
An Evolution Galerkin S
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 (SMHD) Equationsin Two Spa
e DimensionsTim KrögerDivision of Numeri
al Mathemati
s IGPM, RWTH Aa
hen, GermanyMária Luká£ová-Medvid'ová∗AB Mathematik, Te
hnis
he Universität Hamburg-Harburg, GermanyAbstra
tIn this paper we propose a new �nite volume evolution Galerkin (FVEG)s
heme for the shallow water magnetohydrodynami
 (SMHD) equa-tions. We apply the exa
t integral equations already used in our ear-lier publi
ations to the SMHD system. Then, we approximate theseintegral equation in a general way whi
h does not exploit any parti
u-lar property of the SMHD equations and should thus be appli
able toarbitrary systems of hyperboli
 
onservation laws in two spa
e dimen-sions. In parti
ular, we investigate more deeply the approximation ofthe spatial derivatives whi
h appear in the integral equations. The di-vergen
e free 
ondition is satis�ed dis
retely, i.e. at ea
h vertex. Firstnumeri
al results 
on�rm reliability of the numeri
al s
heme.Key words: genuinely multidimensional s
hemes, hyperboli
 systems, shal-low water magnetohydrodynami
 equations, �nite volume methods, evolu-tion Galerkin s
hemesAMS Subje
t Classi�
ation: 76W05, 35L65, 65M06, 35L45, 35L67, 65M251 Introdu
tionWe 
onsider a system of hyperboli
 
onservation laws,
∂tU + ∇x · F (U) = 0.We use here the notation of the �rst author's dissertation [14℄, in whi
hunderlined symbols denote row ve
tors with d 
omponents and boldfa
ed
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2 1 INTRODUCTIONsymbols denote 
olumn ve
tors with m 
omponents. The double underlinedsymbols, that will be used later, denote row ve
tors with m 
omponents.Most 
lassi
al numeri
al s
hemes for su
h systems are based on solvingone-dimensional Riemann problems a
ross the interfa
es of a stru
tured orunstru
tured mesh. The roots of this idea go ba
k to Godunov [10℄, whoinvented the prototype of these s
hemes for one-dimensional systems.However, there is an ongoing dis
ussion, initiated by Roe [30℄, whethers
hemes whi
h are based on solving one-dimensional Riemann problems 
anre�e
t all multidimensional e�e
ts o

urring in multidimensional systems.In the literature we 
an �nd several genuinely multidimensional numeri
als
hemes, whi
h purposely dispensed with Riemann solvers, see e. g. Fey [7, 8℄,Noelle [25℄, LeVeque [17℄, Brio [3℄.In this paper, we will deal with the evolution Galerkin (EG) s
hemes,whi
h also belong to this 
lass of multidimensional Riemann solver free ap-proa
hes. The main idea of these s
hemes is to evolve the solution along thebi
hara
teristi
 
urves forming the Ma
h 
one and then proje
t it into theapproximation spa
e. Exa
t evolution of the solution in time is representedby the integral equations for a linear(ized) system, i. e. a solution represen-tation involving integrals over intermediate time levels. In order to use thisintegral equations numeri
ally, integrals are approximated by suitable nu-meri
al quadratures yielding the so-
alled approximate evolution operators.A paper due to Butler [4℄ 
an be 
onsidered to be the �rst 
ontribution tothe EG approa
h. This operator was later stated in a general way by Ost-kamp [26, 27℄, who also showed that there is a 
ertain 
onne
tion betweenthe EG approa
h and Fey's [7, 8℄ Method of Transport.In the last years, Luká£ová, Morton, Saibertová, Warne
ke, and Zahaykah[19, 20, 21, 22℄ 
onstru
ted several EG s
hemes for the wave equation sys-tem, the shallow water equations, and the Euler equations, where they soonembedded the evolution operators into a �nite volume framework, obtainingthe so-
alled �nite volume evolution Galerkin (FVEG) s
hemes. Extensiveexperimental treatment 
on�rms that the EG and FVEG s
hemes approxi-mate 
orre
tly 
omplex multidimensional stru
tures of solutions, e.g. 
ir
ularexpansion wave, oblique sho
ks, et
. Numeri
al 
omparisons with other well-known s
hemes illustrate high global a

ura
y of the FVEG s
hemes. Forexample the se
ond order FVEG method is 6 times more a

urate than theLax-Wendro� s
heme as well as the LeVeque wave propagation algorithm forlinear hyperboli
 systems, whereas the 
omputational 
osts are 
omparablewith the LeVeque s
heme, see [20℄.On the other hand, Kröger, Noelle, and Zimmermann [15, 14℄ developeda framework of the so-
alled state de
ompositions, in whi
h they examinedthe 
onne
tion between the EG approa
h and the Method of Transport moredeeply and managed to 
larify an important di�eren
e between these ap-proa
hes. At the same time, this framework o�ers the possibility to 
onsiderthe EG approa
h from a di�erent point of view.



