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TOMOGRAPHY IN THE HALF-SPACE∗

MARTIN HANKE† AND BIRGIT SCHAPPEL†

Abstract. We consider the inverse problem of electrical impedance tomography in a conducting
half-space, given electrostatic measurements on its boundary, i.e., a hyperplane. We first provide a
rigorous weak analysis of the corresponding forward problem and then develop a numerical algorithm
to solve an associated inverse problem. This inverse problem consists of the reconstruction of certain
inclusions within the half-space which have a different conductivity than the background. To solve
the inverse problem we employ the so-called factorization method of Kirsch, which so far has only
been considered for the impedance tomography problem in bounded domains. Our analysis of the
forward problem makes use of a Liouville-type argument which says that a harmonic function in
the entire two-dimensional plane must be a constant if some weighted L2-norm of this function is
bounded.
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1. Introduction. Electrical impedance tomography (EIT) is a technique to re-
cover information of the interior of a conducting object from electrostatic measure-
ments taken on its boundary. In mathematical terms, this amounts to recovering
information about the spatially varying (nonnegative) conductivity σ in the elliptic
partial differential equation

(1.1) ∇ · σ∇u = 0 in B

from Neumann and Dirichlet boundary values of all stationary electric potentials
u. This inverse boundary value problem goes back to Calderón [8] who considered
(1.1) in a bounded domain B, provoking substantial interest in the medical imaging
community.

In geoelectric applications, on the other hand, the domain B and its boundary are
typically very large compared to the small fraction of its boundary where data can be
measured. Therefore it makes sense to reconsider the inverse boundary value problem
for (1.1) in unbounded domains B with unbounded boundary ∂B, with the half-space
being the most obvious and prominent example. Another application for this model
problem concerns the automatic recognition of gesture input for interactive displays,
called touchless interaction, which has recently been considered by van Berkel and
Lionheart [26]. Finally, in its original medical context, the half-space problem may
serve as an appropriate model for certain mammography systems (cf., e.g., [2, 16, 22])
where measurements are taken on only a small portion of the patient’s skin.

For the half-space B, Druskin [11] has shown that the conductivity can be recon-
structed from the knowledge of the boundary data on a subdomain Γ ⊂ ∂B, provided
that B can be subdivided into a finite set of domains with piecewise smooth bound-
aries and constant conductivities, respectively. In this paper we are concerned with
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908 MARTIN HANKE AND BIRGIT SCHAPPEL

numerical algorithms to reconstruct the conductivity σ or partial information about
it. In general, reconstruction methods can be divided into iterative and direct meth-
ods (we refer to Borcea [4, 5] for a relatively recent survey with the focus on bounded
domains), but concerning unbounded domains B we are aware only of previous algo-
rithms based on linearization with or without an outer iteration; cf. Lukaschewitsch,
Maass, and Pidcock [20, 21], Mueller, Isaacson, and Newell [22], and the references
therein. Iterative methods require the repeated solution of forward problems in each
iteration, i.e., differential equations, which tends to be extremely time-consuming.
We therefore present a noniterative reconstruction algorithm which can be used to
detect abrupt local deviations of the conductivity from a homogenous background
conductivity.

Our method is a variation of the so-called factorization method which goes back
to an idea of Kirsch [18] in the context of inverse scattering and has been applied
successfully to the impedance tomography problem by Brühl [6, 7]. In these and
subsequent papers all authors have formulated the problem in either bounded domains
or all of R

n, thus avoiding the difficulties that arise with domains with unbounded
boundaries. Here we employ a general framework developed by Gebauer [12] to adapt
this method to the case of the half-space

B = R
n
+ = {x ∈ R

n : x · en > 0},

with en ∈ R
n a given unit vector, the inner normal vector on ∂B. Most results will

be presented for the case n = 3, but at the end of this paper we will give a short
summary of the two-dimensional case.

For our approach we assume a constant background conductivity σ1 = 1, where
1 is the function identically 1, and consider conductivities of the form

(1.2) σ(x) =

{
κ(x), x ∈ Ω,

1, x ∈ R
3
+ \ Ω,

where Ω ⊂ B is a finite collection of separated and bounded domains with sufficiently
smooth boundary Σ = ∂Ω, and for which R

n
+ \ Ω is connected. Below we will denote

by ν the normal of Σ pointing into Ω.
The positive conductivity κ ∈ L∞(Ω) is assumed to be significantly higher or

lower than the background conductivity; i.e., there exists ε > 0 such that

(1.3) κ(x) ≥ 1 + ε or ε ≤ κ(x) ≤ 1 − ε for x ∈ Ω.

By means of the factorization method we provide an explicit characterization of the
inclusions Ω in terms of the (local) Neumann–Dirichlet operator Λσ which maps Neu-
mann boundary values of a potential u in (1.1) to its Dirichlet boundary values.

We should mention that in principle it should be possible to relax the assumption
that the background conductivity is constant. However, the numerical implementation
of our method will then become much more difficult, as the algorithm requires the
availability of the associated Neumann function.

