
An Evolution Galerkin Sheme for the ShallowWater Magnetohydrodynami (SMHD) Equationsin Two Spae DimensionsTim KrögerDivision of Numerial Mathematis IGPM, RWTH Aahen, GermanyMária Luká£ová-Medvid'ová∗AB Mathematik, Tehnishe Universität Hamburg-Harburg, GermanyAbstratIn this paper we propose a new �nite volume evolution Galerkin (FVEG)sheme for the shallow water magnetohydrodynami (SMHD) equa-tions. We apply the exat integral equations already used in our ear-lier publiations to the SMHD system. Then, we approximate theseintegral equation in a general way whih does not exploit any partiu-lar property of the SMHD equations and should thus be appliable toarbitrary systems of hyperboli onservation laws in two spae dimen-sions. In partiular, we investigate more deeply the approximation ofthe spatial derivatives whih appear in the integral equations. The di-vergene free ondition is satis�ed disretely, i.e. at eah vertex. Firstnumerial results on�rm reliability of the numerial sheme.Key words: genuinely multidimensional shemes, hyperboli systems, shal-low water magnetohydrodynami equations, �nite volume methods, evolu-tion Galerkin shemesAMS Subjet Classi�ation: 76W05, 35L65, 65M06, 35L45, 35L67, 65M251 IntrodutionWe onsider a system of hyperboli onservation laws,
∂tU + ∇x · F (U) = 0.We use here the notation of the �rst author's dissertation [14℄, in whihunderlined symbols denote row vetors with d omponents and boldfaed
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2 1 INTRODUCTIONsymbols denote olumn vetors with m omponents. The double underlinedsymbols, that will be used later, denote row vetors with m omponents.Most lassial numerial shemes for suh systems are based on solvingone-dimensional Riemann problems aross the interfaes of a strutured orunstrutured mesh. The roots of this idea go bak to Godunov [10℄, whoinvented the prototype of these shemes for one-dimensional systems.However, there is an ongoing disussion, initiated by Roe [30℄, whethershemes whih are based on solving one-dimensional Riemann problems anre�et all multidimensional e�ets ourring in multidimensional systems.In the literature we an �nd several genuinely multidimensional numerialshemes, whih purposely dispensed with Riemann solvers, see e. g. Fey [7, 8℄,Noelle [25℄, LeVeque [17℄, Brio [3℄.In this paper, we will deal with the evolution Galerkin (EG) shemes,whih also belong to this lass of multidimensional Riemann solver free ap-proahes. The main idea of these shemes is to evolve the solution along thebiharateristi urves forming the Mah one and then projet it into theapproximation spae. Exat evolution of the solution in time is representedby the integral equations for a linear(ized) system, i. e. a solution represen-tation involving integrals over intermediate time levels. In order to use thisintegral equations numerially, integrals are approximated by suitable nu-merial quadratures yielding the so-alled approximate evolution operators.A paper due to Butler [4℄ an be onsidered to be the �rst ontribution tothe EG approah. This operator was later stated in a general way by Ost-kamp [26, 27℄, who also showed that there is a ertain onnetion betweenthe EG approah and Fey's [7, 8℄ Method of Transport.In the last years, Luká£ová, Morton, Saibertová, Warneke, and Zahaykah[19, 20, 21, 22℄ onstruted several EG shemes for the wave equation sys-tem, the shallow water equations, and the Euler equations, where they soonembedded the evolution operators into a �nite volume framework, obtainingthe so-alled �nite volume evolution Galerkin (FVEG) shemes. Extensiveexperimental treatment on�rms that the EG and FVEG shemes approxi-mate orretly omplex multidimensional strutures of solutions, e.g. irularexpansion wave, oblique shoks, et. Numerial omparisons with other well-known shemes illustrate high global auray of the FVEG shemes. Forexample the seond order FVEG method is 6 times more aurate than theLax-Wendro� sheme as well as the LeVeque wave propagation algorithm forlinear hyperboli systems, whereas the omputational osts are omparablewith the LeVeque sheme, see [20℄.On the other hand, Kröger, Noelle, and Zimmermann [15, 14℄ developeda framework of the so-alled state deompositions, in whih they examinedthe onnetion between the EG approah and the Method of Transport moredeeply and managed to larify an important di�erene between these ap-proahes. At the same time, this framework o�ers the possibility to onsiderthe EG approah from a di�erent point of view.



3In the urrent paper, we introdue an FVEG sheme for the shallow wa-ter magnetohydrodynami (SMHD) equations. These equations were (to ourknowledge) �rst proposed by Gilman [9℄ as an approximation to the idealMHD equations in the situation of a free-surfae, shallow, and eletriallyonduting �uid that has onstant density and is in magnetohydrostati bal-ane in the vertial diretion.There are two main di�ulties for the numerial treatment of the fullMHD equations:
• The magneti �eld should be kept divergene-free in any time.
• The numerial update should produe fully multi-dimensional as wellas non-osillatory solutions near disontinuities.Sine the full system of the MHD equations has a ompliated eigenstru-ture, it is desirable to have a simpler model system that retains both maindi�ulties but at the same time has a simpler eigenstruture. The SMHDsystem not only serves as a simpli�ed mathematial model, but it has itsown physial appliability used in the desription of the solar taholine, i. e.a thin layer of the solar radius that separates the onvetive zone from theradiative zone in stars, f. [6℄, [9℄.As far as we know, this is the �rst FVEG approah for these equations.A seond new property of the sheme is that it is mainly a blak-box ap-proah: while former approximate evolution operators, used in the FVEGshemes, were mostly speially designed for the individual system, the ur-rent sheme does not exploit any partiular property of the SMHD equations.Therefore, the sheme should be appliable to any system of hyperboli on-servation laws in two spae dimensions without major hanges1. In generalit is also possible to apply the sheme to the ideal MHD equations (for two-dimensional problems), but further onsiderations due to a more ompliatedstruture of the full MHD equations are neessary in order to obtain an e�-ient method. In this paper we ontent ourselves with the study of a modelSMHD system. The �rst numerial experiments presented here show thatthe sheme gives good numerial results and indiate the reliability of theFVEG sheme for the modelling of the SMHD system.The outline of this paper is as follows: In Setion 2, we introdue brie�ythe SMHD equations and disuss a variant of them whih is no longer on-servative, but simpler and will in partiular have a simpler hyperboli stru-ture. Next, in Setion 3, we state the integral equations in an abstrat,but ompat, form whih is also used in the works of Kröger, Noelle, andZimmermann [15, 14℄. A brief desription of the FVEG shemes follows inSetion 4. We explain in detail how our new sheme works in Setion 5. Thismainly onsists of a desription of the used approximation tehniques in the1However, we exploit essentially the fat that the physial spae is two-dimensional,i. e. d = 2.



