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Abstract

In this paper we propose a new finite volume evolution Galerkin (FVEG)
scheme for the shallow water magnetohydrodynamic (SMHD) equa-
tions. We apply the exact integral equations already used in our ear-
lier publications to the SMHD system. Then, we approximate these
integral equation in a general way which does not exploit any particu-
lar property of the SMHD equations and should thus be applicable to
arbitrary systems of hyperbolic conservation laws in two space dimen-
sions. In particular, we investigate more deeply the approximation of
the spatial derivatives which appear in the integral equations. The di-
vergence free condition is satisfied discretely, i.e. at each vertex. First
numerical results confirm reliability of the numerical scheme.
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1 Introduction
We consider a system of hyperbolic conservation laws,
oU+V, -FU)=0.

We use here the notation of the first author’s dissertation [14], in which
underlined symbols denote row vectors with d components and boldfaced
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2 1 INTRODUCTION

symbols denote column vectors with m components. The double underlined
symbols, that will be used later, denote row vectors with m components.

Most classical numerical schemes for such systems are based on solving
one-dimensional Riemann problems across the interfaces of a structured or
unstructured mesh. The roots of this idea go back to Godunov [10], who
invented the prototype of these schemes for one-dimensional systems.

However, there is an ongoing discussion, initiated by Roe [30], whether
schemes which are based on solving one-dimensional Riemann problems can
reflect all multidimensional effects occurring in multidimensional systems.
In the literature we can find several genuinely multidimensional numerical
schemes, which purposely dispensed with Riemann solvers, see e. g. Fey [7, 8],
Noelle [25], LeVeque [17], Brio [3].

In this paper, we will deal with the evolution Galerkin (EG) schemes,
which also belong to this class of multidimensional Riemann solver free ap-
proaches. The main idea of these schemes is to evolve the solution along the
bicharacteristic curves forming the Mach cone and then project it into the
approximation space. Exact evolution of the solution in time is represented
by the integral equations for a linear(ized) system, i.e. a solution represen-
tation involving integrals over intermediate time levels. In order to use this
integral equations numerically, integrals are approximated by suitable nu-
merical quadratures yielding the so-called approximate evolution operators.
A paper due to Butler [4] can be considered to be the first contribution to
the EG approach. This operator was later stated in a general way by Ost-
kamp [26, 27|, who also showed that there is a certain connection between
the EG approach and Fey’s [7, 8] Method of Transport.

In the last years, Lukacova, Morton, Saibertova, Warnecke, and Zahaykah
[19, 20, 21, 22] constructed several EG schemes for the wave equation sys-
tem, the shallow water equations, and the Euler equations, where they soon
embedded the evolution operators into a finite volume framework, obtaining
the so-called finite volume evolution Galerkin (FVEG) schemes. Extensive
experimental treatment confirms that the EG and FVEG schemes approxi-
mate correctly complex multidimensional structures of solutions, e.g. circular
expansion wave, oblique shocks, etc. Numerical comparisons with other well-
known schemes illustrate high global accuracy of the FVEG schemes. For
example the second order FVEG method is 6 times more accurate than the
Lax-Wendroff scheme as well as the LeVeque wave propagation algorithm for
linear hyperbolic systems, whereas the computational costs are comparable
with the LeVeque scheme, see [20].

On the other hand, Kréger, Noelle, and Zimmermann [15, 14| developed
a framework of the so-called state decompositions, in which they examined
the connection between the EG approach and the Method of Transport more
deeply and managed to clarify an important difference between these ap-
proaches. At the same time, this framework offers the possibility to consider
the EG approach from a different point of view.



In the current paper, we introduce an FVEG scheme for the shallow wa-
ter magnetohydrodynamic (SMHD) equations. These equations were (to our
knowledge) first proposed by Gilman [9] as an approximation to the ideal
MHD equations in the situation of a free-surface, shallow, and electrically
conducting fluid that has constant density and is in magnetohydrostatic bal-
ance in the vertical direction.

There are two main difficulties for the numerical treatment of the full
MHD equations:

e The magnetic field should be kept divergence-free in any time.

e The numerical update should produce fully multi-dimensional as well
as non-oscillatory solutions near discontinuities.

Since the full system of the MHD equations has a complicated eigenstruc-
ture, it is desirable to have a simpler model system that retains both main
difficulties but at the same time has a simpler eigenstructure. The SMHD
system not only serves as a simplified mathematical model, but it has its
own physical applicability used in the description of the solar tachocline, i. e.
a thin layer of the solar radius that separates the convective zone from the
radiative zone in stars, cf. [6], [9].

As far as we know, this is the first FVEG approach for these equations.
A second new property of the scheme is that it is mainly a black-box ap-
proach: while former approximate evolution operators, used in the FVEG
schemes, were mostly specially designed for the individual system, the cur-
rent scheme does not exploit any particular property of the SMHD equations.
Therefore, the scheme should be applicable to any system of hyperbolic con-
servation laws in two space dimensions without major changes'. In general
it is also possible to apply the scheme to the ideal MHD equations (for two-
dimensional problems), but further considerations due to a more complicated
structure of the full MHD equations are necessary in order to obtain an effi-
cient method. In this paper we content ourselves with the study of a model
SMHD system. The first numerical experiments presented here show that
the scheme gives good numerical results and indicate the reliability of the
FVEG scheme for the modelling of the SMHD system.

The outline of this paper is as follows: In Section 2, we introduce briefly
the SMHD equations and discuss a variant of them which is no longer con-
servative, but simpler and will in particular have a simpler hyperbolic struc-
ture. Next, in Section 3, we state the integral equations in an abstract,
but compact, form which is also used in the works of Kroger, Noelle, and
Zimmermann [15, 14]. A brief description of the FVEG schemes follows in
Section 4. We explain in detail how our new scheme works in Section 5. This
mainly consists of a description of the used approximation techniques in the

"However, we exploit essentially the fact that the physical space is two-dimensional,
i.e. d=2.



4 2 THE SMHD EQUATIONS

evolution operator as well as in the finite volume update formula. A main
focus is set on the approximation of the spatial derivatives which occur in the
evolution operator, since all the other approximations are performed using
standard techniques. To summarize the presentation of the FVEG scheme
for the SMHD equations we finish the Section 5 with the presentation of the
numerical algorithm. Section 6 contains a couple of numerical experiments.
Finally, in Section 7, we derive some conclusions.