3In the 
urrent paper, we introdu
e an FVEG s
heme for the shallow wa-ter magnetohydrodynami
 (SMHD) equations. These equations were (to ourknowledge) �rst proposed by Gilman [9℄ as an approximation to the idealMHD equations in the situation of a free-surfa
e, shallow, and ele
tri
ally
ondu
ting �uid that has 
onstant density and is in magnetohydrostati
 bal-an
e in the verti
al dire
tion.There are two main di�
ulties for the numeri
al treatment of the fullMHD equations:
• The magneti
 �eld should be kept divergen
e-free in any time.
• The numeri
al update should produ
e fully multi-dimensional as wellas non-os
illatory solutions near dis
ontinuities.Sin
e the full system of the MHD equations has a 
ompli
ated eigenstru
-ture, it is desirable to have a simpler model system that retains both maindi�
ulties but at the same time has a simpler eigenstru
ture. The SMHDsystem not only serves as a simpli�ed mathemati
al model, but it has itsown physi
al appli
ability used in the des
ription of the solar ta
ho
line, i. e.a thin layer of the solar radius that separates the 
onve
tive zone from theradiative zone in stars, 
f. [6℄, [9℄.As far as we know, this is the �rst FVEG approa
h for these equations.A se
ond new property of the s
heme is that it is mainly a bla
k-box ap-proa
h: while former approximate evolution operators, used in the FVEGs
hemes, were mostly spe
ially designed for the individual system, the 
ur-rent s
heme does not exploit any parti
ular property of the SMHD equations.Therefore, the s
heme should be appli
able to any system of hyperboli
 
on-servation laws in two spa
e dimensions without major 
hanges1. In generalit is also possible to apply the s
heme to the ideal MHD equations (for two-dimensional problems), but further 
onsiderations due to a more 
ompli
atedstru
ture of the full MHD equations are ne
essary in order to obtain an e�-
ient method. In this paper we 
ontent ourselves with the study of a modelSMHD system. The �rst numeri
al experiments presented here show thatthe s
heme gives good numeri
al results and indi
ate the reliability of theFVEG s
heme for the modelling of the SMHD system.The outline of this paper is as follows: In Se
tion 2, we introdu
e brie�ythe SMHD equations and dis
uss a variant of them whi
h is no longer 
on-servative, but simpler and will in parti
ular have a simpler hyperboli
 stru
-ture. Next, in Se
tion 3, we state the integral equations in an abstra
t,but 
ompa
t, form whi
h is also used in the works of Kröger, Noelle, andZimmermann [15, 14℄. A brief des
ription of the FVEG s
hemes follows inSe
tion 4. We explain in detail how our new s
heme works in Se
tion 5. Thismainly 
onsists of a des
ription of the used approximation te
hniques in the1However, we exploit essentially the fa
t that the physi
al spa
e is two-dimensional,i. e. d = 2.



4 2 THE SMHD EQUATIONSevolution operator as well as in the �nite volume update formula. A mainfo
us is set on the approximation of the spatial derivatives whi
h o

ur in theevolution operator, sin
e all the other approximations are performed usingstandard te
hniques. To summarize the presentation of the FVEG s
hemefor the SMHD equations we �nish the Se
tion 5 with the presentation of thenumeri
al algorithm. Se
tion 6 
ontains a 
ouple of numeri
al experiments.Finally, in Se
tion 7, we derive some 
on
lusions.2 The SMHD equations2.1 The SMHD system of hyperboli
 
onservation lawsThe SMHD equations were, as far as we know, �rst proposed by Gilman [9℄.Afterwards, DeSter
k [6℄ and Rossmanith [31℄, among others, worked onthese equations. The SMHD equations 
an be derived from the ideal MHDequations. They model the dynami
s of a 
onstant density, shallow, andele
tri
ally 
ondu
ting �uid that is hydrostati
ally balan
ed in the verti
aldire
tion. A detailed derivation is given by Rossmanith [31℄. The result is asystem of m = 5 equations in d = 2 spa
e dimensions, whi
h is given by
∂tŨ + ∇x · F (Ũ) = C(Ũ), (2.1)where

