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Abstract. In this paper we consider the numerical solution of self-adjoint deblurring problems
on bounded intervals. For these problems it has recently been shown that appropriate modeling of the
solution near the boundary of the interval may significantly improve the numerical reconstructions.
Among the alternatives the so-called antireflective boundary condition appears to be the best known
choice. Here we develop an appropriate, i.e., stable and efficient implementation of this model in
two steps, namely by (i) transforming the problem to homogeneous boundary values, and (ii) using
the fast sine transform to solve the transformed problem. This approach allows us to incorporate
regularization in a very straightforward way. Numerical reconstructions are superior qualitatively
and quantitatively to those obtained with the reblurring method of Donatelli and Serra-Capizzano.

Key words. deblurring problems, boundary conditions, fast sine transform, Tikhonov regular-
ization

AMS subject classifications. 65F22, 65R32, 65T50

DOI. 10.1137/060671413

1. Introduction. An important task in image reconstruction is the deblurring
problem. In its simplest appearance this problem consists of approximating a function
f∗ : R

2 → R–the original scene–from a blurred photo g∗ : I → R, where

(1.1) g∗(x) =

∫
R2

k(x− y)f∗(y) dy , x ∈ I .

Here, we consider I ⊂ R
2 to be a bounded rectangle and assume that the known

characteristics of the imaging system are encoded in the so-called point spread function
k : R

2 → R; in particular, this implies that k is given. We will, moreover, assume
throughout that k is quadrantically symmetric, i.e.,

k(x1, x2) = k(|x1|, |x2|) , x = (x1, x2) ∈ R
2 ,

and has compact support containing the origin in its interior. Because of the compact
support the integration involves only values of f∗ over a bounded domain, but this
domain may be considerably larger than I, and hence problem (1.1) is underdeter-
mined.

There are several possibilities for coping with this underdetermination; see, e.g.,
Hansen, Nagy, and O’Leary [6]. One way is to replace the integral in (1.1) by an
integral over I; this is equivalent to assuming that f∗ is zero outside of I (“zero
padding”). One can therefore imagine that this will yield reasonable reconstructions
only when the true solution f∗ has zero boundary values on ∂I. Computationally,
this approach leads to a linear system of equations (after discretizing the integral by
a rectangular quadrature rule, say) which has a doubly Toeplitz structure. Many fast
algorithms have been designed to deal with these highly structured but still nontrivial
linear systems; cf. Ng [9].
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Alternatively, when the boundary values of f∗ are known to be the same on
opposite sides of I, one can base the reconstruction on the assumption that f∗ is
periodic with interval I of periodicity. While this assumption may be somewhat
artificial in many circumstances, and will then cause so-called ringing artefacts, this
leads to a linear system of equations with a doubly circulant structure that can be
solved very efficiently with fast Fourier transform (FFT) techniques.

Yet another option is to model f∗ by a function that is even with respect to
the edges of I; cf., e.g., Ng, Chan, and Tang [10]. This model has the advantage
over the previous ones that a continuous scene f∗|I always yields a continuous ex-
tension to all of R

2. Therefore the approximation error is typically smaller than for
zero padding—without any further requirements on the boundary values of f∗. The
resulting discrete problems can be solved almost as cheaply as in the periodic case
using fast cosine transforms. Note that the corresponding reconstructions of f∗ are
(discrete) functions with a vanishing normal derivative on ∂I, which somehow limits
the degree of approximation that can be expected from this approach.

In retrospect it is quite surprising that such a considerable amount of the liter-
ature deals with the zero padding model and the resulting doubly Toeplitz systems
of equations. For, given zero boundary values of f∗ on ∂I, the true scene can also
be approximated by a function f which is odd with respect to the edges of I, and
from the approximation theory point of view the modeling error will generically be
even smaller than in the even case. If the point spread function is quadrantically
symmetric, an efficient implementation of this approach can be based on the fast
sine transform (FST). For these reasons we follow Serra-Capizzano [11] and strongly
advocate this idea. We return to this model in sections 2 and 3.

While this last approach is restricted to homogeneous boundary values of f∗,
there exists a modification for inhomogeneous boundary values, namely the so-called
antireflective boundary conditions suggested in [11]. In this model f∗ is extended at
x ∈ ∂I in the normal direction by a function which is odd with respect to a fictitious
origin in the point (x, f∗(x)). This yields about the same approximation error as
before, and the resulting linear system is again amenable to solution methods based
on the FST.

Since the deblurring problem is a first kind integral equation, its solution is highly
susceptible to data errors (which are inevitable), and thus problem (1.1) requires some
kind of regularization. It turns out that Tikhonov regularization, to pick out one pos-
sibility, can be incorporated in a straightforward way into the aforementioned algo-
rithms without significant loss of performance—except for the antireflective boundary
condition model; see section 4.