The paper is organized as follows: We first introduce appropriate function spaces
to deal with the forward problem (1.1) in the half-space B = R

3
+, and then clarify

our notion of weak solutions of (1.1) and their existence. The inverse problem and
some preliminary statements will be specified in section 3. Then, in sections 4 and 5
we prove the characterization of inclusions from the knowledge of Λσ. In section 6
we comment on our numerical algorithm and present some reconstructions based
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on simulated data. To conclude, we briefly comment in section 7 on the necessary
modifications of our theory in two space dimensions.

In an appendix we establish a Liouville-type result for harmonic functions in the
plane which we use to show that certain apparently different function spaces over R

3
+

which have been introduced in the literature, and which are relevant for our problem,
are essentially the same.

2. Function spaces and weak solutions of the forward problem. The
forward problem associated with impedance tomography in the half-space is the Neu-
mann problem

(2.1) ∇ · σ∇u = 0 in R
3
+, −σ

∂u

∂e3
= f on R

2,

together with an appropriate growth condition near infinity. Problem (2.1) represents
the physical process of injecting a current f into the upper half-space B = R

3
+ from

its boundary. In this section the conductivity σ is assumed to be bounded and strictly
positive in R

3
+. In (2.1) and in the remainder of this paper, we always identify the

boundary of R
3
+ with R

2, with straightforward abuse of notation.
Care has to be taken concerning the correct behavior of u(x) for |x| → ∞ which is

reflected by the choice of appropriate function spaces for the solution u. For example,
physically relevant solutions of problem (2.1)—like the fundamental solution of the
Laplace equation—need not belong to the Sobolev space H1(R3

+).

Example 2.1 (see [21]). For σ = 1 and f(y) = (1 + |y|2)−3/2, a solution of (2.1)
is given by u(x) = |x + e3|−1. It is easy to see that u does not belong to L2(R3

+);
however, the gradient of u is square integrable on R

3
+.

To construct a suitable function space we recall the following familiar definitions
and notation. For a (possibly unbounded) domain G ⊂ R

3 we take C∞
0 (G) to be the

set of all functions u ∈ C∞(G) with compact support suppu, and let

C∞
0 (G) = {u|G : u ∈ C∞

0 (R3)}.

Furthermore, D′(G) is the set of distributions, i.e., the continuous linear functionals
on C∞

0 (G).
In view of the physical setting (and in accordance with Example 2.1) it appears

appropriate to restrict our attention to solutions of (2.1) with finite energy, which
means that the H1-seminorm of u is finite. Note that this seminorm is actually a
norm on C∞

0 (R3
+) because constant functions do not belong to this set. We write

H(R3
+) for the closure of C∞

0 (R3
+) with respect to this norm, denoted subsequently

by ‖ · ‖H(R3
+). According to Boulmezaoud [3], this space coincides with the weighted

Sobolev space

(2.2) {u ∈ D′(R3
+) : (1 + |x|2)−1/2u ∈ L2(R3

+), ∇u ∈ L2(R3
+)3}.

Obviously, we have H(R3
+) ⊂ H1

loc(R
3
+), and for every bounded domain G ⊂ R

3
+

the restriction operator u 
→ u|G is continuous as a mapping from H(R3
+) → H1(G).

We point out here that for the two-dimensional case the analogous completion of
C∞

0 (R2
+) with respect to the H1-seminorm does not yield a space of distributions

(cf. Deny and Lions [10]), and we refer to section 7 for the modifications which are
necessary in two space dimensions.

It has been shown by Janßen [17] that every function u ∈ H(R3
+) has a trace in

L2,1(R2) = {g : (1 + |y|2)−1/2g ∈ L2(R2)},
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910 MARTIN HANKE AND BIRGIT SCHAPPEL

and that the trace operator is continuous with respect to the norm

‖g‖2
L2,1(R2) =

∫
R2

(1 + |y|2)−1g2(y) dy

of L2,1(R2). Note that the dual space of L2,1(R2) can be identified with

L2,−1(R2) = {f : (1 + |y|2)1/2f ∈ L2(R2)}

using L2(R2) as a pivot space in the Gelfand triple. The associated norm of L2,−1(R2)
is denoted by ‖ · ‖L2,−1(R2), the dual pairing between L2,−1(R2) and L2,1(R2) by

〈f, g〉R2 =

∫
R2

f(y)g(y) dy.

Now we return to the Neumann problem (2.1) for u ∈ H(R3
+). The corresponding

weak formulation follows in the usual way by making use of Green’s formula for
u, v ∈ H(R3

+) established in [3]: Find u ∈ H(R3
+) such that

(2.3)

∫
R

3
+

σ∇u · ∇v dx =

∫
R2

fv dy for all v ∈ H(R3
+).

Problem (2.3) is well defined for every f ∈ L2,−1(R2), and a standard application of
the Lax–Milgram lemma establishes existence of a unique solution u ∈ H(R3

+) of (2.3)
with

(2.4) ‖u‖H(R3
+) ≤ c‖f‖L2,−1(R2)

for some constant c > 0 depending only on the conductivity σ. We call u the weak
solution of problem (2.1).