4 2 THE SMHD EQUATIONSevolution operator as well as in the �nite volume update formula. A mainfous is set on the approximation of the spatial derivatives whih our in theevolution operator, sine all the other approximations are performed usingstandard tehniques. To summarize the presentation of the FVEG shemefor the SMHD equations we �nish the Setion 5 with the presentation of thenumerial algorithm. Setion 6 ontains a ouple of numerial experiments.Finally, in Setion 7, we derive some onlusions.2 The SMHD equations2.1 The SMHD system of hyperboli onservation lawsThe SMHD equations were, as far as we know, �rst proposed by Gilman [9℄.Afterwards, DeSterk [6℄ and Rossmanith [31℄, among others, worked onthese equations. The SMHD equations an be derived from the ideal MHDequations. They model the dynamis of a onstant density, shallow, andeletrially onduting �uid that is hydrostatially balaned in the vertialdiretion. A detailed derivation is given by Rossmanith [31℄. The result is asystem of m = 5 equations in d = 2 spae dimensions, whih is given by
∂tŨ + ∇x · F (Ũ) = C(Ũ), (2.1)where
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;(2.2)more preisely we an rewrite (2.1) as
∂tŨ + ∂x1

F 1(Ũ) + ∂x2
F 2(Ũ) = C(Ũ), (2.3)with

F (Ũ) =
(

F 1(Ũ), F 2(Ũ)
)

.The system (2.1), or (2.3), is moreover aompanied with the intrinsi on-straint
∇ · (hB) = 0. (2.4)Reall that the notation is adopted from [14℄. Further, g > 0 is the grav-itational onstant, and b = b(x) desribes the bottom topography. In theurrent paper, we restrit ourselves to the ase of a �at bottom, i. e. b = const,so that the system is homogeneous. We deal with the numerial approxima-tion of the time-dependent system (2.1) and derive the approximation of the



2.2 A Powell-like form for the SMHD equations 5divergene onstraint (2.4), whih is satis�ed by a numerial solution. Notethat this onstraint is also exploited in the reformulation of the system (2.1)whih is realized in Subsetion 2.2.These equations an be rewritten in terms of the primitive variables U =
(h, u, B)T, yielding

∂th + u∇h + h∇TuT = 0,

∂tu + g∇Th −
1

h
B∇hB + u∇u −∇TBTB − B∇B = 0,

∂tB −
1

h
B∇hu − B∇u + u∇B −∇TBTu = 0,where the symbol ∇ always denotes a olumn vetor of derivatives. This anbe written in the form

∂tU +
2

∑

s=1

Ãs(U)∂xsU = 0, (2.5)where
Ã1n1 + Ã2n2 =
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,

1 denotes a 2 × 2 unit matrix, and n = (n1, n2) is an arbitrary non-zerovetor in R
2. Of ourse, the system (2.5) will have a di�erent solutions than(2.1) in the ase of disontinuities, but this does not matter sine we will usethe system (2.1), that is written in the onservative form, in the �nite volumeupdate. Neverthless, (2.5) is suitable to examine the hyperboli struture ofthe system and derive the approximate evolution operator, f. Setion 5.2.2 A Powell-like form for the SMHD equationsThe SMHD equations have got the intrinsi onstraint ∇ · (hB) = 0. Thismeans, that the exat solution will satisfy this onstraint for all time if itholds for the initial data. This an be seen by omputing ∂t(∇ · (hB)). Inphysially relevant problems, the initial data will always satisfy this on-straint.This is a similarity to the MHD equations, in whih ∇ · B remains zerofor all time. In 1972, Godunov [11℄ exploited this property by adding er-tain multiples of ∇ · B to eah equation�thus not hanging the exat solu-tions in the physially relevant situation�in suh a way that the resultingequations have nier properties. Later, Powell [28℄ used this form for a nu-merial sheme. This alternative form of the MHD equations, whih wewill all `Powell's form', was also favored by Brakbill and Barnes [1℄ and



6 3 INTEGRAL EQUATIONSby Kröger [14℄. Sine in partiular the hyperboli struture of the systembeomes muh simpler for Powell's form, we �nd it desirable to onstruta Powell-like form for the SMHD equations as well. Here we may add amultiple of
∇ · (hB) = ∇ThBT + h∇TBT = B∇h + h∇TBTrather than ∇ · B to eah equation. By this, we an easily get the simplersystem

∂th + u∇h + h∇TuT = 0,

∂tu + g∇Th + u∇u − B∇B = 0,

∂tB − B∇u + u∇B = 0.If we write it in the ompat vetor form
∂tU +

2
∑

s=1

As(U)∂xsU = 0, (2.6)we get
A1n1 + A2n2 =









u · n hn 0

gnT (u · n)1 −(B · n)1

0 −(B · n)1 (u · n)1









. (2.7)The system (2.6) is a starting point for developing a suitable approxima-tion of the integral equations, whih is used in order to predit �uxes on ellinterfaes in the FVEG shemes, f. (4.2).3 Integral equations3.1 Overview for general systemsFor a general linear hyperboli system
∂tU +

d
∑

s=1

As∂xsU = 0, (3.1)one has the exat integral equations, whih were �rst proposed by Ost-kamp [26℄ and later extensively used by Luká£ová, Morton, Saibertová, War-neke, and Zahaykah [19, 20, 21, 22℄. They an be derived using the generalharateristi theory for linear(ized) hyperboli systems and written in the



3.2 Appliation to the SMHD equations 7ompat, but abstrat, form
U(x, tn+1) =

1

|Sd−1|

m
∑

k=1

(∫
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r
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nlknU(x − ∆t∇nλk
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∑
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(∂nsλ
k
n ·1−As)∂xsU(x+(τ −tn+1)∇nλk

n, τ) dn dτ

)

