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The subject of the paper is the study of several nonreflecting and reflecting boundary conditions for the evolution Galerkin
(EG) methods which are applied for the two-dimensional wave equation system. Different known tools are used to achieve this
aim. Namely, the method of characteristics, the method of extrapolation, the Laplace transformation method, and the perfectly
matched layer (PML) method. We show that the absorbing boundary conditions which are based on the use of the Laplace
transformation lead to the Engquist-Majda first and second order absorbing boundary conditions, see [3]. Further, following
Bérenger [1] we consider the PML method. We discretize the wave equation system with the leap-frog scheme inside the
PML while the evolution Galerkin schemes are used inside the computational domain. Numerical tests demonstrate that this
method produces much less unphysical reflected waves as well as the best results in comparison with other techniques studied
in the paper.
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1 Introduction

It is well known that to solve a differential equation numerically in an unbounded domain it is necessary to restrict the
computations to a bounded domain Ω. Therefore we need to introduce boundary conditions on artificial boundaries. As a
consequence the question arises “Is there a boundary condition such that the solution of the problem in Ω together with this
boundary condition coincides exactly with the restriction to Ω of the solution in the unbounded domain?”. Such boundary
conditions are called nonreflecting boundary conditions or absorbing boundary conditions.

On the other hand in the case of a physical boundary it is necessary to reflect the solution (wave) from the boundary
completely. These boundary conditions are called reflecting boundary conditions.

Regarding the above question, many techniques were developed either for the scalar wave equation or for linear systems of
hyperbolic equations, see, e.g. Grote and Keller [5–7], Engquist and Majda [3], Higdon [9], Thompson [19, 20], and Bradly,
Greengard, and Hagstrom [2]. Moreover such absorbing boundary conditions appear often in electromagnetic computations
where many such conditions were developed, see e.g. the matched layer [10] which is based on the idea of surrounding
the computational domain with an absorbing medium whose impedance matches that of the free space. Others are the Mur
conditions [16], a perfectly matched layer for the absorption of electromagnetic waves [1], and many others.

In this paper known nonreflecting and reflecting boundary conditions for the two dimensional wave equation system are
considered and applied for the evolution Galerkin (EG) methods. The EG methods were studied by Lukáčová, Morton,
and Warnecke in [12, 13] for the multidimensional hyperbolic systems. These methods belong to the class of genuinely
multidimensional schemes. Typically the dimensional splitting FV methods approximate solution only in normal directions to
cell interfaces. On the other hand the EG methods use the approximate evolution Galerkin operators, which are based on the
use of the bicharacteristics of multi-dimensional hyperbolic systems, such that all of the infinitely many directions of the wave
propagation are taken into account, see Sect. 2. Until now, the EG methods had been applied to easy test cases with periodic
or other simple boundary data. For really interesting physical applications it is necessary to demonstrate that the EG schemes
are compatible with more sophisticated numerical boundary treatments.

The outline of the paper will be as follows: in the next section we give a brief description of the EG methods. For more
details on these schemes the reader is referred to [12–15, 17]. In the second section we follow Thompson [19, 20] and use the
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method of characteristics to derive nonreflecting boundary conditions as well as reflecting boundary conditions for the wave
equation system. We also apply directly extrapolation to the wave equation system to produce an absorbing boundary condition.
This does not always produce satisfactory numerical results, see e.g. [14]. Therefore we consider other numerical techniques.
Moreover in Sect. 3 we link the Laplace transformation and Fourier series to the two-dimensional wave equation system and
derive the Engquist-Majda, [3], absorbing boundary conditions. In the last part of Sect. 3 we briefly consider the absorbing
boundary conditions based on a perfectly matched layer (PML) which were developed by Bérenger [1]. In the third section
we present results of numerical experiments. The above boundary conditions will be combined with the EG methods inside
the computational domain. We use particularly the EG3, EG4 first order schemes and the FVEG3 second order scheme, see
Sect. 2. Finally, we emphasize that the best results were obtained when the PML method was used.