Example 2.2. If σ = 1, i.e., if we consider the Laplace equation, then

(2.5) u(x) =
1

2π

∫
R2

f(y)

|x− y| dy, x ∈ R
3
+,

is the physically relevant classical solution of problem (2.1) provided that f is con-
tinuous and that there exists a positive and monotonic function ε ∈ L1(R+) such
that |f(y)| ≤ ε(|y|); see, e.g., Dautray and Lions [9, Chapter II]. In particular,
for f(y) = (1 + |y|2)−3/2 this yields the function u of Example 2.1. For arbitrary
f ∈ L2,−1(R2) the integral representation (2.5) defines the weak solution u ∈ H(R3

+),
as is most easily seen by using the Kelvin transformation; see [25] for further details.

Remark 2.3. In principle one can alternatively start with C∞(R3
+) instead of

C∞
0 (R3

+) and consider for some α ≥ 0 the completion W 1
α(R3

+) of

{u ∈ C∞(R3
+) : (1 + |x|2)−1/2−α/2u ∈ L2(R3

+), ∇u ∈ L2(R3
+)3}

with respect to the norm

(2.6) ‖u‖2
W 1

α(R3
+) =

∫
R

3
+

(1 + |x|2)−1−αu2(x) dx +

∫
R

3
+

|∇u(x)|2 dx;

cf. [17] and [21]. With an argument due to Hanouzet [15, Théorème I.1] it can be
shown that for α = 0 this space coincides with H(R3

+).
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Because of a Poincaré-type inequality established in [21, Theorem 2.10], the spaces
W 1

α(R3
+) with α > 1/2 are all the same and contain H(R3

+) as a closed subspace;
we denote this space by H1/2+(R3

+) and remark that H(R3
+) is a proper subspace

of H1/2+(R3
+) because the latter includes the constants. As we will prove in the

appendix, we have, in fact,

(2.7) H1/2+(R3
+) = H(R3

+) ⊕ span{1};

i.e., H1/2+(R3
+) is made up only from H(R3

+) and the constants.
Yet another variant, considered in [21], is to start with C∞-functions in R

3
+ which

are vanishing for |x| → ∞. The completion of this space with respect to the norm
(2.6) always yields the space H(R3

+) no matter what value of α ≥ 0 is used [25,
Appendix A].

Thus, both of the aforementioned variants lead essentially to the same notion of
a weak solution of problem (2.1), for the constants always belong to the null space of
the differential operator under consideration.

3. Basic properties of the inverse problem. Now we are going to specify
somewhat further the impedance tomography problem we consider in this paper. We
shall assume throughout that the conductivity σ has the form given in (1.2), (1.3) and
recall that, by virtue of (2.4), we have a well-defined bounded linear operator from
L2,−1(R2) into H(R3

+) which maps a given boundary current f ∈ L2,−1(R2) onto the
induced potential uσ ∈ H(R3

+). By passing on to the trace of uσ on R
2 we obtain the

Neumann–Dirichlet operator

Λg
σ : L2,−1(R2) → L2,1(R2), f 
→ uσ|R2 .

Here, the superscript g stands for global, because for practical purposes it is often
sufficient to restrict the attention to currents f supported on some bounded subset
Γ ⊂ R

2, and also to confine oneself to taking measurements of uσ only on Γ. This
gives rise to the so-called local Neumann–Dirichlet operator

Λ�
σ : L2(Γ) → L2(Γ), f |Γ 
→ uσ|Γ.

It is easy to check that there holds

(3.1) Λ�
σ = PΛg

σP
′,

where P is the projection

P : L2,1(R2) → L2(Γ), g 
→ g|Γ,

and

P ′ : L2(Γ) → L2,−1(R2), f 
→
{
f(y), y ∈ Γ,

0, y ∈ R
2 \ Γ,

is the dual operator of P .
Our inverse problem is now the following:

Let the conductivity σ be of the form (1.2) with κ as in (1.3), and
let Λg

σ—or Λ�
σ for some bounded and relatively open subset Γ ⊂ R

2,
respectively—be given. How can we reconstruct the support of κ, i.e.,
the discontinuities of σ?
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Before we proceed to derive a constructive answer to this question, we list some
elementary properties of the operators Λg

σ and Λ�
σ.

Lemma 3.1.

(i) Λ�
σ : L2(Γ) → L2(Γ) is compact, self-adjoint, and positive.

(ii) Let f ∈ L2,−1(R2), and let σ1, σ2 ∈ L∞(R3
+) with σ1, σ2 ≥ ε almost every-

where in R
3
+. Then, if σ1 ≤ σ2, we have

〈f,Λg
σ1
f〉R2 ≥ 〈f,Λg

σ2
f〉R2 .

Proof. Consider some bounded domain G ⊂ R
3
+ with Γ ⊂ ∂G. Then, as men-

tioned before, the operator which restricts u ∈ H(R3
+) to u|G ∈ H1(G) is bounded,

and the trace operator from H1(G) to L2(Γ) is compact. Hence, Λ�
σ is compact.