This loss of performance was first observed by Donatelli and Serra-Capizzano [4].
To fix the problem, they suggested an ad hoc modification of Tikhonov regularization,
which lacks a theoretical foundation up to now: neither its stability nor its convergence
are yet understood. In section 4 we therefore propose a different regularization scheme,
which comes in two steps. In the first step we apply a simple transformation to the
problem to achieve homogeneous boundary values on ∂I for both the true scene and
its image. In the second step, we use FSTs to solve the transformed problem.

Our numerical results in section 6 will provide evidence that the corresponding
numerical reconstructions of f∗ are superior to the ones from [4], while the implemen-
tation is at the same time somewhat easier conceptually and has the same complexity.
Moreover, a theoretical investigation of stability and convergence can follow the well-
developed lines of linear regularization theory; see, e.g., [5].
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For simplicity we restrict our attention mostly to 1D problems, where R instead
of R

2 is the domain of integration, and I is a bounded interval. The algorithm
nonetheless extends quite naturally to 2D problems, and we will briefly summarize
this in section 7. We also prefer to stick to the continuous setting (formulating the
problem within the space of square integrable functions) when setting the stage in
section 2, because we feel that in this context a number of notations and phrasings
appear to be more natural than in the fully discrete formulation that we will turn to
from section 3 onwards.

2. Modeling aspects. In one space dimension all the models considered in the
introduction can be formulated within the following mathematical framework. Let
k ∈ L∞(R) be an even, nonnegative point spread function with compact support, and
consider the spatially invariant blurring operator

(2.1) K : L2(R) → L2(I) , Kf(x) =

∫
R

k(x− y)f(y) dy , x ∈ I ,

where we fix I = [0, π] for convenience. We denote by f∗ ∈ L2(R) the true (unknown)
scene, and assume that we are given a blurred and noisy image g of f∗ such that

(2.2) ‖g −Kf∗‖L2(I) ≤ δ .

We denote by δ/‖Kf∗‖L2(I) the (relative) noise level in the given data.
Next, we choose a closed subspace Xπ ⊂ L2(R) with the induced topology of

L2(R) as a model, out of which approximations fπ ≈ f∗ are to be selected; we restrict
ourselves to approximations that depend linearly on the given data, i.e.,

(2.3) fπ = Rπ,αg ,

where Rπ,α depends on the choice of Xπ and on a regularization parameter α > 0.
For example, if Tikhonov regularization is applied to the approximate identity

Kπf = g , Kπ = K|Xπ : Xπ → L2(I) ,

then

Rπ,α = K∗
π(KπK

∗
π + αI)−1 .

It is obvious that in this case fπ will belong to the range of K∗
π and thus to Xπ.

The four models considered in the introduction can be embedded into this setting
as follows:

1. zero padding : Xπ = { f ∈ L2(R) : f(x) = 0 a.e. in R \ I } .

2. periodic continuation: Xπ = { f ∈ L2(R) : f(x) = f(x− π) a.e. } .

3. even continuation: Xπ = { f ∈ L2(R) : f(−x) = f(x) = f(2π − x) a.e. } .

4. odd continuation:

(2.4) Xπ = { f ∈ L2(R) : f(−x) = −f(x) = f(2π − x) a.e. } .

5. antireflective continuation:

(2.5) Xπ =

{
f ∈ L2(R) : there is c0 = c0(f) and cπ = cπ(f) with

f(−x) + f(x) = c0 and f(2π − x) + f(x) = cπ a.e.

}
.

Note that if f ∈ Xπ is continuous, then necessarily c0(f) = 2f(0) and cπ(f) =
2f(π).
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Fig. 2.1. Regularization errors with 10% (left) and 0.1% (right) noise.

For practical computations, Xπ will actually be a finite-dimensional subspace of the
respective sets, and this will therefore be preassumed in what follows.

If we introduce

(2.6) f∗
π = arg minfπ∈Xπ

‖f∗ − fπ‖L2(I) and g∗π = Kf∗
π = Kπf

∗
π ,

i.e., the best approximation f∗
π ∈ Xπ of the true scene f∗|I and its image under K,

then the following general error estimate for the approximation (2.3) is straightfor-
ward:

(2.7)
fπ − f∗ = fπ − f∗

π + f∗
π − f∗

= Rπ,α(g − g∗π) + (Rπ,αg
∗
π − f∗

π) + (f∗
π − f∗) .

