. The fluid
(in our case air) flows through the channel in the x - direction. The left boundary
is inflow, the right one is outflow boundary. Rest parts of the boundary are solid
walls.

The Euler equations are approximated by the second order Vijayasundaram finite
volume method. The initial data are taken to be

ρ0 = 1.5 kg m−3

v0,1 = 206.835 m s−1

v0,2 = 0 m s−1

p0 = 101000 Pa

The inflow Mach number M :=
|v0|
a0

= 0.67. Here a0 stands for the local speed of

sound at the inflow.
Fig. 2.9 shows the Mach number distribution, on the walls and the Mach number

isolines, respectively. We can notice that the discontinuity, i.e. shock, is resolved
sharply. This is due to the use of the second order approximation as well as due to
the fact that the mesh was refined appropriately. Despite the second order method
no spurious oscillations near shocks are obtained, which is due to the use of limiter.
The flow is transonic since the Mach number varies between 0.35 and 1.45. In
Fig. 2.10 the entropy isolines are plotted. We can notice that entropy is increasing
after the shock, which is consistent with the second law of thermodynamics or,
equivalently, with the entropy inequality. The solution shown in Fig. 2.9 is the
physically unique weak entropy solution.
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Fig. 2.8. Triangular mesh for the channel and the dual mesh.
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Fig. 2.9. Mach number distribution on the walls of the channel and
Mach number isolines.
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Fig. 2.10. Entropy isolines.
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CHAPTER III

TUTORIALS

In this chapter we give a list of open problems for students’ individual work or
for the use in seminars.

Exercise 1.
Show that in R3 the following equality holds

rot rot = grad div − div grad.

Exercise 2. (1D Euler equations in conservative and primitive variables)
Consider the system of the Euler equations in 1D in conservative variables

(ρ, ρu, e)

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂te + ∂x((e + p)u) = 0

with the so-called state equation for ideal polytropic gas

p = (κ − 1)(e − ρu2/2) κ �= 1.

Let (ρ, ρu, e) be a solution to the Euler equations in conservative variables. Show
that under some regularity assumptions, i.e. smoothness of the solution, it is also
a solution to the Euler equations in the so-called primitive variables (ρ, u, p)

∂tρ + ∂x(ρu) = 0,

∂tu + u∂xu +
∂xp

ρ
= 0,

∂tp + ρa2∂xu + u∂xp = 0,

where

a :=
√

κp

ρ

denotes the speed of sound. Which regularity conditions have to be assumed?
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Exercise 3. (Euler equations)
Compute for the above one-dimensional Euler equations Jacobian A, all eigen-

values and corresponding eigenvectors. Compare the results with those given in
Chapter 2.2 for the full two-dimensional system. How it will be for the three-
dimensional system?

Programming exercises:

Exercise 4. (One-dimensional convection-diffusion equation)
The so-called convection-diffusion equation is a simple mathematical model

of fluid dynamics which describes fluid flowing in a given direction and take into
account viscous (or diffusive) effects. In one space dimension we have

− εu′′(x) + bu′(x) = f(x) x ∈ (0, 1)(3.1)

u(0) = 0, u(1) = 0.(3.2)

Here ε is a small parameter (physically ε ≈ 1/Re), b is a given velocity of the flow
(transport or advection parameter). Taking b > 0 means that fluid flows from left
to right. By f we denote some outer forces which cause fluid movement, e.g. heat
sources.

Mathematically (3.1), (3.2) gives a boundary value problem for linear ODE of
the second order. That is we need two boundary conditions. Now taking ε → 0,
e.g. ε = 10−10, we get as an approximate model to equation (3.1) the following
equation

(3.3) bu′(x) = f(x) x ∈ (0, 1).

This is now a linear ordinary differential equation of the first order and we can
prescribe just one boundary condition. Actually, if b > 0 we should take the left
boundary value of (3.2) and conversely, if b < 0 we take the right value of (3.2).

Equation (3.1) with 0 < ε � 1 is called singularly perturbed equation. It
is a small perturbation of (3.3), but this small perturbation changes character
of the equation completely (from the first order to the second order). Singular
perturbation problems cause numerical difficulties because the solution changes
rapidly over a very small interval in space. In this region derivatives of u(x) are
large, giving rise to large errors in our finite difference approximations.

In what follows let us consider, for simplicity, the following equation

− εu′′(x) + u′(x) = 1 x ∈ (0, 1)(3.4)

u(0) = 0, u(1) = 0.(3.5)

The exact solution to this problem is

u(x) = x +
1 − ex/ε

e1/ε − 1
.
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Fig. 3.1. Exact solution for various values of ε = 1, 0.1, 0.01 and the
solution for ε = 0.

This solution is plotted for different values of ε in the Fig. 3.1.