.(3.2)Here, rk
n, lkn, and λk

n are the right eigenvetors, left eigenvetors, and theeigenvalues of the matrix penil ∑d
s=1 Asns, respetively. We assume thatthe left and right eigenvetors are normalized suh that lknrk

n = 1. Notethat ∇nλk
n are the ray veloities arising from the multidimensional hara-teristi theory, ompare Courant and Hilbert [5℄, Je�rey and Taniuti [13℄,Prasad [29℄, or Kröger [14℄. It an be shown that

∂nsλ
k
n = lknAsr

k
n, s = 1, . . . , d. (3.3)Thus, there is the alternative representation (lknA1r

k
n, . . . , lknAdr

k
n) for theray veloities ∇nλk

n.We should point out that for a nonlinear system, there is also a fullynonlinear form of (3.3), see [14℄. However, this leads to a more omplex for-mula. Hene, for pratial appliations, it seems to be easiest to apply (3.2)to a linearized system. In other words, one �rst freezes the matries As (andtherefore, also the eigenvetors and eigenvalues) at a given state Û , and thenapplies (3.2). In this paper, we always denote by Û the linearization state,whereas Ǔ denotes the solution of the linearized system. With this notation,the linearized system reads
∂tǓ +

d
∑

s=1

As(Û)∂xsǓ = 0.Notations ˆ and ˇ are also used for any onservative or primitive variableswith the obvious meanings. However, for a better readability, we leave outboth notations whenever there is no danger of onfusion.3.2 Appliation to the SMHD equationsInstead of deriving the respetive integral representations for the primitiveomponents h, u, and B arising from the general operator (3.2), we ontentourselves with giving suitable representations for the ingredients appearingin the general formula. We do this for the Powell-like form (2.7) derived inSubsetion 2.2. A representation for the matries As has already been given



8 3 INTEGRAL EQUATIONSin (2.7). The eigenvalues read
λ1

n = u · n + B · n, λ2
n = u · n − B · n,

λ3
n = u · n + W, λ4

n = u · n − W,

λ5
n = u · n,where we used the abbreviation

W =
√

(B · n)2 + gh|n|2.We all the �rst two wave modes Alfvén waves, the third and the fourth onesare the magneto-gravity waves and the last mode, whih propagates with the�uid speed, is alled the non-physial mode in an analogy to the ideal MHDequations.The orresponding right eigenvetors are
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,and the left eigenvetors read
l1n = (0,−p, p), l2n = (0, p, p),

l3n =
(

g|n|2, nW,−n(B · n)
)

, l4n =
(

g|n|2,−nW,−n(B · n)
)

,

l5n = (B · n, 0, nh),where for the given normal diretion n, we denote by p the transversal di-retion, whih in the two-dimensional ase is anonially (up to a fator ±1)given by
p = (−n2, n1).Note that this beomes essentially di�erent in three dimensions where, as aonsequene of the Hedgehog theorem, there annot be a anonial basis ofthe two-dimensional spae of transversal diretions.



9Finally, we also give the following formulae for the ray veloities
∇nλ1

n = u + B, ∇nλ2
n = u − B,

∇nλ3
n = u +

B(B · n) + ngh

W
, ∇nλ4

n = u −
B(B · n) + ngh

W
,

∇nλ5
n = u.One main advantage of the SMHD equations over the MHD equations isthat there are no ase distintions or singular ases in the evaluation of thehyperboli struture. In fat, the given formulae for the eigenvetors do notause numerial problems in the evaluation as far as physially reasonablerestritions g > 0 and h > 0 hold. If B ·n = 0, i. e. the normal magneti �eldvanishes, we get a triple eigenvalue u · n. Figure 3.1 shows the shape of thewave fronts, the so-alled Friedrihs diagrams, for a seletion of linearizationstates.Note that it an easily be seen that, up to shift, rotation, and saleoperations, the shape of the wave fronts is ompletely de�ned by the salarparameter |B|2/gh. The given seletion of wave fronts is representative in thesense that it ontains one example for eah of the ases where the parameter

|B|2/gh is zero, positive but small, smaller than 1, exatly 1, larger than 1,and large but �nite.4 FVEG shemesConsider an arbitrary system of hyperboli onservation laws,
∂tU + ∂x1

F 1(U) + ∂x2
F 2(U) = 0, (4.1)on a regular, artesian, two-dimensional mesh, onsisting of ells

Kij = (xi− 1

2

, xi+ 1

2

) × (yj− 1

2

, yj+ 1

2

),where xi± 1

2

= (i ± 1
2)~ and yj± 1

2

= (j ± 1
2)~, ~ is a mesh step. If we inte-grate (4.1) in spae over one ell Kij and in time over the interval [tn, tn+1](where tn = n∆t) and then apply the Gauss law, we get

U
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(
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)
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(
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10 4 FVEG SCHEMES
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Figure 3.1: Friedrihs diagrams for SMHD equations for u = 0, g = 1, and(a) h = 1, B = (0, 0), (b) h = 1, B = (0.2, 0), () h = 1, B = (0.5, 0),(d) h = 1, B = (1, 0), (e) h = 0.5, B = (1, 0), (f) h = 0.2, B = (1, 0).