The three terms in the second line of (2.7) correspond, from left to right, to a prop-
agated data error, the approximation error of the regularization scheme, and the
modeling error due to the choice of Xπ. While the last term is independent of α,
the first two terms counteract, and have to be balanced by a proper choice of the
regularization parameter. The optimal balance depends on the rate of convergence
of the regularization scheme, which in turn depends to some extent on some abstract
“smoothness” of f∗

π ; cf. [5].
We shall illustrate this for a specific example.
Example 2.1. Let f∗ be the polynomial

f∗(x) = −7x4 + 12x3 − 6x2 + x

with homogeneous boundary values on the interval I = [0, 1], and consider a motion
blur g of f∗ sampled on 129 equidistant pixel points within this interval. The motion
blur involves 13 pixels; i.e., the kernel function k in (2.1) is the characteristic function
of the interval [−6/128, 6/128].

Figure 2.1 plots the relative errors (in the Euclidean norm) of Tikhonov regular-
ization versus the regularization parameter for the different models from above; note
that odd and antireflective continuations are the same for this example, as the true
scene has homogeneous boundary data. Without regularization the resulting system
matrices are mildly ill-conditioned, the condition number being somewhere between
500 and 1000.
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Fig. 2.2. Reconstructions of f∗ (0.1% noise).

The two plots in Figure 2.1 correspond to two different noisy copies of Kf∗: In
the left-hand plot the noise level ‖g −Kf∗‖2/‖Kf∗‖2 is as large as 10%, whereas in
the right-hand plot it is down to 0.1%. Our discussion above and these numerical
results allow the following conclusions:

• When δ is large, the propagated data error dominates, and the modeling
error is less important. Although the error with optimal regularization might
slightly decrease with increasing smoothness of f∗

π , all models perform pretty
much the same in our example.
We mention that this is not quite the case for the reblurring scheme of [4],
when the true scene fails to have zero boundary values. In fact, Donatelli
and Serra-Capizzano report in [4] that the reblurring method deteriorates
somewhat for large noise levels. Similar results were obtained in [3]; see also
the subplot of Figure 6.3 below that corresponds to Example 6.2.

• When δ is small, however, the optimal error mainly depends on the choice
of Xπ, since ‖f∗

π − f∗‖L2(I) is essentially a lower bound for the total error.
In fact, in our example the right-hand plot in Figure 2.1 would not show
any difference if no synthetic data error were superposed. In other words,
the optimal error depends only on the distance between f∗ and f∗

π , and
between Kf∗ and Kf∗

π , and thus only on the amenability of approximating
f∗ by functions from Xπ. In our example this favors “odd continuation,”
because this is the only model which leads to C1 approximations of the true
polynomial f∗.

Figure 2.2 shows the reconstructions obtained by the four methods in the small
noise case. Note that all but the one based on odd continuation show significant
artefacts near the boundaries, being somewhat less pronounced for the zero padding
approximation. Additionally, even in the interior of the interval, the “odd reconstruc-
tion” has fewer “wiggles” than the other three. This is so because the approximate
data g∗π are closer to Kf∗ for this model, adding less “model noise” to the data.

3. Odd continuation. We now turn to a more detailed presentation of the
numerical reconstruction algorithm for the odd continuation model. For this we shall
assume that k is supported in an interval somewhat smaller than [−π, π]; this is not a
restrictive assumption in practice as, for example in image reconstruction, the point-
spread function (effectively) has a much smaller support than the image. Let Xπ be
chosen as in (2.4), i.e., every function fπ ∈ Xπ is odd (with respect to the origin) and
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2π-periodic. Because of this we obtain for x ∈ [0, π]

Kfπ(x) =

∫
R

k(x− y)fπ(y) dy

=
∑
j∈Z

(∫ (2j+1)π

2jπ

k(x− y)fπ(y − 2jπ) dy

−
∫ 2jπ

(2j−1)π

k(x− y)fπ(2jπ − y) dy

)

=

∫ π

0

∑
j∈Z

(
k(x− y − 2jπ) − k(x + y − 2jπ)

)
fπ(y) dy

=

∫ π

0

(
k(x− y) − k(x + y − 2π) − k(x + y)

)
fπ(y) dy ,

where we have used the size restriction for the support of k in the last equality. Note
that for every pair (x, y) at most two of the three terms of the kernel function will be
nonzero.

The standard (although not necessarily best) discretization of these problems
starts with an equidistant grid with grid size h = π/(n+ 1), n some natural number,
and defines the scaled values

kj = h k(jh) , j ∈ Z ,

of the point spread function. Note that kj = 0 for |j| ≥ n because of our restriction
on the support of k. Evaluating Kfπ at x = ih, i = 1, . . . , n, we obtain

Kfπ(ih) ≈
n∑

j=1

(ki−j − ki+j−2n−2 − ki+j)fj , i = 1, . . . , n ,

where fj = fπ(jh); recall that fπ(0) = fπ(π) = 0. Forcing the right-hand side to be
equal to gi = g(ih), we obtain the linear system

(3.1) Af = g ,

where f = [f1, . . . , fn]T , g = [g1, . . . , gn]T , and A is the difference of a Toeplitz and a
Hankel matrix,

(3.2) A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k0 k1 . . . kn−2 kn−1

k1 k0 k1 kn−2
... k1 k0

. . .
...

