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Multifrequency Impedance Imaging with Multiple Signal Classification∗

Roland Griesmaier† and Martin Hanke‡

Abstract. We consider a multifrequency impedance imaging technique that has recently been suggested as
a modality for mammography screenings. This approach uses observations of boundary voltages
generated by a collection of AC boundary currents that have the same spatial distribution and
only differ in their driving frequency. The aim is to identify and determine the locations of small
focal lesions. We analyze the potential and the limitations of a multiple signal classification-type
reconstruction method for this setting. We prove that with sufficiently many different driving
frequencies the position of a single planar obstacle will always be detected, but the identification
of multiple obstacles may fail for certain exceptional geometrical configurations. We propose a
modification of the original scheme for which the set of false negative configurations is reduced. It is
also shown that, generically, the given measurements allow the determination of the conductivities
and permittivities of the lesions to facilitate their classification. Finally, we provide arguments to
support the claim that it should also be possible to extract shape information from these data. Our
analysis is based on a well-known asymptotic expansion of solutions to the conductivity equation
for infinitesimal planar obstacles and a novel description of the associated polarization tensors as
meromorphic functions of frequency.
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1. Introduction. Some years ago Devaney [7] suggested the use of the MUltiple SIgnal
Classification (MUSIC) algorithm from signal processing (cf., e.g., Therrien [18]) as a means
for detecting small perturbations or obstacles from scattering measurements (see also his
treatment of this topic in the recent book [8] or, e.g., [2, 6, 13]). His idea can easily be
adapted to the (quasi-stationary) conductivity equation, and a rigorous justification of the
method for this particular application has been provided in [3]. The basic assumption of this
analysis is that voltage measurements generated by sufficiently many linearly independent
spatially distributed boundary currents are available.

When this is not the case for whatever practical reasons one may alternatively consider
to leave the quasi-stationary regime and apply AC currents of different, somewhat larger,
frequencies to generate linearly independent boundary excitations. For example, this was
suggested by Scholz [16] for the so-called TransScan TS2000, a commercial device for mam-
mography screenings that only generates a single spatial boundary current distribution, but
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can operate at various frequencies up to the kHz regime. In a very similar mathematical
framework Ammari, Boulier, and Garnier [1] have recently suggested a model to explain the
physical mechanisms that allow weakly electric fish to navigate in turbid water. In both
works numerical experiments indicate that the MUSIC scheme can utilize appropriate AC
data to locate small inhomogeneities, that is, focal lesions in the breast and obstacles in the
neighborhood of the fish, respectively.

So far, there is no comprehensive theoretical justification of the MUSIC algorithm when
applied to such multifrequency AC data, although Ammari, Boulier, and Garnier provide some
preliminary explanations why the scheme may work well to detect a single small disk-shaped
obstacle. In this paper we will elaborate on these results and prove that in two space dimen-
sions the method works reliably for single small obstacles of arbitrary shape; moreover, we
show that generically the given data not only allow us to determine the location of the obsta-
cle but also its material properties, i.e., conductivity and permittivity, and we indicate ways
to approximate these parameters. We also provide arguments suggesting that the acquired
information is rich enough to retrieve information on the obstacle’s shape as well. Last, but
not least, we recommend and analyze a slight modification of the original algorithm—the mul-
tifrequency MUSIC scheme—for the reconstruction and identification of multiple obstacles.

The paper is organized as follows. In the next section we introduce the geometrical setup of
our problem, which is similar to the one from [3]; alternative settings, such as those considered
in [1] and [16] can be treated in much the same way. In this section we also review the frequency
dependence of so-called polarization tensors, a key ingredient of our analysis below. The basic
MUSIC variant from [1] is introduced in section 3, and in section 4 it is established that the
method will always determine the location of a single small obstacle, provided that infinitely
many probing frequencies are being used. Means to approximate material parameters and the
shape of the obstacle are investigated in section 5.

From section 6 onwards we focus on the behavior of the MUSIC algorithm in the presence of
two obstacles, and we start by exemplifying the superiority of a new multifrequency MUSIC
scheme for this purpose. Then we derive a list—as complete as we possibly can—of all
geometric constellations for which the multifrequency MUSIC scheme will fail to identify the
obstacles: We begin with obstacles of different material parameters in section 7 and continue
in section 8 with obstacles with identical material parameters. Finally, in section 9 we briefly
comment on the case where only one of the two obstacles can be detected. We note that the
results of sections 6–9 can also be used to understand the behavior of the MUSIC algorithm
when more than two obstacles are present. Some numerical results to illustrate our findings
are provided in section 10, and then we conclude with some final remarks.

2. Problem formulation. Let D ⊂ R
2 be a bounded and simply connected domain with

boundary ∂D, and

Ω =

l∗⋃
l=1

Ωl ⊂ D

a union of l∗ separated obstacles Ωl within D. Imposing a (nontrivial) time-harmonic (AC)
boundary current

F (x, t) = f(x)eiωt , x ∈ ∂D , t ∈ R ,



MULTIFREQUENCY IMPEDANCE IMAGING 941

with driving frequency ω > 0, where f ∈ L2(∂D) has vanishing mean,∫
∂D

f ds = 0 ,

a time-harmonic potential
U(x, t) = u(x;ω)eiωt

is generated in D, and under suitable physical assumptions (cf., e.g., Cheney, Isaacson, and
Newell [5]) its spatial component u = u(·;ω) satisfies the boundary value problem

(2.1) −∇ · (γ∇u) = 0 in D , ∂νu = f on ∂D .

Here, the frequency dependent complex admittivity γ is assumed to be piecewise constant,

γ =

{
1 in D \ Ω ,

σl + iωεl in Ωl , l = 1, . . . , l∗ ,

where σl > 0 is the conductivity and εl > 0 the permittivity of the obstacle in Ωl. This quasi-
static approximation of Maxwell’s equations represents a standard model for biomaterials that
is valid within a certain frequency band (cf., e.g., Scholz and Anderson [17]); in the sequel it
will be assumed without further notice that data are only being measured for corresponding
frequencies.

Our aim is to determine the obstacles Ωl from observations of boundary potentials

(2.2) g = u|Γ ,
where Γ is a relatively open subset of ∂D, and u is normalized to have vanishing mean on Γ.
To this end we compare g with the reference potential

g� = u�|Γ ,
where u� denotes the harmonic function given by

−Δu� = 0 in D , ∂νu� = f on ∂D ,

∫
Γ
u� ds = 0 ,

that would be observed in the absence of any obstacles. We note that u�, and hence, g�
are independent of the driving frequency ω, whereas g = g(·;ω) by virtue of (2.1)–(2.2). The
differences h = g−g� are the so-called relative data that we consider to be known on Γ. In this
work the spatial distribution f of the boundary currents is fixed, but the driving frequency ω
varies: We assume that we are given relative data hn ∈ L2(Γ), n = 1, 2, . . . , n∗, for n∗ ≤ ∞
different frequencies ωn, i.e.,

(2.3) hn(x) = g(x;ωn)− g�(x) , x ∈ Γ , n = 1, . . . , n∗ .

We analyze the inverse problem in a restricted setting, assuming that the obstacles Ωl are
of small diameter, i.e., that

(2.4) Ωl = xl + δOl , l = 1, . . . , l∗ ,
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where xl ∈ D, l = 1, . . . , l∗, are the pairwise different centers of mass of Ωl, and the scaling
parameter δ > 0 is sufficiently close to zero. We refer to xl and Ol as position and shape of
the obstacle Ωl, respectively, and note that—in contrast to the colloquial use of this term—
the shape of an obstacle is not invariant under rotations and scalings. Throughout, the
shapes of the obstacles are assumed to be simply connected with sufficiently smooth (e.g., C2)
boundaries. Under these assumptions it is well known that the relative data from (2.3) have
the asymptotic expansion

(2.5) hn(x) = hδn(x) = δ2
l∗∑
l=1

∇u�(xl) ·M
(
λ(l)(ωn);Ol

)∇zN(x, xl) +O(δ3) ,

where the last term on the right-hand side is bounded by Cδ3, uniformly for x ∈ Γ and
1 ≤ n ≤ n∗, (cf., e.g., Cedio-Fengya, Moskow, and Vogelius [4] or Ammari and Kang [2]; the
uniformity w.r.t. x and n can be seen by combining the argument of [10, Thm. 4.1] with the
one in [2, Lemma 2.18]). Here, N(·, z) is the Neumann function for the negative Laplacian in
D with singularity in z ∈ D, which satisfies

−ΔN(·, z) = δz in D , ∂νN(·, z) = − 1

|∂D| on ∂D ,

∫
Γ
N(·, z) ds = 0 ,

and ∇zN denotes its gradient with respect to the second argument. The complex symmetric
2 × 2 matrix M(λ(l)(ω);Ol) is the so-called polarization tensor (cf. [2]) associated with the
shape Ol of the respective obstacle and its admittivity contrast

(2.6) λ(l)(ω) =
1

2

1 + σl + iωεl
1− σl − iωεl

.

