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Abstract — The subject of the paper is the derivation and analysisiaf tirder finite volume evolu-
tion Galerkin schemes for the two-dimensional wave egoatistem. To achieve this the first order
approximate evolution operator is considered. A recoviEgesis carried out at each level to generate
a piecewise polynomial approximatiéi' = R,U" € S from the piecewise constab® € S, to feed
into the calculation of the fluxes. We estimate the trunca@oor and give numerical examples to
demonstrate the higher order behaviour of the scheme foottnsolutions.

Keywords: hyperbolic systems, wave equation, evolution Galerkiresads, recovery stage, finite
volume

1. INTRODUCTION

Evolution Galerkin methods (EG-methods) were proposedofiraximate evolu-
tionary problems of first order hyperbolic systems. In [1Gtkamp derived such
schemes for the approximation of the solution of the waveaggn system as
well as the Euler equations of gas dynamics in two space diioes. In [3], [6]
Lukacova, Morton and Warnecke constructed further Effemes, namely EG1,
EG2 and EG3. In [14] Zahaykah derived the approximate elamuperator of the
solution for the wave equation system in three space diroesslUsing these re-
sults new 2D EG schemes, namely FREG, SREG and EG4 schemesievared,
cf. [14]. These methods were applied to the Maxwell as welioathe linearized
Euler equations, see [9]. The second order finite volume E@aus have been in-
troduced and studied in [5], [7], [8].

The main objective of this paper is the analysis of third o8& schemes for
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the wave equation system in two space dimensions. The bictesistics theory
of linear hyperbolic systems is used to obtain the exacgmteequations which
are equivalent to the differential form of the system undarsideration. Applying
certain types of quadratures we derive approximate ewoluperators. Projecting
these operators on a finite element space of piecewise otmste end with first
order evolution Galerkin schemes. To increase the accuvaaarry out a recovery
stage before the evolutionary step in the finite volume canson.

The outline of this paper is as follows: in the next sectionpsesent the general
theory that is used to derive the exact integral equationSektion 3 we introduce
the evolution Galerkin schemes. The exact integral equats well as the approxi-
mate evolution operators for the wave equation system inr2@isen in Section 4.
The analysis of third order schemes is given in Section Glliim Section 6 nume-
rical tests, which demonstrate third order behaviour ofsmiieme, are presented.

2. GENERAL THEORY

In this section we recall the exact integral equations foemegal linear hyperbolic
system using the concept of bicharacteristics. The gefaral of the linear hyper-
bolic system is given as

d
Ui+ Y AUy =0, X=(X1,...,%q)" € RY (2.1)
k=1

where the coefficient matrice&y, k = 1,...,d are elements oRP*P and the de-
pendent variables até= (uy, ..., up)T =U(x,t) e RP. LetA(n) = zﬂzl nAg be the
so-calledmatrix pencil wheren = (ny,...,ng)" is a directional vector ifRY. Since
system (2.1) is hyperbolic then the mattixn) haspreal eigenvaluedy, k=1,....p
andp corresponding linearly independent right eigenvectes ri(n), k=1, ..., p.
Let R = [r1]r2]|...|rp] be the matrix of right eigenvectors. Then we can define the
characteristic variablé/ = W (n) asdW (n) = R~19U, wheredW, dU denote the
Jacobian matrices & (x,t), U(x,t), respectively; i.edW (n)/dt = R~19U/dt and
OW(n)/dxx =R1oU/dx, k=12 ...,d.

Since system (2.1) has constant coefficient matrisgsve haveW = R~*U or
U=RW.

Multiplying equation (2.1) byR~* from the left we get

d
R™IU + > RARR U, =0. (2.2)
k=1

Let By =R AR = (b}‘j)szl, wherek = 1,2, ...,d then equation (2.2) can be re-

written in the following form
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P=(x,t+ At)

Figure 1. Bicharacteristics along the Mach cone throlyandQj(n), d = 2.

d
Wi+ S BiWy, =0.
k=1

If we introduce the decompositidB,=Dy+B;., whereDy contains the diagonal part
of the matrixBy, then we get

d d
Wi+ 3 DiWy, = — 5 BiWy, =:S. (2.3)
k=1 k=1

Thei-th bicharacteristic corresponding to thth equation of (2.3) is defined by

dx;

d_fl = bii(n) = (b, bF,....bH)T,

wherei =1,...,p. Hereb}? are the diagonal entries of the matix, k=1, ...,d,
i=1,..p.