...
. . .

. . .
. . . k2

kn−2
. . . k0 k1

kn−1 kn−2 . . . k2 k1 k0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2 k3 . . . kn−1 0 0

k3 . .
.

0 0 0
... . .

.
. .

.
. .

.
0 kn−1

kn−1 0 . .
.

. .
.

. .
. ...

0 0 0 . .
.

k3

0 0 kn−1 . . . k3 k2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since k is even, we have k−i = ki for all i ∈ Z, and hence A is a symmetric matrix.
It has been shown by Bini and Capovani [1] and again by Boman and Koltracht [2]

that matrices of the form (3.2) can be diagonalized as

(3.3) A = SDST ,
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where D is a diagonal matrix containing the eigenvalues of A, and

(3.4) S =

√
2

(n + 1)

[
sin

jkπ

n + 1

]n
j,k=1

is the orthogonal sine matrix. Thus, the linear system (3.1) can be solved with only
O(n log n) operations by using the FST; cf., e.g., Van Loan [12]. The same holds true
if Tikhonov regularization is applied to problem (3.1).

For the reader’s convenience we include another proof of this result by verifying
that all columns xk of S, k = 1, . . . , n, are indeed eigenvectors of A. To this end, we
rewrite (3.2) as

A = AT −AH

and introduce the antidiagonal unit matrix

J =

⎡
⎣ 1

. .
.

1

⎤
⎦ ∈ R

n×n.

Note that J2 = JTJ = I, JATJ = AT , and JAHJ = AH . Therefore, if we construct
the block matrix

(3.5) B =

⎡
⎢⎢⎣
k0 bT 0 (Jb)T

b AT Jb JAH

0 (Jb)T k0 bT

Jb JAH b AT

⎤
⎥⎥⎦ with b =

⎡
⎢⎢⎢⎣

k1

...
kn−1

0

⎤
⎥⎥⎥⎦ ,

then we find that

(3.6) B

⎡
⎢⎢⎣

0
x
0

−Jx

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
Ax
0

−JAx

⎤
⎥⎥⎦ for every x ∈ R

n .

In particular, this shows that if x is an eigenvector of A, then

(3.7) x̂ =

⎡
⎢⎢⎣

0
x
0

−Jx

⎤
⎥⎥⎦

is an eigenvector of B for the same eigenvalue. By construction, B is a real symmetric
(2n + 2) × (2n + 2) dimensional circulant matrix. Being circulant, the (2n + 2)-
dimensional Fourier vectors

zk =
[
eijkπ/(n+1)

]2n+1

j=0
, k = 0, . . . , 2n + 1 ,

are eigenvectors of B; cf., e.g., [6]. Moreover, as B is symmetric and real, the imagi-
nary parts x̂k of zk are also eigenvectors of B. Since x̂k, k = 1, . . . , n, are connected
to the sine vectors xk via (3.7), it follows from (3.6) that xk is indeed an eigenvector
of A.

Therefore every matrix A of (3.2) can be rewritten as in (3.3). Since it is easy
to see that matrices of either form (3.2) or (3.3), respectively, form vector spaces of
dimension n, we conclude that the two sets of matrices are the same.
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4. Antireflective continuation. Given Xπ of (2.5), i.e., the antireflective model,
the resulting system Kπfπ = g with fπ ∈ Xπ and Kπ = K|Xπ can be discretized in
much the same way as in the previous paragraph, the only difference being that i and
j now run from 0 to n+ 1, since the boundary values f0 = f(0) and fn+1 = f(π) are
also unknown. Accordingly, if we let fAR = [f0, . . . , fn+1]

T and gAR = [g0, . . . , gn+1]
T ,

then this leads to the augmented system

(4.1) AARfAR = gAR ,

where the matrix

(4.2) AAR =

⎡
⎣s0 0 0

s A Js
0 0 s0

⎤
⎦

contains the previous matrix A of (3.2) in its center block; the other nonzero entries
of AAR are given by

si = ki + 2

n−1∑
j=i+1

kj , i = 0, . . . , n− 1, and s =

⎡
⎢⎢⎢⎣

s1

...
sn−1

0

⎤
⎥⎥⎥⎦ .