Let 0 �= f , f̃ ∈ L2(Γ), and uσ, ũσ ∈ H(R3
+) be the solutions of (2.3) with f ′ = P ′f

and f̃ ′ = P ′f̃ , respectively. Then by virtue of (3.1) we have

〈f,Λ�
σ f̃〉L2(Γ) = 〈f ′,Λg

σ f̃
′〉R2 =

∫
R

3
+

σ∇uσ · ∇ũσ dx = 〈f̃ ,Λ�
σf〉L2(Γ).

Thus Λ�
σ is self-adjoint. With f = f̃ we obtain, using (1.3), that

〈f,Λ�
σf〉L2(Γ) =

∫
R

3
+

σ|∇uσ|2 dx ≥ ε

∫
R

3
+

|∇uσ|2 dx = ε‖uσ‖2
H(R3

+),

and hence, Λ�
σ is positive.

Now, let f ∈ L2,−1(R2) be given, and let uσ1
, uσ2

∈ H(R3
+) be the weak solutions

of (2.1) for the two conductivities σ1 and σ2, respectively. From (2.3) it follows that
uσ1 is the unique minimizer in H(R3

+) of the quadratic energy functional

1

2

∫
R

3
+

σ1 |∇u|2 dx− 〈f, u〉R2

with minimum value − 1
2 〈f, uσ1〉R2 . Therefore

−1

2
〈f,Λg

σ1
f〉R2 =

1

2

∫
R

3
+

σ1 |∇uσ1
|2 dx− 〈f, uσ1

〉R2

≤ 1

2

∫
R

3
+

σ1 |∇uσ2 |2 dx− 〈f, uσ2〉R2(3.2)

≤ 1

2

∫
R

3
+

σ2 |∇uσ2
|2 dx− 〈f, uσ2

〉R2 = −1

2
〈f,Λg

σ2
f〉R2 ,

which was to be shown.
Our approach to the solution of the inverse problem is based on a comparison of

the measured Neumann–Dirichlet operator Λg
σ or Λ�

σ with the reference operator Λg
1 or

Λ�
1, respectively, corresponding to the homogeneous background with conductivity 1.

From Lemma 3.1 we immediately conclude the following.
Corollary 3.2. Under the assumptions (1.2), (1.3), Λg

σ−Λg
1 as well as Λ�

σ−Λ�
1

are self-adjoint and positive (resp., negative) if κ ≤ 1 − ε (resp., κ ≥ 1 + ε).
Proof. An adaptation of the proof of Lemma 3.1(i) establishes that Λg

σ and Λg
1 are

self-adjoint. For the remainder of the proof we consider only the case where κ ≤ 1− ε
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for some ε > 0; the other case is treated similarly. For this situation we obtain from
Lemma 3.1 that

(3.3) 〈f, (Λg
σ − Λg

1)f〉R2 = 〈f,Λg
σf〉R2 − 〈f,Λg

1f〉R2 ≥ 0

for every f ∈ L2,−1(R2); moreover, strict inequality holds in (3.2), and thus in (3.3),
if the two potentials uσ and u1 occurring in the proof of Lemma 3.1 are different.

Thus, assuming equality in (3.3) for some f ∈ L2,−1(R2), we can conclude that

0 = 〈f,Λg
σf〉R2 − 〈f,Λg

1f〉R2 =

∫
Ω

(κ− 1)|∇u1|2 dx,

and hence, u1 is constant in Ω. Since u1 is harmonic in R
3
+, this implies that it is

constant in the entire half-space. It follows that f = 0, which proves that Λg
σ − Λg

1 is
positive.

For the local Neumann–Dirichlet operators we consider f ∈ L2(Γ), and set f ′ =
P ′f . By virtue of (3.1) we obtain

〈f, (Λ�
σ − Λ�

1)f〉L2(Γ) = 〈f ′, (Λg
σ − Λg

1)f ′〉R2 ,

where the latter is positive according to the first part of this proof, unless f = 0.
Therefore Λ�

σ − Λ�
1 is also a positive operator.

4. The framework for the factorization method. In what follows our no-
tation will no longer make explicit whether we are talking about local or global mea-
surements; i.e., we write Λσ for either Λg

σ or Λ�
σ. Furthermore, we denote by T = R

2

or T = Γ the domain, on which measurements shall be taken. In accordance with this
notation, we let H(T ) be either L2,1(R2) or L2(Γ), respectively.

To simplify the presentation we will assume throughout that Ω consists of only
one connected component. Our theory extends to the general case, and whenever nec-
essary we will point out the appropriate modifications for this more general situation
(see also [24]).

We want to apply the general framework of Gebauer and therefore adopt his
notation from [12] in what follows. We first introduce, similar to H(B) = H(R3

+),

a function space H(Q) on Q = B \ Ω by closing C∞
0 (Q) with respect to the H1-

seminorm, which will be denoted by ‖ · ‖H(Q). The space H(Q) has properties similar
to those of H(B). In particular, there is a continuous trace operator γQ→T from
H(Q) to H(T ), and H(Q) is continuously embedded in H1(G \ Ω) for any bounded
neighborhood G ⊂ R

3
+ of Ω. For u ∈ H(Q) we can thus define a normalized trace

operator

(4.1) γQ→Σv = v − 1

|Σ|

∫
Σ

v do, v ∈ H(Q).