11The idea of a �nite volume evolution Galerkin (FVEG) sheme is toderive an update proedure for the ell averages U
n
ij by inserting the exatintegral equations (3.2), into the �nite volume update formula (4.2) in orderto evaluate �uxes on ell interfaes. Then, suitable numerial approximationtehniques are applied to everything in the resulting formula whih annotbe evaluated exatly, see, e.g., [20℄, [21℄ for more details.The �nite volume update formula (4.2) must be applied in onserva-tive variables, while the approximate evolution operator will typially (butnot neessarily) work with some primitive variables. In partiular, for theSMHD equations, we will onstrut the approximate evolution operator tothe Powell-like form in primitive variables (2.4). Also, note that the �nitevolume update formula is typially applied to the fully nonlinear system (be-ause in general, there will not be a reasonable global linearization state),whereas the evolution operator (3.2) requires a linearization. Therefore asuitable linearization state needs to be determined before eah appliationof the evolution operator.5 Approximation of the integral equationsIn order to use the exat integral equations (3.2) numerially several approx-imations have to be made. This yields the so-alled approximate evolutionoperator. More preisely, the following building bloks are neessary:1. The reovery of a spatial funtion U onstruted from the ell averages,2. the time integration whih ours in the �nite volume formulation,3. the integration along ell interfaes ourring in the �nite volume for-mulation,4. the hoie of the linearization state,5. the integration over Sd−1 in the integral equations (3.2),6. the time integral in the seond part of the integral equations (3.2), and7. the evaluation of the spatial derivatives of U in the seond part of theintegral equations (3.2).The items 1�6 will be realized with standard approximation tehniques asdesribed in the following subsetion, whereas the last item has to be inves-tigated arefully in order to obtain suitable results. This will be disussed inSubsetion 5.2. In order to summarize the whole FVEG sheme we presentin Subsetion 5.3 the numerial algorithm.



12 5 APPROXIMATION OF THE INTEGRAL EQUATIONS5.1 The use of standard approximation tehniquesIn order to get a funtion de�ned on a omputational domain Ω by meansof a given family of ell averages, we use a onservative, pieewise bilinearreovery. More preisely, if we have given ell averages ψij on a regular meshwith mesh size ~, we approximate the exat solution on the mesh ell Kijby a bilinear funtion
ψ̂(x)|Kij

= ψij + (x1 − x0
1)ψ

1
ij + (x2 − x0

2)ψ
2
ij + (x1 − x0

1)(x2 − x0
2)ψ

12
ij ,where x0 is the enter of Kij and the oe�ients ψ1

ij , ψ2
ij , and ψ12

ij , whihapproximate derivatives, are given by
ψ1

ij =
ψi+1,j − ψij

~
ϕ

(

ψij − ψi−1,j

ψi+1,j − ψij

)

,

ψ2
ij =

ψi,j+1 − ψij

~
ϕ

(

ψij − ψi,j−1

ψi,j+1 − ψij

)

,

ψ12
ij =

ψi+1,j+1 + ψi−1,j−1 − 2ψij

~2
ϕ

(

2ψij − ψi+1,j−1 − ψi−1,j+1

ψi+1,j+1 + ψi−1,j−1 − 2ψij

)

.Here ϕ is a limiter funtion out of the lass that was disussed by Sweby [32℄.We have made positive experiene with the monotonized entered limiter,also known as minmod-2, whih is given by
ϕ(θ) =























0, θ ≤ 0,

2θ, 0 ≤ θ ≤ 1
3 ,

1
2(1 + θ), 1

3 ≤ θ ≤ 3,

2, 3 ≤ θ.Reall that the idea of this limiter is to use unlimited entral di�erenesas long as they are ontained in the so-alled seond order TVD region, f.Sweby [32℄. This reonstrution is done for every omponent of the primitivevariables.For the integrals appearing in the �nite volume formulation we have al-ready made good experiene with the midpoint rule in time and Simpson'srule along the ell interfaes for hydrodynamial problems, see [20℄. There-fore, we use for the �rst three equations of the SMHD system, i.e. for thehydrodynamial part, Simpson's rule for the ell interfae integrals. Fur-ther, we use the trapezoidal rule for the last two equations, i.e. the Maxwellequations. Suh a �ux disretization leads to the FVEG sheme that auto-matially satis�es a disrete version of the divergene ondition (2.4), f. also(6.1). Note that the �nite volume update is always done in the onservativevariables and for the onventional form (2.1) (in ontrast to the Powell-likeform) of the equations. This ensures that the overall sheme is onservative.



5.2 Evaluation of the spatial derivatives 13Aording to our quadrature rules along the ell interfaes, we need toapply the approximate evolution operator entered at the ell verties as wellas at the midpoints of the ell interfaes. For the linearization state we useaverages of the four or two ells next to the point in whih the operator isapplied.In [19, 20, 21℄, the seond author onstruted shemes in whih the inte-grals over the soni irle S1 were evaluated exatly. Due to the omplexity ofthe SMHD equations this seems no longer to be possible now. We have there-fore deided to evaluate these integrals by suitable quadrature rules. Due tothe periodiity, it is irrelevant whether the retangle rule or the trapezoidalrule is used. As quadrature points, we hose the points (cos θi, sin θi), where
θi either takes the values

2πi

n
or 2π(i + 1

2)

n
,where in both ases n is the number of quadrature points (whih due tosymmetry reasons should be a multiple of 4) and i = 1, . . . , n. In the seondversion, we purposely avoid that θi beomes a multiple of π/2. In our nu-merial examples in Setion 6, we have used the seond variant with n = 8 or

n = 16 points. We have experimented also with di�erent number of integra-tion points n, whih were distributed always regularly due to the periodiityof integrands. Numerial results showed only marginal di�erenes.Finally, the time integral in the seond part of the integral equations(3.2) was simply approximated by the retangle rule. We should point outthat in the reent work of Luká£ová, Morton, and Warneke [20℄, a new ap-proximation of time integrals along the Mah one was proposed in suh away that any one-dimensional plane wave aligned with the grid is omputedexatly. This approximate evolution operator was derived for the wave equa-tion system, the shallow water equations, and the Euler equations and yieldsmore stable and aurate FVEG shemes. Appliation of this idea for theSMHD equations should be investigated in future.5.2 Evaluation of the spatial derivativesIt would be possible to take approximations to the spatial derivatives of
U in (3.2) aording to the slopes of the pieewise bilinear reonstrution.However, these might be very poor approximations. In partiular, when aterm involving these derivatives is integrated along a path whih rosses aell interfae (whih typially is the ase), this approximation fails to inludethe neessary Dira-distribution for the disontinuity of the reonstruted U .For the wave equation system, the seond author [19℄ found a possibilityto transform the integral equations in suh a way, that all spatial derivativesdisappear. The proedure how to do this onsisted of two essential ideas,one of whih was applied to the single wave mode for whih the wave front