In particular, because of our assumptions on k,

(4.3) s0 =

n−1∑
j=1−n

kj

is the total mass of the blur. We refer to [11] for a derivation of (4.2).
Linear systems of the form (4.1) can be solved in O(n log n) operations using the

FST in a sophisticated way; cf. [11]. The same holds true for the Tikhonov regularized
problem

(4.4) (AT
ARAAR + αI)fAR = AT

ARgAR .

To see this, we observe that the central block of

AT
ARAAR + αI =

⎡
⎣s2

0 + sT s + α sTA sTJs
As A2 + αI AJs

sTJs sTJA s2
0 + sT s + α

⎤
⎦

can again be diagonalized with the sine matrix S. Thus, permuting this block to
the (1,1)-position, the Tikhonov regularized problem can be solved efficiently using a
Schur complement approach.

However, applying Tikhonov regularization to problem (4.1) turns out to be a
pitfall similar to those discussed in a seminal paper by Varah [13] back in 1983:
Solutions fAR = [f0, . . . , fn+1]

T of (4.4) necessarily belong to the range of AT
AR, and

accordingly, by virtue of (4.2), the inner components f1, . . . , fn of fAR belong to the
range of A, i.e., are given by a linear combination of discrete sine functions. As
a consequence, these components call for a natural (“continuous”) extension f0 =
fn+1 = 0, while on the other hand, generic elements from the range of AT

AR will have
nonzero boundary values.
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We therefore expect to see severe boundary artefacts when Tikhonov regulariza-
tion is applied to (4.1), and, in fact, this has been observed numerically by Donatelli
and Serra-Capizzano [4]. Because of this, they recommend replacing the Tikhonov
regularized system by the equation

(4.5) (A2
AR + αI)fAR = AARgAR ,

i.e., substituting AAR for AT
AR in (4.4) and interpreting this as some kind of “reblur-

ring” of the data. Again, (4.5) can be solved in O(n log n) operations by means of the
FST. While the numerical results in [4] appear to support this approach, the theo-
retical properties remain dubious because the coefficient matrix in (4.5) is nonnormal
(unless we face the trivial case where ki = 0 for all i 	= 0). As of today neither a
convergence nor a stability analysis appears to be within reach.

In the following section we shall therefore pursue a different idea to compute
regularized solutions of (4.1). It will turn out that our algorithm has the same com-
putational efficiency and may actually be somewhat simpler conceptually. The re-
constructions appear to be at least as good as the ones from [4] (cf. section 6 for
numerical examples), and a theoretical investigation of this approach on the basis of
the known regularization theory (as, e.g., in [5]) is straightforward.

5. Regularization after transformation. From the particular form of AAR

it follows immediately that the spectrum of AAR consists of the eigenvalues of A and
twice the eigenvalue s0. While this has already been observed in [11], we also need
the eigenspace corresponding to λ = s0 for our purposes below.

Lemma 5.1. The spectral radius of AAR of (2.5) is given by the number s0 of
(4.3). The eigenspace corresponding to the eigenvalue λ = s0 of the matrix AAR

contains the two vectors

(5.1) 1 =

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ and � =

⎡
⎢⎢⎢⎣

0
1
...

n + 1

⎤
⎥⎥⎥⎦ .

Proof. We will see in a minute that λ = s0 is an eigenvalue of AAR; hence the
spectral radius of AAR is at least as big as s0. On the other hand, the spectral radius
is bounded from above by the maximum absolute row sum norm of AAR, and it is
easy to see that this norm equals s0. This shows that the spectral radius of AAR is
given by s0.

Concerning the eigenvectors, we first observe that the discretization leading to
(4.1) is such that the ith component gi of gAR = AARfAR satisfies

gi =

n−1∑
j=1−n

kjfi−j , i = 0, . . . , n + 1 ,

provided that fi, i ∈ Z, are the entries of the antireflective continuation of fAR =
[f0, . . . , fn+1]

T .
For fAR = 1 this antireflective continuation yields fj = 1 for all j ∈ Z, and hence,

gi = s0 for all i = 0, . . . , n+ 1. In other words, we have gAR = s01 = s0fAR; i.e., 1 is
an eigenvector of AAR corresponding to the eigenvalue λ = s0.
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For fAR = � the antireflective continuation yields fj = j for all j ∈ Z, and hence,

gi =

n−1∑
j=1−n

kjfi−j =

n−1∑
j=1−n

kj(i− j) = i

n−1∑
j=1−n

kj −
n−1∑

j=1−n

jkj = is0 −
n−1∑

j=1−n

jkj

for i = 0, . . . , n + 1. As kj = k−j for all j ∈ Z, the last term vanishes, which
proves that gi = is0, or again, that � is an eigenvector of AAR corresponding to
λ = s0.