Here, |Σ| is the volume of the surface Σ, and γQ→Σ is a bounded and surjective
operator from H(Q) onto

H(Σ) =

{
v ∈ H1/2(Σ) :

∫
Σ

v do = 0

}
.

In accordance with H(Σ) we also introduce the function space

H(Ω) =

{
w ∈ H1(Ω) :

∫
Σ

w do = 0

}
,
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which, again, can be equipped with the H1-seminorm, so that the usual trace operator
γΩ→Σ maps H(Ω) continuously onto H(Σ). We mention that the need for a Poincaré-
type inequality is the reason to enforce vanishing means over Σ for elements from
H(Ω).1

The framework of Gebauer also requires a linkage between the spaces H(B),
H(Q), and H(Ω). In particular, we need to define “restriction operators” EQ :
H(B) → H(Q) and EΩ : H(B) → H(Ω). In fact, we can take the natural re-
striction for EQ, i.e., EQu = u|Q, but we need to be more careful in the definition of
EΩ: Similarly to (4.1), we let

(4.2) EΩu = u|Ω − 1

|Σ|

∫
Σ

u do, u ∈ H(B),

such that the compatibility condition γQ→ΣEQ = γΩ→ΣEΩ holds true.
Classical extension operators

γ−
Q→Σ : H(Σ) → H(Q) and γ−

Ω→Σ : H(Σ) → H(Ω)

yield continuous right inverses of the two “trace operators.” Note that γΩ→Σ has a
continuous extension to the classical trace operator γ̂Ω→Σ : H1(Ω) → H1/2(Σ), and
likewise, γ−

Ω→Σ has a continuous extension to a right inverse γ̂−
Ω→Σ : H1/2(Σ) → H1(Ω)

of γ̂Ω→Σ by setting γ̂−
Ω→Σ1 = 1.

In addition we need to construct continuous right inverses E−
Q and E−

Ω of EQ and
EΩ, respectively. To this end we set

E−
Ωw =

{
w on Ω,

γ−
Q→ΣγΩ→Σw on Q,

and E−
Qv =

{
γ̂−
Ω→Σv|Σ on Ω,

v on Q.

It follows, e.g., from Renardy and Rogers [23, Lemma 6.85], that these piecewise
defined functions belong to H1

loc(R
3
+), and that E−

Ω and E−
Q are continuous opera-

tors. Moreover, we obviously have the compatibility requirement that EQE
−
Ωw = 0

whenever γΩ→Σw = 0. The corresponding requirement for the case that γQ→Σv = 0
for v ∈ H(Q) is slightly more complicated: In this case we necessarily have that
v|Σ is constant over Σ, and hence, γ̂−

Ω→Σv|Σ is a constant also. This shows that the
restriction of E−

Qv to Ω is a constant function, and hence EΩE
−
Qv = 0 by virtue of

(4.2).
Finally, given

ψ ∈ H ′(Σ) =

{
ψ ∈ H−1/2(Σ) :

∫
Σ

ψ do = 0

}
,

the variational problem

(4.3)

∫
Q

∇v · ∇w dx =

∫
Σ

ψw do for all w ∈ H(Q)

has a unique solution v ∈ H(Q), and this solution can be used to introduce the
operator

(4.4) L : H ′(Σ) → H(T ), ψ 
→ v|T ,

1When Ω consists of more than one connected component, the elements of H(Σ) and H(Ω) need
to have a vanishing mean over each connected component of Σ. The trace operator (4.1) then needs
to be modified accordingly, i.e., by subtracting from v different constants on the different components
of Σ. A similar comment applies to the restriction operator EΩ of (4.2).
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which will play a fundamental role in what follows. As in section 2, it can be shown
that v is the physically relevant (weak) solution of the exterior Neumann problem

(4.5) Δv = 0 in Q,
∂v

∂ν
= ψ on Σ,

∂v

∂e3
= 0 on R

2.

Now we can formulate our first main result, using the notation R(A) to denote
the range space of some operator A.

Theorem 4.1. Under the assumptions (1.2), (1.3), there holds

R
(
|Λσ − Λ1|1/2

)
= R(L),

where L is given by (4.4).

Proof. The assertion is an immediate consequence of Theorem 3.1 in [12]. Except
for the straightforward discussion of the bilinear forms occurring in [12], we have
already verified all the assumptions of this theorem. Making use of the standard
identification of H ′(Σ) with the dual space of H(Σ), employing L2(Σ) as pivot space
in the Gelfand triple, it is also obvious that the operator L of (4.4) is nothing but a
reformulation of the operator L defined in [12].

We mention that the operator L of (4.4) and its dual operator appear naturally
in a factorization of the difference of the two measurement operators,

Λσ − Λ1 = LFL′

(cf. [12]), hence the name of the factorization method. Within the framework of
Gebauer, an explicit derivation of this factorization and the operator F , in particu-
lar, is not necessary. In fact, a specification of F requires the introduction of some
additional diffraction problems, similar to the ones in [6, 7]: Since we never need to
return to this operator, we omit the details here, but rather refer the reader to [25]
or the aforementioned papers for the details.