Ũ =









h

huT

hBT









, F (Ũ) =









hu

huTu − hBTB + 1
2gh2

1

hBTu − huTB









, C(Ũ) =









0

−gh∇b

0T









;(2.2)more pre
isely we 
an rewrite (2.1) as
∂tŨ + ∂x1

F 1(Ũ) + ∂x2
F 2(Ũ) = C(Ũ), (2.3)with

F (Ũ) =
(

F 1(Ũ), F 2(Ũ)
)

.The system (2.1), or (2.3), is moreover a

ompanied with the intrinsi
 
on-straint
∇ · (hB) = 0. (2.4)Re
all that the notation is adopted from [14℄. Further, g > 0 is the grav-itational 
onstant, and b = b(x) des
ribes the bottom topography. In the
urrent paper, we restri
t ourselves to the 
ase of a �at bottom, i. e. b = const,so that the system is homogeneous. We deal with the numeri
al approxima-tion of the time-dependent system (2.1) and derive the approximation of the



2.2 A Powell-like form for the SMHD equations 5divergen
e 
onstraint (2.4), whi
h is satis�ed by a numeri
al solution. Notethat this 
onstraint is also exploited in the reformulation of the system (2.1)whi
h is realized in Subse
tion 2.2.These equations 
an be rewritten in terms of the primitive variables U =
(h, u, B)T, yielding

∂th + u∇h + h∇TuT = 0,

∂tu + g∇Th −
1

h
B∇hB + u∇u −∇TBTB − B∇B = 0,

∂tB −
1

h
B∇hu − B∇u + u∇B −∇TBTu = 0,where the symbol ∇ always denotes a 
olumn ve
tor of derivatives. This 
anbe written in the form

∂tU +
2

∑

s=1

Ãs(U)∂xsU = 0, (2.5)where
Ã1n1 + Ã2n2 =









u · n hn 0

gnT − 1
h(B · n)BT (u · n)1 −BTn − (B · n)1

− 1
h(B · n)uT −(B · n)1 (u · n)1 − uTn









,

1 denotes a 2 × 2 unit matrix, and n = (n1, n2) is an arbitrary non-zerove
tor in R
2. Of 
ourse, the system (2.5) will have a di�erent solutions than(2.1) in the 
ase of dis
ontinuities, but this does not matter sin
e we will usethe system (2.1), that is written in the 
onservative form, in the �nite volumeupdate. Neverthless, (2.5) is suitable to examine the hyperboli
 stru
ture ofthe system and derive the approximate evolution operator, 
f. Se
tion 5.2.2 A Powell-like form for the SMHD equationsThe SMHD equations have got the intrinsi
 
onstraint ∇ · (hB) = 0. Thismeans, that the exa
t solution will satisfy this 
onstraint for all time if itholds for the initial data. This 
an be seen by 
omputing ∂t(∇ · (hB)). Inphysi
ally relevant problems, the initial data will always satisfy this 
on-straint.This is a similarity to the MHD equations, in whi
h ∇ · B remains zerofor all time. In 1972, Godunov [11℄ exploited this property by adding 
er-tain multiples of ∇ · B to ea
h equation�thus not 
hanging the exa
t solu-tions in the physi
ally relevant situation�in su
h a way that the resultingequations have ni
er properties. Later, Powell [28℄ used this form for a nu-meri
al s
heme. This alternative form of the MHD equations, whi
h wewill 
all `Powell's form', was also favored by Bra
kbill and Barnes [1℄ and



6 3 INTEGRAL EQUATIONSby Kröger [14℄. Sin
e in parti
ular the hyperboli
 stru
ture of the systembe
omes mu
h simpler for Powell's form, we �nd it desirable to 
onstru
ta Powell-like form for the SMHD equations as well. Here we may add amultiple of
∇ · (hB) = ∇ThBT + h∇TBT = B∇h + h∇TBTrather than ∇ · B to ea
h equation. By this, we 
an easily get the simplersystem

