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Abstract. The subject of the paper is the derivation and analysis of new multidimensional,
high-resolution, finite volume evolution Galerkin (FVEG) schemes for systems of nonlinear hyperbolic
conservation laws. Our approach couples a finite volume formulation with approximate evolution
operators. The latter are constructed using the bicharacteristics of the multidimensional hyperbolic
system, such that all of the infinitely many directions of wave propagation are taken into account. In
particular, we propose a new FVEG-scheme, which is designed in such a way that for a linear wave
equation system the approximate evolution operator calculates any one-dimensional planar wave
exactly. This operator improves the stability of the FVEG-scheme considerably leading to a stability
limit closer to 1. Using the results obtained for the wave equation system a new approximate evolution
operator for the linearised Euler equations is also derived. The integrals over the cell interfaces also
need to be approximated with care; in this case our choice of Simpson’s rule is guided by stability
analysis of model problems. Second order resolution is obtained by means of a piecewise bilinear
recovery. Numerical experiments confirm the accuracy and multidimensional behaviour of the new
scheme.
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1. Introduction. We consider the initial value problem for systems of hyper-
bolic conservation laws

u, + divF(u) =0, u(z,t) : R x Rf - R™, (1.1)

u(x,0) = uo(x).

In particular, we present methods for the two-dimensional Euler equations of com-
pressible fluid flows. As a first step in the exposition we treat their linearized form at
zero advection velocity as in [8]. Application of the ideas to the three-dimensional case
follows naturally, but though it is more straightforward (because of the odd number
of dimensions) it is more technical, see e.g. Zahaykah [20]; and the incorporation of
boundary conditions for initial-boundary value problems is also achieved in a natural
way.

In general, finite volume methods are of two types: residual distribution (or fluctuation
splitting) schemes were developed by Deconinck, Struijs, and Roe in [4] for steady
hyperbolic problems and are most approriate for near-steady situations; while those
derived from evolution Galerkin or semi-Lagrangian methods are our preference in
cases where the evolutionary behaviour is most important. Our concern here is solely
with the second class of methods and this paper forms a natural development from
two earlier papers—Morton [18] which considered FVEG methods for scalar problems,
and Lukacova et al. [8] which introduced the approximate evolution operators we shall
use here. For the use of the one-dimensional Riemann solvers for multidimensional
problems see the wave propagation algorithm of LeVeque [6], and the more general
presentation in [7].

*Arbeitsbereich ~ Mathematik, Technische  Universitdt =~ Hamburg-Harburg, Germany
(lukacova@tu-harburg.de).

tBath and Oxford Universities, United Kingdom (Bill.Morton@comlab.ox.ac.uk).

Hnstitut flir Analysis und Numerik, Universitat Magdeburg, Germany
(Gerald.Warnecke@mathematik.uni-magdeburg.de).

1



Let 2 be our computational domain. We consider a general mesh for 2 with mesh
size parameter h > 0. Suppose that S? and S; are finite element spaces consisting
of piecewise polynomials of degrees r > p > 0. Let U™ be an approximation in the
space S} to the exact solution u(-,t,) at a time ¢, > 0 and take E; : S} — X to
be a suitable approximation to the exact evolution operator E(7), 7 > 0, where X
is a suitable function space for (1.1). We denote by P, : X — S¥ the L?-projection
onto S¥ and by Ry : S% — S; a recovery operator introduced to give a higher order
accuracy than that provided by SP. Then an evolution Galerkin method can be
written in the equivalent forms

Un+1 = PhEARhUn or (RhUn+1) = RhPhEA(RhUn)7 (12)

where the second form is used in the error analysis, see [17].

In [8] we presented first order schemes of this form for hyperbolic systems in two
space dimensions. No recovery from the space of piecewise constants was considered,
i.e. p = 0 and R, = Id. First order approximations EaA to the evolution operator
were used on the piecewise constant data. Here we shall develop new approximate
evolution operators and use them in a finite volume framework. This allows second
order methods to be based on the first order evolution operators, after an appropriate
recovery stage has been introduced.

If U} is an approximation to the average of u(x,t,) over a cell Q; of measure |Q;],

then our schemes will be of the form

QUM — U + At /m n-F(U"2)dS =0, (1.3)

where U7 is generated from a, possibly recovered, approximation R,U™ which has
been evolved to t, + $At. This formula was obtained by integration of (1.1) over
(tn,tn + At) x Q; and use of the Gauss theorem as well as the midpoint rule in time
on the flux term.

The approximate evolution will be accomplished through bicharacteristic cones con-
structed at quadrature points chosen for the integration of the fluxes over the cell
faces; in the simplest cases these will be just the vertices of the mesh, but we shall see
that this is not always appropriate. Hence a higher order algorithm consists of three
steps: recovery of a higher order approximation RpU™ from the cell averages {U? };
approximate evolution to t, + %At to calculate the fluxes; and then an update of the
cell averages by (1.3).

Such an algorithm is closely related to two-step versions of the Lax-Wendroff method;
in particular, the advantages of the so-called rotated-Richtmyer form, in which the
fluxes are approximated by applying the trapezoidal rule to updated quantities at
the vertices, have been pointed out by Morton and Roe [19]. On a uniform square
mesh this scheme will therefore be taken as a yardstick for our numerical comparisons;
and it will also provide a guide to the analysis of stability. Thus on a general two-
dimensional mesh, if we use the trapezoidal rule for the flux integrals and use a cyclic
notation {a} to label the vertices of a polygonal cell §;, the update equation that
includes this Lax-Wendroff method and some of our FVEG schemes becomes

n4+ L n4 L
U = U + 28t Y {[FUULTF) + FuUa )]yass — val

— [Fo(UL}) + Fo (U8 H)]rass — 2]} =0, (14)
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where we have written (F'1, F) for the F of (1.3).

However, we shall show that in general it is preferable to use Simpson’s rule for the
integrals of the fluxes along the cell edges. Its advantages for the scalar advection
equation are easily demonstrated, and these are carried over to the system wave
equation with advection, and to the Euler equations. The stability analysis used
here, and in the selection of approximate evolution operators, has been based on a
combination of energy analysis, Fourier analysis and maximum principles, followed up
by extensive numerical validation. Details of the analysis will be presented elsewhere,
in order to limit the length of the present paper.

The layout of the paper is as follows. Its core is formed by the next section, to-
gether with the appendix, where we will derive the approximate evolution operators
to be used later: Section 2.1 gives the general formulae on the bicharacteristic cones
obtained by quasi-diagonalising the locally frozen Jacobian matrices; then these are
applied to the system wave equation in Section 2.2, giving exact integral equations for
the solution; and in Sections 2.3 and 2.4 the approximate, explicit, evolution operators
to be used in Section 3.1 are derived—for piecewise constant and continuous bilinear
data respectively. The key idea here is to exploit the fact that an explicit solution
to the wave equation is available for one-dimensional data, and to make the formulae
exact for such cases. In Section 3 we first describe the discontinuous bilinear recovery
scheme that is preferred, and give the reasoning for selecting Simpson’s rule for edge
integrals of the fluxes; then the proposed FVEG schemes are derived for the wave
equation and Euler system—in Sections 3.3 and 3.4 respectively. Finally, in Section
4 numerical results are presented to show the superior stability and accuracy of the
proposed FVEG schemes as compared with the natural alternatives considered during
their derivation.

2. Approximate evolution operators. The distinctive feature of our pro-
posed methods is the use of approximate evolution operators in the calculation of the
fluxes F'; and F5. So we first describe a general approach to the derivation of the
exact evolution operator for any constant coefficient first order hyperbolic system and
point out the role of the bicharacteristics.

2.1. General formulae. Consider a general hyperbolic system in d space di-
mensions

d
U+ > Apug, =0, z=(z1,...,74)" € R, (2.1)

k=1
where the coefficient matrices Ay, k = 1,...,d are in R™*™ and the dependent vari-
ables are u = (u1,...,u,)T € R™. Because of the assumed hyperbolicity of the
system we have m real eigenvalues A;,7 = 1,...,m and corresponding linearly inde-
pendent right eigenvectors r; = r;j(n), j = 1,...,m of the matrix pencil A(n) :=
ZZ:1 niAy for any unit vector n = (nq,...,nq)7 € R?. Since a common factor is

irrelevant we assume |n| = 1. In the case d = 2 we replace n on the unit circle by
(cos@,sinb), 0 € [0, 2.