2 The SMHD equations

2.1 The SMHD system of hyperbolic conservation laws

The SMHD equations were, as far as we know, first proposed by Gilman [9].
Afterwards, DeSterck [6] and Rossmanith [31], among others, worked on
these equations. The SMHD equations can be derived from the ideal MHD
equations. They model the dynamics of a constant density, shallow, and
electrically conducting fluid that is hydrostatically balanced in the vertical
direction. A detailed derivation is given by Rossmanith [31]. The result is a
system of m = 5 equations in d = 2 space dimensions, which is given by

oU+V,-FEU)=C(), (2.1)
where
h hu 0
U=|hu" |, FU)=|hu"u—-hB "B+ 3igh?1|, CU)=|-ghVb
hBT hBTu — hu'B 0T
(2.2)

more precisely we can rewrite (2.1) as

atﬁ + amFl(ﬁ) + ax2F2(ﬁ) = C(U)v (2'3)

with
E(O) = (F\(0). F,(0)).

The system (2.1), or (2.3), is moreover accompanied with the intrinsic con-
straint

V- (hB) = 0. (2.4)

Recall that the notation is adopted from [14]. Further, g > 0 is the grav-
itational constant, and b = b(z) describes the bottom topography. In the
current paper, we restrict ourselves to the case of a flat bottom, i. e. b = const,
so that the system is homogeneous. We deal with the numerical approxima-
tion of the time-dependent system (2.1) and derive the approximation of the
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divergence constraint (2.4), which is satisfied by a numerical solution. Note
that this constraint is also exploited in the reformulation of the system (2.1)
which is realized in Subsection 2.2.

These equations can be rewritten in terms of the primitive variables U =
(h,u, B)T, yielding

Oth 4+ uVh +hVTut =0,
1
du+ gVTh — - BVhB +uVu — v'B'B - BVB =0,
1 T T
0B — EEVhH—EVH‘FEVﬁ—V B u=0,

where the symbol V always denotes a column vector of derivatives. This can
be written in the form

2
U+ A(U)0,,U =0, (2.5)
s=1
where
u-n hn 0
Aing + Agny = | gn” — (B )BT (u-n)l -B'n-(B-n)l|,
—LB-nu"  —(B-nl (u-n)l-u'n

1 denotes a 2 x 2 unit matrix, and n = (ny,ng) is an arbitrary non-zero
vector in R?. Of course, the system (2.5) will have a different solutions than
(2.1) in the case of discontinuities, but this does not matter since we will use
the system (2.1), that is written in the conservative form, in the finite volume
update. Neverthless, (2.5) is suitable to examine the hyperbolic structure of
the system and derive the approximate evolution operator, cf. Section 5.

2.2 A Powell-like form for the SMHD equations

The SMHD equations have got the intrinsic constraint V - (hB) = 0. This
means, that the exact solution will satisfy this constraint for all time if it
holds for the initial data. This can be seen by computing 0,(V - (hB)). In
physically relevant problems, the initial data will always satisfy this con-
straint.

This is a similarity to the MHD equations, in which V - B remains zero
for all time. In 1972, Godunov [11] exploited this property by adding cer-
tain multiples of V - B to each equation thus not changing the exact solu-
tions in the physically relevant situation—in such a way that the resulting
equations have nicer properties. Later, Powell [28] used this form for a nu-
merical scheme. This alternative form of the MHD equations, which we
will call ‘Powell’s form’, was also favored by Brackbill and Barnes [1] and
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by Kroger [14]. Since in particular the hyperbolic structure of the system
becomes much simpler for Powell’s form, we find it desirable to construct
a Powell-like form for the SMHD equations as well. Here we may add a
multiple of

V- (hB) = V'hBY + hW'BT = BVh + hVT BT

rather than V - B to each equation. By this, we can easily get the simpler
System

Oh +uVh+ hVTyT =0,
O+ gVTh+uVu— BVB =0,
OB — BVu+uVB = 0.

If we write it in the compact vector form

2
U+ A (U)3,,U =0, (2.6)
s=1
we get
u-n hn 0
Aini+ Aoy = [ gnt  (u-n)l —(B-n)l|. (2.7)

0 —(B-n)l (u-n)

The system (2.6) is a starting point for developing a suitable approxima-
tion of the integral equations, which is used in order to predict fluxes on cell
interfaces in the FVEG schemes, cf. (4.2).

3 Integral equations

3.1 Overview for general systems

For a general linear hyperbolic system

d
U+ A0,,U =0, (3.1)

s=1

one has the exact integral equations, which were first proposed by Ost-
kamp [26] and later extensively used by Luka¢ova, Morton, Saibertova, War-
necke, and Zahaykah |19, 20, 21, 22|. They can be derived using the general
characteristic theory for linear(ized) hyperbolic systems and written in the
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compact, but abstract, form

Uz, tn1) = = 1|Z(/Sd1 rRIRU (2 — AtV AE ) dn

tn+1 d
+/ / TolE > (On M- 1— A)0e, U (24 (7 — tny1) VAl 7) d@d7>.

tn  Jsd-t T ST -

(3.2)

Here, 7k lk, and A\F are the right eigenvectors left eigenvectors, and the
elgenvalues s of the matrix pencil ZS 1 Asns, respectively. We assume that
the left and right eigenvectors are normalized such that (¥r¥ = 1. Note
that V, M are the ray velocities arising from the mu1t1d1mens1ona1 charac-

teristic theory, compare Courant and Hilbert [5], Jeffrey and Taniuti [13],
Prasad [29], or Kroger [14]. It can be shown that

On e =1 Ak s=1,....d (3.3)
Thus, there is the alternative representation (gélrg, e lkAdr ») for the

ray velocities V, Ak

We should point out that for a nonlinear system, there is also a fully
nonlinear form of (3.3), see [14]. However, this leads to a more complex for-
mula. Hence, for practical applications, it seems to be easiest to apply (3.2)
to a linearized system. In other words, one first freezes the matrices Ag (and
therefore, also the eigenvectors and elgenvalues) at a given state U, and then
applies (3.2). In this paper, we always denote by U the linearization state,
whereas U denotes the solution of the linearized system. With this notation,
the linearized system reads

U=0.

||h>

Notations ~ and ~ are also used for any conservative or primitive variables
with the obvious meanings. However, for a better readability, we leave out
both notations whenever there is no danger of confusion.

3.2 Application to the SMHD equations

Instead of deriving the respective integral representations for the primitive
components h, u, and B arising from the general operator (3.2), we content
ourselves with giving suitable representations for the ingredients appearing
in the general formula. We do this for the Powell-like form (2.7) derived in
Subsection 2.2. A representation for the matrices A has already been given
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n (2.7). The eigenvalues read

Ay =u-n+B-n, A2 =u-n—

Q:E n E'E?
3 4
Ap=u-n+W, Ap =u-n—W,
Ay =u-n,

where we used the abbreviation

W = /(B -n)? + ghln|?.