2 Evolution Galerkin methods

Evolution Galerkin methods, EG methods, were proposed to approximate hyperbolic conservation laws. An important feature
of such methods is that they take into account better the infinitely many directions of propagation of waves in multidimensional
cases. It is well-known, see [12–15, 17], that a basic tool to derive these schemes is the general theory of bicharacteristics of
linear hyperbolic systems. This theory is used to derive the system of integral equations which is equivalent to the considered
first order system, e.g. the wave equation system. Using certain types of quadratures, these integral equations lead to the
approximate evolution operator that build up the evolution Galerkin scheme.
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Fig. 1 Bicharacteristics along the Mach cone through P and Qi(n).

Let the general form of linear hyperbolic system be given as

Ut +
d∑

j=1

AjUxj
= 0, x = (x1, . . . , xd)T ∈ R

d, (2.1)

where the coefficient matrices Aj , j = 1, . . . , d, are elements of R
p×p and the dependent variables are U = (u1, . . . , up)T ∈

R
p. Let A(n) =

∑d
j=1 njAj be the matrix pencil with n = (n1, . . . , nd)T being a directional vector in R

d. Then using
the eigenvectors of A(n) system (2.1) can be rewritten in a characteristic form via the substitution W = R−1U, where the
columns of the matrix R are the linearly independent right eigenvectors of A(n). Since the coefficients of the original system
are constants, the bicharacteristics of the resulting characteristic system are straight lines PQi and PP ′ generating the mantle
of the Mach cone, see Fig. 1. Diagonalizing this system and integrating along the bicharacteristics lead to the following system
of integral equations:

U(P ) =
1

|O|
∫

O

R(n)




W1(Q1(n),n)
...

Wp(Qp(n),n)


dO +

1
|O|

∫
O

∫ ∆t

0
R(n)S(t + τ,n)dτdO,

where O is the unit sphere in R
d, |O| its surface measure, and S is a nontrivial term which we call the source term. For more

details see [13]. The above integral equations give the exact representation of the solution which is however implicit in time, cf.
time integral of the source term. In order to derive a numerical scheme which is explicit in time several numerical quadratures
were applied and the resulting schemes were studied with respect to the accuracy and stability, see [12, 13, 15].

Next we recall two approximate evolution operators for the two-dimensional wave equation system (3.1), namely the
operator for the EG3 and the EG4 scheme.
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Approximate evolution operators:

• EG3 scheme:

φP =
1
2π

∫ 2π

0
(φQ − 2uQ cos θ − 2vQ sin θ)dθ + O(∆t2),

uP = 1
2 uP ′ +

1
2π

∫ 2π

0
(−2φQ cos θ + uQ(3 cos2 θ − 1) + 3vQ sin θ cos θ)dθ + O(∆t2),

vP = 1
2 vP ′ +

1
2π

∫ 2π

0
(−2φQ sin θ + 3uQ sin θ cos θ + vQ(3 sin2 θ − 1))dθ + O(∆t2).

(2.2)

• EG4 scheme:

φP =
1
2π

∫ 2π

0
(φQ − 2uQ cos θ − 2vQ sin θ)dθ + O(∆t2),

uP =
1
2π

∫ 2π

0
(−2φQ cos θ + 2uQ cos2 θ + 2vQ sin θ cos θ)dθ + O(∆t2),

vP =
1
2π

∫ 2π

0
(−2φQ sin θ + 2uQ sin θ cos θ + 2vQ sin2 θ)dθ + O(∆t2).

(2.3)

Evolution Galerkin schemes:
For simplicity let us take d = 2. Consider h > 0 to be the mesh size parameter. We construct a mesh for R

2, which consists of
the square mesh cells

Ωkl =
[
(k − 1

2 )h, (k + 1
2 )h

]× [
(l − 1

2 )h, (l + 1
2 )h

]
=
[
xk − h

2
, xk +

h

2

]
×
[
yl − h

2
, yl +

h

2

]
,

where k, l ∈ Z. Let us denote by Hκ(R2) the Sobolev space of distributions with derivatives up to the κ-th order in L2 space,
where κ ∈ N. Consider the general hyperbolic system given by eq. (2.1). Let us denote by E(s) : (Hκ(R2))p → (Hκ(R2))p

the exact evolution operator for the system (2.1), i.e.