We denote by R = R(n) := (ry,...,ry) the matrix of the right column eigenvectors.
For any direction m the characteristic variables w = w(n) = (wi,...,w,)7T for a
general, possibly nonlinear, hyperbolic system, are defined by dw(n) = R~!(n)du,
i.e. for constant coefficient matrices this can be integrated to yield w = R~'u, u =
R w. Multiplying (2.1) by R~ from the left we obtain the system in characteristic
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P = (xz,t+ At)

Qe(0)

t
Ly,

F1G. 2.1. Bicharacteristic along the Mach cone through P and Q(9).

variables

d
wi + Y Brw,, =0 (2.2)
k=1
where B, := R7TA.R = (bfj)?fj:l. We introduce the decomposition By = Dy, + By,
where Dy, is the matrix containing the diagonal part of Bi. This gives a quasi-
diagonalised system

d

d
wy + ZDszk =— ZB;gwwk =85, (2.3)
k=1 k=1

The ¢-th bicharacteristic corresponding to the ¢-th equation of the system (2.3) is
defined by

H = b“(n) = (b%l) sy bgl)T) (24)

where bfe is the x;, component of the ¢-th characteristic velocity, the so-called ray
velocity, see [3] or [5]. We integrate the ¢-th equation of the system (2.3) from the
point P down to the point Q;(n), where the bicharacteristic hits the plane through
P'. This situation is depicted in Figure 1 for a special case. Note that in general
the set traced out by @Q/(n) can be quite complicated, see Courant and Hilbert [3,
pp. 599-618]. For a linear constant coefficient problem this will be a straight line. In
this case A(m) is constant. For a nonlinear system we have to linearize by freezing
the Jacobian matrices Ag(u) at a suitable state @. Thus, without lost of generality
we assume in what follows that A(@,n) is constant.

Integration along the bicharacteristics introduces a formula for the characteristic vari-
ables

we(P,m) —we(Qe(n),n) = S;(n), £=1,...,m, (2.5)
with S)(n) = tHAt S¢(x¢(t,m),n,t) di. This is already an exact integral representa-
tion of the solution at a new time step ¢ + At. By multiplication of (2.5) by R from
the left and integration of the variable n over the unit sphere O in R? we obtain the
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exact integral equation in the original variables wu,

) w1 (@Q1(n),n)
u(P) =u(z,t+ At) = —/R(n) do + 8
oo Wi (Qm (), m) (2.6)

= o [ X w@m.m rym a0+ 5

with

S g L a0 L[ [ ) ai
=1, 57 = |O|/OR(n)S(n)dO—|O|/O/t R(n) S(n, i) di dO.

This is an exact implicit representation formula for the evolution operator. The
second term contains the integral between the two time levels ¢t and ¢t + At which in
general cannot be evaluated exactly; it is a mantle integral over the mantle of the
characteristic cone. The main goal of this paper is to derive a suitable approximation
of the source term integrals which will lead to a scheme whose stability limit is closed
to a natural CFL limit of 1.

2.2. System wave equation. Let us now illustrate the above general procedure
on the two-dimensional linear hyperbolic system of the wave equation. Application
to a nonlinear system of the Euler equations will be done in Section 3.4. The wave
equation system can be written in the following form

w + Ayug + Asuy, =0, == (z,y)" € R, (2.7)

where the, noncommuting, coefficient matrices A;, A> € R**? are defined by

0
A= c
0

SO0
o O O

0 0
,.Az = 0 0
c 0

SO0

Here ¢ € R denotes the speed of sound and u = (¢,u,v)” € R? is the vector of depen-
dent variables. We have three eigenvalues A\; = —c¢, A2 = 0, A3 = ¢ and corresponding
linearly independent right eigenvectors

-1 0 1
ry=| cosf |, ro= sin @ , T3 = | cos@
sin 6 —cosf sin @

of the matrix pencil A(n) := A; cosf + Az sin  for any unit vector n = (n,, ny)T =
(cosf,sinf)T € R2. Repeating the above procedure for this particular system we
end with the following exact integral equations for the solution of the wave equation
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system (2.7), see also [8] for a detailed derivation: with £ =t + At — 7, we have

oz, t+ At) = — / i —u(Q(8)) cosf —v(Q(H)) sinfb] do
1 2w pAL .
) ) S(x + e (6),0,t) dr db, (2.8)

u(z,t+ At) = o /Zﬂ[—fb(Q(ﬁ)) cos @ + u(Q(#)) cos® + v(Q()) sinf cosh] df

1 1 2w At .
+-u(P') + — / / cos0S(x + ctn(6),0,t) dr df
2 2r Jo Jo

o Ot .
[ e P an 29)
0
v(x,t+ At) = % i ﬂ[—(b(@(ﬁ)) sin® + u(Q(#)) sinf cosf + v(Q(H)) sin® A] d§

1 1 27 At 5
+-v(P") + — / / sin0S(x + ctn(9),0,t) dr df
2 27 0 0

e [Ot R
—5 [ S(P(®)dr, (2.10)
0
where the so-called source term S is given by

S(%,0,t) := clug (&,0,1)sin” § (2.11)
— (uy(&,0,t) + v, (£,0,%)) sinf cos § + v, (%, 6,1) cos® 6],

and Q(f) = (z + cAtcosh,y + cAtsinb,t), P' = P'(t) = (z,y,t), P'(t) = (x,y,1).
Note that this form of the integral equations is not unique. There are other equivalent
variations, see [8] for an example or (2.14) - (2.16). The difference plays a role in
subsequent approximations where different forms of the integral equations may lead
to different schemes. We have chosen to take the above formulation because it is the
form that directly follows from the procedure described in Section 2.1.

A major drawback of the approximate evolution operators used for the EG schemes in
[8] was that they did not provide full stability for a CFL number of 1, where we define
CFL= cAt/h. Since we had derived our approximate evolution operators from exact
integral equations, the loss of stability was obviously due to the approximations we
derived from the integral equations (2.8), (2. 9) and (2 10) One of the steps was to use
quadrature in time on the mantle integrals f A% 47d over the bicharacteristic
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cones. In our first order EG schemes we were using piecewise constant data, in which
case a discontinuity cuts through the cone mantle. The rectangle or the trapezoidal
rule are not good quadrature rules for such discontinuous integrands.

From one dimensional advection on a uniform mesh we know that any scheme that
is stable for CFL numbers up to 1 reproduces the exact solution to the advection
problem in that limit, i.e. the data shifted by one mesh cell for CFL= 1. We decided
to look for correction terms to our approximate evolution operators by postulating
the following design principle. Consider plane wave data parallel to one of the spatial
axes. For a first order scheme these are taken as piecewise constant, i.e. quasi-one-
dimensional Riemann data. Now we look for approximate evolution operators that
reproduce the exact solution at the apex of the bicharacteristic cone centered at the
original discontinuity. When considering slopes for second order schemes we devise
approximate evolution operators for the slopes that again reproduce the solution for
piecewise linear data exactly at the apex of the bicharacteristic cone centered at the
kink or discontinuity of such data. The result is that we devise approximations to the
mantle integrals that can be incorporated in the integrals around the cone base.

2.3. Piecewise constant data. Let us consider first order schemes and piece-
wise constant data first. Take the following plane wave, of Riemann problem type, as
initial data for the wave equation system (2.7)

ot x>0
¢($,ya0)={ (6T +97)/2 =0
o z <0,
ut x>0
U(w,y,O)Z{ (ut+u7)/2 =0
u- z <0,
v(z,y,0) = 0. (2.12)

The average value that we have accorded to x = 0 will be used in formulae below.
Then the exact solution at any time ¢ > 0 is given by

¢+ z >ct
¢(w,y,t)={ (ot +07)/2—(ut —u")/2 et >z > —ct
¢ r < —ct,

ut x> ct
u(z,y,t) = { (ut +u")/2— (o7 —¢7)/2 ct>z> —ct

U T < —ct,
v(z,y,t) =0. (2.13)

An analogous solution for ¢ and v with u = 0 may be considered for plane waves in
y—direction. Due to obvious symmetry between u and v we do not need to work this
out explicitly.