∂th + u∇h + h∇TuT = 0,

∂tu + g∇Th + u∇u − B∇B = 0,

∂tB − B∇u + u∇B = 0.If we write it in the 
ompa
t ve
tor form
∂tU +

2
∑

s=1

As(U)∂xsU = 0, (2.6)we get
A1n1 + A2n2 =









u · n hn 0

gnT (u · n)1 −(B · n)1

0 −(B · n)1 (u · n)1









. (2.7)The system (2.6) is a starting point for developing a suitable approxima-tion of the integral equations, whi
h is used in order to predi
t �uxes on 
ellinterfa
es in the FVEG s
hemes, 
f. (4.2).3 Integral equations3.1 Overview for general systemsFor a general linear hyperboli
 system
∂tU +

d
∑

s=1

As∂xsU = 0, (3.1)one has the exa
t integral equations, whi
h were �rst proposed by Ost-kamp [26℄ and later extensively used by Luká£ová, Morton, Saibertová, War-ne
ke, and Zahaykah [19, 20, 21, 22℄. They 
an be derived using the general
hara
teristi
 theory for linear(ized) hyperboli
 systems and written in the



3.2 Appli
ation to the SMHD equations 7
ompa
t, but abstra
t, form
U(x, tn+1) =

1

|Sd−1|

m
∑

k=1

(∫

Sd−1

r
k
nlknU(x − ∆t∇nλk

n, tn) dn

+

∫ tn+1

tn

∫

Sd−1

r
k
nlkn

d
∑

s=1

(∂nsλ
k
n ·1−As)∂xsU(x+(τ −tn+1)∇nλk

n, τ) dn dτ

)

.(3.2)Here, rk
n, lkn, and λk

n are the right eigenve
tors, left eigenve
tors, and theeigenvalues of the matrix pen
il ∑d
s=1 Asns, respe
tively. We assume thatthe left and right eigenve
tors are normalized su
h that lknrk

n = 1. Notethat ∇nλk
n are the ray velo
ities arising from the multidimensional 
hara
-teristi
 theory, 
ompare Courant and Hilbert [5℄, Je�rey and Taniuti [13℄,Prasad [29℄, or Kröger [14℄. It 
an be shown that

∂nsλ
k
n = lknAsr

k
n, s = 1, . . . , d. (3.3)Thus, there is the alternative representation (lknA1r

k
n, . . . , lknAdr

k
n) for theray velo
ities ∇nλk

n.We should point out that for a nonlinear system, there is also a fullynonlinear form of (3.3), see [14℄. However, this leads to a more 
omplex for-mula. Hen
e, for pra
ti
al appli
ations, it seems to be easiest to apply (3.2)to a linearized system. In other words, one �rst freezes the matri
es As (andtherefore, also the eigenve
tors and eigenvalues) at a given state Û , and thenapplies (3.2). In this paper, we always denote by Û the linearization state,whereas Ǔ denotes the solution of the linearized system. With this notation,the linearized system reads
∂tǓ +

d
∑

s=1

As(Û)∂xsǓ = 0.Notations ˆ and ˇ are also used for any 
onservative or primitive variableswith the obvious meanings. However, for a better readability, we leave outboth notations whenever there is no danger of 
onfusion.3.2 Appli
ation to the SMHD equationsInstead of deriving the respe
tive integral representations for the primitive
omponents h, u, and B arising from the general operator (3.2), we 
ontentourselves with giving suitable representations for the ingredients appearingin the general formula. We do this for the Powell-like form (2.7) derived inSubse
tion 2.2. A representation for the matri
es As has already been given



8 3 INTEGRAL EQUATIONSin (2.7). The eigenvalues read
λ1

n = u · n + B · n, λ2
n = u · n − B · n,

λ3
n = u · n + W, λ4

n = u · n − W,

λ5
n = u · n,where we used the abbreviation

W =
√

(B · n)2 + gh|n|2.We 
all the �rst two wave modes Alfvén waves, the third and the fourth onesare the magneto-gravity waves and the last mode, whi
h propagates with the�uid speed, is 
alled the non-physi
al mode in an analogy to the ideal MHDequations.The 
orresponding right eigenve
tors are
r

1
n =

1

2|n|2









0

−pT

pT









, r
2
n =

1

2|n|2









0

pT

pT









,

r
3
n =

1

2|n|2W 2









h|n|2

nTW

−nT(B · n)









, r
4
n =

1

2|n|2W 2









h|n|2

−nTW

−nT(B · n)









,

r
5
n =

1

W 2









B · n

0T

nTg









,and the left eigenve
tors read
l1n = (0,−p, p), l2n = (0, p, p),

l3n =
(

g|n|2, nW,−n(B · n)
)

, l4n =
(

g|n|2,−nW,−n(B · n)
)

,

l5n = (B · n, 0, nh),where for the given normal dire
tion n, we denote by p the transversal di-re
tion, whi
h in the two-dimensional 
ase is 
anoni
ally (up to a fa
tor ±1)given by
p = (−n2, n1).Note that this be
omes essentially di�erent in three dimensions where, as a
onsequen
e of the Hedgehog theorem, there 
annot be a 
anoni
al basis ofthe two-dimensional spa
e of transversal dire
tions.