We remark that there may be other linearly independent eigenvectors of AAR for
λ = s0. In fact, the matrix

A =

⎡
⎢⎢⎢⎢⎣

k0 −k3 0 k3 0
−k3 k0 0 0 k3

0 0 k0 0 0
k3 0 0 k0 −k3

0 k3 0 −k3 k0

⎤
⎥⎥⎥⎥⎦

has another eigenvector x4 = 1/2 · [1,−1, 0, 1,−1]T for λ = s0, and hence the vector
[0, 1,−1, 0, 1,−1, 0]T is an eigenvector of the associated matrix AAR of (4.2) for the
same eigenvalue.

Now we use Lemma 5.1 to introduce our transformation method. It has been
observed in [11] that the boundary values of fAR can readily be determined from the
first and the last equations in (4.1), and this computation is stable: In fact, using the
notation from the proof of Lemma 5.1, we have

(5.2) f0 = g0/s0 and fn+1 = gn+1/s0 ,

where the denominator s0 is the total mass of the point spread function and thus well
separated from zero.

Next, in contrast to [11], we use these boundary values of fAR to transform the
problem to a problem with homogeneous boundary conditions. We do this by sub-
tracting an appropriate first degree polynomial. In the discrete setting, this amounts
to the transformation

(5.3) fH = fAR − f0 1 − fn+1 − f0

n + 1
� .

In view of Lemma 5.1 the following transformation follows from (5.3) and (5.2):

(5.4)
gH = AARfH = gAR − f0s0 1 − fn+1 − f0

n + 1
s0 �

= gAR − g0 1 − gn+1 − g0

n + 1
� .

The first and last components of fH and gH are zero, and thus the first and last
rows and columns of the transformed problem AARfH = gH can be omitted, leaving
us with the reduced problem

(5.5) Af ′H = g′
H

for the inner components f ′H ∈ R
n of fH , given the inner components g′

H ∈ R
n of

gH . Here, A is the matrix of (3.2), and the solution of (5.5) now might require some
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kind of regularization, e.g., Tikhonov regularization. As mentioned in section 3, the
regularized problem can be solved in O(n log n) operations using the FST.

Given an approximate solution f̃ ′H ∈ R
n of (5.5) and its extension f̃H ∈ R

n+2 by
zero boundary values, we finally obtain the desired approximation of fAR from the
back transformation

(5.6) f̃AR = f̃H + f0 1 +
fn+1 − f0

n + 1
� ,

where f0 and fn+1 are given by (5.2).

6. Numerical results. We present some numerical results for two of the test
problems from [4] to compare our transformation method with the reblurring method
of [4]. In all plots, the broken line corresponds to the reblurring method, while the
solid line corresponds to the new transformation method. Note that in both examples
the true signal f∗ (shown as thick black line) is only reconstructed in the subset of
(0, 1) where data have been sampled.
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Fig. 6.1. Example 6.1 (1% noise).

Example 6.1. In the first problem the solution f∗ is a smooth function,

f∗(x) = 1/(1 + x2) , x ∈ R ,

and the kernel k is a truncated Gaussian; cf. [4, Table 3]. Observations of Kf∗

are given on 101 equidistant points in the interval [14/128, 114/128]. The condition
number of A is about 2.3 · 104.

Figure 6.1 compares the behavior of the two methods for a specific noise sample
with ‖g−Kf∗‖2/‖Kf∗‖2 = 0.01, i.e., 1% noise: The left-hand plot shows the relative
Euclidean errors of the reconstructions as a function of the regularization parameter
α; the right-hand plot shows the optimal reconstructions of the two methods. In either
case, the reconstruction has been found by optimizing the regularization parameter
in such a way that the relative error of the reconstruction is minimal. The superiority
of the transformation method is obvious, as its reconstruction is hard to distinguish
from the true scene.

Example 6.2. The second example, taken from [4, Table 4], is well-posed (the
condition number of A is below three), but the solution f∗ is discontinuous. Being
well-posed, we have run this problem with considerably more noise. Still, the recon-
struction error is mainly influenced by the discontinuity of the solution, which causes
Gibbs-like phenomena in both reconstructions; see Figure 6.2.
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Fig. 6.2. Example 6.2 (5% noise).
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Fig. 6.3. Examples 6.1 (left) and 6.2 (right).

We now turn to a comparison of the two methods in dependence on the noise
level. Figure 6.3 shows the optimal relative errors for the two examples and noise
levels ranging from 10−5 up to 10%. The zigzags in the curves are due to the fact
that the particular noise realizations are generated randomly; of course, for each noise
level both methods use the same data to allow a fair comparison.