We call the first two wave modes Alfvén waves, the third and the fourth ones
are the magneto-gravity waves and the last mode, which propagates with the
fluid speed, is called the non-physical mode in an analogy to the ideal MHD
equations.

The corresponding right eigenvectors are

0 0
1 1
1 2 _ T
e 2| T | E ]
pT BT
hlﬂIQ hlnf?
1
4 — _ TW
Ty = 2\n\2W2 T 2[n|2W? n ’
—n'(B - n)
B-n
1
5 _
Tn = w2 ot |,
n'g
and the left eigenvectors read
1 _ 2 _
lﬂ — (07 _}_)73)’ lﬂ — (032_97]_9)7
L= <g|ﬂ|2,ﬂW, —n(B - ﬂ))7 L, = (glnl2, —nW, —n(B - ﬂ)),

@ = (B'Qagaﬂh)7

where for the given normal direction n, we denote by p the transversal di-
rection, which in the two-dimensional case is canonically (up to a factor £1)
given by

p = (—n2,n1).

Note that this becomes essentially different in three dimensions where, as a
consequence of the Hedgehog theorem, there cannot be a canonical basis of
the two-dimensional space of transversal directions.



Finally, we also give the following formulae for the ray velocities

V= u+ B, Vpdr =u-— B,
B(B - n) +ngh 4 B(B-n)+ngh
n)\3 = n)\ =u— ’
VA, =u+ W , VoA, =u W
Vﬂ)\z = u.

One main advantage of the SMHD equations over the MHD equations is
that there are no case distinctions or singular cases in the evaluation of the
hyperbolic structure. In fact, the given formulae for the eigenvectors do not
cause numerical problems in the evaluation as far as physically reasonable
restrictions g > 0 and h > 0 hold. If B-n = 0, i. e. the normal magnetic field
vanishes, we get a triple eigenvalue u - n. Figure 3.1 shows the shape of the
wave fronts, the so-called Friedrichs diagrams, for a selection of linearization
states.

Note that it can easily be seen that, up to shift, rotation, and scale
operations, the shape of the wave fronts is completely defined by the scalar
parameter | B|2/gh. The given selection of wave fronts is representative in the
sense that it contains one example for each of the cases where the parameter
|B|%/gh is zero, positive but small, smaller than 1, exactly 1, larger than 1,
and large but finite.

4 FVEG schemes

Consider an arbitrary system of hyperbolic conservation laws,

U + 05, F1(U) + 0., F2(U) = 0, (4.1)
on a regular, cartesian, two-dimensional mesh, consisting of cells

Kij = (xi—lvxwrl) . (yj_layj-t,-l)a

where Tip1 = (i + 2)h and Yje1 = (j & 2)h. his a mesh step. If we inte-

grate (4. 1) in space over one cell K;j and in time over the interval [t,,,41]
(where t, = nAt) and then apply the Gauss law, we get

w1 [
Uij = Uij - |K | ) (Fl(U(ﬂCH%,y,t)) - Fl(U(JUF%,y,t))) dy dt
ij n y

1
tnt1 i+l

F U(z,y. 1,t) — Fo(U(x,y,_1,t)))dzdt,
|sz| tn / _1 2 yJJr? )) 2( ( Yj 2 )))

(4.2)

where

Uy = / Ul(x,y,t,)dzdy.
el
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T2 Z2
(a) (b)
T2 Z2
non-physical mode magneto-gravity modes
1 €
(c) (d)
Alfvén modes
T2 €2
E T1 E E X1
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Figure 3.1: Friedrichs diagrams for SMHD equations for u = 0, g = 1, and
(a) h =1, B = (0,0), (b) h =1, B = (0.2,0), (c) h = 1, B = (0.5,0),
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The idea of a finite volume evolution Galerkin (FVEG) scheme is to
derive an update procedure for the cell averages U}, by inserting the exact
integral equations (3.2), into the finite volume update formula (4.2) in order
to evaluate fluxes on cell interfaces. Then, suitable numerical approximation
techniques are applied to everything in the resulting formula which cannot
be evaluated exactly, see, e.g., |20], [21]| for more details.

The finite volume update formula (4.2) must be applied in conserva-
tive variables, while the approximate evolution operator will typically (but
not necessarily) work with some primitive variables. In particular, for the
SMHD equations, we will construct the approximate evolution operator to
the Powell-like form in primitive variables (2.4). Also, note that the finite
volume update formula is typically applied to the fully nonlinear system (be-
cause in general, there will not be a reasonable global linearization state),
whereas the evolution operator (3.2) requires a linearization. Therefore a
suitable linearization state needs to be determined before each application
of the evolution operator.

5 Approximation of the integral equations

In order to use the exact integral equations (3.2) numerically several approx-
imations have to be made. This yields the so-called approximate evolution
operator. More precisely, the following building blocks are necessary:

1. The recovery of a spatial function U constructed from the cell averages,
2. the time integration which occurs in the finite volume formulation,

3. the integration along cell interfaces occurring in the finite volume for-
mulation,

4. the choice of the linearization state,

5. the integration over S?~1 in the integral equations (3.2)

6. the time integral in the second part of the integral equations (3.2), and

7. the evaluation of the spatial derivatives of U in the second part of the
integral equations (3.2).

The items 1 6 will be realized with standard approximation techniques as
described in the following subsection, whereas the last item has to be inves-
tigated carefully in order to obtain suitable results. This will be discussed in
Subsection 5.2. In order to summarize the whole FVEG scheme we present
in Subsection 5.3 the numerical algorithm.
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5.1 The use of standard approximation techniques

In order to get a function defined on a computational domain 2 by means
of a given family of cell averages, we use a conservative, piecewise bilinear
recovery. More precisely, if we have given cell averages 1;; on a regular mesh
with mesh size h, we approximate the exact solution on the mesh cell Kj;
by a bilinear function

¢(£)|Kij = Yij + (1 — 95(1))1/%‘1;' + (22 — fﬂg)ﬂ)gj + (21 — 29) (22 — 29) z'1j2’

0 3 . ; 1 2 12 :
where 2 is the center of K;; and the coefficients wij, o and wij , which
approximate derivatives, are given by

wilj _ Vi1 — %‘j(p(%‘j - %—1,3'),
h Vi1, — Vi
%’2]' _ Yigr1 — wij(p<wij — wi,j—1>,
h Vij+1 — Vij
012 = Vip1j41 + Vic1j-1 — 2wij¢<2wij — Yit1,j-1 — wi—l,j—i-l).
“ h? Yig1j+1 + Vic1j—1 — 205

Here ¢ is a limiter function out of the class that was discussed by Sweby [32].
We have made positive experience with the monotonized centered limiter,
also known as minmod-2, which is given by

0, 6 <0,
20, 0<6h<i

p(0) =1 . 3
3(14+06), 3<6<3,
2 3<0.