14 5 APPROXIMATION OF THE INTEGRAL EQUATIONSonentrates to a single point, and the other was applied to the remainingmodes. This distintion between two types of wave modes is typial forthe general ideas of the urrent subsetion. In what follows, we distinguishbetween the so-alled singular and non-singular wave modes; the more preiseexplanation will follow.5.2.1 Non-singular wave modesWe �rst onentrate on the wave modes with non-singular wave fronts. Forthese modes, the so-alled `useful lemma' was used in [19℄ to transform thespae integral in suh a way that the spatial derivatives disappear, see [19,Lemma 2.1℄. The main idea of this lemma is to reognize that the spatialderivatives of U in (3.2) are always derivatives in a diretion tangential tothe integration path. This makes it possible to rewrite them as derivativeswith respet to θ (where θ is the variable whih parameterizes the path) andthen to use integration by parts. This shifts the θ derivative to known terms(whih originate from the hyperboli struture of the system), so that thederivatives an be performed in advane.Thus, the key point is just the fat that the diretion of the spatialderivative is tangential to the integration path. We will now prove that this istrue for arbitrary hyperboli systems, so that there is always a generalizationof this `useful lemma' for the non-singular wave modes. However, as it turnsout, before one an apply the integration by parts, it is neessary to divideby the length element of the integration path. For some wave modes, thislength element may vanish. This is the reason why there is no suh `usefullemma' for those modes, whih we all singular wave modes.The essential expression to examine is
lkn
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5.2 Evaluation of the spatial derivatives 15beause ∂θ∇nλk
n(θ) is of ourse tangential to the wave front, whereas n(θ) isknown to be the normal diretion, i. e. normal to the wave front (see also [14,end of Setion 3.4℄; note that n is alled p there). Sine in R
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n, see [14, Lemma 3.4.3℄. Thus, we have proven that theintegral in the seond part of the evolution operator (3.2) an always (exeptin singular ases, see below) be transformed in suh a way that the spatialderivatives of U disappear. We have obtained the following resultLemma 5.1 In the seond part of the evolution operator (3.2), the diretionof the diretional derivative of eah omponent of U is always tangential tothe integration path, as long as the parameterization by θ does not beomesingular.We will now demonstrate how this transformation an atually be found.The result of the preeding paragraph is that the diretion of the diretionalderivative of eah omponent of U in (5.1) is tangential to ∂θ∇nλk
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• If σ = 0, the transformation is unde�ned. But sine we approximatethe time integral with the retangle rule, we are only interested in thease σ = tn − tn+1 6= 0.
• If ∂θ∇nλk

n = 0, the transformation is also unde�ned. This is in parti-ular the ase for those modes whose wave fronts degenerate to points.For these modes, we have that the ray veloity ∇nλk
n is independent of

n (and thus of θ). We have not yet examined whether modes for whihthe wave front is only loally singular also ause problems. We havehere in mind suh modes, where ∂θ∇nλk
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∂θ∇nλk
n is not entirely independent of θ, f. the slow magneto-aoustiwaves of the MHD equations.The atual terms whih appear in the transformed integral may beomevery ompliated. We found out that there is also a suitable approximationof the integrand, whih is omparatively simple. Reall that we anywayapproximate the integral by evaluation of the integrand in a �nite numberof quadrature points. Let θi be these quadrature points with respet to θ,



5.2 Evaluation of the spatial derivatives 17and let
ni = n(θi) = (cos θi, sin θi) and qk

i = x + σ∇nλk
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.We have thus found an approximation of the integral whih does neither on-tain any derivatives nor essentially more ompliated terms than the originalintegral. Furthermore, we see that our approximation an formally be ob-tained by just replaing the derivative
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. (5.8)In order to obtain a symmetri formula we use the average of both approxi-mations.In fat, the U di�erene is mainly determined by the slopes of the piee-wise bilinear reonstrution. However, the above approximation automati-ally inludes an approximation to the Dira-distribution for the disonti-nuity of the reonstruted U whenever the integration path rosses a ellinterfae. Just to keep it lear we would like to note that the use of (5.4e)



18 5 APPROXIMATION OF THE INTEGRAL EQUATIONSwould prinipally be possible, but the resulting formulae will be too ompli-ated and we have refrained from this hoie. Instead we use approximations(5.7), (5.8), whih are based on the same fat that enables also (5.4e), butmoreover they have an advantage that the Dira distribution, whih appearswhen the integration path rosses a ell interfae, is automatially inluded.
5.2.2 Singular wave modesFor the modes with singular wave front, the idea in earlier publiations, seee. g. [19℄, was to insert the di�erential equation itself into the respetive partof the integral equations. This led to a formula where this wave mode wasleft out ompletely in the approximate evolution operator and instead ertainomponents of the result were multiplied by orresponding fators. We nowfound out that there is a generalization of this idea to arbitrary systems. Thistehnique an be applied to any subset of wave modes, no matter whetherthey are singular or not. The multipliation of ertain omponents withertain fators generalizes to the multipliation of the result with the inverseof a ertain m × m matrix whih in general depends on the linearizationstate. This matrix may, of ourse, be more or less di�ult to invert; it maybe badly-onditioned or even singular. For the wave equation system as wellas for the shallow water equations, this matrix is a diagonal matrix withonstant, nonzero diagonal entries, so that the omputation of the inverse istrivial.We will now demonstrate how this generalization works. Let K and K ′be two omplementary subsets of the set {1, . . . , m} of wave mode indies.For any k ∈ K and n ∈ Sd−1, we insert the equality
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5.2 Evaluation of the spatial derivatives 19into the operator (3.2). Colleting U(x, tn+1), we get
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J(K) := 1 −