U(., t + s) = E(s)U(., t). (2.4)

We suppose that Sm
h is a finite element space consisting of piecewise polynomials of order m ≥ 0 with respect to the square

mesh. Assume a constant time step, i.e. tn = n∆t. Let Un be an approximation in the space Sm
h to the exact solution U(., tn)

at time tn ≥ 0. We consider Eτ : L1
loc(R

2) → (Hκ(R2))p to be a suitable approximate evolution operator for E(τ). In practice
we will use restrictions of Eτ to the subspace Sm

h for m ≥ 0. Then we can define the general class of evolution Galerkin
methods.

Definition 2.5 Starting from some initial data U0 ∈ Sm
h at time t = 0, an evolution Galerkin method (EG method) is

recursively defined by means of

Un+1 = PhEτUn, (2.6)

where Ph is the L2-projection given by the integral averages in the following way:

PhUn|Ωkl
=

1
|Ωkl|

∫
Ωkl

U(x, y, tn)dxdy.

We denote by Rh : Sm
h → Sr

h a recovery operator, r ≥ m ≥ 0 and consider our approximate evolution operator Eτ on Sr
h.

We will limit our further considerations to the case where m = 0 and r = 1. Taking piecewise constants the resulting schemes
will only be of first order, even when Eτ is approximated to a higher order. Higher order accuracy can be obtained either by
taking m > 0, or by inserting a recovery stage Rh before the evolution step in eq. (2.6) to give

Un+1 = PhEτRhUn. (2.7)

This approach involves the computation of multiple integrals and becomes quite complex for higher order recoveries. To avoid
this we will consider higher order evolution Galerkin schemes based on the finite volume formulation instead.
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Definition 2.8 Starting from some initial data U0 ∈ Sm
h , the finite volume evolution Galerkin method (FVEG) is recursively

defined by means of

Un+1 = Un − 1
h

∫ ∆t

0

2∑
j=1

δxj fj(Ũ
n+τ/∆t)dτ, (2.9)

where δxj
fj(Ũn+τ/∆t) represents an approximation to the edge flux difference and δx is defined by δx = v(x+ h

2 )−v(x− h
2 ).

The cell boundary value Ũn+τ/∆t is evolved using the approximate evolution operator Eτ to tn + τ and averaged along the
cell boundary, i.e.

Ũn+τ/∆t =
∑

k,l∈Z

(
1

|∂Ωkl|
∫

∂Ωkl

EτRhUndS

)
χkl, (2.10)

where χkl is the characteristic function of ∂Ωkl.

In this formulation a first order approximation Eτ to the exact operator E(τ) yields an overall higher order update from
Un to Un+1. To obtain this approximation in the discrete scheme it is only necessary to carry out a recovery stage at each
level to generate a piecewise polynomial approximation Ũn = RhUn ∈ Sr

h from the piecewise constant Un ∈ S0
h, to feed

into the calculation of the fluxes. To construct the second order FVEG schemes, for example, we take the first order accurate
approximate evolution operator and define a bilinear reconstruction Rh. Among many possible recovery schemes, which can
be used, we will choose a discontinuous bilinear recovery using four point averages at each vertex. It is given as

RhU |Ωkl
= Ukl +

(x − xk)
4h

(∆0xUkl+1 + 2∆0xUkl + ∆0xUkl−1)

+
(y − yl)

4h

(
∆0yUk+1l + 2∆0yUkl + ∆0yUk−1l

)
+

(x − xk)(y − yl)
h2 ∆0y∆0xUkl,

where ∆0zv(z) = 1
2 (v (z + h) − v (z − h)) . Note that in the updating step (2.9) some numerical quadratures are used instead

of the exact time integration. Similarly, to evaluate the intermediate value Ũn+τ/∆t in (2.10) either the two dimensional integrals
along the cell-interface and around the Mach cone are evaluated exactly or by means of suitable numerical quadratures. Since
the approximate evolution operator Eτ contains an integral along the base cone (circle from 0 to 2π), see Fig. 1 and eqs. (2.2)
and (2.3), it is difficult to corporate boundary conditions directly into Definitions 2.5 and 2.8. In the next section we will use
well-known techniques to derive suitable boundary conditions to be used with EG methods.

3 Boundary conditions

Consider the Cauchy problem for c > 0 and (x, y) ∈ R
2

∂φ

∂t
− c∇ ·

(
u

v

)
= 0,

∂

∂t

(
u

v

)
− c∇φ = 0,

(3.1)

φ(x, y, 0) = φ0(x, y),

u(x, y, 0) = u0(x, y),

v(x, y, 0) = v0(x, y).