Discretize (3.4) by means of the finite difference method. Take an equidistant
mesh on the interval (0, 1) of the mesh size h. Take the boundary conditions (3.5)
at U0 ≡ u(0) = 0 and UN ≡ u(1) = 0, where N = 1/h. You will obtain a linear
algebraic system of the following type

AU = R,

with a sparse three-diagonal matrix A and U = (U1, . . . , UN ), Ui ≈ u(ih). Solve this
linear system for U! (You can use, e.g., some appropriate MATLAB subroutines.)
Note that you can use the sparsity of the matrix A and do not need to save all of
(N − 1) × (N − 1) entries into memory.

(1) Compare three possibilities to approximate the first derivative of u′(x).
Take a fixed ε (e.g. ε = 0.1, 0.01) and plot the exact and approximate
solutions for several values of h.

(2) Plot logarithm of the error ln‖u−U‖ over ln(h); (e.g. take h = 1/10, h =
1/25, h = 1/100). Here ‖u − U‖ = maxi=1,...,N |u(ih) − Ui|.

(3) What is the leading order local truncation error in finite difference approxi-
mation of (3.4)? Where can you see its influence in the graphs of numerical
solution?

The following exercises 5.- 8. have to be solved using the finite volume method
of the wave propagation algorithm, the so-called CLAWPACK (Version 4.0) (Con-
servation Law Package). See: http://www.amath.washington.edu/ claw

Exercise 5. (Viscous Burgers equation)
Solve the one-dimensional viscous Burgers equation

qt +
(

1
2
q2

)
x

= εqxx, x ∈ [−2, 3].
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The finite volume solver of Roe (“Roe solver”) is based on the linearization qt +
Aiqx = 0 with Ai = 1

2 (qi−1 + qi). Note that for this scalar problem Ai = λ1
i and

this is the correct shock speed in the case that the solution is a shock wave. For
the wave propagation algorithm we set

W1
i := qi − qi−1,

λ1
i :=

1
2
(qi−1 + qi),

A−Δqi := min(λ1
i , 0)W1

i = −1
2
q2
i−1,

A+Δqi := max(λ1
i , 0)W1

i =
1
2
q2
i .

In this case we have A−Δqi + A+Δqi = 1
2

(
q2
i − q2

i−1

)
= f(qi) − f(qi−1).

In order to solve the viscous part the so-called operator splitting is implemented
in the CLAWPACK and the scr1 subroutine solves the diffusion equation

qt = εqxx

over a time step. This is done using the Crank-Nicolson method, which requires
solving a tridiagonal linear system of equations for the whole update of qi.

Solve the Burgers equation with the extrapolation boundary conditions and the
following initial data

q(x, 0) = 1 x < 0

q(x, 0) = 0 x > 0

or

q(x, 0) = 0 x < 0

q(x, 0) = 1 x > 0

Test the behavior of solution for several viscosity coefficients ε = 0, 1, 0.1, 0.01,
0.001. Plot solutions at several time steps!

Exercise 6. (Acoustics equation)
The two-dimensional acoustics equation for the pressure perturbation p and ve-

locities u and v can be written as

qt + Aqx + Bqy = 0,

where

q =

⎛
⎝ p

u
v

⎞
⎠ , A =

⎛
⎝ 0 K 0

1/ρ 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝ 0 0 K

0 0 0
1/ρ 0 0

⎞
⎠ .

Solve the acoustics equation with the radially symmetric initial data p(x, y, 0) =
P0(r), u = v = 0 where r =

√
x2 + y2. Set P0(r) = 1 − 0.1(cos(4πr) − 1). The
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solution should remain radially symmetric. Moreover you can test the accuracy of
the two-dimensional scheme by computing solution on a very fine grid by solving
the one-dimensional equations

Pt + KUr = −aU/r

ρUt + Pr = 0,

where U is the radial velocity and a =
√

K/ρ. Solve this system on a very fine
grid using 1D solver and then solve 2D equations on a sequence of N ×N grids for
N = 10, 20, 40, 80 on [−1, 1] × [−1, 1]. The end time is set to be t = 0.4. Plot the
comparisons between the “exact” 1D solution and scatter plot of the 2D numerical
solutions. These latter are obtained by the first as well as the second order FV
schemes. Compute numerical errors between the reference and numerical solutions
in L1 as well as in L∞-norms for all N × N grids.

Exercise 7. (Acoustics in heterogeneous medium)
Now we suppose that sound speed varies in x, y due to variations in the material

parameters ρ and K. We have then the system

qt + A(x, y)qx + B(x, y)qy = 0,

where

q =

⎛
⎝ p

u
v

⎞
⎠ , A =

⎛
⎝ 0 K(x, y) 0

1/ρ(x, y) 0 0
0 0 0

⎞
⎠ , B =

⎛
⎝ 0 0 K(x, y)

0 0 0
1/ρ(x, y) 0 0

⎞
⎠ .

In this example we model the propagation of a plane wave when striking an interface
of two materials. As an initial data take a planar wave propagating in some direction
at an angle to the interface

p(x, y, 0) = 0.5 + cos(πr/0.1) if r =
√

(x − 0.25)2 + (y + 0.4)2 < 0.1, 0 else

u(x, y, 0) = 1.5, v(x, y, 0) = 1.