9

Recall that the idea of this limiter is to use unlimited central differences
as long as they are contained in the so-called second order TVD region, cf.
Sweby [32]. This reconstruction is done for every component of the primitive
variables.

For the integrals appearing in the finite volume formulation we have al-
ready made good experience with the midpoint rule in time and Simpson’s
rule along the cell interfaces for hydrodynamical problems, see [20]. There-
fore, we use for the first three equations of the SMHD system, i.e. for the
hydrodynamical part, Simpson’s rule for the cell interface integrals. Fur-
ther, we use the trapezoidal rule for the last two equations, i.e. the Maxwell
equations. Such a flux discretization leads to the FVEG scheme that auto-
matically satisfies a discrete version of the divergence condition (2.4), cf. also
(6.1). Note that the finite volume update is always done in the conservative
variables and for the conventional form (2.1) (in contrast to the Powell-like
form) of the equations. This ensures that the overall scheme is conservative.
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According to our quadrature rules along the cell interfaces, we need to
apply the approximate evolution operator centered at the cell vertices as well
as at the midpoints of the cell interfaces. For the linearization state we use
averages of the four or two cells next to the point in which the operator is
applied.

In [19, 20, 21|, the second author constructed schemes in which the inte-
grals over the sonic circle S were evaluated exactly. Due to the complexity of
the SMHD equations this seems no longer to be possible now. We have there-
fore decided to evaluate these integrals by suitable quadrature rules. Due to
the periodicity, it is irrelevant whether the rectangle rule or the trapezoidal
rule is used. As quadrature points, we chose the points (cos 6;,sin 6;), where
0; either takes the values

i 2m (i + 3)

— or —_—=

n n

where in both cases n is the number of quadrature points (which due to
symmetry reasons should be a multiple of 4) and ¢ = 1,...,n. In the second
version, we purposely avoid that 6; becomes a multiple of 7/2. In our nu-
merical examples in Section 6, we have used the second variant with n = 8 or
n = 16 points. We have experimented also with different number of integra-
tion points n, which were distributed always regularly due to the periodicity
of integrands. Numerical results showed only marginal differences.

Finally, the time integral in the second part of the integral equations
(3.2) was simply approximated by the rectangle rule. We should point out
that in the recent work of Lukacovéa, Morton, and Warnecke [20], a new ap-
proximation of time integrals along the Mach cone was proposed in such a
way that any one-dimensional plane wave aligned with the grid is computed
exactly. This approximate evolution operator was derived for the wave equa-
tion system, the shallow water equations, and the Euler equations and yields
more stable and accurate FVEG schemes. Application of this idea for the
SMHD equations should be investigated in future.

5.2 Evaluation of the spatial derivatives

It would be possible to take approximations to the spatial derivatives of
U in (3.2) according to the slopes of the piecewise bilinear reconstruction.
However, these might be very poor approximations. In particular, when a
term involving these derivatives is integrated along a path which crosses a
cell interface (which typically is the case), this approximation fails to include
the necessary Dirac-distribution for the discontinuity of the reconstructed U'.

For the wave equation system, the second author [19] found a possibility
to transform the integral equations in such a way, that all spatial derivatives
disappear. The procedure how to do this consisted of two essential ideas,
one of which was applied to the single wave mode for which the wave front
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concentrates to a single point, and the other was applied to the remaining
modes. This distinction between two types of wave modes is typical for
the general ideas of the current subsection. In what follows, we distinguish
between the so-called singular and non-singular wave modes; the more precise
explanation will follow.

5.2.1 Non-singular wave modes

We first concentrate on the wave modes with non-singular wave fronts. For
these modes, the so-called ‘useful lemma’ was used in [19] to transform the
space integral in such a way that the spatial derivatives disappear, see [19,
Lemma 2.1|. The main idea of this lemma is to recognize that the spatial
derivatives of U in (3.2) are always derivatives in a direction tangential to
the integration path. This makes it possible to rewrite them as derivatives
with respect to § (where 6 is the variable which parameterizes the path) and
then to use integration by parts. This shifts the 8 derivative to known terms
(which originate from the hyperbolic structure of the system), so that the
derivatives can be performed in advance.

Thus, the key point is just the fact that the direction of the spatial
derivative is tangential to the integration path. We will now prove that this is
true for arbitrary hyperbolic systems, so that there is always a generalization
of this ‘useful lemma’ for the non-singular wave modes. However, as it turns
out, before one can apply the integration by parts, it is necessary to divide
by the length element of the integration path. For some wave modes, this
length element may vanish. This is the reason why there is no such ‘useful
lemma’ for those modes, which we call singular wave modes.

The essential expression to examine is

d

compare (3.2), where d = 2. (In particular, the leading factor =¥ only
makes a vector out of the scalar-valued expression in (5.1) but has got no
influence on the direction of the derivative.) Precisely, (5.1) is a sum of
directional derivatives of the m components of the vector U. This derivative
is evaluated at the point §+JVQ)\7’§, where 0 = 7 —t, 1. If we parameterize

the integration path by 6, i.e. we set
n =n(0) = (cosf,sin ), (5.2)

then our goal is to show that the direction of each of the directional deriva-
tives in (5.1) is tangential to the derivative with respect to 6 of the point at
which (5.1) is evaluated, i. e. tangential to 09%/\7’;(9). But it follows from the

characteristic theory that agvﬂAf;(e) is always orthogonal to n(¢). This is
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because 9pV,\F n() 15 of course tangential to the wave front, whereas n(0) is
known to be the normal direction, i. e. normal to the wave front (see also [14,
end of Section 3.4]; note that n is called p there). Since in R? the direction
of a vector is uniquely given by a nonzero normal vector, it suffices to show
that the direction of each of the directional derivatives in (5.1) is orthogonal
to n. In symbols, we have to show that

!'N
S &

d
> (On X5 -1 Adn, = 0.
s=1

But we get

d d d
g Z(ansAZ : % - és)ns = gjz Z ansAzns : ; - & Zésns
s=1 s=1

lﬁnVAk‘%)

Again using the characteristic theory, we see that this in fact vanishes since
n - VuAE = AF see [14, Lemma 3.4.3]. Thus, we have proven that the
integral in the second part of the evolution operator (3.2) can always (except
in singular cases, see below) be transformed in such a way that the spatial
derivatives of U disappear. We have obtained the following result

LEMMA 5.1 In the second part of the evolution operator (3.2), the direction
of the directional derivative of each component of U is always tangential to
the integration path, as long as the parameterization by 0 does not become
singular.