(3.2)

Let us take the computational domain to be Ω = [0, α] × [0, β] ⊂ R
2. Moreover, assume that there is no physical boundary,

i.e., Ω is obtained only by truncation of the whole domain R
2. As we mentioned, to derive appropriate boundary conditions for

this system we will consider several known techniques.

3.1 Boundary conditions based on characteristic methods

In this subsection we use the method of characteristics, Thompson [19, 20], and derive artificial boundary conditions at the
artificial interfaces x = 0, x = α, y = 0, and y = β of the computational domain. The system (3.1) can be rewritten in the
matrix form

Ut + A1Ux + A2Uy = 0, (3.3)

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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where

U :=


φ

u

v


 , A1 :=


 0 −c 0

−c 0 0
0 0 0


 , A2 :=


 0 0 −c

0 0 0
−c 0 0


 .

Put C = A2Uy and denote the matrix of the right eigenvectors of the coefficient matrix A1 by S = [r1|r2|r3]. It holds

S−1A1S = Λ1, where Λ1ij =


0 if i �= j,

λi if i = j, i, j = 1, 2, 3.

With these notations system (3.3) can be written as

S−1 ∂U
∂t

+ Λ1S−1 ∂U
∂x

+ S−1C = 0

or we can write it in the form

lTi
∂U
∂t

+ λilTi
∂U
∂x

+ lTi C = 0, (3.4)

where lTi is a left eigenvector of A1 and λi is the corresponding eigenvalue. Define Li to be

Li := λilTi
∂U
∂x

, (3.5)

then eq. (3.4) has the form

lTi
∂U
∂t

+ Li + lTi C = 0,

or equivalently

∂U
∂t

+ S L + C = 0, (3.6)

where L := (L1, L2, L3)T . An easy calculation shows that the eigenvalues of the matrix A1 are −c, 0, c, and the corresponding
left and right eigenvectors are

lT1 =
(

1√
2

,
1√
2

, 0
)

, lT2 = (0, 0, 1) , lT3 =
(

− 1√
2

,
1√
2

, 0
)

,

r1 =




1√
2

1√
2

0


 , r2 =


0

0
1


 , r3 =




− 1√
2

1√
2

0


 ,

respectively. Using the definition of Li, eq. (3.5), and the above left eigenvectors we get

L1 := λ1lT1
∂U
∂x

=
−c√

2

(
∂φ

∂x
+

∂u

∂x

)
,

L2 := λ2lT2
∂U
∂x

= 0,

L3 := λ3lT3
∂U
∂x

=
c√
2

(−∂φ

∂x
+

∂u

∂x

)
.

(3.7)

Moreover we have

S L =




1√
2

0 −1√
2

1√
2

0 1√
2

0 1 0




L1

L2

L3


 =




1√
2

(L1 − L3)
1√
2

(L1 + L3)

L2


 . (3.8)
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Now substituting from (3.8) into (3.6) leads to the system

∂φ

∂t
+

1√
2

(L1 − L3) − c
∂v

∂y
= 0, (3.9)

∂u

∂t
+

1√
2

(L1 + L3) = 0, (3.10)

∂v

∂t
+ L2 − c

∂φ

∂y
= 0. (3.11)

This system is used for the update of the solution on the interfaces x = 0 and x = α, while in the interior domain {(x, y) :
(x, y) ∈]0, α[×]0, β[} we solve system (3.1) together with the initial data (3.2). Now the transverse derivatives, i.e. the y
derivatives, in (3.9) and (3.11) are evaluated as usual. The values of the Li are determined depending on the sign of the
corresponding eigenvalues λi at the corresponding interface. Namely, at the interface x = 0 the eigenvalues are −c, 0, c, which
from (3.7) immediately gives that L2 must be zero. The wave corresponding to the eigenvalue λ1 = −c < 0 is an outgoing
one that leaves the computational domain. Thus L1 is evaluated directly from its definition (3.7). Since l3 is matched with the
positive eigenvalue λ3 = c the corresponding wave is an incoming one. It is this lack of information that prevents us from
using the definition to evaluate L3. Let us drop the transverse derivative from eq. (3.9), then subtracting (3.9) from (3.10) we
end with the relation

∂(−φ + u)
∂t

+
2√
2

L3 = 0. (3.12)

Now −φ + u is the one-dimensional characteristic wave that enters the computational domain. Preventing this wave from
entering the computational domain is equivalent to taking its time derivative equal to zero, see [8]. This forces L3 to be equal
to zero. A similar argument for the interface x = α implies that L1 and L2 must be zero while L3 is evaluated from its
definition (3.7).