Under the given assumptions the polarization tensor is a meromorphic function of1 λ ∈
Ĉ \ {0} of the form

(2.7) M(λ;O) =

⎡⎢⎢⎢⎢⎣
∑
k∈N

(
r2k

λ− λk
+

r2−k

λ+ λk

) ∑
k∈N

ck

(
rkr−k

λ− λk
− rkr−k

λ+ λk

)
∑
k∈N

ck

(
rkr−k

λ− λk
− rkr−k

λ+ λk

) ∑
k∈N

(
r2−k

λ− λk
+

r2k
λ+ λk

)
⎤⎥⎥⎥⎥⎦

(cf. [9]), where |λk| runs through pairwise different nonnegative Fredholm eigenvalues of O (or
∂O), r±k ∈ R (not all of them being zero), and 0 ≤ ck ≤ 1 for each k ∈ N; if some λk = 0 then
we may assume without loss of generality r−k to be 0 and ck to be 1. Later we repeatedly
refer to the (j, k)-entry of the matrix M(λ;O) as Mjk(λ;O). We recall (cf. Plemelj [15], or
Khavinson, Putinar, and Shapiro [12]) that the Fredholm eigenvalues of O are the eigenvalues
of the compact double layer integral operator over ∂O. These eigenvalues belong to the interval
[−1/2, 1/2), and only cluster at λ = 0. The eigenvalue −1/2 is a trivial one (its eigenfunctions
are the constant functions on ∂O when O is simply connected), and this one does not occur

1As usual, Ĉ = C ∪ {∞}.
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in (2.7); being in two space dimensions, the other eigenvalues come in pairs ±λk symmetric
to the origin.

Example 2.1. An important example of a shape that we will repeatedly refer to is the
ellipse O = E with half axes of length δ1,2 > 0, the first of which being given by δ1Qθe1, where

(2.8) e1 =

[
1

0

]
and Qθ =

[
cos θ − sin θ

sin θ cos θ

]
with θ ∈ (−π/2, π/2]. The corresponding polarization tensor is

M(λ; E) = |E|

⎡⎢⎢⎢⎣
cos2 θ

λ− λE
+

sin2 θ

λ+ λE
sin θ cos θ

λ− λE
− sin θ cos θ

λ+ λE

sin θ cos θ

λ− λE
− sin θ cos θ

λ+ λE
sin2 θ

λ− λE
+

cos2 θ

λ+ λE

⎤⎥⎥⎥⎦
with |E| = πδ1δ2 denoting the area of E and

(2.9) λE =
1

2

δ2 − δ1
δ2 + δ1

.

For this geometry the polarization tensor M(λ; E) is a diagonal matrix, if and only if the two
half axes of E are aligned with the coordinate axes.

The special case of a disk is included by setting δ1 = δ2, in which case

M(λ; E) = |E|
λ

I

with a single pole at λE = 0, only; here, I is the 2× 2 identity matrix.
For later reference we list some further properties of the polarization tensor for a given

shape O. (See [2] for the first two properties, and [9] for the last one). First, the polarization
tensor is positive definite when λ > 1/2 and negative definite when λ < −1/2. Second, if two
shapes O1 and O2 are geometrically similar, i.e., there exists an orthogonal transformation
Q ∈ R

2×2 and a scaling factor c > 0, such that O2 = cQ(O1) then there holds

(2.10) M(·;O2) = M
(·; cQ(O1)

)
= c2QM(·;O1)Q

∗ .

Finally, the polarization tensor as a function of λ provides substantial information about the
shape of a domain. For example, if O1 is an ellipse and O2 has the same polarization tensor
as O1 for all λ ∈ Ĉ \ [−1/2, 1/2) then O2 = O1.

Definition 2.2. Two bounded simply connected planar shapes O1 and O2 are called po-
larization equivalent to each other, if the corresponding polarization tensors M(λ;O1) and
M(λ;O2) are the same meromorphic functions of λ ∈ Ĉ \ {0}.

It follows immediately from the basic definition of polarization tensors that two polariza-
tion equivalent shapes must have the same volume (cf., e.g., [9]).

Example 2.3. As an example for two polarization equivalent shapes consider an arbitrary
shape O1 and its rotation by π, i.e., O2 = −O1. By virtue of (2.10) O1 and O2 have the same
polarization tensor, although the shapes are different in general.

We believe that two polarization equivalent shapes are, indeed, equal up to rotations by
π, but so far this is an open problem.
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3. The MUSIC scheme. On the grounds of the basic assumption that the obstacles Ωl

are of small diameter, parameterized by the value of δ > 0 in (2.4), it follows from (2.5) that
the rescaled leading order term h◦n of the relative data hn = hδn of (2.3) is a superposition of
l∗ complex dipoles located at the positions of the obstacles, i.e.,

(3.1)
1

δ2
hδn ≈ h◦n =

l∗∑
l=1

pl(ωn) · ∇zN(·, xl) ,

where the dipole moments

(3.2) pl(ωn) = M
(
λ(l)(ωn);Ol

)∇u�(xl) ∈ C
2

depend on the shapes and the material parameters of the obstacles, the driving frequency ωn,
and the gradient of the reference potential u� at the obstacles’ centers.

In the original MUSIC algorithm (cf. [3]) one selects an arbitrary vector p ∈ R
2 \ {0}, and

checks whether for a given test point z ∈ D the function

(3.3) φz,p := p · ∇zN(·, z)∣∣
Γ
,

i.e., the trace on Γ of a dipole potential with dipole moment p located in the test point z
exhibits a good match with the given data. For the analysis of the MUSIC scheme in [3]
the choice of the dipole moment p had not been essential; concerning the AC variant of the
method Ammari, Boulier, and Garnier [1] suggest choosing

(3.4) p = pz = ∇u�(z) ,

because this is—up to a scalar multiple—the exact dipole moment pl(ωn) in (3.2), if the
obstacle Ωl located in xl = z has the shape of a disk (cf. Example 2.1).

The pattern matching step of the algorithm is based on Proposition 3.1 below. To formu-
late this result we define Aδ : �

1(n∗) → L2(Γ) via

(Aδa)(x) =

n∗∑
n=1

anh
δ
n(x) , x ∈ Γ ,

where a ∈ �1(n∗) is the complex-valued sequence

a = [a1, . . . , an∗ ]
T .

By virtue of (3.1), δ−2Aδ → A◦ in L (�1(n∗), L2(Γ)) as δ → 0, where

(3.5) A◦a =

n∗∑
n=1

anh
◦
n =

l∗∑
l=1

( n∗∑
n=1

anpl(ωn)
)
· ∇zN(·, xl)

∣∣
Γ

and L (�1(n∗), L2(Γ)) denotes the space of bounded linear operators from �1(n∗) to L2(Γ).
Concerning A◦ we have the following result.
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Proposition 3.1. Let p ∈ C
2 \ {0}, z ∈ D, and define φz,p as in (3.3).

(a) If φz,p ∈ R(A◦) then there holds z ∈ {x1, . . . , xl∗}.
(b) For a given 1 ≤ l ≤ l∗ one has φxl,p ∈ R(A◦) if and only if the 2l∗ × n∗ dimensional

linear system

(3.6) 0 =

n∗∑
n=1

anpj(ωn) , j 	= l , p =

n∗∑
n=1

anpl(ωn) ,

has a solution a = [a1, . . . , an∗ ]
T ∈ �1(n∗).

Proof.
(a) For z ∈ D, p ∈ C

2 \ {0}, and a ∈ �1(n∗) the potentials w = p · ∇zN(·, z) and

v =

l∗∑
l=1

(
n∗∑
n=1

anpl(ωn)

)
· ∇zN(·, xl)

are harmonic functions in D\{z} and D\{x1, . . . , xl∗}, respectively, with homogeneous
Neumann data on ∂D. Accordingly, if φz,p = w|Γ ∈ R(A◦) then w and v—for suitably
chosen an—are harmonic functions with the same Cauchy data on Γ and, hence, they
coincide in D \ {x1, . . . , xl∗ , z}. Moreover, as v is bounded at any x /∈ {x1, . . . , xl∗}
while w fails to be bounded near x = z, we necessarily have z ∈ {x1, . . . , xl∗} as has
been claimed.

(b) Obviously, if (3.6) holds true for some a ∈ �1(n∗) then φxl,p = A◦a ∈ R(A◦). Now
assume that φxl,p ∈ R(A◦) for some p ∈ C

2\{0}. Then φxl,p = A◦a for some a ∈ �1(n∗)
and, hence,

p · ∇zN(x, xl) =

l∗∑
j=1

(
n∗∑
n=1

anpj(ωn)

)
· ∇zN(x, xj) , x ∈ Γ .