We will now demonstrate how this transformation can actually be found.
The result of the preceding paragraph is that the direction of the directional
derivative of each component of U in (5.1) is tangential to agvﬂ)\ﬁ(e), ie.

there must be a vector y_ﬁ such that

B (O Al -1 — A) = vE0p0p, A, s=1,...,d, (5.3)

where n is always given by (5.2). Inserting this into (3.2), we get that
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d

/ PhIE S (008 1 — A0, Uz + 0VuAE, 1) dn (5.4a)
ga-1 7ks 1 o o -
2T d
= Rk N " 090, M0, U (z + oV AE 1) do 5.4b
n—nz 0Un n ( nns
, Tnn 2 n
2
= / TRk (9pV Ak - VU (z + oV \E 7)) df (5.4c)
, ol n n
—/%r’f E L 4 ok 1) do (5.4d)
= ; nUn o do T+ Oo0VpAp, T .
2T d
:_5/0 U (2 + 0V 7) do, (5.4e)

where the last equality is the integration by parts with respect to 0; the
boundary terms cancel due to the periodicity of the integrand. Furthermore,
from (5.3), it follows that

||D>

k k k
v = 5, AW”Z@H@”SA” On Mo -1 — (5.5)

We thus have found a transformation of the n integral of the evolution
operator into a form where no derivatives of the solution U occur and the
only derivatives that appear can be determined in advance. However, this
transformation cannot be applied in the following two cases:

e If 0 = 0, the transformation is undefined. But since we approximate
the time integral with the rectangle rule, we are only interested in the
case 0 =t, — tyy1 # 0.

o If 89Vﬂ)\]fL = 0, the transformation is also undefined. This is in partic-
ular the case for those modes whose wave fronts degenerate to points.
For these modes, we have that the ray velocity Vﬂ)\ﬁ is independent of
n (and thus of #). We have not yet examined whether modes for which
the wave front is only locally singular also cause problems. We have
here in mind such modes, where agvﬂAfl = 0 at a single point, but
sV, Ak is not entirely independent of 6, cf. the slow magneto-acoustic
waves of the MHD equations.

The actual terms which appear in the transformed integral may become
very complicated. We found out that there is also a suitable approximation
of the integrand, which is comparatively simple. Recall that we anyway
approximate the integral by evaluation of the integrand in a finite number
of quadrature points. Let 6; be these quadrature points with respect to 6,
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and let
n; = n(6;) = (cosb;,sinb;) and gf =z + aVﬂ)\Zi

be the respective quadrature points with respect to n and with respect to x.
By qZ 's» we denote the s-th component of the vector qk Consider now the
1ntegrand in (5.4d) at = 6; and approximate the 6 derivative by a one-sided
difference given by the points 6; and 6;1. This yields

e Uldhn) ~U(ah)

 d
k k
U(z + oV, R

dH - = “ln=n;

al-
Q=

(5.6)

If we now insert the representation of g_ﬁ given in (5.5) and approximate
all 6 derivatives in that representation in the same way as above, we can
approximate the right hand side of (5.6) by

d
1 FIAG? N — N U(gk,,) - U(gh)
(ans)\n = AS)
o ’Z|q R e S PA = A0
d k k k k
ko df W U(gF) — U(qh
DI R R ERL %2< i)~
s=1 |Qi+1_qz’

We have thus found an approximation of the integral which does neither con-
tain any derivatives nor essentially more complicated terms than the original
integral. Furthermore, we see that our approximation can formally be ob-
tained by just replacing the derivative

(@1 — DU ) — U(gf)).

9., U(qh) with P

(5.7)
aF ¢

Note however that there is no reason why this replacement should be a
sensible approximation for each s individually. This is only true for the
whole integrand. The same result, of course, holds if one uses backward
differences, i.e. one replaces

(5 = )UE ) - Ulgh))
’gf—l - qz |2

9., U(qh) with (5.8)

In order to obtain a symmetric formula we use the average of both approxi-
mations.

In fact, the U difference is mainly determined by the slopes of the piece-
wise bilinear reconstruction. However, the above approximation automati-
cally includes an approximation to the Dirac-distribution for the disconti-
nuity of the reconstructed U whenever the integration path crosses a cell
interface. Just to keep it clear we would like to note that the use of (5.4e)
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would principally be possible, but the resulting formulae will be too compli-
cated and we have refrained from this choice. Instead we use approximations
(5.7), (5.8), which are based on the same fact that enables also (5.4e), but
moreover they have an advantage that the Dirac distribution, which appears
when the integration path crosses a cell interface, is automatically included.

5.2.2 Singular wave modes

For the modes with singular wave front, the idea in earlier publications, see
e.g. [19], was to insert the differential equation itself into the respective part
of the integral equations. This led to a formula where this wave mode was
left out completely in the approximate evolution operator and instead certain
components of the result were multiplied by corresponding factors. We now
found out that there is a generalization of this idea to arbitrary systems. This
technique can be applied to any subset of wave modes, no matter whether
they are singular or not. The multiplication of certain components with
certain factors generalizes to the multiplication of the result with the inverse
of a certain m X m matrix which in general depends on the linearization
state. This matrix may, of course, be more or less difficult to invert; it may
be badly-conditioned or even singular. For the wave equation system as well
as for the shallow water equations, this matrix is a diagonal matrix with
constant, nonzero diagonal entries, so that the computation of the inverse is
trivial.

We will now demonstrate how this generalization works. Let K and K’
be two complementary subsets of the set {1,...,m} of wave mode indices.
For any k € K and n € S9!, we insert the equality

tn41 d
/ S (00N 1 AL U+ (7 — ) Vo, 7) dr
tn - -

s=1

tn+1 d
= / (&U%—Z@ns)\fﬁ%U) (l—f— (T—tn+1)vﬂ)\i,7') dT
2 s=1 B B

tn+1 d %
_ / U@+ (7 tnir)Vudk 1) dr
t dT - =

=U(z, ta1) — Ulz — AtVAE 1)

n
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into the operator (3.2). Collecting U(z, t,+1), we get

kik
(: 5 1’/5d 127"1 dn> (z,tnt1)

kik . k
Sd 1| kZK (/s rulaU (2 = AtVoAn, ) dn

tn+1
/ / ’“;’“ O NE 1~ A0, U (z+ (17— tnﬂ)vmﬁ,ﬂdndv).