9Finally, we also give the following formulae for the ray velo
ities
∇nλ1

n = u + B, ∇nλ2
n = u − B,

∇nλ3
n = u +

B(B · n) + ngh

W
, ∇nλ4

n = u −
B(B · n) + ngh

W
,

∇nλ5
n = u.One main advantage of the SMHD equations over the MHD equations isthat there are no 
ase distin
tions or singular 
ases in the evaluation of thehyperboli
 stru
ture. In fa
t, the given formulae for the eigenve
tors do not
ause numeri
al problems in the evaluation as far as physi
ally reasonablerestri
tions g > 0 and h > 0 hold. If B ·n = 0, i. e. the normal magneti
 �eldvanishes, we get a triple eigenvalue u · n. Figure 3.1 shows the shape of thewave fronts, the so-
alled Friedri
hs diagrams, for a sele
tion of linearizationstates.Note that it 
an easily be seen that, up to shift, rotation, and s
aleoperations, the shape of the wave fronts is 
ompletely de�ned by the s
alarparameter |B|2/gh. The given sele
tion of wave fronts is representative in thesense that it 
ontains one example for ea
h of the 
ases where the parameter

|B|2/gh is zero, positive but small, smaller than 1, exa
tly 1, larger than 1,and large but �nite.4 FVEG s
hemesConsider an arbitrary system of hyperboli
 
onservation laws,
∂tU + ∂x1

F 1(U) + ∂x2
F 2(U) = 0, (4.1)on a regular, 
artesian, two-dimensional mesh, 
onsisting of 
ells

Kij = (xi− 1

2

, xi+ 1

2

) × (yj− 1

2

, yj+ 1

2

),where xi± 1

2

= (i ± 1
2)~ and yj± 1

2

= (j ± 1
2)~, ~ is a mesh step. If we inte-grate (4.1) in spa
e over one 
ell Kij and in time over the interval [tn, tn+1](where tn = n∆t) and then apply the Gauss law, we get

U
n+1
ij = U

n
ij −

1

|Kij |

∫ tn+1

tn

∫ y
j+1

2

y
j− 1

2

(

F 1(U(xi+ 1

2

, y, t)) − F 1(U(xi− 1

2

, y, t))
)

dy dt

−
1

|Kij |

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

(

F 2(U(x, yj+ 1

2

, t)) − F 2(U(x, yj− 1

2

, t))
)

dx dt,(4.2)where
U

n
ij =

1

|Kij |

∫

Kij

U(x, y, tn) dx dy.



10 4 FVEG SCHEMES

(a) x1

x2

bbbb (b) x1

x2

b bbb

(
) x1

x2

b bbb (d) x1

x2

b bbb

magneto-gravity modes
Alfvén modes

non-physi
al mode

(e) x1

x2

b bbb (f) x1

x2

b bbb

Figure 3.1: Friedri
hs diagrams for SMHD equations for u = 0, g = 1, and(a) h = 1, B = (0, 0), (b) h = 1, B = (0.2, 0), (
) h = 1, B = (0.5, 0),(d) h = 1, B = (1, 0), (e) h = 0.5, B = (1, 0), (f) h = 0.2, B = (1, 0).