Let us now consider the integral equations (2.8), (2.9) and (2.10) as our starting
point. To avoid the derivatives of the dependent variables appearing in S we may use
Lemma 2.1 of [8] to convert these into a more convenient form involving the dependent
variables themselves, see e.g. [8, (2.16)]. This gives us the following equivalent system
of exact integral equations that we will normally use in all further considerations in
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this paper. With Q(8,%) = (z + crcos,y + crsinf,t), t = t + At — T,

oz, t + At) = %/0 ﬂ[(b(@(ﬂ)) —u(Q(#)) cosd —v(Q(F) sinh)] dd (2.14)

1 At 1 27 N -
- ;/ [w(Q(6,%)) cosf +v(Q(0, 1)) sinf] db dr,
0

u(w,t + At) = 2i /Qﬁ [—6(Q(0)) cos + u(Q(8)) cos’ 6 + v(Q(8)) sin§ cosb] b
0

™

+%u(p'>+— = [ Q7)) cos26 (2.15)

A
+0(Q(6, 1)) sin 26] d6 dr — g t¢w (P'(#)) dr,
0

o(@, b+ At) = %/0 " [=6(Q(8)) sinf + u(Q(8)) sinf cosd +v(Q(6)) sin6] a8

+%U(P’) +— [ 2 [wQ®,b) sin20 (2.16)

At
+0(Q(6, D)) cos26] df dr — g &, (P' (D)) dr.
0
To complete the elimination of derivatives we replace the terms in ¢, (P’), ¢,(P') by
their averages over the corresponding circular sections {2, of the characteristic cone,

- 1 1 [ -
6:(PO) =g [ ocdady = —— [ 6(Q(6.5) cost a0

so that we obtain

c At - 1
5 ¢ (P'(t)) dr

2 /o “or Jo

At 2m
1 / #(Q(8,1)) cos 0 dadr, (2.17)
T Jo

with a similar expression for the ¢, term. Note that these are now in the same form
as the other source term integrals in (2.14)-(2.16).

In the appendix these formulae are evaluated exactly for the one-dimensional solution
(2.13) so that they yield the exact update from the data at ¢ = 0 to the solution at
(0,0, At). Moreover, they show how in this case the mantle integral can be combined
with that round the cone base. From this result we propose the following approx-
imate evolution operators for application to piecewise constant data on a general
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two-dimensional mesh, on the design principle that it gives the exact result at the
origin for the data of (2.12).

Approximate evolution operator E{°" for piecewise constant functions:

¢(P) = % ; W[ (Q) — u(Q) sgn(cos ) — v(Q) sgn(sinh) | db, (2.18)

u(P) = %/0 i [—0(Q) sgn(cos8) + u(Q) (3 + cos?#) + v(Q) sin6 cosb] db,
(2.19)

v(P) = % /0 i [—#(Q) sgn(sinf) + u(Q) sinf cosf + v(Q) (% + sin®6)] db,
(2.20)

where @ = (z + cAtcosf,y + cAtsinb,t), P' = (z,y,t), and P = (z,y,t + At). Our
choice seems to be the simplest approximation that produces the desired effect. More-
over we should point out that if v = ¢At/h = 1 the error of the above approximate
evolution operator is O(At?); otherwise the approximation error is O(At).

2.4. Continuous bilinear data. To obtain second order schemes we choose to
use a bilinear recovery of the data, cf. (3.1, 3.2) for a precise definition. We now need
an approximate evolution that incorporates the slopes ¢, ¢y, ¢ry, Uz, etc. Let us
consider the following initial data

v(z,y,0) =0.

(2.21)
For simplicity we have taken the left state to be zero. Note that for the linear wave
equation system the superposition principle holds and a more general piecewise linear
solution can easily be deduced. The exact solution is given by

By x>0 ufx z>0
a0 ={ 07 TZ0 u@po={yT 20

ofe — ufict T >ct
bz, y,t) = { %((ZSR —uf)(z+ct) —ct<z<ect (2.22)
0 z < —ct
uftx — ¢pfet x>ct
u(z,y,0) = { Tl =Bz +ct) —ct<z<ect
0 x < —ct
v(z,y,t) = 0.

The appendix gives the result of substituting these data into the mantle integrals
of (2.14) -(2.17). As a result it is shown how the corresponding cone base integrals
can be modified so as to incorporate the contributions from the mantle integrals, in
such a way that the exact solution (2.22) is reproduced at (0,0, At). This leads to an
approximate evolution operator E4!" for continuous piecewise bilinear data which is
given as follows:



d(P) = ¢(P') + i/ i [6(Q) — p(P)] d6 — % / i [u(Q) cos @ + v(Q) sin #] df
0 0
+O(A?), (2.23)
u(P) = u(P') - 1 o #(Q) cosf db + i /27r [3 (u(Q) cos + v(Q) sin ) cos
™ 0 0
—u(Q) - %u(p')] 8 + O(AL), (2.24)
v(P) = v(P') — % i " #(Q) sinf df + i/o i [3 (u(Q) cosf + v(Q) sinf) sin b
—0(Q) — %U(P')] 8 + O(AL). (2.25)

Asindicated here, these formulae are generally only first order accurate; but they have
been designed in such a way that they will be second order accurate for certain classes
of data. In both this sub-section and the previous one, we have made use of the well
established design principle of designing formulae which are exact for specific data
with a finite number of degrees of freedom. Morever, note that the overall accuracy
of the FVEG scheme is determined by the incorporation of these approximations in
the FV update (1.3).

3. Second order schemes based on linear recovery.

3.1. Continuous and discontinuous bilinear recovery. On a general two-
dimensional mesh, of triangles or quadrilaterals, a useful first step in the construction
of more accurate approximations from cell averages is to recover values at each of
the vertices of the mesh. Each vertex value is typically obtained as a mean of the
cell averages from all the cells that share the vertex, see [18] for examples and fur-
ther references. On a triangular mesh this leads immediately to a piecewise linear
interpolatory approximation; on a quadrilateral mesh it again gives a continuous in-
terpolatory approximation through the vertex values which is bilinear in the local
variables on each quadrilateral (the so-called isoparametric bilinear approximation).
Unfortunately, the cell averages are not preserved in either case. And even in a finite
volume method, in which the recovered approximation is used only to calculate the
fluxes through the cell boundaries, it is important to preserve the cell averages - what
Barth calls conservation in the mean, see Barth [1] and Morton [18] for arguments
making this point. The simplest way to retain this property is to add a constant to
the approximation in each cell, so that it is now discontinuous across cell boundaries.
We limit ourselves here to considering such recovery procedures in the case of a uni-
form square mesh, partly so that we can readily compare with alternative finite differ-
ence schemes. So we consider a regular mesh for our computational domain 2, which
consists of the square mesh cells Q;; = [(i — $)h, (i + $)B] x [(j — $)h, (j + 1)h] =
[Ti1/2, Tiv1/2] X [Wj—1/2,Yj+1/2] = [Ta, Tar1] X [y, Yp+1], Where 4,5 € Z are used to
denote indices of mesh cells, o, 8 € Z are indices of vertices, and h > 0 is the mesh
size parameter. We introduce the finite difference operators

tev(z) = 1 v(z + h/2) +v(z — h/2)] and  Gyv(z) =v(z + h/2) —v(z — h/2)
10



with an analogous notation for the y-direction. Then the recovery of the vertex values
is expressed as U = i, 11, U; with the parametrization just given this leads to

1
Uop = tepyUiyiy2,j11/2 = 1 WUit1j41 +Uip1j + Ui jp1 + Uyl

but it is often clearer to omit the subscripts which we shall do below when this is the
case. Continuous bilinear recovery with these vertex values can be expressed directly
in terms of the cell averages as

(x - @) (v — )
R{U| = (s + P enide + S b,
T —x;)(y —yj

To restore the cell averages we need a shift of (1 — u%uz)Uij, or equivalently the use
of the vertex values only to approximate the z-, y- and xy-derivatives, giving the
conservative discontinuous bilinear recovery

RPU

r — I — Y r — I — Y5
= (1 + %MNZ% + LhyJ)uiuy(;y + Wuzuﬁwy) U

(3.2)

We have studied both recoveries theoretically from the stability point of view, as well
as experimentally. In the following we will use them to derive new second order FVEG
methods.