For the case y = 0 and y = β we use a similar argument as above. At corners we combine both cases. It is important to note
that the method of characteristics can be used to construct not only absorbing boundary conditions but also reflecting ones. To
show this, assume that the interface x = 0 is a reflector. To define a reflected boundary condition at x = 0 the function φ must
vanish for all time t > 0 at x = 0. Then eq. (3.9) implies that L3 = L1 − √

2c∂v/∂y.

Remark 3.13 One of the simplest absorbing boundary conditions is to extrapolate the data from the interior domain to
the cells that lie on the boundary. Mathematically, for the wave equation system (3.1), this can be done by taking ∂ϕ

∂s = 0,
where ϕ ∈ {φ, u, v} and the derivative with respect to s stands for the directional derivative in some direction parametrized by
the parameter s. We will show however in our numerical experiments that this approach can lead to considerable unphysical
reflections in the solution.

3.2 Absorbing boundary conditions based on the Laplace transformation

In this subsection we recall the use of the Fourier series and the Laplace transformation to construct an absorbing boundary
condition to be used, say, at the boundary {(α, y) : 0 ≤ y ≤ β}. We will expand the solution of the wave equation system in a
complex Fourier series. Substituting into the wave equation system and applying the Laplace transformation allows a derivation
of Engquist-Majda [3] absorbing boundary conditions.

Consider the wave equation system (3.1) together with the initial condition (3.2) in R
2. Suppose that the initial functions

φ0 (x, y), u0 (x, y), and v0 (x, y) are all smooth and vanish outside the domain Ω = [0, α] × [0, β]. We look for a boundary
condition that holds at the boundary of the domain ∂Ω such that the solution of system (3.1) accompanied with the initial
data (3.2) on the domain Ω together with this condition coincides with the solution on the unbounded domain. The Laplace
transformation of a function f(t) will be denoted by f̂(s) = L(f(t)), and its inverse by f(t) = L−1(f̂(s)). They are defined
as follows:

f̂(s) := L(f(t)) =
∫ ∞

0
f(t) exp (−st) dt,

f(t) := L−1(f̂(s)) =
1

2πi

∫ a+i∞

a−i∞
f̂(s) exp (st) dt.

To produce an exact absorbing boundary condition using the Laplace transformation we use the Fourier series and expand the
solution U(x, y, t) at the points to the right of the line x = α as

U(x, y, t) =
∞∑

k=−∞
Uk(x, t) exp i

(
k

π

β
y

)
. (3.13)
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Substituting (3.13) into the wave equation system (3.3) yields

Uk
t + A1Uk

x + ik
π

β
A2Uk = 0. (3.14)

Applying the Laplace transformation to (3.14) and using the properties L(f ′(t)) = sL(f(t)) − f ′(0) and L (∂f/∂x) =
(∂/∂x) (L(f)) as well as the assumption that the initial data vanish in the exterior of Ω, we get

sÛk (x, s) + A1Ûk
x (x, s) + ik

π

β
A2Ûk (x, s) = 0. (3.15)

Expressing ûk and v̂k in terms of φ̂k we end with the following second order differential equation:

φ̂k
xx −

[
s2

c2 −
(

ikπ

β

)2
]

φ̂k = 0. (3.16)

The boundedness of the solution for x → ∞ implies that the solution of (3.16) is

φ̂k(x, s) = A (s, y) exp


− s

c

√
1 −

(
ickπ

sβ

)2

x


 . (3.17)

The values of ûk and v̂k read

ûk(x, s) = −
√

1 −
(

ickπ

sβ

)2

A (s, y) exp


− s

c

√
1 −

(
ickπ

sβ

)2

x


 , (3.18)

v̂k(x, s) =
ickπ

sβ
A (s, y) exp


− s

c

√
1 −

(
ickπ

sβ

)2

x


 . (3.19)