As in the first part of the proof it follows that this identity extends to x ∈
D \ {x1, . . . , xl∗}, and since its left-hand side is bounded near all xj 	= xl, all dipole
moments

∑n∗
n=1 anpj(ωn) with j 	= l must vanish, while

n∗∑
n=1

anpl(ωn) = p

for j = l. This proves (3.6).
Based on this result, and since R(A◦) is close to R(Aδ) by virtue of (3.5), a test point

z ∈ D is considered in [1] to be the (approximate) location of an obstacle if, with pz the dipole
moment of (3.4),

(3.7) φz,pz ∈ R(Aδ)

in a suitable approximate sense, which resembles the usual pattern matching procedure of
a principal component analysis. In fact, in practice, when n∗ is a finite number, Aδ can be
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considered an operator from R
n∗ to L2(Γ), and generic elements from R(A◦) have a small

distance to the span of the dominating left singular vectors of Aδ : Rn∗ → L2(Γ). It follows
that the fraction of the norm of the component of φz,pz within this span over the norm of
its orthogonal complement gets large, when φz,pz belongs to the range space of A◦, and is of
moderate size otherwise. Thus, a color coded plot of the logarithm of this fraction provides a
good visualization of the locations of the obstacles (see the numerical examples in section 10).

However, according to Proposition 3.1(b), the test (3.7) may fail in that z is the location
of an obstacle, but φz,pz does not belong to the range of A◦. So far, no conclusive analysis
of this problem has been given in the literature; it is the purpose of this paper to clarify the
circumstances under which such failures may occur. A trivial reason for a failure of this test
is a vanishing gradient of u� at the position of some obstacle. Such a trivial failure cannot
be cured without sending in a different spatial current distribution f . On the other hand, for
many boundary currents it can be excluded beforehand that ∇u� vanishes in D at all (cf.,
e.g., Isakov [11, section 4.4]).

In what follows we therefore assume throughout that ∇u�(x) 	= 0 for all x ∈ D.

4. Reconstruction of the position of a single obstacle. In this section we treat the case
of a single planar obstacle, as was the main focus of the preliminary analysis in [1]. In this
case it is obvious that the test (3.7) requires at least n∗ ≥ 2 test frequencies to allow for a
realistic chance of achieving the second equation of (3.6). In our analysis, however, we will go
much further, and assume that data have been generated for n∗ = ∞ frequencies.

To begin with, we establish that under our assumptions the position x1 of a single obstacle
Ω1 can always be reconstructed by the algorithm described above.

Theorem 4.1. Assume that D contains a single obstacle Ω1 of the form (2.4), and that
∇u�(x1) 	= 0. Moreover, let R(A◦) be the span of the limiting operator A◦ : �1 → L2(Γ)
from (3.5) for infinitely many probing frequencies ωn ∈ (0,∞), n ∈ N. Then there holds
φz,pz ∈ R(A◦) if and only if z = x1.

Proof. Recalling Proposition 3.1(a) we only have to prove that φx1,px1
∈ R(A◦). To this

end we choose the coordinate system in such a way that px1 = ∇u�(x1) is pointing in the
direction of the first standard basis vector e1. Then we conclude from Proposition 3.1(b) and
(3.2) that φx1,px1

∈ R(A◦) if and only if there is a vector a = [an] ∈ �1 such that

e1 =

∞∑
n=1

anM
(
λ(1)(ωn);O1

)
e1 ,

which is equivalent to saying that there is no scalar c ∈ C such that

(4.1) M11

(
λ(1)(ωn);O1

)
= cM21

(
λ(1)(ωn);O1

)
for all n ∈ N

(cf., e.g., Kress [14, Lemma 4.14]).
At this stage we recall that each component Mjk(λ;O) of the polarization tensor is a mero-

morphic function of λ ∈ Ĉ\{0}. Moreover, λ = λ(1)(ω) from (2.6) is a Möbius transformation
of ω, with inverse transformation

(4.2) ω(1)(λ) =
1− 2λ+ (1 + 2λ)σ1

(1 + 2λ)ε1
i .
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Accordingly, Mjk(λ
(1)(ω);O) is a meromorphic function of ω ∈ Ĉ\{(1+σ1)i/ε1}, and it follows

from the uniqueness theorem for meromorphic functions in the extended complex plane that
if (4.1) holds for infinitely many frequencies ωn ∈ (0,∞) then it holds everywhere, i.e.,

(4.3) M11(·;O1) = cM21(·;O1) .

The latter, however, cannot be true, because M21(λ;O1) is an even function of λ ∈ R by
virtue of (2.7), whereas M11(λ;O1) is a strictly decreasing function of λ ∈ R (except for its
poles). It thus follows that neither (4.3) nor (4.1) can hold true for any value of c ∈ C, which
was to be shown.

This proves that the MUSIC scheme with infinitely many probing frequencies will not fail
in reconstructing the position of a single planar obstacle.

5. Reconstruction of the material parameters of a single obstacle. Once the position
x1 of a domain Ω1 is known, one can easily determine the polarizations p1(ωn) of (3.1), (3.2)
for each probing frequency ωn with a least-squares fit to the given data. Assuming again for
simplicity that ∇u�(x1) is aligned with e1, this means that

(5.1)
1

|∇u�(x1)| p1(ωn) =

[
M11

(
λ(1)(ωn);O1

)
M21

(
λ(1)(ωn);O1

)]

is computable from the given data.
The following definition will prove useful.
Definition 5.1. A bounded and simply connected planar shape O ⊂ R

2 is called critical, if
its polarization tensor M(λ;O) is a diagonal matrix for all λ ∈ Ĉ and its diagonal entries are
rational functions of λ.

We mention that the only examples of critical shapes, that we are aware of, are ellipses
aligned with the coordinate axes.

Theorem 5.2. If O1 is not critical in the sense of Definition 5.1 then the dipole moments
(5.1) for infinitely many frequencies ωn ∈ (0,∞), n ∈ N, uniquely determine the conductivity
σ1 and the permittivity ε1 of the obstacle Ω1.

Proof. As in the proof of Theorem 4.1 we make use of the fact that the right-hand side of
(5.1) is a meromorphic function of ω ∈ Ĉ \ {(1 + σ1)i/ε1}. Thus, by analytic continuation we
can assume that the function

(5.2) t �→ F (t) = M11

(
λ(1)(it);O1

)
is at our disposal. Note that “imaginary frequencies” ω = it correspond to real values of
λ = λ(1)(ω) by virtue of (4.2) and that the map λ �→ t = ω(1)(λ)/i is strictly monotonically
decreasing over R (except for its pole at λ = −1/2), mapping the three values

λ = −1/2, 0, 1/2 onto t = ±∞, (σ1 + 1)/ε1, σ1/ε1 > 0 ,

in this respective order.
Since the top left entry M11(λ;O1) of the polarization tensor is a strictly monotonic

function of λ ∈ R̂ = R ∪ {±∞} (except for its poles), with λ = ±∞ being its only roots in
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the exterior of [−1/2, 1/2], the real-valued function F of (5.2) has a unique root t0 < σ1/ε1,
namely,

(5.3) t0 =
1

i
ω(1)(±∞) =

σ1 − 1

ε1
.

We now distinguish the two cases of whether the function F has infinitely many poles, or
not. If F has infinitely many poles then these poles necessarily cluster at

t∞ =
1

i
ω(1)(0) =

σ1 + 1

ε1
,

because these poles correspond to Fredholm eigenvalues λk of O1, which can only cluster at
λ = 0. Obviously, given t0 and t∞, it follows that

ε1 =
2

t∞ − t0
and σ1 =

t∞ + t0
t∞ − t0

.

On the other hand, if F has only finitely many poles then t∞ cannot be determined
from the given data, and we have to proceed differently. In fact, in this case we utilize that
M21(·;O1) cannot vanish identically, for otherwise O1 were critical in the sense of Defini-
tion 5.1. But then M21(·;O1) must have poles by virtue of (2.7) and, because of its symmetry,
we may denote the two poles with maximum absolute value by ±λ1 ∈ (−1/2, 1/2). Because
of the monotonicity of the map λ �→ t the corresponding numbers

t±1 =
1

i
ω(1)(±λ1)

are the extremal poles of F and, hence, these two numbers can be determined from the data
again. It follows that

1 + σ1 − t−1ε1
1− σ1 + t−1ε1

= 2λ(1)(it−1) = −2λ(1)(it1) = −1 + σ1 − t1ε1
1− σ1 + t1ε1

,

and making use of (5.3) we can uniquely solve for

ε1 =
t1 + t−1 − 2t0

(t−1 − t0)(t1 − t0)
and σ1 =

t−1t1 − t20
(t−1 − t0)(t1 − t0)

.

Thus, in either case we can determine both material parameters from the data.
We mention that even for a critical shape the ratio (5.3) is determined by the corresponding

multifrequency data. Thus, knowing either ε1 or σ1, the other parameter can be computed
from (5.3). On the other hand, if neither ε1 nor σ1 are known, then there are examples where
the material parameters cannot be determined.

Theorem 5.3. If two obstacles Ω1 and Ω̃1 have critical shapes O1 and Õ1 and material pa-
rameters ε1, σ1 and ε̃1, σ̃1, respectively, and yield the same dipole moments (5.1) for infinitely
many frequencies ωn ∈ (0,∞), then the polynomial

(5.4) q(λ) =
ε1
ε̃1

λ− 1

2

(
1− ε1

ε̃1

)
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provides a one-to-one correspondence of the poles of M11(·;O1) with those of M11(·; Õ1): If λ
is a pole of M11(·;O1) then q(λ) is a pole of M11(·; Õ1), and vice versa.