11The idea of a �nite volume evolution Galerkin (FVEG) s
heme is toderive an update pro
edure for the 
ell averages U
n
ij by inserting the exa
tintegral equations (3.2), into the �nite volume update formula (4.2) in orderto evaluate �uxes on 
ell interfa
es. Then, suitable numeri
al approximationte
hniques are applied to everything in the resulting formula whi
h 
annotbe evaluated exa
tly, see, e.g., [20℄, [21℄ for more details.The �nite volume update formula (4.2) must be applied in 
onserva-tive variables, while the approximate evolution operator will typi
ally (butnot ne
essarily) work with some primitive variables. In parti
ular, for theSMHD equations, we will 
onstru
t the approximate evolution operator tothe Powell-like form in primitive variables (2.4). Also, note that the �nitevolume update formula is typi
ally applied to the fully nonlinear system (be-
ause in general, there will not be a reasonable global linearization state),whereas the evolution operator (3.2) requires a linearization. Therefore asuitable linearization state needs to be determined before ea
h appli
ationof the evolution operator.5 Approximation of the integral equationsIn order to use the exa
t integral equations (3.2) numeri
ally several approx-imations have to be made. This yields the so-
alled approximate evolutionoperator. More pre
isely, the following building blo
ks are ne
essary:1. The re
overy of a spatial fun
tion U 
onstru
ted from the 
ell averages,2. the time integration whi
h o

urs in the �nite volume formulation,3. the integration along 
ell interfa
es o

urring in the �nite volume for-mulation,4. the 
hoi
e of the linearization state,5. the integration over Sd−1 in the integral equations (3.2),6. the time integral in the se
ond part of the integral equations (3.2), and7. the evaluation of the spatial derivatives of U in the se
ond part of theintegral equations (3.2).The items 1�6 will be realized with standard approximation te
hniques asdes
ribed in the following subse
tion, whereas the last item has to be inves-tigated 
arefully in order to obtain suitable results. This will be dis
ussed inSubse
tion 5.2. In order to summarize the whole FVEG s
heme we presentin Subse
tion 5.3 the numeri
al algorithm.



12 5 APPROXIMATION OF THE INTEGRAL EQUATIONS5.1 The use of standard approximation te
hniquesIn order to get a fun
tion de�ned on a 
omputational domain Ω by meansof a given family of 
ell averages, we use a 
onservative, pie
ewise bilinearre
overy. More pre
isely, if we have given 
ell averages ψij on a regular meshwith mesh size ~, we approximate the exa
t solution on the mesh 
ell Kijby a bilinear fun
tion
ψ̂(x)|Kij

= ψij + (x1 − x0
1)ψ

1
ij + (x2 − x0

2)ψ
2
ij + (x1 − x0

1)(x2 − x0
2)ψ

12
ij ,where x0 is the 
enter of Kij and the 
oe�
ients ψ1

ij , ψ2
ij , and ψ12

ij , whi
happroximate derivatives, are given by
ψ1

ij =
ψi+1,j − ψij

~
ϕ

(

ψij − ψi−1,j

ψi+1,j − ψij

)

,

ψ2
ij =

ψi,j+1 − ψij

~
ϕ

(

ψij − ψi,j−1

ψi,j+1 − ψij

)

,

ψ12
ij =

ψi+1,j+1 + ψi−1,j−1 − 2ψij

~2
ϕ

(

2ψij − ψi+1,j−1 − ψi−1,j+1

ψi+1,j+1 + ψi−1,j−1 − 2ψij

)

.Here ϕ is a limiter fun
tion out of the 
lass that was dis
ussed by Sweby [32℄.We have made positive experien
e with the monotonized 
entered limiter,also known as minmod-2, whi
h is given by
ϕ(θ) =























0, θ ≤ 0,

2θ, 0 ≤ θ ≤ 1
3 ,

1
2(1 + θ), 1

3 ≤ θ ≤ 3,

2, 3 ≤ θ.Re
all that the idea of this limiter is to use unlimited 
entral di�eren
esas long as they are 
ontained in the so-
alled se
ond order TVD region, 
f.Sweby [32℄. This re
onstru
tion is done for every 
omponent of the primitivevariables.For the integrals appearing in the �nite volume formulation we have al-ready made good experien
e with the midpoint rule in time and Simpson'srule along the 
ell interfa
es for hydrodynami
al problems, see [20℄. There-fore, we use for the �rst three equations of the SMHD system, i.e. for thehydrodynami
al part, Simpson's rule for the 
ell interfa
e integrals. Fur-ther, we use the trapezoidal rule for the last two equations, i.e. the Maxwellequations. Su
h a �ux dis
retization leads to the FVEG s
heme that auto-mati
ally satis�es a dis
rete version of the divergen
e 
ondition (2.4), 
f. also(6.1). Note that the �nite volume update is always done in the 
onservativevariables and for the 
onventional form (2.1) (in 
ontrast to the Powell-likeform) of the equations. This ensures that the overall s
heme is 
onservative.