Recall that the reconstruction in Figure 6.2 obtained with the transformation
method has fewer oscillations than that of the reblurring method. On the other
hand, for smaller noise levels the two methods essentially yield approximations with
the same quality, as can be deduced from the right-hand plot of Figure 6.3. This
is different for the ill-posed example, though; see the left-hand plot in Figure 6.3.
For this example, the reconstructions of the transformation method are consistently
superior by a factor between two and five. As mentioned before, this is likely to be
caused by the nonnormality of the coefficient matrix A2 + αI in (4.5).

7. Extension to 2D problems. In image reconstruction (cf. (1.1)) f and g
correspond to 2D images rather than 1D signals, and the discrete blurring coefficients

kij = h2k(ih, jh) , i, j ∈ Z,
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fill up a 2D array. (Here, again, h denotes the mesh size of the grid.) Assuming
antireflective boundary conditions on a bounded interval in the plane, the deconvolu-
tion problem leads to a linear system of equations for the unknown pixel values whose
structure is again described in [11]. In what follows, we briefly comment on how the
ideas from section 5 extend to this 2D situation.

As in the 1D case, the idea is to transform the given data to homogeneous bound-
ary conditions. To this end, we gather the given pixel values in a matrix GAR, corre-
sponding to the size of the image. For notational simplicity we shall assume that this
matrix is square, i.e., GAR ∈ R

(n+2)×(n+2). We can transform GAR to homogeneous
boundary values by setting

GH = GAR − 1aT
g − �bT

g − cg1
T − dg�

T

with appropriate vectors ag, . . . ,dg ∈ R
n+2 and with the vectors 1 and � from (5.1).

(Note that each of the four correction terms is a dyadic vector product.) The homo-
geneous problem can be solved as in section 3 by using 2D FSTs, provided that k is
quadrantically symmetric and that kij = 0 whenever max{|i|, |j|} ≥ n. We denote
this solution by FH ∈ R

(n+2)×(n+2), using the same ordering of the pixel values as in
GH .

In a second step we need to backtransform FH to obtain the approximation FAR

of the original image. Similar to (5.3), this backtransformation takes the form

FAR = FH + 1aT
f + �bT

f + cf1
T + df�

T

with af , . . . ,df ∈ R
n+2, but in contrast to the 1D case the four correction terms no

longer correspond to eigenvectors of the 2D antireflective coefficient matrix. Nonethe-
less, the vectors af , bf , cf , and df can easily be computed, as they can be shown to
solve the four linear systems

(7.1) AARaf = ag , AARbf = bg , AARcf = cg , AARdf = dg ,

where AAR ∈ R
(n+2)×(n+2) is precisely the matrix (4.2) for the 1D problem with

blurring coefficients

(7.2) ki =

n−1∑
j=1−n

kij , i = 1 − n, . . . , n− 1 .

We now give a brief sketch of the proof of the above transformation; the remaining
details can be found in [3]. More precisely, we will show as an example that if bf

solves AARbf = bg, then the 2D antireflective blurring matrix maps the pixel vector
�⊗bf onto the pixel vector �⊗bg. Or, in an equivalent reformulation, if AARbf = bg,
then the 2D space invariant blur with blurring coefficients kij maps the antireflective
extension of the pixel matrix �bT

f onto �bT
g . For the proof, let bm, m ∈ Z, be

the entries of the antireflective extension of the vector bf ; then the doubly infinite
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antireflective extension [bfjm] of the pixel matrix �bT
f has the form

...
...

...
...

· · · −b−1 −b0 −b1 · · · −bn+1 −bn+2 · · ·

· · · 0 0 0 · · · 0 0 · · ·

b−1 b0 b1 · · · bn+1 bn+2

...
...

...
...

· · · (n + 1) b−1 (n + 1) b0 (n + 1) b1 · · · (n + 1) bn+1 (n + 1) bn+2 · · ·

· · · (n + 2) b−1 (n + 2) b0 (n + 2) b1 · · · (n + 2) bn+1 (n + 2) bn+2 · · ·
...

...
...

...

with the central part corresponding to the index range 0 ≤ j,m ≤ n + 1 being the
original (n + 2) × (n + 2) matrix �bT

f .
Applying now the space invariant blurring operator to this “image” yields a

blurred image, or rather a doubly infinite pixel matrix [bgil], whose entries are

bgil =

∞∑
j,m=−∞

ki−j,l−mbfjm =

∞∑
j,m=−∞

ki−j,l−mjbm =

∞∑
m=−∞

( ∞∑
j=−∞

jki−j,l−m

)
bm

=

∞∑
m=−∞

⎛
⎝ ∞∑

j=−∞
iki−j,l−m +

∞∑
j=−∞

(j − i) ki−j,l−m

⎞
⎠ bm , i, l ∈ Z .