Proof. Since the derivation of (5.3) in the proof of the preceding theorem is independent of
whether the shape of the obstacle is critical or not, we find that under the present assumptions
there is a unique number t0 such that

(5.5) t0 =
σ1 − 1

ε1
=

σ̃1 − 1

ε̃1
.

On the other hand there holds

M11

(
λ(1)(ωn);O1

)
= M11

(
λ̃(1)(ωn); Õ1

)
for all n ∈ N ,

where λ̃(1)(ω) is defined as in (2.6), replacing σl and εl by σ̃1 and ε̃1, respectively. Since λ(1)

is a bijective Möbius transformation of the complex plane (cf. (2.6)) this can be rewritten as

(5.6) M11(λ;O1) = M11

(
q(λ); Õ1

)
for all λ = λ(1)(ωn), n ∈ N, where

(5.7)

q(λ) = λ̃(1)
(
ω(1)(λ)

)
=

1

2

(2ε1 + 2ε1σ̃1 + 2ε̃1 − 2ε̃1σ1)λ+ ε1 + ε1σ̃1 − ε̃1 − ε̃1σ1
(2ε1 − 2ε1σ̃1 − 2ε̃1 + 2ε̃1σ1)λ+ ε1 − ε1σ̃1 + ε̃1 + ε̃1σ1

,

with ω(1) of (4.2) being the inverse function of λ(1) again. Since the sequence λ(1)(ωn), n ∈ N,
clusters at some λ ∈ Ĉ it follows from the uniqueness theorem for rational functions that the
validity of (5.6) extends to all λ ∈ Ĉ.

Inserting (5.5) into (5.7) the Möbius transformation q simplifies to the polynomial stated
in (5.4) and, hence, the assertion of the theorem follows from (5.6).

Although Theorem 5.3 only provides a necessary condition for a nonunique determination
of the material parameters, this condition is quite strong. We are aware of only one class of
examples where it is met, and this class does indeed provide a nonuniqueness case.

Example 5.4. Consider an ellipse Ω1 = x1 + δO1 at x1 such that O1 has half axes of
lengths δ2 	= δ1, the latter being aligned with ∇u�(x1) and the first standard basis vector e1.
Then there holds

p1(ωn) = M
(
λ(1)(ωn);O1

)∇u�(x1) =
|O1|

λ(1)(ωn)− λE
∇u�(x1)

with λ(1) of (2.6) and λE of (2.9). As before, σ1 and ε1 denote the material parameters of this
ellipse.

On the other hand, let Ω̃1 = x1 + δÕ1 be a disk-shaped obstacle at x1 with permittivity

(5.8) ε̃1 =
2δ2

δ1 + δ2
ε1 	= ε1
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and conductivity

(5.9) σ̃1 = 1 +
ε2
ε1

(σ1 − 1) ,

such that (5.5) is satisfied. Assuming that

|Õ1| = δ1 + δ2
2δ2

|O1| ,

the resulting dipole moments

p̃1(ωn) = M
(
λ̃(1)(ωn);O2

)∇u�(x1) =
|Õ1|

λ̃(1)(ωn)
∇u�(x1)

coincide with p1(ωn), because it is straightforward to check using (5.8), (5.9), and (2.9) that

λ̃(1)(ωn) =
1

2

1 + σ̃1 + iωε̃1
1− σ̃1 − iωε̃1

=
δ1 + δ2
2δ2

(
λ(1)(ωn)− λE

)
.

Thus, it is impossible to decide from the given data which of the two material parameter pairs
is the correct one. Obviously, we cannot determine the shape of the obstacle, either.

Remark 5.5. On the positive side we mention that if the material parameters are known
(or can be determined as described in the proof of Theorem 5.2) then the reconstructed dipole
moments (5.1) provide by analytic continuation the first column of the polarization tensor of
O1 as a function of λ ∈ Ĉ \ {0}. By virtue of (2.7) we can go on and determine the second
column from the first one. Thus we know the full polarization tensor as a function of λ in this
case.

As mentioned in section 2 we can conclude from this that the shape of the present obstacle
belongs to a certain equivalence class of shapes—it may even be uniquely determined this way
up to rotations by π.

6. Reconstruction of the positions of two obstacles and the multifrequency MUSIC
scheme. In what follows we turn our attention to the situation where two small obstacles Ω1

and Ω2 are present in D. We start with an example to show that the reconstruction of their
two positions may run into problems when the traditional MUSIC algorithm is used for AC
data as introduced in section 3. We will propose a slightly improved algorithm below, the
multifrequency MUSIC scheme, that will not fail in some of these cases.

Example 6.1. Consider two geometrically similar ellipses O1 and O2 with identical ma-
terial parameters and areas ρ2 and σ2, respectively, where one of the half axes of O1 is
parallel to ∇u�(x1) = |∇u�(x1)|e1, whereas the corresponding half axis of O2 forms an angle
ϕ ∈ (−π/2, π/2) \ {0} to ∇u�(x2) (cf. Figure 1). Furthermore, we denote by α the angle
between ∇u�(x2) and e1, i.e.,

(6.1) ∇u�(x2) = |∇u�(x2)|Qαe1 = |∇u�(x2)|
[
cosα
sinα

]
,

where Qα is the rotation matrix defined in (2.8).
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α

ϕ

x1

x2

O1

O2

∇u (x1)

∇u (x2)

Figure 1. Sketch of the geometrical setup of Example 6.1.

The frequency ωn translates into the spectral parameter λ(1)(ωn) of (2.6), such that

p1(ωn) = |∇u�(x1)| ρ2
⎡⎣ 1

λ(1)(ωn)− λE
0

⎤⎦
for λE as in (2.9) (cf. Example 2.1), whereas

p2(ωn) =
σ2

ρ2
M
(
λ(1)(ωn);Qϕ+α(O1)

)∇u�(x2)

= |∇u�(x2)| σ
2

ρ2
QαM

(
λ(1)(ωn);Qϕ(O1)

)
e1

= |∇u�(x2)|σ2

⎡⎢⎢⎢⎣
cosϕ cos(ϕ+ α)

λ(1)(ωn)− λE
+

sinϕ sin(ϕ+ α)

λ(1)(ωn) + λE
cosϕ sin(ϕ+ α)

λ(1)(ωn)− λE
− sinϕ cos(ϕ+ α)

λ(1)(ωn) + λE

⎤⎥⎥⎥⎦
according to (2.10) and (6.1). It thus follows that

(6.2) p1(ωn) =
|∇u�(x1)|
|∇u�(x2)|

ρ2

σ2

1

cosϕ

[
cos(ϕ+ α) sin(ϕ+ α)

0 0

]
p2(ωn)

for all n ∈ N.
In order to simplify the notation in (6.2) we denote the factor in front of p2(ωn) by

X12 ∈ R
2×2. Then, for any a ∈ �1 there holds (cf. (3.5))

A◦a =

(
X12

( ∞∑
n=1

anp2(ωn)

))
· ∇zN(·, x1)

∣∣
Γ
+

( ∞∑
n=1

anp2(ωn)

)
· ∇zN(·, x2)

∣∣
Γ
,

and it follows that the test function φz,p of (3.3) with z = x1 and arbitrary dipole moment p 	=
0 can never belong to the range of A◦ (cf. Proposition 3.1(b)). In addition, the corresponding
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test function with z = x2 can only belong to the range of A◦, if the test dipole moment p
belongs to the null space of X12, i.e., if

(6.3) p = c

[
sin(ϕ+ α)

− cos(ϕ+ α)

]
for some c 	= 0 ,

whereas the algorithm considered so far utilizes the dipole moment px2 = ∇u�(x2) of (6.1),
which is not collinear with the proper choice (6.3) of p, because ϕ 	= ±π/2.

Since ϕ is assumed to be nonzero the test vector p of (6.3) can, indeed, be written as a
linear combination of any two vectors p2(ωn) with different frequencies ωn.

We conclude from Example 6.1 that for certain geometrical setups the MUSIC scheme
considered so far is unable to determine either of the two objects whereas it is possible to find
at least one of them when changing the algorithm in the following way.2

Algorithm 6.2 (multifrequency MUSIC scheme). For a given test point z ∈ D check whether
the test function φz,p of (3.3) does (approximately) belong to the range of Aδ for any (complex)
dipole moment p ∈ S

1 = {q ∈ C
2 : |q| = 1}. When this is the case, the test point z is

considered to be the (approximate) location of one of the obstacles.
While this multifrequency MUSIC scheme is capable of localizing Ω2 in Example 6.1 above,

it still fails to localize Ω1. Such a situation will be called a weak failure in the following; in
contrast, a situation where neither of the two obstacles is found is considered a fatal failure
below. Unfortunately it is quite easy to see that the multifrequency MUSIC scheme also
cannot avoid fatal failures.

Example 6.3. Let Ω consist of two obstacles with geometrically similar shapes O1 and O2

and identical material parameters, located at x1 and x2, respectively, and let Q ∈ R
2×2 be

the orthogonal transformation such that

O1 = cQ(O2) , c = |O1|/|O2| .