If we apply the operator

L =


 ∂

∂x
+

s

c

√
1 −

(
ickπ

sβ

)2

 (3.20)

to the functions φ̂k, ûk, and v̂k we get Lφ̂k = 0, Lûk = 0, and Lv̂k = 0. Hence, at x = α, we have the following boundary
condition for each component of Uk(x, t):

L−1
{

Lφ̂k
}

= 0, L−1
{

Lûk
}

= 0, L−1
{

Lv̂k
}

= 0. (3.21)

Let g(t) = L−1
(
s
√

1 − a2/s2
)

, where a = ickπ/β, then at x = α condition (3.21) can be rewritten as

φk
x(x, t) +

1
c

∫ t

0
g(t − τ) φk(x, τ)dτ = 0,

uk
x(x, t) +

1
c

∫ t

0
g(t − τ) uk(x, τ)dτ = 0,

vk
x(x, t) +

1
c

∫ t

0
g(t − τ) vk(x, τ)dτ = 0.

(3.22)

It is clear from eqs. (3.22) that this boundary condition is local in position but unfortunately not local in time. Using√
1 − a2/x2 = 1 + O

(
1/x2

)
we approximate the operator L as L ≈ ∂/∂x + s/c. Hence (3.21) gives the following lo-

cal in time Engquist-Majda first order absorbing boundary condition for the function φ at the interface x = α:

∂φ

∂x
+

1
c

∂φ

∂t
= 0. (3.23)

Using
√

1 − a2/x2 = 1 − a2/2x2 + O
(
1/x4

)
we approximate the operator L as L ≈ ∂/∂x + s/c

(
1 − a2/2s2

)
. If we

substitute sL into (3.21) we obtain the so-called Engquist-Majda second order absorbing boundary condition for φ at x = α:

∂2φ

∂x∂t
+

1
c

∂2φ

∂t2
− c

2
∂2φ

∂y2 = 0. (3.24)

Similar boundary conditions can be derived to the functions u and v. Note that the absorbing boundary conditions for other
interfaces can be derived in an analogous way. For the descritization of (3.23) and (3.24) we refer to [3].
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3.3 Absorbing boundary condition based on a perfectly matched layer

In the previous two subsections absorbing boundary conditions were defined using certain types of operators. Although such
boundary conditions absorb the incoming waves, the absorption is not complete for some cases, as we will see in the numerical
examples in the next section. By construction, such boundary conditions are derived to absorb the reflected waves provided that
the incident plane waves are normal to the interfaces, for more details see Grote [4]. In this subsection we will apply boundary
conditions that are valid independently of the direction of the incident wave or its frequency. This type of boundary conditions
was introduced by Bérenger [1] for electromagnetic problems. Afterwards many authors have been using such technique, for
example, Fang [11] and Quan and Geers [18]. The main point is to surround the computational domain by a layer that has
the same impedance, roughly speaking resistance to the wave propagation, as the free domain, the domain where the wave
equation system (3.1) is valid. Thus for plane waves, at least theoretically, Bérenger has shown, for the electromagnetic case,
that there is no reflection. For more details on the PML method see [1, 11, 18]. To define PML layers we split the function φ
into two components φx and φy , i.e., we write φ = φx + φy . Then we define

Definition 3.25 A layer Ω (⊂ R
2) in which the so-called damped wave equation system

∂

∂t

(
φx

φy

)
+

(
σ�

x 0
0 σ�

y

)(
φx

φy

)
− c

(
∂u
∂x
∂v
∂y

)
= 0,

∂

∂t

(
u

v

)
+

(
σx 0
0 σy

)(
u

v

)
− c∇(φx + φy) = 0

(3.26)

is satisfied, where σx, σ�
x, σy, and σ�

y are functions of x and y, the so-called damping parameters, is called a perfectly matched
layer.