We consider the bicharacteristics backwards in time ftapd\t to t, wherelt is a
suitable time step. Let the initial conditions kgt + At,n) = x for all n € RY and
i =1,...,p. Then the bicharacteristics are givenxad,n) = x — bj (n)(t + At — ),
feltt+At].

We will integrate thé-th equation of the system (2.3) from the point P down to the
point Q;(n), where the bicharacteristic hits the basic plane, see &igurhe point
P=(x,t+At) € RP xR, is taken to be a fixed point, whil@;(n) = (xj(n,t),t) =
(x — Atbji,t). Note that bicharacteristics are straight lines becauseysm is li-
near with constant coefficients. Now thth equation reads

aw aw d ow OW; ow
o Z k l_ < lz# <'dej+ Izjd J—I— +b|dla J))ZS, (2.4)
j=L1#]j
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Taking a vectow; = (b}, b?,...,bd 1), we can define the directional derivative
dwi _ (Ow Ow 0w QW) L OW 0w 0w 0w
do, \9x 9% oxg ot ) T at | 'oxg  'dx " oxqg

Hence tha-th equation (2.4) can be rewritten as follows

S _g=— g Y- S R i By
do; j:;#j Tox, T gxy "1 0xg
Now the integration fron® to Q;(n) gives
wi(P) —wi(Qi(n)) =S, (2.5)
where
t+At o At
S: S(Xi(tan)’tan)dt: S(Xi(T,n),t-l—At—T,n)dT.
t 0

Multiplication of equation (2.5) bR from the left and d — 1)—dimensional integra-
tion of the variablen over the unit spher® in RY leads to the integral representation

wi(Q1(n),n)
1 w2(Qz(n),n)
U(P) = Ul t+a0) = & LRy | w0 fd0+5  (28)

Wp(Qp(),N)
where

~(8.%,..8)7 10\/ n)Sdo = ‘O’//m (t + At — 7,n)drdO

and|O| corresponds to the measure of the domain of integration.

3. EVOLUTION GALERKIN SCHEMES

For simplicity let us consided = 2. Leth > 0 be the mesh size parameter. We
construct a mesh fdk?2, which consists of the square mesh cells

Q= [k= i ] [o- D+ n] = b Boxcr 3 [ = Fn+ ]

wherek,| € Z. Let us denote by1*(R?) the Sobolev space of distributions with
derivatives up to ordeg in L? space, where: € N. Consider the general hyper-
bolic system given by the equation (2.1). Let us denoteEks) : (H*(R?))P —
(H*(IR?))P the exact evolution operator for the system (2.1), i.e.

U(.,t+9) = E(SU(.,1). (3.1)
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We suppose the®' is an arbitrary finite element space consisting of piecepisy-
nomials of ordem > 0 with respect to the square me§ff: C (Li.(R?))P. Assume
a constant time step, i..= nAt. LetU" be an approximation in the spagg to the
exact solutiorl(.,t,) at timet, > 0. We consideE; : (L% (R?))P — (H*(R?))P to
be a suitable approximate evolution operator to the exastiBon operatolE (1),
cf. (3.1). In practice we will use restrictions Bf to the subspac§' for m> 0. We
denote byR, : (H*(R?))P — " the L2-projection ontoJ". Now we can define the

general class of evolution Galerkin methods.

Definition 3.2. Starting from some initial datd® € 9" at timet = 0, anevolu-
tion Galerkin method (EG-metho®®) recursively defined by means of

U™t = pE U (3.3)

For first order methods we can limit our consideration to theeavhere) is com-
posed of piecewise constant (nonconforming) finite elemant defind?, by the
integral averages in the following way

PU" g, = U(X,Y,tn)dxdy.

Q| Joy
Higher order accuracy can be obtained either by taking O with a suitable pro-
jection ontoS!, or by inserting a recovery stag®, before the evolution step in
equation (3.3) to give

U™l = RE;R,U". (3.4)

Here we have denoted W, : S}‘ — 31 a recovery operator,> m> 0, and consi-
dered our approximate evolution operakyron §,. In what follows we will limit
our further considerations to the case where: 0 andr = 2. The finite difference
approach (3.3) or (3.4) involves the computation of multippitegrals and becomes
quite complex for higher order polynomials. To avoid this wi# consider higher
order evolution Galerkin schemes based on the finite volumadlation instead.