From (2.10) we know that
M(λ;O1) = c2QM(λ;O2)Q

∗

for every λ ∈ C. Assume further that the gradients of the reference potential u� at x1 and x2
satisfy

∇u�(x1) = μQ∇u�(x2)

for some μ ∈ R (cf. Figure 2). Then, with λ(1)(ω) = λ(2)(ω) =: λ(ω) (cf. (2.6)) it follows that

p1(ω) = M
(
λ(ω);O1

)∇u�(x1) = c2QM
(
λ(ω);O2

)
Q∗∇u�(x1) = μc2Qp2(ω)

for every ω > 0 and, hence, criterion (3.6) can only hold for either l = 1 or l = 2, when p = 0.
In other words, neither of the two obstacles will be detected by the multifrequency MUSIC
scheme.

Of course, the same conclusion applies if O1 and cQ(O2) are merely polarization equivalent
in the sense of Definition 2.2.

2We admit that the authors of [1] do indeed test three different dipole moments in their numerical examples,
namely, p = pz of (3.4) and the two standard basis vectors p = e1 and p = e2.
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x1

x2

O1

O2

∇u (x1)

∇u (x2)

Figure 2. Sketch of the geometrical setup of Example 6.3.

Fatal failures of Algorithm 6.2 can only be avoided by testing linear combinations of
dipoles located at different test points z1, z2, . . . , spoiling the simplicity and elegance of the
MUSIC scheme. To understand the likelihood of a fatal failure, we set up a complete list of
all possible instances of fatal failures with l∗ = 2 planar obstacles in what follows. As before,
we assume that

∇u�(xl) 	= 0 , l = 1, 2 ,

and we restrict ourselves to the ideal situation of n∗ = ∞ different probing frequencies.
To start with, we consider the case when the algorithm fails to detect the position x1 of

Ω1. According to Proposition 3.1 this happens if and only if

∞∑
n=1

anp2(ωn) = 0 =⇒
∞∑
n=1

anp1(ωn) = 0

for every a = [an] ∈ �1. Note that these two identities consist of two complex equations,
each. Using [14, Lemma 4.14] again, the above implication is equivalent to the existence of a
(possibly complex) 2× 2 matrix X12 such that

(6.4) p1(ωn) = X12p2(ωn) for all n ∈ N .

Without loss of generality let the coordinate system be such that

(6.5a) ∇u�(x1) = |∇u�(x1)| e1

is aligned with the first coordinate vector; moreover, let Q ∈ R2×2 be the rotation matrix for
which

(6.5b) ∇u�(x2) = |∇u�(x2)|Q∗e1 .

Then, recalling (3.2) and using (2.10) again, relation (6.4) is equivalent to

(6.6)
|∇u�(x1)|M

(
λ(1)(ωn);O1

)
e1 = |∇u�(x2)|X12M

(
λ(2)(ωn);O2

)
Q∗e1

= |∇u�(x2)|X12Q
∗M
(
λ(2)(ωn);Q(O2)

)
e1 , n ∈ N .
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As in the proof of Theorem 5.3 it follows that

(6.7) M(λ;O1)e1 = Y12M
(
Φ21(λ);Q(O2)

)
e1

for all λ ∈ Ĉ \ {0}, where
Y12 =

|∇u�(x2)|
|∇u�(x1)| X12Q

∗ ∈ C
2×2

and

(6.8)

Φ21(λ) = λ(2)
(
ω(1)(λ)

)
=

1

2

(2ε1 + 2ε1σ2 + 2ε2 − 2ε2σ1)λ+ ε1 + ε1σ2 − ε2 − ε2σ1
(2ε1 − 2ε1σ2 − 2ε2 + 2ε2σ1)λ+ ε1 − ε1σ2 + ε2 + ε2σ1

,

similar to (5.7).
Note that when Y12 (resp., X12) is nonsingular then there holds

(6.9) p2(ωn) = X21p1(ωn) for all n ∈ N

with X21 = X−1
12 . On the other hand, some matrix X21 to satisfy (6.9) may exist even when

X12 is singular. From what we have said before, (6.9) implies that x2 will not be detected by
the algorithm, either; in fact, the validity of (6.9) on top of (6.4) distinguishes fatal failures
from weak failures.

To derive necessary and sufficient algebraic conditions for a weak (resp., fatal) failure of
Algorithm 6.2 we need to consider the case that X12 is singular. By virtue of (2.7) M11(·;O1)
is not vanishing identically, and therefore the top row of X12 cannot be zero. Accordingly, if
X12 is singular then its bottom row is a multiple of the top row and, hence, it follows from
(6.6) that M21(·;O1) is a multiple of M11(·;O1). As has already been mentioned, though, the
latter is a monotonically decreasing function of λ ∈ R (except for its poles), whereas M21 is a
decreasing function of λ only when it is identically zero. We thus have shown that

(6.10) M21(·;O1) = 0

when X12 is singular.
A fatal failure, i.e., (6.9), implies similarly to (6.7) that

M
(
λ;Q(O2)

)
e1 = Y21M

(
Φ−1
21 (λ);O1

)
e1

for some Y21 ∈ C
2×2 and all λ ∈ Ĉ \ {0}. Hence, for a fatal failure with a singular matrix X12

there holds
M21

(
λ;Q(O2)

)
= cM11

(
Φ−1
21 (λ);O1

)
for some c ∈ C in view of (6.10). Using once again that the left-hand side of this equation
is an even function of λ ∈ R, whereas the right-hand side is a monotonic function of λ ∈
R—take note that the Möbius transformation Φ−1

21 is also monotonic on R—it follows that
M21(·;Q(O2)) must also vanish identically. Therefore the singular matrix X12 in (6.6) can be
replaced by a nonsingular multiple of Q without affecting the validity of (6.4) and (6.6).
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Summarizing, we can state the following result.
Proposition 6.4. Assuming the coordinate system of R2 to be such that (6.5) is valid, a

fatal failure of Algorithm 6.2 occurs if and only if (6.6) holds true for some nonsingular matrix
X12.

We will focus on fatal failures in what follows, before we return to weak failures in section 9,
where we also show how to adapt the algorithm to overcome them.

7. Fatal failure of the multifrequency MUSIC scheme: Different material parameters.
We continue the analysis of fatal failures of the multifrequency MUSIC algorithm with l∗ = 2
obstacles by assuming first that the material parameters of the two obstacles are different.
Here we have the following result.

Theorem 7.1. Under the assumption (6.5) two infinitesimal obstacles Ω1 and Ω2 as in
(2.4) with different material parameters lead to a fatal failure of Algorithm 6.2 if and only if
the following conditions are met:

(i) the material parameters of Ω1 and Ω2 satisfy

(7.1)
σ1 − 1

ε1
=

σ2 − 1

ε2
,

(ii) O1 and Q(O2) are both critical in the sense of Definition 5.1,
(iii) there holds

(7.2) M11(λ;O1) = cM11

(
q(λ);Q(O2)

)
for all λ ∈ Ĉ \ {0} and some c ∈ R \ {0}, where

(7.3) q(λ) =
ε1
ε2

λ− 1

2

(
1− ε1

ε2

)
.

Proof. To begin with, assume that (i) to (iii) hold true. Then, because of (7.1), the
polynomial q and Φ21 of (6.8) are seen to be identical. Moreover, since O1 and Q(O2) are
critical shapes their polarization tensors are diagonal ones and, hence, (7.2) implies that

M(λ;O1)e1 = cM
(
Φ21(λ);Q(O2)

)
e1

for all λ ∈ Ĉ, so that (6.7) is valid with Y12 = cI. Because of the equivalence of (6.6) and
(6.7), Algorithm 6.2 will thus encounter a fatal failure by virtue of Proposition 3.1.

Consider next a fatal failure of Algorithm 6.2, and denote by

λ∗ = −1

2

ε1 − ε1σ2 + ε2 + ε2σ1
ε1 − ε1σ2 − ε2 + ε2σ1

∈ R̂

the pole of Φ21 of (6.8). Then there holds

(7.4) M11(λ∗,O1) = 0 and M11

(
Φ21(∞), Q(O2)

)
= 0 ,

where the first equality is an immediate consequence of (6.7), because the right-hand side
of (6.7) vanishes when Φ21(λ) = Φ21(λ∗) = ∞, while the second statement of (7.4) can be
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deduced from (6.7) because Y12 can be chosen nonsingular in the fatal failure case according
to Proposition 6.4.

Using once again that M11(λ;O1) is a strictly decreasing function of λ ∈ R (except for its
poles), with zero limit as |λ| → ∞, it follows from (7.4) that either λ∗ = ∞ (or, equivalently,
that the Möbius transformation Φ21 is a polynomial), or that λ∗ is enclosed by two poles of
M(·;O1), i.e., by two Fredholm eigenvalues of O1. Since these eigenvalues are bounded by
1/2 in absolute value, the latter implies that

|λ∗| = 1

2

∣∣∣∣ 1 + 2ε2
ε1(1− σ2) + ε2(σ1 − 1)

∣∣∣∣ < 1

2
.

In other words, if Φ21 fails to be a polynomial then there holds

(7.5) ε1(1− σ2) + ε2(σ1 − 1) < 0 .