Let PML1, characterised by (σx1 , σ
�
x1

, σy1 , σ
�
y1

), and PML2, characterised by (σx2 , σ
�
x2

, σy2 , σ
�
y2

), be two perfectly matched
layers. Suppose that x = 0 is the interface between the two layers. If σ = σ� and if σy1 = σy2 then Bérenger was able to
show that the two layers PML1 and PML2 produce no reflection from the outgoing waves at the interface x = 0. The damping
parameter σ is defined as σ(ρ) = σm (ρ/δ)2 where σm is determined by the theoretical reflection at normal incidence, ρ is the
distance from the interface, and δ is the thickness of the layer, see Bérenger [1]. We implement the perfectly matched layer
method as follows: in the interior domain we used the evolution Galerkin scheme, i.e. by means of (2.6) in the case of the
EG schemes or by (2.9), (2.10) in the case of the finite volume EG schemes. In the PML layer we used the leap-frog scheme,
see Bérenger [1] or Quan and Geers [18] for the discretisation of the PML layer.

4 Numerical tests

In the following numerical experiments we test and compare the absorbing boundary conditions using the methods of char-
acteristics, extrapolation, the Laplace transformation, and the perfectly matched layer (PML). The initial data are given either
as plane waves or as pulses centered at certain points of the computational domain. These numerical tests indicate that all of
the developed absorbing boundary conditions worked correctly in the case of one dimensional problems. However it is well
known that there are problems with waves having an incident angle not normal to the boundary. Therefore, for multidimensional
problems the PML method gives better results.

Example 4.1
To test the reflecting and the absorbing boundary conditions that are based on the method of characteristics we consider

the wave equation system (3.1) and take ∆x = ∆y = 1, ∆t = 0.5, c = 1, and Ω = [0, 100] × [0, 100]. In Fig. 2 the
initial incident half sine wave which is taken from the wave φ0 = sin(πx/24), u0 = sin(πx/24), and v0 = 0 is moved
to the left and is reflected at the boundary x = 0. In Fig. 3 the Gaussian wave φ0 = 0.5 exp(− ln(2)((x − 10)/3)2),
u0 = −0.5 exp(− ln(2)((x − 10)/3)2), and v0 = 0 is moved to the right and is absorbed at the boundary x = 100. We use the
first order EG4 and the second order FVEG3 schemes, respectively. In Fig. 2 we see that the one-dimensional half sine wave
propagates to the left. Upon arrival at the left wall boundary it is reflected back. This happens after T = 75.0 (150 time steps).
The phase of the reflected wave is opposite to that of the incident wave, as required by the reflected boundary condition. In
Fig. 3 the initial Gaussian wave propagates to the right. After the arrival at the right artificial boundary it leaves the domain
as we see after T = 62.5 (125 time steps). We have made several other 1D examples for different initial data. All absorbing
boundary conditions described above yield analogous results. These results indicate that such absorbing boundary conditions
are working correctly if the initial data are one-dimensional data. Unfortunately, this is not the case if two-dimensional initial
data are used as we will see in Example 4.3.

Example 4.2
In this test we apply the PML method. We consider the two dimensional wave equation system inside the domain Ω =

[−1, 1] × [−1, 1]. The initial data are taken to be

φ0(x, y) = − exp(−30((x + 0.85)2 + y2)), u0(x, y) = 0 = v0(x, y).
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Fig. 2 The numerical solution of the component φ using the EG4 scheme together with a reflector at x = 0. Half sine wave
initial data.

In the simulation we use a 100 × 100 mesh, the thickness of the matched layer is taken to be 10 cells and σm is chosen such
that the theoretical reflection at the normal incidence is 10−5. Inside the computational domain we update using the first order
EG3 scheme. Inside the PML layer we use the leap frog scheme. We take the Courant-Friedrichs-Lewy number CFL = 0.4,
CFL = c∆t/h, where h = ∆x = ∆y. We consider a time sequence, 0.2, 0.4, 0.6, 1.0, of absolute times (T ). The isolines
of the solution φ are shown in Fig. 4. Moreover, Fig. 5 shows the result of the same problem using extrapolation boundary
conditions for absolute times T = 0.2 and T = 1.0. Fig. 5 clearly shows that, in general, using extrapolation as an absorbing
boundary condition may produce unphysical reflected waves. It is clear from Fig. 4 that the PML method produces only a
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246 M. Lukáčová-Medvid’ová et al.: Boundary conditions for evolution Galerkin schemes

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
T=2.5 

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 T=12.5

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
T=25.0 

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
T=37.5 

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
T=50.0 

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
T=62.5 

Fig. 3 The initial data (- -), the exact solution (-), and the approximate solution (-.-.) of the component φ using the second
order FVEG3 scheme. Absorber at x = 100. Gaussian puls initial data.

marginal amount of reflection from the artificial boundaries. Thus in the case of the wave equation system this method is the
preferable one in order to implement absorbing boundary conditions.