Definition 3.5. Starting from some initial datdl® € 3}‘, the finite volume evo-
lution Galerkin method (FVEG) is recursively defined by neah

n+1 n_ 1 A g )+ g
uml_y _H/o 3 8f(0m &), (3.6)
=1

wheredxjfj(O”Jrﬁ) represents an approximation to the edge flux differencedand

is defined bydy = v(x+ 1) —v(x— ). The cell boundary valug"*# is evolved
using the approximate evolution operafey to t, + r and averaged along the cell
boundary, i.e.

1

Orta = ( E U“ds> , 3.7
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whereyy is the characteristic function ofQy.

In this formulation a first order approximatidgy to the exact operatdg(7) yields
an overall higher order update frob" to U™, To obtain this approximation in
the discrete scheme it is only necessary to carry out a regetage at each level to
generate a piecewise polynomial approximatiih= R,U" € §, from the piecewise
constantJ" € $ to feed into the calculation of the fluxes. Later in Sectiamebwill
show which recovery can be used to achieve a third order ajppation. To close
this section it is important to note that in the updating &) some numerical
guadratures are used instead of the exact time integr&iaonilarly, to evaluate the
intermediate valu&™ a in (3.7) either the two dimensional integrals along the-cell
interface and around the Mach cone are evaluated exactly ordans of suitable
numerical quadratures.

4. EXACT INTEGRAL EQUATIONS AND APPROXIMATE EVOLUTION
OPERATORS FOR THE WAVE EQUATION SYSTEM

We will consider the two dimensional wave equation systevergas

¢ +clux+w)= 0
Uh+cpy= 0 (4.1)
Vt+C¢y: Oa

wherec is a given constant. We denote by= (¢,u,v)" the vector of conservative
unknowns and by;(U) = (cu,c¢,0)T, fo(U) = (cv,0,cd)T flux functions. Then
the two dimensional wave equation system (4.1) can be ttewiih the conservation
law form

Ui +f1(U)x+f2(U)y =0. (4.2)

Now we recall here the exact integral equations derived]iriliéese will be used in
order to construct the so-called EG4 finite difference s@héerhe detailed descrip-
tion of the approximate evolution operators for the otherdeBemes (EG1, EG2,
EG3) are given in [6].

Let P = (x,y,t + At), P = (x,y,t), Q = (X + cAtcosd,y + cAtsind,t) = (x +
cAtn(9),t) and the so-called source term be given as

S = c[usird — (uy+Vy)sind cosd +v,cos I, (4.3)

then we have
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Exact Integral Equations:

2 ~
dp — %T/ (¢q — UgCos? —vosing)dd + S (4.4)
0
1 1 f2n - 2
U = et Zr/ (—$COSY + ug oS & +Vosing cosd )dd + S(4.5)
0
1 27T
Vo = SVt _/ —PoSind + ugcosd sind +Vosit 9)dd + S (4.6)

where
. -1 At
§ = / S(x+cTn(d),t +At—1,9)drd9,
21 0
- 1 2 pAL
S = —/ / cosdS(x+crn(d),t+At—1,9)drdd
2itjo Jo

2m At
_i/o /0 [Cx(X,t + At — T)SIN* 9 — oy (x,t + At — T)sind cosd| dr dI,
v LA
33:_/ / sind§(x +ctn(d),t + At —1,9) drdd
2rmJo Jo

2m pA
— / / [Chy(x,t + At — T) cOS I — cu(X,t + At — T) sind cosd| dr dS.
o Jo

The above integral equations give us an implicit formulatid the solutionU™t?!

at the pointP = (x,y,t"*1). In order to obtain an explicit numerical scheme it is ne-
cessary to use some numerical quadratures in order to apyaiexthe time mtegral
from 0 toAt. Using the backward rectangle rule leads us t@dnt?) approxima-
tion of the time integrals appearing $, S andS;. Further we use the following
result [6], Lemmaz2.1

21 2
At/ Sit,9)ds :/ (UCOSS +Vsing )ds .
0 0

This already yields the approximate evolution operatortfierfirst variableg. Si-
milar expressions can be used &os3 andSsind to obtain approximations far
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andy, cf. [6]. Note that in these formulae we replaced the spdtaivatives ofu, v
in Sjust byu, vthemselves.