5. The range test. The range identity of Theorem 4.1 can be exploited to
characterize the set Ω, since the range of L is easy to describe.

Theorem 5.1. Let z ∈ R
3
+ be arbitrarily chosen. Then, for every d ∈ R

3 \ {0}
the function

(5.1) gz,d(x) =
d · (x− z)

|x− z|3 , x ∈ T,

belongs to R(L) if and only if z ∈ Ω.

Proof. We first observe that gz,d = uz,d|T , where

uz,d(x) =
1

2
d · ∇z

(
1

|x− z| +
1

|x− z′|

)
, x ∈ R

3
+ \ {z},

is the superposition of two dipole potentials in z and z′. Here, z′ = z − 2(z · e3)e3 is
the reflection of z with respect to the plane R

2. Therefore, uz,d is a harmonic function
in R

3
+ \ {z} with zero flux across R

2. Moreover, uz,d belongs to H(Q) if and only if
z ∈ Ω. Therefore, if z ∈ Ω and ψ = ψz,d is the flux of uz,d across Σ into Ω, then
uz,d is the solution of the exterior Neumann problem (4.5). Note that ψz,d belongs
to H−1/2(Σ); see, e.g., Girault and Raviart [13, Theorem 2.5]. Finally, we have for
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z ∈ Ω that∫
Σ

ψz,d dox =
1

2
d · ∇z

(∫
Σ

∂

∂νx

1

|x− z| dox +

∫
Σ

∂

∂νx

1

|x− z′| dox

)

=
1

2
d · ∇z

(
4π1(z)

)
= 0

(see, e.g., [19, Example 6.16]), which shows that ψz,d ∈ H ′(Σ). We therefore have
proved that Lψz,d = gz,d, i.e., that gz,d ∈ R(L) for z ∈ Ω.

Now let z ∈ R
3
+ \ Ω, and assume that gz,d ∈ R(L), i.e., that gz,d = Lψ for some

ψ ∈ H ′(Σ). This is equivalent to the statement that gz,d = v|T , where v ∈ H(Q) is the
weak solution of (4.5). Thus, uz,d and v are two harmonic functions in R

3
+ \ ({z}∪Ω)

which share the same Cauchy data on R
2. By the uniqueness of the Cauchy problem

(see, e.g., [9, Chapter II]) the two functions must be the same in R
3
+ \ ({z}∪Ω). This,

however, contradicts the fact that uz,d has a singularity in z and, hence, does not
belong to H(Q). Therefore we have shown that gz,d /∈ R(L) whenever z ∈ R

3
+\Ω.

As a corollary of Theorems 4.1 and 5.1 we obtain the following useful range test
to decide whether some point z ∈ R

3
+ belongs to Ω or not.

Corollary 5.2. A point z ∈ R
3
+ belongs to Ω if and only if the function gz,d of

Theorem 5.1 belongs to the range of |Λσ − Λ1|1/2.
6. Numerical results. We now present a numerical realization of the range

test of Corollary 5.2 for simulated data in three space dimensions. Data are given
on T = Γ = [0, 2]2, shown as the somewhat darker area of the bounding plane in
the subsequent figures. In all examples to follow, data have been generated by a
boundary element method, with the conductivity within the inclusion being set to
κ = 0.5. Modifications of κ have a negligible effect on the reconstructions, provided
that (1.3) is satisfied for any small ε; this has been demonstrated convincingly in [7]
for bounded domains in two space dimensions.

A very detailed discussion of the general approach for implementing the range test
can be found in [7, 14], so here we focus mainly on the differences that are important
for this half-space problem.

The first major difference is the fact that data are given on a two-dimensional
interval rather than a one-dimensional interval. We have found it convenient to use
tensor products of piecewise constant Haar wavelets (with vanishing mean over Γ) as
current patterns and to expand the simulated potentials in the same orthogonal basis.
The data we use thus correspond to the Galerkin projection of Λσ−Λ1 onto the space
of the particular current patterns. All our computations use the corresponding first
1023 basis functions, which are far more than is required for the resolution of our
reconstructions due to the inevitable presence of noise in the data.

Figure 6.1 reveals a second major difference from the results in [7, 14], which
appears to be a characteristic property of the factorization method in three space
dimensions. The eigenvalues of Λσ −Λ1 do not obey a strict geometric decay; rather,
they tend to come in clusters of increasing size. Note that, in theory, the function gz,d
belongs to the range of |Λσ − Λ1|1/2 if and only if the corresponding Picard series

(6.1)

∞∑
j=1

〈gz,d, vj〉2L2(Γ)

|λj |

converges; here vj , j ∈ N, are the orthonormal eigenfunctions of Λσ −Λ1, and λj are
the associated eigenvalues. In [7, 14] we have estimated the geometric decay of the
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Fig. 6.1. First test case: eigenvalues of Λσ − Λ1.