On the other hand, the second statement of (7.4) implies in much the same way that either
Φ21(∞) = ∞, or

∣∣Φ21(∞)
∣∣ = 1

2

∣∣∣∣ε1 + ε1σ2 + ε2 − ε2σ1
ε1 − ε1σ2 − ε2 + ε2σ1

∣∣∣∣ = 1

2

∣∣∣∣ 1 + 2ε1
ε1(σ2 − 1) + ε2(1− σ1)

∣∣∣∣ < 1

2
,

in contradiction to (7.5). Thus there holds Φ21(∞) = ∞, i.e., Φ21 is a first order polynomial,
and by virtue of (6.8) this is the case if and only if the material parameters of O1 and O2 are
connected via (7.1). This proves (i).

Inserting (7.1) into (6.8), Φ21 is seen to coincide with q of (7.3) (similar to (5.4)). Note
that

(7.6) q(0) 	= 0

for otherwise ε1 = ε2 and, hence, σ1 = σ2 by virtue of (7.1), contradicting our assumption
that the material parameters of Ω1 and Ω2 are different,

Consider now M21(·;O1). Because of (2.7), M21(λ;O1) decays like O(|λ|−2) as |λ| goes
to infinity, whereas the right-hand side of (6.7) only decays that fast near infinity, when the
bottom left entry of Y12 is zero, i.e., if

M21(λ;O1) = cM21

(
q(λ);Q(O2)

)
for some c 	= 0 and all λ ∈ Ĉ \ {0} (remember that Φ21 has been shown to coincide with q
and that Y12 is nonsingular). Thus, if M21(·;O1) is not identically zero then (2.7) and the
monotonicity of q imply that the two poles of maximum absolute value, ±λ1 say, of M21(·;O1)
yield the extremal two poles q(±λ1) of M21(·;Q(O2)); however, as the latter also have to be
symmetric to the origin, this contradicts (7.6), proving that M21(·;O1) and M21(·;Q(O2))
must vanish identically. Inserting this back into (6.7), we have established (iii).

In order to prove that O1 and Q(O2) are critical, it remains to show that M11(·;O1) and
M11(·;Q(O2)) can only have finitely many poles. If one of these two functions had infinitely
many poles then these poles would (only) accumulate at the origin because of the compactness
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of the double layer integral operator; moreover, by virtue of (7.2) the same had to be true
for the other function, and the two accumulation points of the corresponding poles had to
coincide. This, however, contradicts (7.6), and the proof is done.

Note that the three requirements of Theorem 7.1 are exactly the conditions which prevent
an identification of the material parameters of a single object (cf. section 5). As such, a very
similar setting to Example 5.4 can be used to construct a situation where such a fatal failure
occurs.

Example 7.2. Let Ω1 and Ω2 have the shapes and material parameters, respectively, as
Ω1 and Ω̃1 in Example 5.4, but different locations x2 	= x1 in D. Assume furthermore that
∇u�(x2) is collinear with ∇u�(x1). As in Example 5.4 it then follows that

p2(ωn) = ±|∇u�(x2)|
|∇u�(x1)| p1(ωn)

for all probing frequencies ωn, n ∈ N and, hence, for either l = 1 or l = 2, criterion (3.6) can
only hold when p = 0; in other words, neither of the two obstacles will be detected by the
multifrequency MUSIC scheme.

8. Fatal failure of the multifrequency MUSIC scheme: Identical material parameters.
We return to the necessary and sufficient criterion (6.6) for a fatal failure of Algorithm 6.2,
with X12 being nonsingular by virtue of Proposition 6.4. On top of that we now make the
assumption that the material parameters of the two obstacles are the same, i.e., that (6.7)
holds true with Φ21 being the identity.

Consider first the case that M21(·;O1) is identically zero. Then it follows from (6.7) that
M21(·;Q(O2)) is a multiple of M11(·;Q(O2)) because Y12 is nonsingular, and using once more
the monotonicity of M11 and the symmetry of M21 this can only be true when M21(·;Q(O2))
is also vanishing. Accordingly, with this assumption (6.6) implies that

M11(·;O1) = c2M11

(·;Q(O2)
)

for some c ∈ R \ {0} (the positivity of the factor c2 is due to the monotonicity of M11).
Together with (2.7) and (2.10) this leads to

M(·;O1) = c2M
(·;Q(O2)

)
= c2QM(·;O2)Q

∗ ,

i.e., O1 and cQ(O2) are polarization equivalent in the sense of Definition 2.2, and—recalling
our standing assumption (6.5)—the two obstacles fulfill the standard case of a fatal failure as
presented in Example 6.3.

Consider next the other case, where M21(·;O1) is not identically zero. Then we can choose
any symmetric pair ±λk of poles of M21(·;O1), and conclude from (6.7) and (2.7) that for
λ → λk there holds

(8.1)

rk

[
rk

ckr−k

]
1

λ− λk
∼ M(λ;O1)e1 = Y12M(λ;Q(O2))e1

∼ skY12

[
sk

c̃ks−k

]
1

λ− λk
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with ckrkr−k 	= 0 and corresponding residues s2±k and associated parameter c̃k ∈ [0, 1] of the
polarization tensor of Q(O2) in (2.7). We thus necessarily have sk 	= 0 and

(8.2a) Y12

[
sk

c̃ks−k

]
=

rk
sk

[
rk

ckr−k

]
.

A corresponding expansion for λ → −λk reveals that s−k cannot vanish, either, and that

(8.2b) Y12

[
s−k

−c̃ksk

]
=

r−k

s−k

[
r−k

−ckrk

]
.

Note that the right-hand sides of (8.2) are linearly independent; accordingly, the two vector
arguments on the left must be linearly independent, too, excluding thus the option of c̃k being
zero. Introducing the positive numbers

ρk = (r2k + r2−k)
1/2 and σk = (s2k + s2−k)

1/2

we rewrite the residues as

(8.3)
rk = ρk cos θk , r−k = ρk sin θk ,

sk = σk cosϕk , s−k = σk sinϕk ,

with θk ∈ (0, π/2) and ϕk ∈ (−π/2, π/2) \ {0}. Note that θk can be chosen from the interval
(−π/2, π/2), because only the products r2k, rkr−k, and r2−k enter into the polarization tensor,
and the same applies to ϕk; the additional restriction θk > 0 can be stipulated without loss
of generality, for we can always exchange λk and −λk when necessary.

The (nonsingular) matrix Y12 of (8.1) is completely specified by means of (8.2), namely,

(8.4) Y12 = c2

[
1 η

0 ζ

]

with

(8.5) c =
ρk
σk

, η =
cos(2θk)− cos(2ϕk)

c̃k sin(2ϕk)
, and ζ =

ck sin(2θk)

c̃k sin(2ϕk)
;

notably, c, η, and ζ are independent of the particular pole λk of M21(·;O1) that has been
chosen.

From this stage onwards we confine ourselves to shapes Ol, l = 1, 2, which are simple in
the following sense.

Definition 8.1. A planar bounded and simply connected C2-smooth shape O ⊂ R
2 is called

simple if all its nonzero Fredholm eigenvalues are simple.
We recall from [9] that for a simple shape O the coefficients ck in (2.7) can be omitted,

since they are all equal to one (note that our normalization of the off-diagonal terms of the
polarization tensor (2.7) is slightly different from the one in [9]).
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Under this additional assumption that the two shapes are simple, if η = 0 in (8.5) then
ϕk = ±θk and ζ = ±1. Thus (8.4) becomes

Y12 = c2Q− with Q− =

[
1 0

0 ±1

]
,

i.e., Q− corresponds to the identity or to the reflection at e1. In either case (6.7) and (2.10)
imply

M(·;O1)e1 = c2Q−M
(·;Q(O2)

)
e1 = M

(·; cQ′(O2)
)
e1

with

(8.6) Q′ = Q− ◦Q ,

and (2.7) implies that O1 is polarization equivalent to cQ′(O2). Since also

∇u�(x1) = Q−∇u�(x1) = μQ′∇u�(x2)

for some μ > 0 by virtue of (6.5), this fatal failure is therefore another instance of the case
presented in Example 6.3.

It remains to investigate the case η 	= 0 in (8.4) and (8.5). To this end we note that,
proceeding as above, we obtain for any pole λk 	= 0 of the first column of M(·;O1) from (2.7)
the corresponding analog of (8.1). Hence, either r−k = s−k = 0, or the analog of (8.2) holds
true (note that sk 	= 0 by virtue of (8.1), for otherwise λk is not a pole of M(·;Q(O2))e1). The
latter case leads to the same representation of rk, r−k, sk, and s−k as in (8.3) with ρk, σk > 0,
θk ∈ (0, π/2), and ϕk ∈ (−π/2, π/2) \ {0} fulfilling (8.5) again. Note that for a simple shape
(8.5) yields

(8.7) sin(2θk) = ζ sin(2ϕk) , cos(2θk) = η sin(2ϕk) + cos(2ϕk) ,

and turning to squares we obtain

(η2 + ζ2 − 1) sin2(2ϕk) = −2η sin(2ϕk) cos(2ϕk) .