Set the interface variables as follows

ρ(x, y) = ρL = 1.0, a(x, y) =
√

K(x, y)/ρ(x, y) = aL = 1.0 x < 0.5,

ρ(x, y) = ρR = 4.0, a(x, y) =
√

K(x, y)/ρ(x, y) = aR = 0.5 x > 0.5

or

ρ(x, y) = ρL = 1.0, a(x, y) = aL = 1.0 x < y/5 + 0.4,

ρ(x, y) = ρR = 4.0, a(x, y) = aR = 0.5 x > y/5 + 0.4.

The end time is set to be t = 0.64 and the computational domain is [0, 1.5]× [−1, 1].
Use 300× 200 grid. Compare pressure isolines of the numerical solutions as well as
the graphs along cross sections at x = 0.6 and x = 1.0 for both types of interfaces.
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Note that in order to plot graph along the cross sections you have to modify slightly
procedure claw/clawpack/2d/lib/out2.f in order to get only output data along the
specified cross-section. Use extrapolated boundary conditions. Compare first and
second order methods.

Exercise 8. (Euler equations with shock in entropy)
In this example we model a shock wave hitting sinusoidal variation in entropy

(i.e. variation in density with constant pressure). The system of the Euler equations
reads

qt + f(q)x = 0,

where the vector of conservative variables and the fluxes are

q :=

⎛
⎝ ρ

ρu
e

⎞
⎠ , f(q) :=

⎛
⎝ ρu

ρu2 + p
(e + p)u

⎞
⎠ , x ∈ [−5, 5], t ∈ [0, 2].

In order to close the system the state equation of ideal gas is used. Take the
following initial data

ρ(x, 0) = 3.857, u(x, 0) = 2.629, p(x, 0) = 10.333, x < −4

ρ(x, 0) = 1 + 0.2 sin(5x), u(x, 0) = 0, p(x, 0) = 1, x ≥ −4.

Plot ρ, u and p on fine and coarse grid using 200 and 4000 grid cells. Com-
pare results for the first and second order methods. Use extrapolated boundary
conditions on the left and the right boundary, i.e. x = ±5.

Exercise 9. (Two-dimensional nonlinear convection-diffusion equation)
Combined finite volume - finite element method
Solve the following two-dimensional convection-diffusion equation

ut + uux + uuy = εΔu, (x, y) ∈ [−1, 1] × [−2, 2],(3.6)

u(x, y, 0) = 10 (x2 + y2)1/2 < 0.4
= 1 else

∂u

∂n
= 0 Neumann B.C.

Use regular mesh consisting of square cells

Ωij ≡ [(i − 1/2)h, (i + 1/2)h] × [(j − 1/2)h, (j + 1/2)h]

= [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2],

where indices i, j ∈ Z, and h > 0 is the mesh size parameter.
Approximate equation (3.6) with the so-called operator splitting finite element-

finite volume method. It means to divide time step [tn, tn+1] into two half time
steps. Solve in the first time step [tn, tn+1/2] a pure advection equation

ut + uux + uuy = 0
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with the finite volume method

U
n+1/2
ij := Un

ij −
Δt

2h2

[
Hi+1/2,j − Hi−1/2,j + Hi,j+1/2 − Hi,j−1/2

]
.

Here Hi±1/2,j denotes a numerical flux function on the right/left cell interface.
Analogous notation holds for y-direction. Try the following methods: second order
Lax-Wendroff scheme as well as first order Lax-Friedrichs and Vijayasundaram
methods.

In the second step [tn+1/2, tn] solve the rest parabolic equation

(3.7) ut = εΔu

with linear conforming finite element method using the so-called dual mesh to the
original mesh {Ωij}i,j∈Z. Dual mesh is a staggered mesh, i.e. “shifted mesh”. It
consists of squares {Ωα,β}α,β∈Z, where (α, β) are vertices of the original mesh. Let
ϕij be a finite element test function corresponding to the vertex (i, j) of the dual
mesh {Ωα,β}α,β∈Z. It is a bilinear function, which equals 1 at the vertex (i, j) and
zero at other vertices (k, l). Show that the finite element approximation of (3.7)
leads to the following scheme

Un+1
ij := U

n+1/2
ij − Δt

4h2
ε(Un+1/2

i−1j + U
n+1/2
i+1j + U

n+1/2
ij−1 + U

n+1/2
ij+1 − 4U

n+1/2
ij ).

In order to approximate integrals of any continuous function f(x, y) over one mesh
cell the trapezoidal quadrature is used, i.e.

∫
Ωα,β

f(x, y)dx =
h2

4

∑
k,�:(xk,y�)∈Ωα,β

fk�.

Note that gradients of test functions are constant on each dual mesh cell Ωα,β .

Plot three-dimensional representations of the solution u at three different time
instances, e.g. T = 0.1, 0.5, 1. Try several viscosity parameters, e.g. ε = 10, 1, 0.01,
0.001. Which stability condition, i.e. condition on relationship between Δt and h,
has to be fulfilled?
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Kröner D., Numerical Schemes for Conservations Laws, Wiley Teubner, Stuttgart
1997.
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