Fig. 6.2. First test case: an ellipsoidal object (top) and its reconstruction (bottom).

individual terms of this series to decide whether we believe that (6.1) converges or
not. Here, instead, we have decided to average the eigenvalue clusters and investigate
the root convergence factor of the geometric decay of the associated partial sums.
The eigenvalue plot in Figure 6.1 (and similarly in Figure 6.4) contains dotted lines
to indicate the eigenvalues that were considered to be clustered. The clustering has
always been performed manually and is optimized to some extent to improve the
quality of the reconstructions. Eigenvalue clusters below 10−10 have been ignored
(except for section 6.4).

6.1. First test case. In the first example, which we have already mentioned,
the object to be reconstructed is an ellipsoid with center in P = (1.2, 0.8, 0.4) as
shown in Figure 6.2. Its semiaxes are aligned with the coordinate axes and have
radii r1 = 0.2, r2 = 0.15, and r3 = 0.1. This isosurface plot is based on a certain
average of the root convergence factors obtained from nine different dipole moments
dk, k = 1, . . . , 9. (We refer the reader to [25] for further details.) We emphasize, as
this might be difficult to see, that the reconstruction is at the correct place and has
about the right size. It is only the boundary which is not accurate. Alternatively, we
have also evaluated the series (6.1) for the respective range of eigenvalues and have
used this function of z for a surface plot, as was done, e.g., by Kirsch in [18]. However,
this gave somewhat inferior reconstructions.

6.2. Second test case. Our second example (see Figures 6.3 and 6.4) con-
sists of two objects. One is an ellipsoid with center in P = (0.4, 0.4, 0.4) and radii
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Fig. 6.3. Second test case: two objects (top) and their reconstruction (bottom).
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Fig. 6.4. Eigenvalues for the second test case.

r1 = r2 = 0.2 and r3 = 0.1, respectively; again, the semiaxes are aligned with the
coordinate axes. The other object has the shape of a kidney and is located around the
point Q = (1.2, 1.2, 0.8). The corresponding reconstructions are again at the correct
locations. Note that the nonconvexity of the kidney is still well depicted, although it
is a little farther away from Γ. On the other hand, its reconstruction is somewhat too
small. If the nonconvex boundary is turned upwards, however, the reconstruction is
qualitatively worse.

6.3. Third test case. The third test case is similar to the previous one, but
now the ellipsoidal object is moved off to the side; i.e., its orthogonal projection onto
R

2 is outside of Γ; see Figure 6.5. More precisely, the ellipsoid of the second test case
now has its center at R = (−0.2,−0.2, 0.4). Our method reconstructs both objects
at their true locations, but the reconstruction of the ellipsoid exhibits typical shady
artifacts, similar to two-dimensional reconstructions shown in [14].

6.4. Fourth test case. For the next experiment we return to the ellipsoid from
our first example, and increase its vertical distance to the plane. Figure 6.6 shows
the reconstructions for three snapshots. As one expects, the quality deteriorates with
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Fig. 6.5. Third test case: two objects (top), one being off to the side, and their reconstruction
(bottom).

x3 = 0.4:

x3 = 0.8:

x3 = 1.2:

Fig. 6.6. Fourth test case: reconstructions of ellipsoids with increasing vertical heights.
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no noise
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Fig. 6.7. Eigenvalues in the presence of noise.

no noise:

0.1% noise:

1% noise:

Fig. 6.8. Reconstructions in the presence of noise.

increasing distance x3, measured at the center of the ellipsoid; see Figure 6.6. For
these reconstructions we have used a slightly larger range of eigenvalues, going down
to 10−12.

6.5. Fifth test case. In a final study, we investigate the influence of noise on our
reconstructions. To this end we superpose the data of our first test case (cf. Figure 6.2)
with 0.1% and 1% noise, respectively. (These noise levels refer to the L2-norms of the
noise over the L2-norm of the exact data.) Figure 6.7 shows the resulting eigenvalues
of Λσ − Λ1. It is easy to see how the eigenvalues level off in the presence of noise,
from which we can easily determine which eigenvalues can reliably be used to perform
the range test. Figure 6.8 shows the corresponding reconstructions, which are quite
reasonable even with 1% noise (bottom reconstruction).
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7. The two-dimensional case. In this section we briefly comment on the mod-
ifications of our theory in two space dimensions; as a general reference we refer the
reader to [25]. In two dimensions, solutions of the boundary value problem

(7.1) ∇ · σ∇u = 0 in R
2
+, −σ

∂u

∂e2
= f on R,

are unique (up to additive constants) within the space H1,0+(R2
+) which is obtained

by closing either C∞(R2
+) or C∞

0 (R2
+) with respect to the inner product (2.6) for

any α > 0 (replacing the integrals by integrals over R
2
+, of course). These spaces all

contain the same functions, independent of the choice of α > 0, including in particular
the constant functions. We can get rid of these constants by turning to the quotient
space H(R2

+) = H1,0+(R2
+)/ span{1}, for which we can use the H1-seminorm as an

equivalent norm.

Investigating the weak formulation of (7.1), the existence of a solution in H1,0+(R2
+)

is guaranteed provided that the imposed current f belongs to

L2,−1−α
� (R) =

{
f : (1 + |y|2)1/2+α/2f ∈ L2(R) :

∫
T

f dy = 0

}

for some α > 0; note that the normalization condition
∫
T
f dy = 0 has not been

required in the three-dimensional case.