Thus, we leave out completely the modes contained in K and then multiply
the result of the evolution operator with the inverse of the matrix

J 1- 1k dn / Ik dn

J(K):=1 ySd1|/SdIZ’“ \Sdly o 2 Talndn
keK’

As already mentioned, we can choose K to be any subset of {1,...,m}.

However, the more modes we include in K, the more likely the matrix J(K)
might become difficult to invert or even singular. In particular, note that
for K = {1,...,m}, we have J(K) = 0. Since we have already found a
satisfying way to approximate the evolution operator for the non-singular
wave modes, cf. Subsubsection 5.2.1, we will restrict ourselves to the case
that K consists of singular modes.

For example, for the shallow water equations, cf. Lukacova [18], we have
only one singular wave mode, the so-called shear wave mode corresponding
to the middle bicharacteristic curve, which points out just the advection
direction. If we choose K to consist of this one mode, we get

[an)

0
0

S NI
B[

which can be inverted easily.

For the SMHD equations we have three singular wave modes: the two
Alfvén modes (1 and 2) and the non-physical mode (5). For K = {1,2}, we
get

10000
02000

JK)=|[0 0 & 0 0f, (5.9)
000 3 0
0000 %
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which is comparably easy to handle, but we still have to deal with the non-
physical mode. If, on the other hand, we choose K = {1,2,5}, then we get
the essentially more complicated matrix

10000
1
02000
JK)=10 0 4 0 0]—
000 %0
00001
(B-n)> 0 0 hni(B-n) hny(B-n)
0 0 0 0 0
! ! 0 0 0 0 0 d
21 | (B-n)*+gh -
5! gni(B-n) 0 0 ghn? ghning
gni(B-n) 0 0 ghning ghn?

(5.10)

It is not easy, but possible, to find a closed form for the integrals appear-
ing in (5.10). The second term on the right hand side of (5.10) is a rank 2
matrix. Therefore, J(K') can be written as the sum of a diagonal matrix and
a rank 2 matrix. The Sherman-Morrison-Woodbury formula (see, for exam-
ple, Golub and van Loan [12, page 51]) enables us to obtain a comparatively
simple representation of the inverse of this matrix. A problem occurs when
B (i.e. the magnetic field of the linearization state) is near zero, because
at B = 0 the matrix J J(K') becomes singular. This means that the choice

= {1,2,5} is not allowed when B is near zero.

Thus, we have the following three main possibilities for replacing the
spatial derivatives of U in the case of singular wave modes:

1. Use K = {} and approximate the spatial derivatives using the slopes
of the piecewise bilinear reconstruction.

2. Use K = {1,2} (i.e. use the simple matrix given in (5.9)) and approxi-
mate the spatial derivatives for the non-physical mode using the slopes
of the piecewise bilinear reconstruction.

3. Use K = {1,2,5} (i.e. the more complicated matrix given in (5.10)) if
B is away from zero, but K = {1,2} if B is near zero.
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We have experimented numerically with the above three variants. Our
numerical results using variants 2 or 3 yield unsatisfactory resolutions, see
Subsection 6.2. Therefore, we suggest to refrain from these possibilities and
approximate the spatial derivatives for the singular wave fronts just by using
the piecewise bilinear reconstruction. Anyway, note that the problematic
case that the spatial integration path crosses a cell interface cannot occur in
these cases, since this path reduces to a point.

5.3
1

Numerical algorithm

Given is a piecewise constant approximation at time ¢, U%, i,j €72,
mesh and time steps A, At.

recovery step:

Construct piecewise bilinear functions and apply the limiter procedure,
e.g. by using the minmod limter, cf. [21], or monotonized minmod lim-
iter; cf. Subsection 5.1. This yields the piecewise bilinear approxima-
tions @E", where 1) is an arbitrary component of the vector of primitive
variables (h,u, B)".

local linearization:

At each vertex as well as at each midpoint of cell interfaces choose a
linearization state for local linearization, cf. (2.5). This is done by ave-
raging the two or four neighbouring states for a midpoint or a vertex,
respectively.

predictor step / approximate evolution:

Compute the intermediate solutions at time level £,,/5 on the cell
interfaces by the approximate evolution operators, cf. (3.2) (with At
replaced with At/2), where U is used as the data at t,. The computa-
tion is realized in primitive variables. The approximation of integrals
in (3.2) is obtained as follows:

a) Integration over S9! is replaced with finitely many quadrature
points of the rectangle rule; cf. Subsection 5.1.

b) Time integral, or the so-called mantle integral, in the second part
of (3.2) is approximated using the rectangle rule at time ¢,,.

c) The spatial derivatives are approximated as explained in Subsec-
tion 5.2.1 (magneto-gravity modes) or by the slopes of U (Alfvén
and non-physical modes), cf. Subsection 5.2.2 variant 1. Alterna-
tively, Subsection 5.2.2.; variant 2. and 3. can be used.

corrector step / FV-update:

Do the FV-update in conservative variables using the midpoint rule in
time and midpoint, trapezoidal or Simpson rule along the cell inter-
faces. In the experiments presented below we have used the Simpson
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rule for the flow equations (i.e. first three equations of (4.2)) and the
trapezoidal rule for the magnetic field equations (i.e. last two equations
of (4.2)). Fluxes at cell interfaces are evaluated at the predicted values
obtained by the approximate evolution operator in Step 4.

We would like to remind a reader that the question of suitable quadra-
ture rules along cell interfaces has been extensively studied with respect to
stability of the whole FVEG scheme in our previous paper [21|. The use of
midpoint rule yields a scheme similar to standard Godunov splitting schemes.
By using the combination of the trapezoidal and the Simpson rule we have
taken multidimensional effects into account and obtained a scheme, which
satisfy the discrete divergence condition, cf. Subsection 6.3.

6 Numerical examples

We now demonstrate the behaviour of the described scheme on test problems
for the SMHD equations in one and two space dimensions. We use a CFL
number of 0.45 in all computations. We have experimented with different
CFL numbers, in fact numerical results indicate that the FVEG scheme stays
stable until CFL ~ 0.56, which is in agreement with stability investigations
of the FVEG3 scheme for the linear wave equation system [21], [23]. In [20]
new quadrature rules for time integration along the bichracteristic cone have
been derived and lead to a stability limit close to 1. However, due to a more
complex structure of the SMHD system the application of these quadratures
is not straightforward and this point should be investigated in future deeply.