Approximate evolution operator for EG4:

21T
bp — %T | (80~ 2uqcoss — 2vgsing)d + O(At?), 4.7)
0
1 gor .
Up = ZT/ (—2¢qCosd + 2ugcosg d + 2vgsing cosd )ds + O(At?),  (4.8)
0
1 21T
Vo= o / (—2posing + 2ugsing cosd + vosi 9)dd + O(AtD).  (4.9)
0

5. THIRD ORDER FINITE VOLUME EG-SCHEMES

As we mentioned in Section 3, a mechanism of obtaining higinder evolution
Galerkin schemes is to use the approximate evolution opecst a finite dimen-
sional space of piecewise polynomials of higher degrees hih be accomplished
by carrying out a recovery stage before the evolutionary. S$ee, e.g. Sonar [11],
[12], for the general theory of higher order schemes for hyplic systems using
recovery. Second order FVEG methods were studied in [5][8T] In this section
we aim to derive a third order evolution Galerkin scheme Ifar tivo dimensional
wave equation system. On each mesh@gllthe recovery stage that we use is given
by the following biquadratic polynomial

2 2 DIJU i J
o = i;;;;?(x_xk) (y—w), kI €Z, (5.1)

RaU"

with coefficientsD'/U = (D' ¢,D'lu,D'Iv) € R3. Here U" denotes a piecewise
constant approximation on the square mesh. The constantdkthe recovered
polynomial is adjusted in such a way that the recovery is eomadive, i.e.

1 1
= [ RyU"dxdy = —/ UNdixdly. 5.2
h2 le Rh y h2 le y ( )
The recovered polynomid,U" is used only on the cefdy, but uses values from
the eight neighbouring cel@y.1)+1. We also take it to satisfy the following pro-
perty

1

» / R,U"dxdy— — / Undxdy (5.3)
Q1141 Q1141

h2
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This means that the nine coefficier® U of the polynomialR,U" are determined
in such a way that they maintain the nine cell averages"obn Qi and its eight
neighbors. For such a recovery it was proved by Sonar [1Jdpmdm 4, that oy

Ux,y,t") = RyU"(xy) = 0(h®) (5.4)
holds for any functiord(.,t") € C3(Qy).

In what follows we will first demonstrate that a recovery stag the form (5.1) in
(3.4) produces a third order of accuracy in the space.

Theorem 5.6. LetU be a G solution of the two dimensional systef#.1). Let
E; be the EG4 approximate evolution operator define¢lir)-(4.9)and R, be the
recovery operator onto a finite element space of piecewipedgiratic polynomials
satisfying(5.2) and (5.3). Then the resulting evolution Galerkin sche(Bet) is of
order &(h®) in space and of orde¢’(At?) in time.

Proof. Without loss of generality we just consider in detail thetfasmponent
¢, i.e. equation (4.7). The other components may be treat@dgwously. Then
1

2n
b — ET/ ($o — 2c0s9 g — 2sindvo) d9 + G(AL?), (5.7)
0

whereP = (x,y,t + At) andQ = (x+ cAtcosd,y+ cAtsind,t). We remind that

. h h
Qu = [Xk—%vxk+%] X [y|—%7y|+%] with Xerd :in§7 Yzl =V ié-

Averaging over the square cély and using the recovefi, we get

ne1 L el Pl g an o cosIRU — 2sin9 R 49 dyd
K —2—nthk1 . Jo (Rh¢g — 2c0sIRyUg — 2Sind Ry V) yaXx.
—2 2

(5.8)
HereU" denotes thé&2-projection of the exact solutiod onto a piecewise constant
function with respect to our square mesh, obtained by caticig the integral ave-
rage on each cell. Now it is well known that given a functibrof two variables
x andy which is sufficiently smooth, it is possible to expand it Ve tfollowing
Taylor-type formula

LS (x=x)'(y=y)!
f(x,y) = A £l (%, ¥1) + R, 5.9
oy =3 3 EE o) 59)
wherefll = %;y—'). The remaindeR is given as

— r+1 _ v )St1
_ (X(r j_(k:z)l le’O(E,y) + (y(s_illj)_)' fO,SJrl(X’n)