3.2. Stability and the evaluation of edge fluxes. The key step in a finite

volume method is the evaluation of the cell interface fluxes. By the use of the mid-
point rule in (1.3) for the time integration, and by approximating the mantle integrals
in the evolution operator of (2.8) - (2.10) by the cone base integrals of (2.18) - (2.20)
and (2.23) - (2.25), we have reduced the four-dimensional flux integrals for the wave
equation to just two dimensions. The integration along a cell edge we prefer to ap-
proximate by a suitable quadrature, for ease of generalization to the Euler equations.
But the integral around the perimeter of the cone base we will evaluate exactly so as
to pick up all characteristic directions.
The obvious quadrature points are vertices, used in the trapezoidal rule, and the mid-
edge points used in the midpoint rule; in combination they give Simpson’s rule. We
have considered these three quadrature rules as alternatives to the exact evaluation
of edge fluxes for both piecewise constant data and the continuous bilinear data given
by the recovery R{ in (3.1). We know that for the wave equation the use of the
trapezoidal rule has the special property of preserving a natural discrete measure
of vorticity, see [19]. However, the Euler equations have advected Mach cones, see
Figure 2, so that another natural test problem for our methods is the scalar two-
dimensional advection equation

Ut + aug + buy =0, (3.3)

where a,b > 0 are constant advection velocities. Now for (3.3) exact flux evaluation
for piecewise constant data yields the FV-scheme
Uttt = [1—v, A, (1= gr,Ay) — Ay (1— 3vA,) ] UL (3.4)
=[1-v,A L1 —v, Ay Ui,
11



where v, = aAt/h, vy, := bAt/h, and the backward difference A_, is defined as
A_,U; :=U; — U;_1, with an analogous notation for the y-direction.
The scheme (3.4) is thus the tensor product of the one-dimensional upwind schemes
and it is well-known that it is monotone and stable for (v,,v,) € [0,1] x [0,1]. Note
too that this is normally derived by exact time integration of the fluxes, but with these
data the same result is obtained by using the midpoint rule for the time integration.
However, if we used the midpoint rule along the edge we would obtain the scheme
Ul =[1—v,A o — AU, (3.5)
which is stable only for v, + v, € [0, 1]. Worse still, the use of the trapezoidal rule for
the edge integrals gives

UZJL'Jrl =[1-veAo (1= 3A-y) —vyA_y (1-38,)]U; (36)

and one can show that this is stable only if v, = v,!
On the other hand, combining (3.5) and (3.6) by using Simpson’s rule for the edge
integrals gives the scheme

Ul = 1= A, (1-3A-,) —v,A_, (1 - §A_,)] UL, (3.7)
which is stable in a region of the (v, v,)-plane that includes the line v, = v, out to
vy + vy < 6/5 and the axes out to 12/13. (Stability analysis for the schemes discussed
in this paper has been carried out by a combination of Fourier analysis and energy
analysis and will be published elsewhere.) Extensive numerical testing of the stability
and accuracy of the schemes based on Simpson’s rule, some of which is reported in
Section 4, has led us to adopt it as the standard means of implementing our FVEG
schemes.
We note here that the precise definition of CFL number v will vary according to the
problem and the mesh, but in general it is based on forming the ratio of the domain of
dependence of the differential equation to that of its discrete approximation, and then
taking the d-th root of the result when the problem is in R?. In this way, saying that a
scheme is stable up to CFL number 1.0 would roughly correspond to the well-known
CFL condition being sufficient as well as necessary for stability.
When continuous bilinear recovery is used, stability restrictions depend much less on
the quadrature rule used for the edge integrals. For example, the second order Lax-
Wendroff (rotated-Richtmyer) scheme, studied in [19] for the wave equation, uses the
trapezoidal rule as a key element in its design and takes the form

Uit = [1 = vLa (papy — 5La)] UZ, (3.8)

where v = At/h and La is a central difference approximation to the spatial differential
operator. For the linear advection equation (3.3) we therefore substitute

LA = apyby + buzdy (3.9)

n (3.8). An energy analysis shows that this is stable for

this is practically quite acceptable but does not correspond to stability up to CFL
number 1.0 on our definition above.
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When applied to the wave equation the stability condition of the Lax-Wendroff scheme
(3.8) is cAt/h < 1 and the scheme has many similarities with our FVEG schemes,
based on the approximate evolution operator (2.23) - (2.25) and the continuous bi-
linear recovery (3.1). So we have used it as a guide to the stability analysis of our
schemes; and, in Section 4, we present numerical results to show that the use of
Simpson’s rule is as good as the trapezoidal rule in this case.

However, our numerical tests have shown that when the trapezoidal rule is used
with discontinuous data for the wave equation system with constant, but different,
advection velocities a, b strong oscillations appear in the numerical solutions; this
does not occur with Simpson’s rule.

In order to construct local Mach cones for general nonlinear systems we need to define
the local velocity of the flow (@,7) as well as the local speed of sound a. This local
flow information can be computed, for example, by an averaging process. When the
trapezoidal or Simpson’s rule is used, we average over four cells adjacent to the vertex
or over two cells adjacent to the midpoint, respectively. Another possibility to get the
local flow states @, v and a would be to use a predictor step, e.g. the Lax-Friedrichs or
the Osher-Solomon method, in order to compute this auxiliary information. This gives
us the desired local flow velocities, which are computed either at the midpoints of cell
interfaces or at the vertices, depending on the integral evaluation. From experiments
we observed that it is fully sufficient to use the simple averaging described above.

3.3. Wave equation system. In this section we will specify more precisely how
to compute U™ /2 in order to evaluate the fluxes in (1.3). In particular we consider
the wave equation system (2.7) and write down the finite difference formulation of
the approximate evolution operators (2.18) - (2.20), (2.23) - (2.25) when piecewise
constant or continuous piecewise bilinear approximate functions are used, respectively.

First, let us consider the approximate evolution operator E{°"*¢, given by (2.18) -

(2.20) operating on a piecewise constant approximation, i.e. we have R, = Id. We
denote the CFL number by v = ¢At/h. Then the exact evaluation of the edge integral
(as well as the bicharacteristic cone integrals) yields, e.g. for the vertical edge, the

following finite difference scheme for ECAO,ZSZeUn

v 1 v v
‘1’33;16/2 = (1 + gfi‘j) pa " — <§ + 5613) 02U" = —prapty8y V", (3.10)

n+1/2 oV 2 1 V o v
Uedge = (1 + m@!) ,U,xUn — (5 + E(%,) (5x(1)n + G_Wuxéxéyvn’

5v v 1%
n+1/2
Vedge/ = (1 + m‘%) pa V" — ;,Uz,uyfsyq)n + 6—Wuy5z5yU".

The equations for the horizontal edge follow from symmetry. In what follows we give
for the sake of simplicity only equations for the first and second components ® and
U, respectively; equations for the third component V' will be analogous to those for
U.

Using quadrature rules, e.g. the trapezoidal or Simpson’s rule, we need to evaluate

UZ";/ * at a vertex (o, B). After exact evaluation of the Mach cone integrals the finite
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difference formulae for EL™SU™ at a vertex read
nt+1/2 n 1 n 1 n
D by = Mally®™ — EﬂyézU — E,sz;yv , (3.11)
1 1
+1/2 n n n
U:erte/x = Nzqu - 5“1!615@ + Etgz(syv :

Analogous formulae hold for midpoints of cell interfaces, e.g. on a vertical edge we
have

ertE = @ — L5,Um, (3.12)
U — U~ 4,

Now let us consider continuous piecewise bilinear recovery Rf, cf. (3.1), which can
be rewritten equivalently in the following way. For example, for the upper right cell
corresponding to a vertex (a, ), i.e. that centred at z; = zo + h/2, y; = yz + h/2,
we have

T — 2, Y—ys (z —za)(y —ys)
R N s S e [}
where A, U, := Uyy1 — U, denotes the forward finite difference, and an analogous

notation holds for the y—direction.
The finite difference formulation of the scheme

Unt/2 = ghitin gOym (3.13)

then yields, after the exact evaluation of the integrals of (2.23) - (2.25) around the
bicharacteristics cone,

2

oriL2 <1 + Z&i + Z&; + %6363) Lo iy B (3.14)
v n

(1 + Eé;) 12 11y 6, U™ —

14

2

v

5 (1 + ﬁéi) um,uzéyV”,

v v V2
Uil = <1 + 155 - 1—655 + 6_4636?3) fha by U™

v 2

Y
2(+

v
553) 1241y 00 B™ +

3y

o1 uiui(h&yV".
In Section 4 we will present some numerical experiments for the FVEG scheme (1.3)
where the value U"*1/? is evolved by means of (3.14). Note that the recovery operator
Rf in (3.13) does not preserve cell averages, which leads to reduced accuracy of this
FVEG scheme, cf. scheme B in Table 1.
Therefore in order to maintain the cell averages at the recovery stage, by using RhD =
R{ + (1 —p2p2) as given in (3.2), we propose the following EG operator. It combines
approximate evolution (3.14), which is used to evolve slopes, with (3.11), which evolves
the constant part:-

Untl/? = ghilin ROy 4 ponst(1 — P2 (3.15)
14



Numerical experiments indicate that the above approximate evolution operator has
stability limit close to the CFL number v = 1, and its accuracy is considerably better
than that of (3.13).