1

|Sd−1|

∫

Sd−1

∑

k∈K

r
k
nlkn dn =

1

|Sd−1|

∫

Sd−1

∑

k∈K′

r
k
nlkn dnAs already mentioned, we an hoose K to be any subset of {1, . . . , m}.However, the more modes we inlude in K, the more likely the matrix J(K)might beome di�ult to invert or even singular. In partiular, note thatfor K = {1, . . . , m}, we have J(K) = 0. Sine we have already found asatisfying way to approximate the evolution operator for the non-singularwave modes, f. Subsubsetion 5.2.1, we will restrit ourselves to the asethat K onsists of singular modes.For example, for the shallow water equations, f. Luká£ová [18℄, we haveonly one singular wave mode, the so-alled shear wave mode orrespondingto the middle biharateristi urve, whih points out just the advetiondiretion. If we hoose K to onsist of this one mode, we get
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20 5 APPROXIMATION OF THE INTEGRAL EQUATIONSwhih is omparably easy to handle, but we still have to deal with the non-physial mode. If, on the other hand, we hoose K = {1, 2, 5}, then we getthe essentially more ompliated matrix
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dn.(5.10)It is not easy, but possible, to �nd a losed form for the integrals appear-ing in (5.10). The seond term on the right hand side of (5.10) is a rank 2matrix. Therefore, J(K) an be written as the sum of a diagonal matrix anda rank 2 matrix. The Sherman�Morrison�Woodbury formula (see, for exam-ple, Golub and van Loan [12, page 51℄) enables us to obtain a omparativelysimple representation of the inverse of this matrix. A problem ours when
B̂ (i. e. the magneti �eld of the linearization state) is near zero, beauseat B̂ = 0 the matrix J(K) beomes singular. This means that the hoie
K = {1, 2, 5} is not allowed when B̂ is near zero.Thus, we have the following three main possibilities for replaing thespatial derivatives of U in the ase of singular wave modes:1. Use K = {} and approximate the spatial derivatives using the slopesof the pieewise bilinear reonstrution.2. Use K = {1, 2} (i. e. use the simple matrix given in (5.9)) and approxi-mate the spatial derivatives for the non-physial mode using the slopesof the pieewise bilinear reonstrution.3. Use K = {1, 2, 5} (i. e. the more ompliated matrix given in (5.10)) if

B̂ is away from zero, but K = {1, 2} if B̂ is near zero.



5.3 Numerial algorithm 21We have experimented numerially with the above three variants. Ournumerial results using variants 2 or 3 yield unsatisfatory resolutions, seeSubsetion 6.2. Therefore, we suggest to refrain from these possibilities andapproximate the spatial derivatives for the singular wave fronts just by usingthe pieewise bilinear reonstrution. Anyway, note that the problematiase that the spatial integration path rosses a ell interfae annot our inthese ases, sine this path redues to a point.5.3 Numerial algorithm1 Given is a pieewise onstant approximation at time tn: U
n
ij , i, j ∈ Z,mesh and time steps ~, ∆t.2 reovery step:Construt pieewise bilinear funtions and apply the limiter proedure,e.g. by using the minmod limter, f. [21℄, or monotonized minmod lim-iter; f. Subsetion 5.1. This yields the pieewise bilinear approxima-tions ψ̂n, where ψ is an arbitrary omponent of the vetor of primitivevariables (h, u, B)T.3 loal linearization:At eah vertex as well as at eah midpoint of ell interfaes hoose alinearization state for loal linearization, f. (2.5). This is done by ave-raging the two or four neighbouring states for a midpoint or a vertex,respetively.4 preditor step / approximate evolution:Compute the intermediate solutions at time level tn+1/2 on the ellinterfaes by the approximate evolution operators, f. (3.2) (with ∆treplaed with ∆t/2), where Û is used as the data at tn. The omputa-tion is realized in primitive variables. The approximation of integralsin (3.2) is obtained as follows:a) Integration over Sd−1 is replaed with �nitely many quadraturepoints of the retangle rule; f. Subsetion 5.1.b) Time integral, or the so-alled mantle integral, in the seond partof (3.2) is approximated using the retangle rule at time tn.) The spatial derivatives are approximated as explained in Subse-tion 5.2.1 (magneto-gravity modes) or by the slopes of Û (Alfvénand non-physial modes), f. Subsetion 5.2.2 variant 1. Alterna-tively, Subsetion 5.2.2., variant 2. and 3. an be used.5 orretor step / FV-update:Do the FV-update in onservative variables using the midpoint rule intime and midpoint, trapezoidal or Simpson rule along the ell inter-faes. In the experiments presented below we have used the Simpson



22 6 NUMERICAL EXAMPLESrule for the �ow equations (i.e. �rst three equations of (4.2)) and thetrapezoidal rule for the magneti �eld equations (i.e. last two equationsof (4.2)). Fluxes at ell interfaes are evaluated at the predited valuesobtained by the approximate evolution operator in Step 4.We would like to remind a reader that the question of suitable quadra-ture rules along ell interfaes has been extensively studied with respet tostability of the whole FVEG sheme in our previous paper [21℄. The use ofmidpoint rule yields a sheme similar to standard Godunov splitting shemes.By using the ombination of the trapezoidal and the Simpson rule we havetaken multidimensional e�ets into aount and obtained a sheme, whihsatisfy the disrete divergene ondition, f. Subsetion 6.3.6 Numerial examplesWe now demonstrate the behaviour of the desribed sheme on test problemsfor the SMHD equations in one and two spae dimensions. We use a CFLnumber of 0.45 in all omputations. We have experimented with di�erentCFL numbers, in fat numerial results indiate that the FVEG sheme staysstable until CFL ≈ 0.56, whih is in agreement with stability investigationsof the FVEG3 sheme for the linear wave equation system [21℄, [23℄. In [20℄new quadrature rules for time integration along the bihrateristi one havebeen derived and lead to a stability limit lose to 1. However, due to a moreomplex struture of the SMHD system the appliation of these quadraturesis not straightforward and this point should be investigated in future deeply.6.1 Riemann problemOur �rst test example is the Riemann problem used by Rossmanith [31℄. Itis given by the initial data
x < 0 : h = 1, u = (0, 0), B = (1, 0),