(x—x) Ty —w)s 40
T D) (st 1) FrEeEn),
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with & andn being the same in all terms in which they occur, see e.g. Stdrg].
LetC'+15t1 be a space of functions having- 1 ands+ 1 continuous derivatives in

thex—, y— direction, respectively. Assume thfatu, v e C'15t1 then the following
integrals

2
T~ / "(BFLO(E y) — 2c0sU T LO(E y) — 28INSVTLO(, y))oCAtdd,
0

2n
0951 (x,n) — 2cosuPst(x,n) — 2sindVPSTL(x, n))ocAtds,
2rnicAt Jo Q

2n
2rct /0 (¢r+17s+1(5’ n)— 2C039ur+175+1(5’ n)

—2sindV LS(E n))ochtdd,

are bounded. Thus, averagigg in equation (5.7) on the square célk and ap-

proximating the functiong, u andv by using the Taylor-type formula (5.9) with
r=s=2we get

o (),

—200&9( X'y =yl U (%, y|)>
Q

| J ilj!

(x=x)'(y—w)] iLj
—2singd (ZZ) ! vI J(xk,y|)> Q) d?d dydx

+0(h®) 4+ 0(h®) + 0(1°) + o(Lt?).
It follows from the proof of (5.4) that

¢ ~Dg| = o), [u) - Dluj = 6 (R%), M) DIV = & (n%),

foranyi, j =0,1,2, see [11]. Therefore, we can write

%3 el [T 2 2 pi
I A A (( 3 S y|)>Q
5 St9(2 2 DI] ))
—2co y Yi
%;UJI 0
2 (22[)”" )>)d{9dd
—-2sind y Yi ydx
EO%HJI o
+
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Hence|¢p — ¢ = 0(h®) + 0(At?). This concludes the proof of the lemmal]
Analogously we have the following theorem.

Theorem 5.10. If we use Simpson'’s rule as quadrature(t7) and if the reco-
very is of the typ€5.1) such that(R,U"(x,y) — U(X,Y;t;)) = &¢(h®) holds for each
fixed timet and(x,y) € Qy, then the finite volume approximati¢®.6) and(3.7)is
of third order accurate in space, provided that exact solutd is from C.

Proof. Firstlet us consider exact integration in (3.7). Basictily integral ave-
rages over the celdy are replaced by averages along each edge of the cell boun-
dary with one variable frozen. It is easily seen that oneiobtthe same order of
approximation as before. When Simpson'’s rule is taken, we ha ordew’(h°) for
the integral and therefor€ (h*) for the average. So the spatial order is maintained.
O

Remark 5.11. The results of Theorems 5.6 and 5.10 hold also for any of the

approximate evolution operators EG1, EG2, EG3 and the appate evolution
operator of Ostkamp. See, e.qg.,[6], [10] for the precisenit&fn of the operators.

6. NUMERICAL TESTS

Example 6.1.
Consider the two dimensional wave equation system togettieithe initial data

¢ (x,y,0) = —(sin(2mx)+ sin(2my)),
ux,y,0) = v(x,y,0) =0, (6.2)

where(x,y) € [—1,1] x [-1,1]. The exact solution is

d(X,y,t) — cog2mtt)(sin(2mx) + sin(27y)),
u(x,y,t) = sin(2nt)cog2rnx), (6.3)
v(x,y,t) = sin(2mt)cog2my).

Let Un(T) and UR, denote, respectively, the exact and the approximate eoluti
evaluated on a mesh with x N cells. The following two tables show the-error

on the subdomaifD, 1] x [0,1] and the experimental order of convergence (EOC),
which is defined using two solutions compute on meshes Mitk N1 andN, x N»

cells, as follows
[[Un, (T) = U, ( )
EOC=In In
U =g, ™ (N,
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The numerical experiments are carried out with the finiteuve@d EG4 scheme
(FVEGA4), cf. (3.6), (3.7) for the definition of the FVEG schemand (4.7) - (4.9)
for the EG4 approximate evolution operator, which is paftidy used here. The
integrals in (3.6), (3.7) along time intervéd, At] and along cell interfaces @y

are approximated by the Simpson rule. Note that in our coatjoms the Mach
cone integrals with respect &, which appears in approximate evolution operator
(4.7)-(4.9) are evaluated exactly. We take the absolute Tim- 0.2 andT = 0.4,
respectively, and set the constarfbr the wave equation system to 1. The last co-
lumns of Tables 1 and 2 demonstrate that the experimentat ofcconvergence is
3. This confirms our theoretical results that the method thiod order, cf. Theorem
5.10.