6.1 Riemann problem

Our first test example is the Riemann problem used by Rossmanith [31]. It

is given by the initial data
x<0: h=1,
x>0: h=2,

s V) B = (170)7
0,0), B = (0.5,1)

[S
I

[S
I

and the gravitational constant ¢ = 1. The numerical solution, that is shown
in Figure 6.1, was computed with a two-dimensional algorithm described
above at ¢ = 0.4 on the grid with 100 cells in z-direction and 5 cells in y—
direction.

The reference solution (solid line) was obtained with the same scheme,
but with 1000 x 5 cells. Comparing the plots with Rossmanith’s [31] results,
we see that the scheme produces a qualitatively correct solution. We should
point out, however, that there are still some oscillations (at both the low and
the high resolution) in all components near the right Alfvén discontinuity.

Note that the intrinsic divergence constraint, i.e. V - (hB) = 0, is au-
tomatically maintained, because the flux function F'y in x; direction has
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Figure 6.1: Numerical solution for the Riemann problem with 100 x 5 cells

(dots) and 1000 x 5 cells (solid line).
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got a zero in the component corresponding to the conservative variable hB;.
See also (2.2) and note that the matrix BTu — u' B has vanishing diagonal
entries.

6.2 Example for approximations of singular wave modes

We now demonstrate what happens when the singular wave modes are han-
dled by the different approaches proposed in Subsection 5.2.2. We compute
the same one-dimensional Riemann problem as in Subsection 6.1, but now
using the variants 2 and 3, cf. page 20. The results are shown in Figures 6.2
and 6.3, respectively. Both numerical solutions look much worse than the
result in Subsection 6.1, which was computed using the variant 1. We thus
suggest to refrain from variants 2 and 3 at all and approximate, as already
mentioned in Subsubsection 5.2.2, the spatial derivatives for the singular
wave modes using the slopes of the piecewise bilinear reconstruction. We
think that for these wave modes a better quadrature rule in time (along the
bicharacteristic curve), which takes care of possible Dirac distributions for

i

discontinuities of the solution along this curve, could bring better results.

6.3 Two-dimensional problem with shocks

This two-dimensional example is similar to the ‘rotor problem’ used by
Toth [35] for the MHD equations. The computational domain is [—1, 1] x
[—1,1], equipped with zeroth order extrapolation at the boundaries. The
initial data are

|z|]| <0.1: h = 10, u=(—x2,x1),
|lz|| > 0.1: h=1, u = (0,0),

(0.1,0),

B =
B =(1,0),

and the gravitational constant is ¢ = 1. Note that hB is constant in the
initial data and thus divergence-free. The discrete divergence was computed
in a vertex-centered way given as

div(hB)iy 17254172 = Byl (hB1)iv1/2, 54172+ 1a0y(hB2)iv1/2 54172, 4 € Z,

(6.1)
where V112 j+1/2 = P((i £ 1/2)h, (j £ 1/2)R) denotes the values of any
function v at vertices of the mesh cell K;;. Here we used the finite difference
operators

pat(x) = 5 [W(@ + 1/2) +(z = 1/2)],  S:(x) = Y(a+h/2)—d(z—h/2)

with an analogous notation for the y-direction. In fact the particular choice
of the trapezoidal rule for the flux interface integrals of the Maxwell equations
yields such a structure of the FVEG scheme which fulfills also more general
conditions needed in order to satisfy the divergence-free constraint in general
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Figure 6.2: Numerical solution for the Riemann problem with 100 x 5 cells

using variant 2 of Subsection 6.1.
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Figure 6.3: Numerical solution for the Riemann problem with 100 x 5 cells
using variant 3 of Subsection 6.1.
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[33]. We should also point out that in [24] the discrete vorticity for the
wave equation system was defined in an analogous way to (6.1). It has
been shown in [24] that the Lax-Wendroff (Richtmyer rotated) scheme is
vorticity-preserving. Actually, the multidimensional FVEG scheme that uses
the trapezoidal rule for cell interfaces shares some similarities with the Lax-
Wendroff scheme.

In the following we will show that for the numerical solution of the FVEG
scheme the discrete divergence defined in (6.1) is constant in time, more
precisely we show that if it was zero initially, it stays zero at any time.
Consider the last two equations of (2.1), (2.2), i.e. the Maxwell equations,

o (rzn) + o (1) + o (3) = (o)

where f = hBjus — hBsouj is the flux function. Further let us denote by
fix1/2,; and f; j+1/2 the approximations of the fluxes at cell interfaces, which
are obtained by the trapezoidal rule using the intermediate solution U* at
vertices. Thus, we have, for example for the right and upper cell interfaces,

fi+1/2,j = Myf(U;(+1/27j)7 fi,j+1/2 = “f‘»’f(U;'k,jJrl/?)’

The intermediate approximations at vertices U* are obtained by the approx-
imate evolution operator, i.e. using approximation of the evolution operator
(3.1) at each vertex.

Now assume that at time &, div(hﬁ)?+1/27j+1/2 =0, 4,5,€ Z. Then it

follows from the FV update as well as from (6.1) that

: n+1
dlv(hB)iJ—:l/Z,jJrlﬂ = (6.2)

At . .
T Nyécc(syﬂwf(Uiﬂ/szm) - M:c5y5a:ﬂyf(Ui+1/2,j+1/2) =0.

Our numerical experiments confirm that the discrete divergence (6.1) is zero
up to the machine precision for different mesh parameters f.

Contour plots of the result at ¢ = 0.2 for 200 x 200 cells are shown in
Figure 6.4. Plots with higher resolution, i.e. 300 x 300 cells, are shown in
Figure 6.5. We can notice that the FVEG scheme resolves correctly multi-
dimensional discontinuities as expected.