Moreover, it is also easy to implement a limiting step, if it is required. Let ¥ : R? —
[0,1] be a limiter operator, then the approximate evolution operator for the second
order FVEG scheme can be given in the following way

Un+1/2 — Egonst U” + (EbAilinRgUz_l,ufgjl _ ZonStlffm,Ufy) (\I,,uxqun)- (316)

Note that in the definition of Rf in (3.1) every term involves a p,p, average, so the
operator here merely removes this averaging step.

Due to its better properties we denote the scheme (3.15) as FVEG-A. We note that
a separate evolution that incorporates the slopes has also been used by Ben-Artzi
and Falcovitz [2] in their GRP method. The scheme (3.13) will be called FVEG-B.
It is perhaps worth noting that if the operator E&'" is applied directly to RhD un,
with U™ (P') interpreted as a local average, the resulting scheme is stable only to CFL
numbers 0.6 or 0.8 according to whether Simpson’s rule or the trapezoidal rule is used
to approximate the edge integrals.

3.4. Euler equations. The finite volume formulation, which automatically im-
plies conservation over the cell, works with the conservation form of the Euler equa-
tions

where the vector of conservative variables and the fluxes are

p gu pU
_ pu o pu” +p o puv

u = pv ) Fl(u’) - puv ) FQ(u’) - p,U2 +p

e (e +pu (e +pv

Here p denotes the density, u and v components of velocity, p pressure, e total energy
and ~ stands for adiabatic exponent, v = 1.4 for dry air. The state equation gives
a relationship between the pressure and total energy, e = p/(y — 1) + p(u® + v?)/2.
However, we have shown in [12] that in order to consider bicharacteristics and derive
approximate evolution operators it is more appropriate to work with the simpler
system in the primitive variables v = (p,u, v, p), namely

v + AL (V)v, + A2 (v)v, =0, == (z,y)" € R, (3.18)
where
p u p 0 0 v 0 p 0
U 0 v 0 1% 0 v 0 O
v = v 5 A1 = 0 0 u 6 5 ./42 = 0 0 v %
p 0 vp 0 wu 0 0 ~vp v

This is the simplest and most convenient form for studying the bicharacteristics of the
system away from shocks. To derive the integral equations we linearise system (3.18)
by freezing the Jacobian matrices at a point P = (Z,#,t). These points are chosen to
be vertices or midpoints of cell interfaces depending on the quadrature rule used for
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the flux integration along cell interfaces. Denote by ¥ = (p, @, v, p) the local variables
at the point P and by a the local speed of sound there, i.e. @ = \/vp/p. Thus the
linearised system (3.18) with frozen constant coefficients has the form

vy + AL (D) v, + A2(D)v, =0, = (z,y)" € R%. (3.19)

The eigenvalues of the matrix pencil A(?) = A;(0)n, + A2(9)n,, where n = n(§)
= (ng,ny)T = (cosh,sinf)T € R?, are

AM=ucosf+vsinf—a

X2 = A3 =1ucos 0+ ¥ sin @

A =T cos 8+ 0sin 0+ a.
Thus we have two simple eigenvalues, A\; and A4, which give genuinely nonlinear fields,
i.e. acoustic or pressure waves; and two multiple eigenvalues, A\» = A3 associated with

the entropy waves and vorticity waves, which are linearly degenerate. We can choose
the following linearly independent right eigenvectors

-2 1 0

S cosf I 0 S sin @ S cosf

! sinf |’ "2 o] "3 —cosf |4 sin @
—pa 0 0 pa

Let R(9) be the matrix of the right eigenvectors and multiply system (3.19) by R~!()
from the left. The quasi-diagonalised characteristic system of the linearised Euler
equations has the following form

u—acosf 0 O 0 v—asingd 0 0 0
w4 0 u 0 0 w. it 0 v 0 0 w.—S
‘ 0 0 @ 0 i 0 0 v 0 e
0 0 0 @+ acosf 0 0 0 7+asinf
(3.20)
where the vector w of characteristic variables reads
wy %(—ﬁ% +ucosf + vsinh)
— | W2 | _p-lmy., — —az
w= w3 =R (v)v = usinf — v cos ’
wy %(% + ucosf + vsinf)
and the right hand side is given as follows
S, %d(sin98£3 — cos 9‘98—“;3)
g - So _ 0
| Ss | T | asinf(F2 - G§) —acosf (G — )
Sy 1a(— sin s +cost988—“;3)

Note that it is the wave equation system which creates the key part of (3.20): suppose
we set p = 1/a and remove the first row corresponding to density as well as first
column from the Jacobian matrices A;, Ay in (3.19); then moving the third equation
for pressure to the first row leads to the so-called system wave equation with advection

w + Arug + Asuy, =0, == (z,y)' € R, (3.21)
16



where u = (p,u,v)” and

4 a 0 v 0 a
A = a u 0 , As = 0 v O
0 0 u a 0

Further, if the advection velocities are &« = © = 0 and @ = const. we get the well-
known linear wave equation system (2.7), which describes the propagation of acoustic
waves. Note that in Section 2 as well as in [8] we did not consider advection terms,
which are present in the linearised Euler equations system. These terms lead to more
complex characteristic cone configurations that have to be taken into account in the
implementation of the FVEG methods.

P =(z,y,t+ At)

F1G. 3.1. Bicharacteristics along the Mach cone through P and Q(0).

The approximate evolution operators for the Euler equations can be derived in an
analogous way as in Section 2 for the wave equation system (2.7). The set of all
bicharacteristics which connect the apex P = (z,y,t + At) down to the footpoints
Q¢(0) creates the Mach cone shown in Figure 2. More precisely, the footpoints of the
corresponding bicharacteristics are

Q1(0) = (xz — (@ — acos)At,y — (0 — asinh)At, t),
Q2 = Qg = (1‘ — ﬂAt,y — ’l_)At,t),
Q4(0) = (x — (u+ acosO)At,y — (0 + asin ) At,t).

After some computations, similar to those in Section 2, we obtain the following for-
mulae for the exact solution v of the linearised system at the point P = (x,t + At).
In order to use consistent notation we put @ := Q1(#), P' := Q2 and t =t + At — 7.

17



Then we have

plz,t+ At) = p(P') — p(P") + i/0 ’ {p(Q) - g (u(Q) cosf +v(Q) sinh)| db

a? 2r

SIN ST

27 At
% / / S(@ — (@ — an())r,0,t) dr do, (3.22)
o Jo
2w
u(x,t + At) = %/ [—1% cosf + (u(Q) cosf + v(Q) sinf) cosf| db
0
1 27 At . ) )
+%/0 /0 cosf S(x — (@ — an(0))7,0,t) dr d
1 At )
FulP) = o= »(P'(8)) dr, 3.23
guP) =5 [ pa(P @) ar (3.29)

v(z, t+ At) = % /02” [—I% sinf + (u(Q) cosf +v(Q) sinf)sinfh| do

+% /0277 /OAt sin S (z — (u — an(6))r,0,1) dr df
At _
/0 py(P'(1)) dr, (3.24)

@, t+ At) = 2i /0 " 1(Q) = pa (u(Q) cosf+ v(Q) sinf)] db

™

where
z—(u—an(d)r =(z — (& —acosb)r, y — (0 — asinf)r)
and the source term S is given by

S(x,0,t) = alu,(x,0,)sin’ 6 — (u,(z,0,1) + v, (z,0,%) sind cos
+ vy (z, 0,%) cos® 0]. (3.26)
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Approximate evolution operators for the Euler equations.