[N | (M) —¢" | (uT)—u | UT)-U" | EOC |

| 20 | 0.00371611457 0.01967501454 0.02807172781 |

| 40 | 0.00080037813 0.00235135064 0.00342027847 3.0369 |

| 80 | 0.0001273303(Q 0.00027906337 0.0004146875] 3.0440|

| 160 | 0.00001930514 0.0000331103§ 0.00005064863 3.0334|

| 320 | 0.0000030563] 0.00000384377 0.0000062362( 3.0218|
Table 1. EG4 scheme, T=0.2, CFL=0.10.

[ N[ 9(M=9"l | um-u | JUT)-U7 | EOC |

| 20 | 0.04642912334 0.01739759142 0.05254536962 |

| 40 | 0.00557834321 0.00257589619 0.00666246166 2.9794|

| 80 | 0.0006633385] 0.00034783539 0.00082583103 3.0121 |

| 160 | 0.00007838179 0.00004674909 0.00010254107 3.0096 |

| 320 | 0.00000897168 0.00000651197 0.00001285695 2.9956 |
Table 2. EG4 scheme, T=0.4, CFL=0.10.

Note that the CFL number, CEL%, is taken relatively very small in order to
guarantee stability of this third order scheme. This is d-kebwn feature of higher
order schemes which are based on an approximate operaith isiot stable up to
CFL=1. It was shown in [14] that the EG4 approximate evolutionrap® is stable
only up to the CFE= 0.72. As a result also the stability region of the higher order
FVEG4 scheme is reduced considerably. Note that in ourdortting paper [4] we
have derived a new approximate EG operator, which is stable a natural stability
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limit CFL= 1. The results of this paper extend naturally also to the névoperator

and such a third order scheme is stable up to €HRL Third order FVEG scheme
derived in this paper for the wave equation system can beealsity generalized
to nonlinear hyperbolic problems, e.g. the Euler equatmingas dynamics or the
shallow water equations.

Example 6.4.

This test contains a discontinuity in the initial data. Is&t to be

o(xy,00 = 0,

B I R )
u(xy,0) = V(X7Y7O)—72{ —1, elsewhere

In Figures 2 and 3 the isolines of the computed approximdteigns for the first,
the second and the third order FVEG4 schemes are shown. Tingutational do-
main [—1,1] x [-1,1] was divided into 40& 400 cells, the absolute time is set to
be Q4 and the CFL number for the first, the second and the thirdradgemes is
0.55, 045 and 0.1, respectively. A cross-section plot along theylie: 0 is shown
in Figure 4.

In [2] structure of the exact solution to the above initialte problem was studied.
Particularly for the cross-sectign= 0 the exact solution at time= 0.4 reads:

0.4/¥2.4/2) ~1,-04v/2,
Gy =] ©00 x € (—0.4v/2,—0.4]
YT (- 1 0,0) x € [0.4,0.4v/2)
(0,1/v2,1/V?) x € [0.4v/2, 1]

In the so-called subsonic regigr0.4,0.4] all components are continuous and the
first component) changes monotonously from the valuexat —0.4 to its value at
x=0.4.

It can be observed from the isolines as well as from the 1Daidtits comparison
with the analytical values that the first order FVEG4 scherag & considerable
numerical dissipation and discontinuities are smearedidw second order FVEG4
scheme resolves shocks much better but it produces soniatimes. The third
order FVEG4 is clearly the best. It obtains less dissipadiod it resolves better the
shocks.
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Figure 3. Isolines of the approximate solution obtained by FVEG4dirder scheme.
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FVEG4, phi(x,0), T=0.4, mesh size:400x400, CFL=(0.1 :3rd, 0.45 :2nd, 0.55 :1st)
T

-15 L
-1 0 1

FVEG4, u(x,0), T=0.4, mesh size:400x400, CFL=(0.1 :3rd, 0.45 :2nd, 0.55 :1st)
T

-05 b

y=0

FVEGA4, v(x,0), T=0.4, mesh size:400x400, CFL=(0.1 :3rd, 0.45 :2nd, 0.55 :1st)
T

-25 L

-1 0 1

Figure 4. ¢, uandv along the cross sectign= 0.
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