Since ζ 	= 0 because of (8.5), it follows readily that

cot(2ϕk) =
1− ξ2 − η2

2η
and cot(2θk) =

1− ξ2 + η2

2ηζ
.

Thus, using the fact that 2θk ∈ (0, π), we conclude that

(8.8a) θk = θ =
1

2
arccot

1− ζ2 + η2

2ηζ
,

whereas

(8.8b) ϕk = ϕ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
arccot

1− ζ2 − η2

2η
, ζ > 0 ,

1

2
arccot

1− ζ2 − η2

2η
− π

2
, ζ < 0 ,

depending on the sign of ζ because of (8.7).
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In other words, if η 	= 0 in (8.4) then the nonzero poles of M(·;O1) are the same as those
of M(·;Q(O2)), and the residues are determined by (8.3), where ρk/σk = c is the same for all
poles, and the angles θk and ϕk are either zero (corresponding to r−k = s−k = 0), or are given
by (8.8). We gather the positive indices of the latter poles in an index set N1, and those of the
former ones in N2. Subtracting off all these nonzero poles of M(·;O1)e1 and M(·;Q(O2))e1
we conclude from (6.7) and (8.4) that if λk = 0 is present in the expansion of M11(·;O1) then
it must also be present in M11(·;Q(O2)), and vice versa, and the residues must be given by
r2k = ρ2k and s2k = ρ2k/c

2, respectively; we thus include the corresponding index in N2. Then it
is not difficult to see that we can rewrite

M(λ;O1) = Qθ

⎡⎢⎢⎣
∑
k∈N1

ρ2k
λ− λk

0

0
∑
k∈N1

ρ2k
λ+ λk

⎤⎥⎥⎦Q∗
θ +

⎡⎢⎢⎣
∑
k∈N2

ρ2k
λ− λk

0

0
∑
k∈N2

ρ2k
λ+ λk

⎤⎥⎥⎦(8.9a)

and

M
(
λ; cQ(O2)

)
= Qϕ

⎡⎢⎢⎣
∑
k∈N1

ρ2k
λ− λk

0

0
∑
k∈N1

ρ2k
λ+ λk

⎤⎥⎥⎦Q∗
ϕ +

⎡⎢⎢⎣
∑
k∈N2

ρ2k
λ− λk

0

0
∑
k∈N2

ρ2k
λ+ λk

⎤⎥⎥⎦(8.9b)

with ρk > 0 and the rotation matrices Qθ and Qϕ (cf. (2.8)); here ϕ 	= ±θ because η 	= 0.
Note that N1 is nonempty by construction, but N2 can be the empty set.

Theorem 8.2. Let Ωl, l = 1, 2, be two infinitesimal obstacles at xl ∈ D with identical
material parameters and simple shapes Ol in the sense of Definition 8.1. Moreover, let the
background potential satisfy (6.5) for some rotation Q, and define Q′ by (8.6). If O1/|O1|
is neither polarization equivalent to Q(O2)/|O2| nor to Q′(O2)/|O2| then Algorithm 6.2 will
encounter a fatal failure if and only if the polarization tensors of O1 and Q(O2) satisfy (8.9)
for appropriate values c > 0, θ ∈ (0, π/2), and ϕ ∈ (−π/2, π/2) \ {0} with |ϕ| 	= θ, where
N1, N2 ⊂ N with N1 	= ∅ and N1 ∩N2 = ∅. Here, {|λk| : k ∈ N1 ∪N2} ⊂ [0, 1/2) is a sequence
of pairwise different Fredholm eigenvalues of O1 and O2 that may only cluster at the origin,
and the sequence {ρk} ⊂ (0,∞) determines the corresponding residues.

Proof. We have already proved the necessity of (8.9) for a fatal failure of the algorithm.
On the other hand, it is easy to check that M(·;O1) and M(·;Q(O2)) of (8.9) satisfy (6.7)
with Y12 defined in (8.4), (8.5), where ck = c̃k = 1. Since (6.7) and (6.6) are equivalent, the
other direction of the theorem thus follows from Proposition 6.4.

An interesting special case of this theorem arises when N2 = ∅. For any reference shape
O whose polarization tensor has the form

(8.10) M(λ;O) =

⎡⎢⎢⎢⎣
∑
k∈N

ρ2k
λ− λk

0

0
∑
k∈N

ρ2k
λ+ λk

⎤⎥⎥⎥⎦ ,

where {|λk| : k ∈ N} are pairwise different Fredholm eigenvalues of O and {ρ2k} the corre-
sponding residues, two geometrically similar copies O1 and O2 of O lead to a fatal failure for
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α

ϕ

θx1

x2

O1

O2

∇u (x1)

∇u (x2)

Figure 3. Sketch of the geometrical setup of Example 8.3.

almost any orientation of the gradients of the background potential. For obstacles with such
a special shape this is a much more general counterexample than the standard fatal failure
setup considered in Example 6.3. Note that polarization tensors of the form (8.10) occur, for
example, when O is reflection symmetric with respect to one of the coordinate axes (cf. (2.10)).

Example 8.3. For a concrete example let O1 and O2 be ellipses again, with the same
(nonzero) eccentricity but, possibly, different sizes |O1| = ρ2 and |O2| = σ2. Assume further
that the major half axis of O1 forms an angle θ 	= jπ/2 to ∇u�(x1), and that the major
half axis of O2 forms an angle ϕ 	= kπ/2 to ∇u�(x2) (for any values of j, k ∈ Z). Finally,
without loss of generality, fix ∇u�(x1) = |∇u�(x1)|e1 and denote by α the angle between e1
and ∇u�(x2) (see Figure 3 for an illustration with a general reflection symmetric reference
domain). Then

p1(ω) = |∇u�(x1)| ρ2

⎡⎢⎢⎢⎣
cos2 θ

λ− λE
+

sin2 θ

λ+ λE
sin θ cos θ

λ− λE
− sin θ cos θ

λ+ λE

⎤⎥⎥⎥⎦
with λ = λ(1)(ω) and λE as in (2.9), and

p2(ω) = |∇u�(x2)|σ2

⎡⎢⎢⎢⎣
cosϕ cos(ϕ+ α)

λ− λE
+

sinϕ sin(ϕ+ α)

λ+ λE
cosϕ sin(ϕ+ α)

λ− λE
− sinϕ cos(ϕ+ α)

λ+ λE

⎤⎥⎥⎥⎦ ,

and a straightforward computation demonstrates that

p1(ω) =
|∇u�(x1)|
|∇u�(x2)| Y12Q

∗
α p2(ω) ,

where Y12 is as in (8.4), (8.5) with ck = c̃k = 1, and Qα is as in (2.8). Since Y12 is nonsingular,
this proves the fatal failure of the multifrequency MUSIC scheme for this example.

When N2 	= ∅ in (8.9) the shapes O1 and O2 cannot be geometrically similar. However,
we don’t know of any example where the specific form (8.9) with N2 	= ∅ materializes, and it
may well be that no examples of this sort exist after all.
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Table 1
The behavior of Algorithm 6.2 for two similar ellipses; angles θ and ϕ are as in Figure 3.

θ = 0 ϕ = 0 fatal failure Example 6.3
ϕ = π/2 no failure

0 < |ϕ| < π/2 weak failure Example 6.1

0 < θ < π/2 ϕ ∈ {0, π/2} weak failure Example 6.1
ϕ = ±θ fatal failure Example 6.3

ϕ /∈ {0,±θ, π/2} fatal failure Example 8.3

Remark 8.4. We summarize our findings for two similar ellipses with nonzero eccentricity
and identical material parameters. Define, as in Figure 3, angles θ ∈ [0, π/2) and ϕ ∈
(−π/2, π/2] that rotate the gradients of the background potentials onto corresponding half
axes of the two ellipses. Then, depending on the interplay of these two angles, Algorithm 6.2
performs as specified in Table 1 (see the links to the corresponding examples for the detailed
discussion).

Accordingly, the multifrequency MUSIC scheme almost always fails for two geometrically
similar ellipses with identical material parameters.

Remark 8.5. The case where one of the two shapes O1 or O2 fails to be simple has not yet
been settled completely. However, important examples of nonsimple shapes are those that are
invariant under rotations by 2π/k for integers k ≥ 3 (cf. [9]). The corresponding polarization
tensors have the form

M(·;O) = M11(·;O) I ,

where I is the 2 × 2 identity matrix and, hence, if O1 (or O2) happens to be a shape of this
form then Example 6.3 provides the only possible setting for a fatal failure. This we have seen
at the very beginning of this section.

The performance of the multifrequency MUSIC scheme for other nonsimple domains re-
mains an open problem.

9. Weak failures of the multifrequency MUSIC scheme, and how to cure them. Recall
from section 6 that for two given obstacles Ω1 and Ω2 in D a weak failure of the multifrequency
MUSIC scheme arises if the algorithm is capable of detecting the inclusion at x = x2, but
fails to locate the other one. As we have seen in section 6 (cf. (6.10)) if this situation occurs
then all dipole moments p1(ωn) are parallel to e1, that is, to ∇u�(x1), but the dipole moments
p2(ωn) span the whole two dimensional space (cf. also Example 6.1).