In our previous papers [12], [13] we have approximated the source term integrals, i.e.
the so-called mantle integrals, with respect to time by the rectangle rule, which gives
an O(At) approximation. As for the wave equation system this led to the reduced
stability of the FVEG scheme. Thus the mantle integrals need to be approximated in a
better way; and we do this in such a way that each one-dimensional wave is calculated
exactly. Using results from Section 2 and the Appendix for the wave equation system
we can derive new EG approximate evolution operators for the Euler equations, for
which the CFL number is close to a natural stability limit.

const

Corresponding to (2.18) - (2.20) the approximate evolution operator EX™ for piece-
wise constant functions reads:

ISIESY

p(P) = p(P') = ===+ 5

a2

p(P") N 1 /Ozfr [p(Q) (u(Q) sgn(cosB) + v(Q) sgn(sin §)) } de

+O(A), (3.27)

u(P) 1 /0 i {—pfj) sgn(cos ) + u(Q) (% + cos? 0) + v(Q) sinf cos 9} df + O(At?),
(3.28)

o(P) = %/0 ' {—% sgn(sin6) + u(Q) sinf cos +v(Q) (& + sin’ 9)} a6 + O(AR),

(3.29)

1

T o

p(P) /0 ' [P(Q) — pa (u(Q) sgn(cosf) + v(Q) sgn(sind)) ]do + O(AL?),  (3.30)

where Q = (z — At(u — acosh),y — At(v —asinb),t), P' = (x — Atu,y — Atv,t), and
P = (z,y,t + At). Note again that the error O(At?) is obtained if v = 1, otherwise
the approximation error is O(At).

Further, the approximate evolution operator E4!" for continuous piecewise bilinear

functions is given as follows:

pP)=oP) 7 [ @ = pP a8 = [ 2 [u(@) cosb -+ v(@)sind]ag
+0(At%), (3.31)

u(P) = u(P'") — 1 /27r @ cosf df + i /27r [3 (u(Q) cos 8 + v(Q) sin f) cos §
0 0

m pa
—u(Q) — %u(P’)] 8 + O(AL), (3.32)
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T —_

U(P):v(pf)_l/o ”% sin9d9+i/0 ' [3 (4(Q) cos6 + v(Q) sin ) sino

—0(Q) — %U(P’)] 8 + O(Ar), (3.33)

p(P) =p(P') + 1 /0 i p(Q) — p(P")]df — %/0 ﬁﬁd [u(Q) cosb + v(Q) sin 4] dF
+ O(At?). (3.34)

It is possible to define a second order FVEG scheme just by using the approximate
evolution operator (3.31) - (3.34) and continuous or discontinuous recoveries, RS or
RhD , respectively. Thus, in the same way as for the wave equation system, we will
get the FVEG-A and FVEG-B schemes defined by (3.15) and (3.13), respectively.
However, our experience from the wave equation system shows us that the desirable
scheme, i.e. the best stability range as well as the best accuracy, is the scheme FVEG-
A, which is given by the combination of E5"$t with E%!™"; cf. (3.16) for the version
with a limiter.

4. Numerical experiments. We will present results of several numerical exper-
iments for the linear wave equation system as well as for the nonlinear Euler equations
and compare the behaviour of various second order FVEG schemes.

First we refine our notation for the schemes. The FVEG-A is the second order FVEG
scheme (3.15), which uses the continuous bilinear recovery Rf but is adjusted to
maintain the cell average; then we distinguish FVEG-A1 and FVEG-A2 according
to whether Simpson’s rule or the trapezoidal rule is used for the integration of the
edge fluxes. Similarly the FVEG-B1 and FVEG-B2 are those schemes based on the
unadjusted operator combination (3.13). Finally, for comparison let FVEG-C be the
first order scheme, based on piecewise constants with no recovery and exact evaluation
of the edge integrals, given by (3.10) (while FVEG-C1 and FVEG-C2 denote when
Simpson’s rule or the trapezoidal rule replaces this).

We will also make some comparisons with the second order Lax-Wendroff (rotated
Richtmyer) scheme (3.8) and a FVEG scheme based on the earlier operator EG3
studied in [8]-[15], [20].

Problem 1.
We consider the initial value problem for the wave equation system with the initial
values

¢(x,0) = —l(sin 2nx +sin 27y), u(x,0) =0 = v(x,0).
c

In this case the exact solution is known

1
¢(x,t) = — = cos 2mct(sin 2wz + sin 27y), (4.1)
c
1
u(x,t) = = sin 27ct cos 2wz, (4.2)
c
1
v(x,t) = — sin 2wet cos 27y. (4.3)
c

First we have tested stability ranges of the above schemes on various numerical ex-
periments. The maximum stable CFL numbers v = cAt/h that are indicated by the

20



numerical experiments are as follows: the schemes FVEG-A1 and FVEG-C1 have
the stability limits 0.75 and 0.79, respectively; whereas the schemes FVEG-A2 and
FVEG-C2 are stable up to 0.96 and 0.99, respectively. We can notice the influence
of the Simpson quadrature used for the cell interface integration, which reduces the
stablity range. Recall that for the scheme FVEG3 (based on the RhD recovery but the
earlier EG3 evolution operator) the limit was 0.56.

Next we compare the accuracy of the above FVEG schemes. We take the CFL number
v = 0.8 and an end time T = 1.0. In Table 1 the L?— errors for the second order Lax-
Wendroff scheme, the second order wave propagation method of LeVeque computed
by the CLAWPACK code [6], and the FVEG schemes with the trapezoidal rule are
given for meshes of 20 x 20, 40 x 40, . . ., 320 x 320 cells, together with the experimental
order of convergence (EOC) computed from two meshes of sizes N; and N> as

i, (T) — U | (N)
EOC=1In —/In{ — ).
Tane @) 0%, "\ W

Here we have denoted by un (T) and by U’y the exact and the approximate solutions
on a mesh of size N, respectively.

Being in the common stability range the use of the trapezoidal or Simpson’s rule for
the cell interface integrals gives the same global error for all schemes FVEG-A, B and
C. For the first order scheme FVEG-C we can also compare the global error obtained
by the scheme with exact edge integrals as well as by means of numerical quadratures,
i.e. trapezoidal or Simpson’s rule; the error is the same.

In summary, the recommended scheme FVEG-A is roughly five times more accurate
than the Lax-Wendroff as well as the LeVeque scheme and twenty-five times more
accurate than the scheme FVEG-B that does not preserve cell averages at the recovery
stage.

Similar comparisons with a CFL number 0.55 allow the inclusion of the FVEG3
scheme: it is more accurate than (non cell average preserving) FVEG-B but has
roughly double the error of FVEG-A.

TABLE 4.1
Accuracy test T'= 1.0, CFL = 0.8.

(Mu@) -UT/N] A | B [ € | IW | CLAW |
20 0.074389 | 1.141908 | 0.698391 | 0.297976 | 0.300450
40 0.014173 | 0.315654 | 0.358860 | 0.073712 | 0.076641
80 0.003220 | 0.080285 | 0.188042 | 0.018567 | 0.019062
160 0.000783 | 0.020136 | 0.096310 | 0.004649 | 0.004649
320 0.000194 | 0.005038 | 0.048745 | 0.001163 | 0.001163
EOC 2.0129 1.9988 0.9824 1.9991 1.9991

In Table 2 a comparison of CPU times for the FVEG schemes, the Lax-Wendroff
scheme and for the LeVeque scheme (CLAW) is given for a mesh with 80 x 80 cells.
We would like to point out that the higher costs for the second order FVEG schemes
are mostly due to the numerical integration along cell interfaces. In the first order
scheme FVEG-C the exact integration is done, which reduces the CPU costs. Note
however, that no attempt has been made to speed up the code other than the simple
loop change. Instead of setting the main loop of the code over cells, we set the
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TABLE 4.2
Computational costs in time T = 1.0, CFL = 0.8.

[CPU] A | B | C | LW [ CLAW |
| 80 | 7.39 sec. | 7.39 sec. | 4.88 sec. | 0.26 sec. | 5.14 sec. |

main loop over vertices of the mesh or over the integration points needed in the flux
integrals. In such a way evolution at each vertex is computed just once instead of
four times.

Problem 2.

The aim of this experiment is to demonstrate the influence of a nonzero advection
velocity on the choice of an appropriate quadrature rule for the flux integration. We
consider for the wave equation system with advection the same initial value problem
as above. Now the exact solution reads

1
¢(x,t) = —= cos 2wat(sin 2w (z — at) + sin 27 (y — o)), (4.4)
a
1
u(x,t) = — sin 2wat cos 2n(x — at), (4.5)
a
1
v(x,t) = = sin 2wat cos 27 (y — vt), (4.6)

where (@, ) are constant advection velocities and @ represents the constant speed of
sound, cf. (3.21). We set @ = 1.0, o = 0.5 and @ = 1.0.
The maximum CFL number

At = o =
v= Tmax(|u| +a,|v| +a)

has been taken 0.7 and the end time 7' = 1.0. We compare the behaviour of the first
and second order schemes FVEG-C1, FVEG-C2, FVEG-A1 and FVEG-A2, which
use Simpson’s and the trapezoidal quadrature for the flux integrals, respectively. In
Table 3 the L2-errors are given for meshes of 20 x 20, ...,320 x 320 cells.