Since the solution u of (7.1) is unique only up to additive constants, it is necessary
to normalize the trace of u to set up a well-defined associated Neumann-to-Dirichlet
operator. Accordingly, the general framework developed in section 4 requires some
obvious changes for two space dimensions; in particular, a similar normalization is
required in the definition of the operator L of (4.4). With these modifications, how-
ever, the result of Theorem 4.1 remains true, and a valid test function to be used in
Theorem 5.1 (again, up to a suitable additive constant) is given by

(7.2) gz,d(x) =
d · (x− z)

|x− z|2 , x ∈ T.

We refer the reader to [25] for several numerical reconstructions in two space
dimensions; preliminary results had been published in [14] and [24].

Appendix. In this appendix we prove that the weighted Sobolev space H1/2+(R3
+)

introduced in Remark 2.3 is the direct sum

H1/2+(R3
+) = H(R3

+) ⊕ span{1}.

In the proof of this result we use the following Liouville-type theorem on bounded
harmonic functions in the entire space, which appears to be of independent interest.

Theorem A.1. Every harmonic function u over R
3 which satisfies

(A.1)

∫
R3

|u(x)|2
(1 + |x|2)5/2 dx < ∞

is a constant.

Proof. Our proof makes use of an appropriate modification of the argument given
in Axler, Bourdon, and Ramey [1], which starts with the mean-value property of
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harmonic functions, to write

|u(x∗) − u(0)| =
3

4πr3

∣∣∣∣
∫
Br(x∗)

u(x) dx−
∫
Br(0)

u(x) dx

∣∣∣∣
=

3

4πr3

∣∣∣∣
∫
Dr

s(x)u(x) dx

∣∣∣∣
for any fixed x∗ ∈ R

3. In this equation Br(y) denotes the ball of radius r around y,
Dr = Br(x) ∪ Br(0) \ (Br(x) ∩ Br(0)) is the symmetric difference of the two balls,
and s is a sign function that attains the two values ±1 in the respective components
of Dr. We denote |x∗| by r∗ and restrict r to be larger than r0 ≥ 2r∗ + 1 in what
follows. Then Dr is contained in the annulus

Ar = {x ∈ R
3 : r − r∗ < |x| < r + r∗},

and we can estimate

|u(x∗) − u(0)| ≤ 3

4πr3

∫
Ar

|u(x)|dx ≤ c

∫
Ar

|u(x)|
(1 + |x|2)3/2 dx,

where, from now on, we use c to denote a generic positive constant, depending only
on x∗. Integrating the above inequality from r = r0 to some R > r0, we obtain

|u(x∗) − u(0)| ≤ c

R− r0

∫ R

r0

∫
Ar

|u(x)|
(1 + |x|2)3/2 dxdr

≤ 2r∗c

R− r0

∫
r0−r∗<|x|<R+r∗

|u(x)|
(1 + |x|2)3/2 dx.

Thus, the Cauchy–Schwarz inequality yields

|u(x∗) − u(0)|2 ≤ c

(R− r0)2

∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx

∫
|x|<R+r∗

1

(1 + |x|2)1/2 dx

≤ c

(R− r0)2

∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx

∫ R+r∗

0

(1 + r2)1/2 dr

≤ c

(
R + r∗ + 1

R− r0

)2 ∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx.

Now, if R is sufficiently large, then we can choose r0 = R/2 and thus obtain

|u(x∗) − u(0)|2 ≤ c

∫
|x|>R/2−r∗

|u(x)|2
(1 + |x|2)5/2 dx = o(1)

as R → ∞. It follows that u(x∗) = u(0), i.e., that u is a constant.
We mention that this result is sharp in that all polynomials u in x of exact degree

one are harmonic in R
3 and satisfy (A.1) for any exponent in the denominator bigger

than 5/2.
Now we turn to verify (2.7). Let w ∈ H1/2+(R3

+), and consider the variational
problem∫

R
3
+

∇w0(x) · ∇v(x) dx =

∫
R

3
+

∇w(x) · ∇v(x) dx for all v ∈ H(R3
+).
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This problem has a unique solution w0 ∈ H(R3
+), and it follows that u = w − w0 ∈

H1/2+(R3
+) satisfies ∫

R
3
+

∇u(x) · ∇v(x) dx = 0

for all v ∈ C∞
0 (R3

+), and hence, according to Weyl’s lemma, u is a harmonic function
in R

3
+ with vanishing Neumann boundary values on the boundary of this half-space.

Thus, u can be extended by reflection to an even harmonic function ũ over the entire
space R

3; cf., e.g., [1]. As u ∈ H1/2+(R3
+) and hence has finite norm (2.6) for any

α > 1/2, it follows that ũ satisfies (A.1). Thus ũ and u are constant functions by
virtue of Theorem A.1, and we have shown that any function w ∈ H1/2+(R3

+) can
be decomposed in a unique way as w = w0 + c, where w0 ∈ H(R3

+) and c is some
constant. This proves (2.7).
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