x > 0 : h = 2, u = (0, 0), B = (0.5, 1)and the gravitational onstant g = 1. The numerial solution, that is shownin Figure 6.1, was omputed with a two-dimensional algorithm desribedabove at t = 0.4 on the grid with 100 ells in x-diretion and 5 ells in y−diretion.The referene solution (solid line) was obtained with the same sheme,but with 1000× 5 ells. Comparing the plots with Rossmanith's [31℄ results,we see that the sheme produes a qualitatively orret solution. We shouldpoint out, however, that there are still some osillations (at both the low andthe high resolution) in all omponents near the right Alfvén disontinuity.Note that the intrinsi divergene onstraint, i. e. ∇ · (hB) = 0, is au-tomatially maintained, beause the �ux funtion F 1 in x1 diretion has
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24 6 NUMERICAL EXAMPLESgot a zero in the omponent orresponding to the onservative variable hB1.See also (2.2) and note that the matrix BTu − uTB has vanishing diagonalentries.6.2 Example for approximations of singular wave modesWe now demonstrate what happens when the singular wave modes are han-dled by the di�erent approahes proposed in Subsetion 5.2.2. We omputethe same one-dimensional Riemann problem as in Subsetion 6.1, but nowusing the variants 2 and 3, f. page 20. The results are shown in Figures 6.2and 6.3, respetively. Both numerial solutions look muh worse than theresult in Subsetion 6.1, whih was omputed using the variant 1. We thussuggest to refrain from variants 2 and 3 at all and approximate, as alreadymentioned in Subsubsetion 5.2.2, the spatial derivatives for the singularwave modes using the slopes of the pieewise bilinear reonstrution. Wethink that for these wave modes a better quadrature rule in time (along thebiharateristi urve), whih takes are of possible Dira distributions fordisontinuities of the solution along this urve, ould bring better results.6.3 Two-dimensional problem with shoksThis two-dimensional example is similar to the `rotor problem' used byTóth [35℄ for the MHD equations. The omputational domain is [−1, 1] ×
[−1, 1], equipped with zeroth order extrapolation at the boundaries. Theinitial data are

‖x‖ < 0.1 : h = 10, u = (−x2, x1), B = (0.1, 0),

‖x‖ > 0.1 : h = 1, u = (0, 0), B = (1, 0),and the gravitational onstant is g = 1. Note that hB is onstant in theinitial data and thus divergene-free. The disrete divergene was omputedin a vertex-entered way given asdiv(hB)i+1/2,j+1/2 = µyδx(hB1)i+1/2,j+1/2+µxδy(hB2)i+1/2,j+1/2, i, j ∈ Z,(6.1)where ψi±1/2,j±1/2 := ψ((i ± 1/2)~, (j ± 1/2)~) denotes the values of anyfuntion ψ at verties of the mesh ell Kij . Here we used the �nite di�ereneoperators
µxψ(x) = 1

2 [ψ(x + ~/2) + ψ(x − ~/2)] , δxψ(x) = ψ(x+~/2)−ψ(x−~/2)with an analogous notation for the y-diretion. In fat the partiular hoieof the trapezoidal rule for the �ux interfae integrals of the Maxwell equationsyields suh a struture of the FVEG sheme whih ful�lls also more generalonditions needed in order to satisfy the divergene-free onstraint in general
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6.4 Empirial order of onvergene 27[33℄. We should also point out that in [24℄ the disrete vortiity for thewave equation system was de�ned in an analogous way to (6.1). It hasbeen shown in [24℄ that the Lax-Wendro� (Rihtmyer rotated) sheme isvortiity-preserving. Atually, the multidimensional FVEG sheme that usesthe trapezoidal rule for ell interfaes shares some similarities with the Lax-Wendro� sheme.In the following we will show that for the numerial solution of the FVEGsheme the disrete divergene de�ned in (6.1) is onstant in time, morepreisely we show that if it was zero initially, it stays zero at any time.Consider the last two equations of (2.1), (2.2), i.e. the Maxwell equations,
∂t

(

hB1

hB2

)

+ ∂x

(

0
−f

)

+ ∂y

(

f
0

)

=

(

0
0

)

,where f = hB1u2 − hB2u1 is the �ux funtion. Further let us denote by
fi±1/2,j and fi,j±1/2 the approximations of the �uxes at ell interfaes, whihare obtained by the trapezoidal rule using the intermediate solution U∗ atverties. Thus, we have, for example for the right and upper ell interfaes,

fi+1/2,j = µyf(U∗

i+1/2,j), fi,j+1/2 = µxf(U∗

i,j+1/2).The intermediate approximations at verties U∗ are obtained by the approx-imate evolution operator, i.e. using approximation of the evolution operator(3.1) at eah vertex.Now assume that at time tn, div(hB)n
i+1/2,j+1/2 = 0, i, j,∈ Z. Then itfollows from the FV update as well as from (6.1) thatdiv(hB)n+1

i+1/2,j+1/2 = (6.2)
−

∆t

~

[

µyδxδyµxf(U∗

i+1/2,j+1/2) − µxδyδxµyf(U∗

i+1/2,j+1/2)
]

= 0.Our numerial experiments on�rm that the disrete divergene (6.1) is zeroup to the mahine preision for di�erent mesh parameters ~.Contour plots of the result at t = 0.2 for 200 × 200 ells are shown inFigure 6.4. Plots with higher resolution, i.e. 300 × 300 ells, are shown inFigure 6.5. We an notie that the FVEG sheme resolves orretly multi-dimensional disontinuities as expeted.6.4 Empirial order of onvergeneIn this experiment we test experimental order of onvergene for a smoothsolution. We onsider the initial value problem for two-dimensional SMHD
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30 6 NUMERICAL EXAMPLESequation with the initial values
h(x, 0) =

1

4
, B1(x, 0) =

1

2
, B2(x, 0) = 1,

u(x, 0) = 1 +
1

2
sin(πy) +

1

4
cos(πx),

v(x, 0) = 1 +
1

4
sin(πx) +

1

2
cos(πy);see also [34℄ for an analogous test problem for the full MHD system. Al-though an exat solution is not known, we an still study the experimentalorder of onvergene (EOC). This is omputed in the following way usingthree meshes of sizes N1, N2 := N1/2, N3 := N2/2, respetivelyEOC = log2

‖Un
N2

− U
n
N3

‖

‖Un
N1

− U
n
N2

‖
.Here U

n
N is the approximate solution on the mesh with N × N ells. Theomputational domain [−1, 1]×[−1, 1] was onseutively divided into 20×20,