Choosing any of the frequencies ωn, n ∈ N, it follows from (3.1) that the corresponding
relative data hδn satisfy

1

δ2
hδn ≈ h◦n = cn∇u�(x1) · ∇zN(·, x1) + p2(ωn) · ∇zN(·, x2)

for some cn ∈ C and, hence, that for z = x1,

(9.1) φz,pz ∈ span{h◦n | n ∈ N} ⊕ span{e1 · ∇zN(·, x2), e2 · ∇zN(·, x2)} ,
where φz,pz is as in (3.3) with pz of (3.4).
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Moreover, as in Proposition 3.1 one can prove that the test (9.1) holds true if and only
if z ∈ {x1, x2}. Using hδn instead of h◦n, we can approximate the right-hand side of (9.1) to
test whether z ∈ D is the (approximate) location x1 of the other obstacle. Accordingly, weak
failures are easy to cure by a simple postprocessing step without spoiling the simplicity of the
basic algorithm.

10. Numerical examples. In this section we provide two numerical examples for the mul-
tifrequency MUSIC scheme. In these examples D is the unit disk, and the spatial component
f of the AC boundary current is given by

f(x) = cosϑ , x = (cos ϑ, sinϑ) ∈ ∂D ,

so that u�(x) is the first coordinate of the spatial variable and ∇u�(x) = e1 for every x ∈ D.
All obstacles to be considered below have the same material parameters σl = 0.5 and εl = 1,
and data (on Γ = ∂D) are generated with a boundary integral equation method for n∗ = 8
driving frequencies

ω1 = 0.02, ω2 = 0.1, ω3 = 0.2, ω4 = 0.3,
ω5 = 0.5, ω6 = 1, ω7 = 2, ω8 = 10.

Our visualizations of the numerical reconstructions show the logarithm of the cotangents of the
angle between the test functions φz,p (minimized over p for Algorithm 6.2) and the span of the
dominating singular functions of Aδ : R

n∗ → L2�(Γ). These numbers are large (corresponding
to a hot spot of the reconstruction) when the angle is close to zero so that the test point
approximates the location of a certain obstacle, while they are moderate elsewhere.

To begin with we note that for two obstacles of finite extent it is difficult to distinguish
a failure of Algorithm 6.2 from its generic behavior because the rank degeneracy of A◦ is a
limiting effect as δ → 0 which is somewhat blurred when δ > 0. However, as soon as a third
generic obstacle is present the failure of the algorithm is discernible. In that case the range of
A◦ is spanned by the two independent dipoles located in the additional obstacle and by one or
two combinations of dipoles located in the other two obstacles; the three or four dominating
singular functions of Aδ span a subspace of L2�(Γ) which is a perturbation of R(A◦), while
the next to leading order singular functions of Aδ have various seeds. As such, test dipoles
located in the additional obstacle fit very well into the range of Aδ and this determines the
amplitude of the colorbar for the function to be visualized, whereas the match of the other
ones is much poorer and therefore has no observable impact on the visualization.

Accordingly we only show numerical examples with three obstacles in this section. The
first of these examples treats a generic situation without failure of the algorithm, where three
inclusions are located in the E, N, and SW of the disk, respectively. Figure 4 shows the
corresponding reconstruction together with the exact contours of the three obstacles which
are small, but far from “infinitesimal.” We mention that the two obstacles in the E and SW
have been generated by cubic interpolation of a few handpicked points on the boundary; the
obstacle in the N is an ellipse. In this figure the left-hand plot provides the reconstruction of
the traditional MUSIC scheme with the test dipole moment (3.4) proposed in [1]; the right-
hand image, on the other hand, shows the result of Algorithm 6.2, minimizing for each test
point z ∈ D the angle between φz,p and the span of the six dominating singular functions of
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Figure 4. Three inclusions: generic case. Traditional MUSIC scheme with pz of (3.4) (left) and Algo-
rithm 6.2 (right).

Figure 5. Three inclusions that cause a failure. Traditional MUSIC scheme with pz of (3.4) (left) and
Algorithm 6.2 (right).

Aδ over 32 dipole moments p ∈ S
1. Note that there is no substantial difference between the

two reconstructions.
For a second example we replace the obstacle in the E by another ellipse that is geometri-

cally similar to the one in the N but is aligned with the coordinate axes, so that the two ellipses
match the description in Example 6.1. Accordingly, the traditional MUSIC scheme from [1]
should encounter a fatal failure for this second case, i.e., this algorithm should only detect
the obstacle in the SW, given that this obstacle doesn’t introduce additional problems—the
generic situation. The multifrequency MUSIC scheme (Algorithm 6.2), on the other hand,
should also find the ellipse in the N and only fail to find the new ellipse in the E (weak failure).
As can be seen in Figure 5, this is indeed the case.

Figure 6 shows the singular values of Aδ for the two cases: The dots are the singular values
for the second example (the problematic one), the circles are the ones for the generic example.
In either case the singular values drop extremely rapidly—indicating the ill-posedness of the
problem—but interestingly enough, the difference is not as big as one might expect. For
the numerical reconstructions shown above, the test dipoles φz,p have always been projected
onto the span of the left singular vectors corresponding to the k∗ = 6 dominating singular
values as indicated by the dashed line in Figure 6. However, the reconstructions don’t change
significantly when k∗ ∈ {5, 6, 7}; only when the full range of Aδ is used (k∗ = 8) are all three
obstacles barely visible due to the presence of the higher order terms in Aδ.

Finally, Figure 7 demonstrates the effect of the postprocessing step outlined in section 9,
once the positions of the two obstacles in the N and SW have been identified from the right-
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Figure 6. Singular values for the two numerical examples.

Figure 7. Reconstruction after postprocessing, based on the right-hand plot in Figure 5.

hand plot in Figure 5. In Figure 7 the ellipse in the E can also be detected; of course, the
reconstruction of the previously determined obstacles is much brighter now (in fact, the color
bar has been cropped at the old maximal value to compensate for this effect) because the
associated dipoles have been appended to the range of A◦. We mention that this second run
gives no improvement at all, if only the obstacle in the SW has been identified after the first
run—as is the case for the original scheme with the test function (3.7).

11. Concluding remarks. We have shown that the multifrequency MUSIC scheme (Al-
gorithm 6.2) can be used as an imaging technique to locate several small obstacles within
a homogeneous conducting medium from AC current/voltage measurements on the bound-
ary, provided that enough probing frequencies can be applied and that the gradient of the
background potential is nonzero.

We have also discussed certain degenerate instances (depending on the shape of the ob-
stacle, its material parameters, and its orientation relative to the electric current flow in the
homogeneous reference medium), where the given data do not suffice to identify the material
parameters and the shape of a single object; these configurations include certain ellipses, but
it is not yet known whether shapes other than ellipses exist that satisfy the corresponding
requirements. When the material parameters are known or can be identified, the data are rich
enough to provide shape information as well (cf. [9]). It remains an open problem as to what
extent the shape is uniquely determined in this case.

The multifrequency MUSIC scheme does always locate a single obstacle. In the presence of
two obstacles the method may run into weak and/or fatal failures, i.e., geometric configurations
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where only one or none of the obstacles can be found. A weak failure is easy to cure with
a simple postprocessing step. Fatal failures, on the other hand, can only be cured with
modifications that have higher computational complexity. On the other hand, the good news
is that fatal failures are rare; they occur in the following cases:

(a) Both obstacles satisfy the aforementioned requirements that prevent the identification
of their (different) material parameters from the given data (Theorem 7.1).

(b) The two obstacles are geometrically similar, have the same material parameters, and
their orientation is aligned with the gradient of the background field (Example 6.3).

(c) Both obstacles are geometrically similar to a reference shape, the polarization ten-
sor of which is a diagonal matrix, e.g., a shape that exhibits a reflection symmetry
(Example 8.3).

(d) The two (nonsimilar) obstacles have polarization tensors of a very special form (see
Theorem 8.2); yet we don’t know whether there are any examples beyond those in (c)
for which this is the case.

Items (b) and (c) extend to shapes that are only polarization equivalent in the sense of
Definition 2.2 to the ones listed above.

This enumeration may be incomplete in that we did not fully analyze fatal failures for
shapes that aren’t simple in the sense of Definition 8.1. As for item (d) it can be contested
whether nonsimple shapes lead to further counterexamples of any significant relevance.
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Arch. Ration. Mech. Anal., 185 (2007), pp. 143–184.
[13] A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomo-

geneous media, Inverse Problems, 18 (2002), pp. 1025–1040.
[14] R. Kress, Linear Integral Equations, 3rd ed., Springer, New York, 2014.



MULTIFREQUENCY IMPEDANCE IMAGING 967

[15] J. Plemelj, Potentialtheoretische Untersuchungen, B.G. Teubner, Leipzig, 1911.
[16] B. Scholz, Towards virtual electrical breast biopsy: Space frequency MUSIC for trans-admittance data,

IEEE Trans. Med. Imaging, 21 (2002), pp. 588–595.
[17] B. Scholz and R. Anderson, On electrical impedance scanning—principles and simulations, Elec-

tromedica, 68 (2000), pp. 35–44.
[18] C.W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1992.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