Note that all series are actually finite sums because only finitely many blurring coeffi-
cients are nonzero. Now the second sum within the brackets vanishes because ki−j,l−m

is even with respect to its first index, so that

bgil = i

∞∑
m=−∞

⎛
⎝ ∞∑

j=−∞
ki−j,l−m

⎞
⎠ bm = i

∞∑
m=−∞

kl−mbm , i, l ∈ Z ,

by virtue of (7.2) and the symmetry of the blur. For 0 ≤ l ≤ n + 1 the value of the
series on the right-hand side is precisely the lth entry of AARbf = bg, and thus the
inner (n + 2) × (n + 2) submatrix of the pixel matrix [bgil] coincides with the dyadic
product �bT

g , as was to be shown.
We emphasize that in an actual implementation of this approach Tikhonov regu-

larization should be utilized in both steps of the algorithm, i.e., for the solution of the
2D homogeneous problem and for the solution of the four 1D inhomogeneous prob-
lems (7.1). In our computations we have taken the same regularization parameter for
each of these five subproblems, since this was most straightforward to implement and
gave reasonable results.

To illustrate that our method is a viable alternative to image reconstruction meth-
ods based on the FFT or fast cosine transform, we use an image1 with 256×256 pixels
taken from the Berkeley Segmentation Dataset and Benchmark [7]. This image has a

1Training Image #253036: www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/
html/dataset/images/gray/253036.html
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Table 7.1

Example 7.1: Relative errors of the reconstructions.

Periodic Even Antireflective Blurred data

0.1274 0.1246 0.0847 0.0861

Table 7.2

Example 7.2: Relative errors of the reconstructions.

Periodic Even Antireflective Blurred data

0.0965 0.0474 0.0474 0.0738

relatively smooth background, which should be in favor of the higher approximation
order models. For all reconstructions to follow, the regularization parameters have
been optimized individually in order to minimize the relative errors in terms of the
Euclidean, or rather, Frobenius norm. Although one can argue whether this is a rea-
sonable criterion, it is definitely an objective one, and at the same time is the natural
criterion for the particular Tikhonov penalty term that is associated with this kind of
regularization. All displayed images use the same gray scale interval from 0 to 255;
computed intensities outside this range have been cut off. We recommend turning
to the electronic version of the paper for a comparison of the reconstructions, as the
resolution on the screen is typically better.

Example 7.1. In our first example the image has been blurred by an averaging
filter over 3× 3 pixels, with the same weight 1/9 attributed to all pixels. 1 % random
noise has been added on top of the data; see Figure 7.1. Although this problem is
only moderately ill-conditioned, the numerical results are interesting in that the an-
tireflective reconstruction is the only one that is superior to the given data in terms
of the relative Euclidean error measure; cf. Table 7.1. The reason for this is that
the noise speckles are amplified in the other two reconstructions in order to sharpen
the contours and the edges of the tree and the animals. In contrast, the compromise
achieved with the antireflective model yields a better total error reduction. (Tun-
ing the regularization parameter appropriately, the antireflective reconstruction can
alternatively be brought to a good agreement with the even one.)

Example 7.2. Our second example is more ill-conditioned than the first one
because this time the filter averages 11×11 pixels. On the other hand, the noise level
is much smaller here (0.05 %); see Figure 7.2. All reconstructions show Gibbs effects
along the contours of the tree and the animals; in addition, the periodic reconstruc-
tion exhibits strong ringing artefacts. This time the relative errors of the even and
antireflective reconstructions happen to match almost exactly (cf. Table 7.2), and the
two images agree pretty well, too. A more careful inspection of the even reconstruc-
tion reveals some minor Gibbs waves in the encircled region near the upper end of the
reconstruction. These waves are less pronounced in the antireflective reconstruction
because of the higher approximation order for this model.
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original image blurred and noisy image

periodic reconstruction

even reconstruction antireflective reconstruction

Fig. 7.1. Example 7.1: 3 × 3 blur with 1% noise.
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original image blurred and noisy image

periodic reconstruction

even reconstruction antireflective reconstruction

Fig. 7.2. Example 7.2: 11 × 11 blur with 0.05% noise.
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8. Conclusion. We have investigated deblurring problems over R and R
2, re-

spectively, given only data on a bounded interval. Our arguments advocate the use
of antireflective boundary conditions if the blur is quadrantically symmetric.

In case the given boundary data are homogeneous, the solution can be computed
using fast sine transforms. For inhomogeneous boundary data we suggest transform-
ing the problem into a homogeneous one, solving the homogeneous problem using
fast sine transforms, and transforming back. The transformation involves only local
computations with negligible computational overhead.

Regularization is easy to incorporate, which makes the method a vital alternative
to other methods based on fast Fourier or cosine transforms.
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