40 × 40, . . . , 160 × 160 ells. The �nal time was taken to be t = 0.2. Thefollowing two tables show the experimental order of onvergene omputedin the L2 and L1 norms. We also show the onvergene rate for the �rstomponent h as well as for the magneti �eld B. It an be seen learlythat the experimental order of onvergene is 2. Note, however, a slightlydereasing order of the onvergane rate on �ner meshes. We believe thata more suitable quadrature rules for time integrals in the seond part ofthe integral equations (3.2), whih would be analogous to those of the Eulerequations [20℄, will inrease a stability range of the sheme as well as itsglobal auray. To do this it would be neessary to derive an approximateevolution operator without spatial derivatives of unknown funtion. This isa point for future study.Table 1: FVEG sheme / Convergene in the L2 normN ‖Un
N/2 − U

n
N‖ EOC ‖hn

N/2 − hn
N‖ EOC ‖Bn

N/2 − Bn
N‖ EOC20 0.007317 0.002130 0.00323440 0.001721 2.0880 0.000501 2.0879 0.000793 2.027980 0.000406 2.0837 0.000116 2.1107 0.000204 1.9588160 0.000107 1.9239 0.000034 1.7705 0.000056 1.8651



6.5 Two-dimensional explosion problem / transritial �ow 31Table 2: FVEG sheme / Convergene in the L1 normN ‖Un
N/2 − U

n
N‖ EOC ‖hn

N/2 − hn
N‖ EOC ‖Bn

N/2 − Bn
N‖ EOC20 0.011766 0.001508 0.00256940 0.002837 2.0522 0.000344 2.1322 0.000647 1.989480 0.000702 2.0148 0.000080 2.1043 0.000172 1.9114160 0.000187 1.9084 0.000024 1.7370 0.000047 1.87166.5 Two-dimensional explosion problem / transritial �owThis is a two-dimensional analogy of the ylindrial explosion problem forthe gas dynamis, f. the Sod 2D problem [20℄. The initial data are

h = 1, u1 = 0, u2 = 0, B1 = 1, B2 = 0, ‖x‖ < 0.3

h = 0.1, u1 = 0, u2 = 0, B1 = 0.1, B2 = 0 else.In an analogy to the Sod problem for gas dynamis, the �ow is transrit-ial, i.e. Fr :=
√

u2
1 + u2

2/
√

gh + B2
1 + B2

2 is larger, equal or smaller than1, f. Figure 6.7. It should be pointed out that the FVEG method needs nospeial entropy �x orretion in order to resolve orretly ritial states, i.e.
Fr = 1. This is again analogous to the situation of the Euler equations, seealso [21℄.The omputational domain is a square [−1, 1]× [−1, 1], the mesh is ret-angular and the initial data are implemented by utting the initial dison-tinuity and assigning it by modi�ed area-weighted values aording to theorresponding ell. The initial data are moreover disretized in suh a waythat diveregene of hB stays zero. Fig. 6.6 shows the isolines of height and
x−, y− omponents of veloity, magneti �eld and the parameter Fr om-puted at time t = 0.25. It an be seen learly that due to the in�ueneof the magneti �eld the solution is now no more rotationally symmetri asit was the ase of the Sod 2D problem for the gas dynamis. The solutionexhibits a shok traveling away from the enter, a rarefation wave travelingtowards the origin at (0, 0) and two Alfvén waves. In Figure 6.7 the y = 0ross setions are plotted; slower Alfvén waves that are loated between therarefation wave and the shok are evident in the tangential omponents ofveloity and magneti �eld. Small osillations near the Alfvén modes anbe notied, however we should also take into aount that the salling of u2and B2 graphs is of order 10−3. The disrete divergene (6.1) stays zero upto the mahine auray.We would like to mention that an analogous initial data problem havebeen studied extensively by many authors for the full ideal MHD system,see, e.g., Brio and Wu [2℄. Sine the MHD system is a nononvex, non-stritly hyperboli system, there exist disontinuities that are evolutionary
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34 7 CONCLUSIONand nonevolutionary. If a stritly oplanar problem (2D problem) for theMHD system is onsidered the solution an be nonunique. Depending ona sheme a nonevolutionary solution in the form of the so-alled ompoundwave an be found. In fat, this ompound wave is unstable, under nor-mal perturbations in transverse quantities it is hanged into a rotationaldisontinuity and a slow shok, f., e.g., [16℄. For the SMHD system it isimportant to realize that ∇λkr
k, k = 3, 4, do not hange sign. Thus, themagneto-gravity modes are onvex and we do not have ompound shoks.7 ConlusionIn the present paper we have derived a seond order FVEG sheme forthe shallow water magnetohydrodynami (SMHD) equations. Up to ourknowledge, this is the �rst attempt to apply genuinely multi-dimensional EGtehnique to a magnetohydrodynami model. We have derived an integralequations for the SMHD equations, f. (3.2), and disussed its suitable ap-proximation. We have studied more deeply the approximation of the spatialderivatives in the integral equations (3.2) for singular as well as non-singularwave modes. More preisely, we have shown that for arbitrary hyperbolionservation laws, the spatial derivatives of the solution U an be replaedby means of the Gauss theorem with the derivatives of the eigenvetorsthemselves, f. Lemma 5.1 and (5.4).Due to the omplex eigenstruture whih arises in the SMHD system, itis still rather ompliated to apply this result diretly. Instead we propose toexploit this result numerially as given in (5.6). Our numerial experimentson�rm the reliability of this approah for non-singular wave modes.Treatment of the singular wave modes is more deliate. Our numerialexperiments show that the approximation of the derivatives in (3.2) by slopesof the bilinear reonstrution yields the best results, f. Subsetion 6.2. Webelieve that more suitable numerial quadratures for the mantle integralsfrom tn to tn+1 in the integral equations (3.2) an inrease auray aswell as stability of the sheme. They should, analagously as in [20℄, re�etpropagation of one-dimensional waves exatly. This is a subjet of our futurestudy.The disretization of the �ux interfae integrals for the magneti �eld,i.e. for the Maxwell equations part, was done by the trapezoidal rule. Insuh a way the disrete divergene (6.1) is identially zero at eah vertex.One major advantage of the urrent desription and implementation ofthe FVEG sheme is that it is designed in a blak-box like manner and shouldtherefore be appliable to any system of hyperboli onservation laws withomparatively low e�ort, if the omplete hyperboli struture of the systemis known.
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