Example 4.3

This example demonstrates that absorbing boundary conditions based on the method of characteristics and the Laplace
transformation can also produce reflected waves in general. Again we consider the two-dimensional wave equation system on
the computational domain Ω = [−1, 1] × [−1, 1]. The initial data are taken to be

φ0(x, y) = − exp(−15((x + 0.5)2 + y2)), u0(x, y) = 0 = v0(x, y).
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Fig. 4 Isolines of the component φ of the approximate solution using the PML absorbing boundary condition.
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Fig. 5 Isolines of the component φ of the approximate solution using extrapolation as an absorbing boundary condition.

We use first and second order EG3 and FVEG3 methods and combine them with different boundary conditions. We take the
CFL = 0.55, the absolute time T = 0.825, and a mesh consisting of 100 × 100 cells. Figs. 6 top-left and top-right show the
isolines of the solution φ for the absorbing boundary condition using the PML and the extrapolation methods, respectively.
Figs. 6 bottom-left and bottom-right show the isolines using the characteristics and the Engquist-Majda first order condition
methods, respectively. These results demonstrate that the absorbing boundary conditions based on the method of characteristics
as well as the one based on the Laplace transformation can produce stronger unphysical oscillations and backward reflections.
For comparison, we show in Fig. 7 isolines of the solution φ for the reflecting boundary condition based on the method of
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          Engquist−Majda first order condition; ABC; T=0.825; first order EG3 scheme
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Fig. 6 Isolines of the component φ of the approximate solution, absorber based at x = −1: top-left: based on the PML,
top-right: based on extrapolation, bottom-left: based on the method of characteristics, and bottom-right: based on Laplace
transform.

Table 1 Computational costs measured in time.

Mesh/Method PML Extrapolation Engquist-Majda 2nd order condition

100×100 0.92s 0.01s 0.43s

200×200 6.00s 0.06s 3.26s

400×400 44.84s 0.31s 25.82s

characteristics at x = −1. In Figs. 8 we present the results obtained by the second order FVEG3 method together with PML
(top-left), the extrapolation (top-right), and the Engquist-Majda absorbing boundary condition of second order (bottom). The
effect of reflection is clearly illustrated on the top-right picture. In Fig. 9 we draw the isolines of φ for absolute times T = 0.55
and T = 0.99 when the second order FVEG3 method is used together with the extrapolation, the PML, and the Engquist-Majda
second order condition methods. Again we can notice that the best quantitative results are obtained by the PML method. Finally,
we give quantitative comparison of different absorbing boundary conditions techniques with respect to their computational
costs. We carry out computations for the above initial data on meshes with 100×100, 200×200, and 400×400 cells. Different
techniques for absorbing boundary conditions were combined with the second order FVEG3 method. Results are presented in
Table 1. The cheapest method is the method of extrapolation while the expensive one is clearly the PML method.

Conclusions

In this paper we have combined several absorbing and reflecting boundary conditions with the EG methods and applied them for
the two-dimensional wave equation system. The approximations of boundary conditions are based on the following well-known
methods; the characteristics, extrapolation, the Laplace transformation (Engquist-Majda conditions), and the PML method.
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Fig. 7 Isolines of the component φ of the approximate solution, reflector based on the method of characteristics at x = −1.
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Fig. 8 Isolines of the component φ of the approximate solution, absorber based on the PML (top-left), on the extrapolation
(top-right), and on the Engquist-Majda second order condition (bottom).

The hyperbolic conservation law, e.g. the wave equation system, is approximated inside the computational domain by the
EG schemes which are recalled in Sect. 2. The numerical experiments which we presented in this paper show clearly that
for one-dimensional cases all methods yield correct results. Further, for two-dimensional problems we noticed that the PML
method produced less nonphysical oscillation and reflected waves than other approximation techniques. With this paper we
have demonstrated that it is feasable to implement different boundary conditions within the framework of evolution Galerkin
schemes based on bicharacteristics.
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Fig. 9 Isolines of the component φ of the approximate solution using the extrapolation, the PML, and the Engquist-Majda
second order condition methods.
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