The experiment demonstrates even for this simple test the instability of the FVEG-
C2 schemes, which is appearing on the mesh with 320 x 320 cells. Similarly we see
the loss of accuracy of the second order scheme FVEG-A2, which also indicates the
instability and would be seen more clearly on a finer mesh. The instability is due to
the trapezoidal rule approximation of the flux integrals as was predicted theoretically
for a simplified model advection equation in Section 3.2.

Problem 3.

In this example we present the behaviour of our FVEG schemes for the nonlinear
Euler equations of gas dynamics. Let us take the well-known Sod-2D test problem
with discontinuous initial data

p=1 u=0, v=0, p=1, |z||<04
p=0.125, u=0, v=0, p=0.1, else.
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TABLE 4.3
Accuracy of the FVEG schemes using Simpson’s and the trapezoidal rule for the wave equation
system with advection, T = 1.0, CFL = 0.7.

Mu)—U"JN]| AL | A2 | Ci [ C2 |
20 0.138311 | 0.138311 | 1.036531 | 1.036531
10 0.026628 | 0.026628 | 0.649852 | 0.649852
80 0.005990 | 0.005990 | 0.370421 | 0.370421
160 0.001455 | 0.001455 | 0.198350 | 0.198350
320 0.000361 | 0.000498 | 0.102650 | 2.395565
EOC 2.0109 1.5468 0.9503 —

We consider this initial-value problem as a cylindrical explosion problem. The com-
putational domain is a square [—1, 1] x [—1, 1]. The mesh is uniform square and initial
data are implemented by taking the integral average on each cell, i.e. by projecting
them onto a piecewise constant function in Sj. As pointed out by Toro in [21] this
avoids the formation of small amplitude waves created at early times by a staircase
configuration of the data. We set the CFL number to 0.7 and take a mesh with 400
x 400 cells.

The solution exhibits a circular shock travelling away from the centre, a circular con-
tact discontinuity travelling in the same direction and a circular rarefaction wave
travelling towards the origin at (0,0). Within the rarefaction fan a secondary shock
is created, it travels inwards and focuses at the origin creating a peak in pressure and
density at time T" = 1.7. In Figure 3 we have plotted three-dimensional graphs of
density at 7' = 0.2 and T' = 1.7 computed by the second order FVEG-A1 scheme.
Note that small oscillations at time 7" = 1.7 are caused by partially reflected boundary
waves; a similar phenomenon can also be experienced with the LeVeque scheme. To
model absorbing boundary conditions we have used just simple second order extrapo-
lation of all physical variables at the boundary. In [16], [20] other suitable techniques
for approximation of boundary conditions were studied.

Further, we have compared the numerical solutions computed by the FVEG-A1 and
FVEG-A2 schemes, i.e. using Simpson’s rule and the trapezoidal approximation of
the edge integrals, respectively; in Figures 4 and 5 are given the isolines of density,
velocity, and pressure at time 7' = 0.2. The results confirm that the trapezoidal rule is
not appropriate for problems with arbitrary advection velocities, i.e. @ # . Note that
in order to supress typical over-/undershoots on discontinuities we used the minmod
limiter to control the slopes; see our previous paper [13] for a precise definition as well
as for further experiments and comparisons with other schemes. Figure 4 illustrates
good multidimensional resolution of all significant structures of the solution.

5. Conclusions. In this paper we have derived new genuinely multidimensional
finite volume evolution Galerkin schemes, which are based on the use of a multidi-
mensional approximate evolution operator. The method consists of two steps and
couples a finite volume formulation with an approximate evolution Galerkin operator.
The latter is constructed using the bicharacteristics of the multidimensional hyper-
bolic system, such that all of the infinitely many directions of wave propagation are
taken into account. In the first step a recovered (or reconstructed) approximate solu-
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Fic. 4.1. Cuylindrical explosion, graphs of density at T = 0.2 and T' = 1.7. Solution obtained
by the FVEG-A1 scheme on a 400 x 400 mesh.

tion is evolved by the approximate evolution operator, and fluxes along cell edges are
calculated. In the second step the finite volume update is done.

We have derived new approximate evolution operators, E&!" and E5°"*t, which work
with continuous piecewise bilinear or piecewise constant functions, respectively. The
operators are constructed in such a way that any one-dimensional planar wave, ori-
ented with the mesh, is calculated exactly. As a result, the stability ranges of the
FVEG schemes are improved considerably and the stability limits are close to the
natural limits of CFL = 1. Moreover, if the slopes of the approximate solution are
evolved by means of E4" and constant parts are corrected by means of E5°", in or-
der to preserve cell averages at the recovery stage, the accuracy of the FVEG scheme
is also improved considerably to yield our preferred scheme FVEG-A. Furthermore in
the case of advected characteristic cones it is shown to be important to use Simpson’s
rule to evaluate the edge fluxes, giving the scheme FVEG-A1.

Numerical experiments for the linear wave equation system as well as for the nonlinear
Euler equations of gas dynamics confirm the improved accuracy and stability of new
FVEG schemes, as well as good multidimensional resolution. Further comparisons
with commonly known schemes were presented in [13] .

A. Appendix: Exact mantle integrals for the evolution operator of the
system wave equation. For one-dimensional data, the solution of the wave equation
can be written down explicitly and substituted into the mantle integrals occurring in
the formulae (2.14) - (2.17). Exact evaluation of these integrals for discontinuous,
piecewise linear data then provides a guide to the choice of quadrature to be used for
more general two-dimensional data.

We begin with the piecewise constant initial data (2.12) and the resulting exact so-
lution (2.13). Suppose this is substituted in the evolution operator formulae (2.14) -
(2.15) to give the solution at the origin after one time step; thus

1 27 1 At 1 27
#(0,0,At) = %/0 [po — ug cosf] df — %/0 ;/0 ug cosfdfddr, (A.l)

where Q(0) = (cAtcosf,cAtsing,0) and Q' = (crcosf, crsinf, At — 7). For these
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F1c. 4.2. Cylindrical explosion, isolines of the solution obtained by the FVEG-A2 scheme with
the trapezoidal rule at T = 0.2 on a 400 X 400 mesh: the plots show density rho, velocities (u,v) and
pressure p.

data, the first integral gives

1 i L (ut —u). (A.2)

™

1
Y | [po — ug cosh|df = 3 (¢+ +¢7)

In the second integral over the mantle ug/ is constant, independently of 8, unless
T>At—T1,ie. T > %At; indeed, there is cancellation between the left and right
of the origin unless 7|cos@| > At — 7. With 6 given by 7cosf = At — 7, so that
dr/7 =sinfdA/(1 + cosf), the integral therefore becomes

1 At 1 2m 1 At 1 _
— - / ug: cosf dfdr = — / —(ut —u7)2sinf dr (A.3)
2m T Jo 2 Jia T

1, . ™7 sin?d 1 Nz
== — ——df = = (ut — ——1).
7'['(“ “ )/0 1+ cos@ 7r(u “ )(2 )

Hence the exact solution is reproduced through exactly integrating the two integrals,
that is

#(0,0, At)

1 _ 1 _ 1 1 _

36+ - 2 =) - (5-2) @ —u)

%(qu —u"). (A4)
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F1c. 4.3. Cylindrical explosion, isolines of the solution obtained by the FVEG-A1 scheme with
Simpson’s rule at T = 0.2 on a 400 x 400 mesh: the plots show density rho, velocities (u,v) and
pressure p.

It should be noted that the combined integral over u on the right can be written as

+ w/2 2 + w/2
;— {cosﬁ + 1s1n70] df = u_/ dé. (A.5)
T ) _z)2 + cosf 2T ) )2

It is this form that leads to the approximate evolution operator for piecewise constant
functions on a general mesh that is given in (2.18) - (2.20); it motivates the use of

1 27

1
R = — + _ -
o . ug sgn(cosf) df = 5 (ut —u™)

to combine the u-integrals in (A.2) and (A.3), and hence give an approximation that
is equivalent to the corresponding terms in (A.1).