6.4 Empirical order of convergence

In this experiment we test experimental order of convergence for a smooth
solution. We consider the initial value problem for two-dimensional SMHD
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Uq u2

Bl BQ

Figure 6.4: Contour plots of the two-dimensional rotor-like problem with
200 x 200 cells.
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U1 U2

By By

Figure 6.5: Contour plots of the two-dimensional rotor-like problem with
300 x 300 cells.
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equation with the initial values

1 1
h’(@) O) - 17 Bl(@) O) = 57 B2(£7 0) = 17
1 1
u(z,0) = 1+ 5 sin(my) + 1 cos(mx),
1 1
v(z,0) = 1+ 1 sin(mx) + 3 cos(my);

see also [34] for an analogous test problem for the full MHD system. Al-
though an exact solution is not known, we can still study the experimental
order of convergence (EOC). This is computed in the following way using
three meshes of sizes N1, No := N1/2, N3 := Na/2, respectively

IUR, — UR, |l
U, = UR, |l

Here UYy is the approximate solution on the mesh with N x NN cells. The
computational domain [—1, 1] x[—1, 1] was consecutively divided into 20 x 20,
40 x 40,...,160 x 160 cells. The final time was taken to be ¢ = 0.2. The
following two tables show the experimental order of convergence computed
in the L? and L' norms. We also show the convergence rate for the first
component h as well as for the magnetic field B. It can be seen clearly
that the experimental order of convergence is 2. Note, however, a slightly
decreasing order of the convergance rate on finer meshes. We believe that
a more suitable quadrature rules for time integrals in the second part of
the integral equations (3.2), which would be analogous to those of the Euler
equations [20], will increase a stability range of the scheme as well as its
global accuracy. To do this it would be necessary to derive an approximate
evolution operator without spatial derivatives of unknown function. This is

EOC = log,

a point for future study.

Table 1: FVEG scheme / Convergence in the L? norm

[N [[U%—UXI [ EOC [ [k}, — W&l [ EOC [ [By,— Byl | EOC |
20 0.007317 0.002130 0.003234
40 0.001721 2.0880 0.000501 2.0879 0.000793 2.0279
80 0.000406 2.0837 0.000116 2.1107 0.000204 1.9588
160 0.000107 1.9239 0.000034 1.7705 0.000056 1.8651
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Table 2: FVEG scheme / Convergence in the L! norm

[N [[[0%, ~ URI [ BOC | [#,, ~ W | EOC | B, - Byl | FOC |
20 0.011766 0.001508 0.002569
40 0.002837 2.0522 0.000344 2.1322 0.000647 1.9894
80 0.000702 2.0148 0.000080 2.1043 0.000172 1.9114
160 0.000187 1.9084 0.000024 1.7370 0.000047 1.8716

6.5 Two-dimensional explosion problem / transcritical flow

This is a two-dimensional analogy of the cylindrical explosion problem for
the gas dynamics, cf. the Sod 2D problem [20]. The initial data are

h=1, up =0, wup=0, B;=1, By =0, || <0.3
h=01, u1 =0, uwu=0, By =01, By=0 -else.

In an analogy to the Sod problem for gas dynamics, the flow is transcrit-
ical, i.e. Fr := \/u% + u%/\/gh + B% + B% is larger, equal or smaller than
1, cf. Figure 6.7. It should be pointed out that the FVEG method needs no
special entropy fix correction in order to resolve correctly critical states, i.e.
Fr = 1. This is again analogous to the situation of the Euler equations, see
also [21].

The computational domain is a square [—1, 1] x [—1, 1], the mesh is rect-
angular and the initial data are implemented by cutting the initial discon-
tinuity and assigning it by modified area-weighted values according to the
corresponding cell. The initial data are moreover discretized in such a way
that diveregence of hB stays zero. Fig. 6.6 shows the isolines of height and
x—, y— components of velocity, magnetic field and the parameter F'r com-
puted at time ¢ = 0.25. It can be seen clearly that due to the influence
of the magnetic field the solution is now no more rotationally symmetric as
it was the case of the Sod 2D problem for the gas dynamics. The solution
exhibits a shock traveling away from the center, a rarefaction wave traveling
towards the origin at (0,0) and two Alfvén waves. In Figure 6.7 the y = 0
cross sections are plotted; slower Alfvén waves that are located between the
rarefaction wave and the shock are evident in the tangential components of
velocity and magnetic field. Small oscillations near the Alfvén modes can
be noticed, however we should also take into account that the scalling of ug
and By graphs is of order 1072, The discrete divergence (6.1) stays zero up
to the machine accuracy.

We would like to mention that an analogous initial data problem have
been studied extensively by many authors for the full ideal MHD system,
see, e.g., Brio and Wu |2|. Since the MHD system is a nonconvex, non-
strictly hyperbolic system, there exist discontinuities that are evolutionary
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05 4 05

Figure 6.6: Contour plots of the two-dimensional explosion problem with
200 x 200 cells.
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Figure 6.7: Graph of the solution of the two-dimensional explosion problem
with 200 x 200 cells, cross section for y = 0.
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and nonevolutionary. If a strictly coplanar problem (2D problem) for the
MHD system is considered the solution can be nonunique. Depending on
a scheme a nonevolutionary solution in the form of the so-called compound
wave can be found. In fact, this compound wave is unstable, under nor-
mal perturbations in transverse quantities it is changed into a rotational
discontinuity and a slow shock, cf., e.g., [16]. For the SMHD system it is
important to realize that VA,r*, k = 3,4, do not change sign. Thus, the
magneto-gravity modes are convex and we do not have compound shocks.

7 Conclusion

In the present paper we have derived a second order FVEG scheme for
the shallow water magnetohydrodynamic (SMHD) equations. Up to our
knowledge, this is the first attempt to apply genuinely multi-dimensional EG
technique to a magnetohydrodynamic model. We have derived an integral
equations for the SMHD equations, cf. (3.2), and discussed its suitable ap-
proximation. We have studied more deeply the approximation of the spatial
derivatives in the integral equations (3.2) for singular as well as non-singular
wave modes. More precisely, we have shown that for arbitrary hyperbolic
conservation laws, the spatial derivatives of the solution U can be replaced
by means of the Gauss theorem with the derivatives of the eigenvectors
themselves, cf. Lemma 5.1 and (5.4).

Due to the complex eigenstructure which arises in the SMHD system, it
is still rather complicated to apply this result directly. Instead we propose to
exploit this result numerically as given in (5.6). Our numerical experiments
confirm the reliability of this approach for non-singular wave modes.

Treatment of the singular wave modes is more delicate. Our numerical
experiments show that the approximation of the derivatives in (3.2) by slopes
of the bilinear reconstruction yields the best results, cf. Subsection 6.2. We
believe that more suitable numerical quadratures for the mantle integrals
from ¢, to tp,4+1 in the integral equations (3.2) can increase accuracy as
well as stability of the scheme. They should, analagously as in [20], reflect
propagation of one-dimensional waves exactly. This is a subject of our future
study.

The discretization of the flux interface integrals for the magnetic field,
i.e. for the Maxwell equations part, was done by the trapezoidal rule. In
such a way the discrete divergence (6.1) is identically zero at each vertex.

One major advantage of the current description and implementation of
the FVEG scheme is that it is designed in a black-box like manner and should
therefore be applicable to any system of hyperbolic conservation laws with
comparatively low effort, if the complete hyperbolic structure of the system
is known.
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