Next, in one dimension, the update for u should be the same as that for ¢; however,
we use the general two-dimensional formula of (2.15), together with (2.17), to give for
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the solution after one step

1 27 1
u(0,0,At) = o / [~ g cosf + ug cos 0]df + FUP
0

1 At 1 27

Dy - /0 [ug: cos 20 — ¢ cos ] dOdLA.6)
We see from this that the dependence on ¢g and ¢ is exactly the same as that
on ug and wug in the formula (A.1) for ¢(0,0,At). Also, the integral of ug cos 26
gives no contribution from these data; and ups should be interpreted as the integral
average of ug. We then reproduce the exact formula for «(0,0, At) to match that for
#(0,0,At). So again this leads to the approximate evolution operator for u(P) that
is given in (2.18) - (2.20).

Now let us consider the continuous linear initial data given by (2.21), which results
in the exact solution (2.22). We again substitute the latter in the evolution operator
formulae (2.14) - (2.17) and carry out the integrals over the cone base and mantle
exactly. From (A.1) with these data the first integral is very simple, giving

1 27 1 w/2 R "
5 - - A
o7 /o [bq —uqcos6]df = o~ /_ﬁ/2 (¢" — u'* cos @) cAt cos §dd

= cAt (%QSR — iuR> , (A7)

instead of (A.2).

The mantle integral is more complicated, because of the change of solution form along
the line z = cf = ¢(At — 1), which cuts the mantle at § =  (given by 7 cosf = At —7
as used in (A.3) ) if 7 > $At. We therefore first prove a more general result which we
can utilize later.

LEMMA A.1. For the 1D wave equation solution
gZS(:L’,t) :f(:L‘—Ct)-l—g(l‘-l—Ct), U(:L’,t) :f($_6t)_g(x+6t)a (AS)

where f,g € H'(R), the mantle integrals in (2.14) and (2.15) (evaluated at the origin)
are given by

— At 1 27 f cos @ B 1 f At (A 9)
o TJo Q" \ cos 26 T= 1/2 —c .
27
+2 /0 ((7050) (cAtcosf)(1 — cosf)db,
At 2
1 cos 6 1
0 ;/o JQ <cos 26) dfdr = <1/2> g(cAt) (4.10)

2w
2/0 <0050> (cAtcosf)(1 + cos ) df.
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Proof. For fg: cos@ the left-hand side equals

1 At 1 27
— = flercos8 — c(At — 1)) cos 8dfdr
2w 0 T Jo

1 At 1 2m
=5 il {[sin 6f(-) g” + / crsin 0f' (c(1 + cos )1 — cAt)dH} dr

™ Jo T 0
I S G at _ f(cAtcosf) — f(—cAt)
“or ), st 0{ o fr)dr = c(1 + cos9) 40

2w

_ 2i (1 — cos6) [f(cAt cos) — f(—cAt)]d

T Jo

2w
= —f(—cAt) + L f(cAtcos8)(1 — cosf)db,
2w 0

as given in (A.9).
For for cos26, after integrating cos 26 to give % sin 20 = sin # cos #, we obtain instead
on the third line

27 At A 9) — A
csin? Hcosﬁ{ ; f'(r)dr = fle tccas+)cosj;() cAt) } 48

2 Jo

1 2m

= — (1 —cosf) cosf[f(cAtcosB) — f(—cAt)] d
2 Jo

1 1 27
—f(—=cAt) + — f(cAtcos8)(1 — cosf) cos 6d9,
2 2 0

as given in (A.9).
For the left-moving waves, go' cosm#@ gives with the change § — 7+ 6 and g(¢) —

f(=¢)

1 At 1 27T
o - / g(crcos @ + c¢(At — 7)) cosmb dfdr
T™Jo TJo
1 At 1 27
= - — 0 At — —1H™ Ado d
27 J, 7_/0 g(—crcos + c( 7))(=1)™ cosm T
(_l)m At 1 2
=— — flercosf — c(At — 1)) cosmbde dr (A.11)
2m o TlJo

to which (A.9) can be applied; then the changes back, § — 7+6 and f(¢) — g(—v),
gives the result in terms of g(-) as (A.10). O

For the initial data (2.21) we write the solution (2.22) at @' in the form

¢q = 3(¢" +ulf)(@ —ch) +

3 (6% — u) (@ + cf)* (A.12)
ugr = (% + uft) (@ — )t -

(¢F — uf)(z + cb)T, (A.13)

N[ N

where = 7 cosf and { = At — 7. Now we can use the lemma to compute the mantle
integral in the ¢ update of (2.14) or (A.1): from f(r) = x* = max(z,0), so that
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(cos#)T gives a contribution only if # €] — 7/2, 7/2[, we get

1 At 1 21 ~ A 71'/2 1 1
— —/ (x — ct)g, cos #dfdr = cat cos (1 — cos0)df = cAt (— - —) ;
27 0 2 77[,/2 4:

(A.14)

and from g(z) = 2t we get

2 T by

1 At 1 27T 5 A 1
— - / (m+ct)2§, cosAdédr = cAt—c2—t/ cos@(1+cos6)dd = cAt (2 _ _> ]
0 w/2

Putting these together from (A.11), the mantle integral becomes in this case

% OAt % /:W ug cos0dodr = %(d)R +uft)cAt (% - i) - % (o™ — u®t) eAt <2 - %)
= cAt <1 - 1) ot + Larl. (A.16)
T 2 4
Subtracting this from (A.7) then yields for (A.1) the result
$(0,0,At) = LeAt(pf —u®), (A.17)

)

which is in agreement with the exact solution given by (2.22).
Thus in order to modify the cone base integral, giving (A.7), so that it incorporates
the effect of the mantle integral, given by subtracting (A.16), we need to make two
changes: firstly, the term arising from integrating wg cos 6 needs to be doubled, which
has the same effect as applying the rectangle rule to approximate the mantle integral;
and secondly, the term from ¢¢g needs to be split into the two parts ¢pr + (¢g — ¢pr),
and that from the latter must be multiplied by 7/2. This leads to the update formula
(2.23) to approximate (2.14) in the case of continuous data.

For the update of u, the cone base terms with the data of (2.21) give

L + = /%[ cos® § — ¢ cos f]df = cAt 2 (u® cos® @ — ¢* cos? §)dd
2P T o J, e @ o S
2
= cAt B —gf). Al
= et (- o) (A1)
The mantle term in ¢¢g- cosd, introduced in (2.17), gives as in (A.16)
I e e 11 1
— ’ =cAt || = — = )uft+ —o%]|. Al
5 ¢ cos8dldr = cAt K” 2) u’t + 4¢ (A.19)

Finally, the mantle term in ug cos 26 is obtained from (A.9) and (A.10), as in (A.12)
- (A.16), giving

1 At 1 2w 1 At 7l'/2
— - / ug cos 20 dfdr = ~ (¢ + uR)c— / cos? B(1 — cos §)dé
27 T Jo 2 2m J_xp2
1 At [™/?
—— (% —uf) —cAt _ cat cos? O(1 + cos G)dﬁl
2 271- _ﬂ./2

= %((ﬁR + uft)eAt (Z - 3%) - % (¢f — u®) eAt <i - 3%) <i - 3%) cAtuftA.20)
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Thus the combination of (2.15) and (2.17) gives the update from (A.18), (A.19) and
(A.20) as

2 1 1 1 2 1 1
u(O,O,At):cAt[uR<—W——+§+Z_§> QSR(_Z_Z)}
3 1\ p 1,

Unlike (A.17), this is not in agreement with the exact solution given by (2.22). This
is because of the approximation made in (2.17): for the present data, the left-hand
side of (2.17) can be calculated exactly to give TcAt(¢® — uf'); if (A.19) is replaced
by this expression we recover the exact solution.

Finally, then, to deduce the update formula (2.24) to approximate (2.15) and (2.17),
we first need to double the term arising from ¢¢ cos 6. In the same way we add a term
uq cos 26, corresponding to applying the rectangle rule to the mantle term ug- cos 26,
to the cone base integral of ug cos? 8 to give ug(3cos?# — 1). Then we split ug into
upr + (ug — upr) and multiply the term arising from the latter by 7/2. This leads to
(2.24).

In this way we have completed the derivation of update formulae (2.23) - (2.25), based
on only the cone base values, to approximate the formulae (2.14) - (2.17) in such a
way as to be exact for continuous, piecewise linear, one-dimensional grid-aligned data.
Note that there is a close similarity between the treatment of the ¢ update and the u
update, except that the cos? @ coefficient is introduced so as to respect the integrity of
the term u cos 6 + v sin §, whose integral around the perimeter of the cone base equals
the divergence of the velocity field averaged over the base.
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