5.2 Evaluation of the spatial derivatives 13A

ording to our quadrature rules along the 
ell interfa
es, we need toapply the approximate evolution operator 
entered at the 
ell verti
es as wellas at the midpoints of the 
ell interfa
es. For the linearization state we useaverages of the four or two 
ells next to the point in whi
h the operator isapplied.In [19, 20, 21℄, the se
ond author 
onstru
ted s
hemes in whi
h the inte-grals over the soni
 
ir
le S1 were evaluated exa
tly. Due to the 
omplexity ofthe SMHD equations this seems no longer to be possible now. We have there-fore de
ided to evaluate these integrals by suitable quadrature rules. Due tothe periodi
ity, it is irrelevant whether the re
tangle rule or the trapezoidalrule is used. As quadrature points, we 
hose the points (cos θi, sin θi), where
θi either takes the values

2πi

n
or 2π(i + 1

2)

n
,where in both 
ases n is the number of quadrature points (whi
h due tosymmetry reasons should be a multiple of 4) and i = 1, . . . , n. In the se
ondversion, we purposely avoid that θi be
omes a multiple of π/2. In our nu-meri
al examples in Se
tion 6, we have used the se
ond variant with n = 8 or

n = 16 points. We have experimented also with di�erent number of integra-tion points n, whi
h were distributed always regularly due to the periodi
ityof integrands. Numeri
al results showed only marginal di�eren
es.Finally, the time integral in the se
ond part of the integral equations(3.2) was simply approximated by the re
tangle rule. We should point outthat in the re
ent work of Luká£ová, Morton, and Warne
ke [20℄, a new ap-proximation of time integrals along the Ma
h 
one was proposed in su
h away that any one-dimensional plane wave aligned with the grid is 
omputedexa
tly. This approximate evolution operator was derived for the wave equa-tion system, the shallow water equations, and the Euler equations and yieldsmore stable and a

urate FVEG s
hemes. Appli
ation of this idea for theSMHD equations should be investigated in future.5.2 Evaluation of the spatial derivativesIt would be possible to take approximations to the spatial derivatives of
U in (3.2) a

ording to the slopes of the pie
ewise bilinear re
onstru
tion.However, these might be very poor approximations. In parti
ular, when aterm involving these derivatives is integrated along a path whi
h 
rosses a
ell interfa
e (whi
h typi
ally is the 
ase), this approximation fails to in
ludethe ne
essary Dira
-distribution for the dis
ontinuity of the re
onstru
ted U .For the wave equation system, the se
ond author [19℄ found a possibilityto transform the integral equations in su
h a way, that all spatial derivativesdisappear. The pro
edure how to do this 
onsisted of two essential ideas,one of whi
h was applied to the single wave mode for whi
h the wave front
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on
entrates to a single point, and the other was applied to the remainingmodes. This distin
tion between two types of wave modes is typi
al forthe general ideas of the 
urrent subse
tion. In what follows, we distinguishbetween the so-
alled singular and non-singular wave modes; the more pre
iseexplanation will follow.5.2.1 Non-singular wave modesWe �rst 
on
entrate on the wave modes with non-singular wave fronts. Forthese modes, the so-
alled `useful lemma' was used in [19℄ to transform thespa
e integral in su
h a way that the spatial derivatives disappear, see [19,Lemma 2.1℄. The main idea of this lemma is to re
ognize that the spatialderivatives of U in (3.2) are always derivatives in a dire
tion tangential tothe integration path. This makes it possible to rewrite them as derivativeswith respe
t to θ (where θ is the variable whi
h parameterizes the path) andthen to use integration by parts. This shifts the θ derivative to known terms(whi
h originate from the hyperboli
 stru
ture of the system), so that thederivatives 
an be performed in advan
e.Thus, the key point is just the fa
t that the dire
tion of the spatialderivative is tangential to the integration path. We will now prove that this istrue for arbitrary hyperboli
 systems, so that there is always a generalizationof this `useful lemma' for the non-singular wave modes. However, as it turnsout, before one 
an apply the integration by parts, it is ne
essary to divideby the length element of the integration path. For some wave modes, thislength element may vanish. This is the reason why there is no su
h `usefullemma' for those modes, whi
h we 
all singular wave modes.The essential expression to examine is
lkn

d
∑

s=1

(∂nsλ
k
n · 1 − As)∂xsU , (5.1)
ompare (3.2), where d = 2. (In parti
ular, the leading fa
tor rk

n onlymakes a ve
tor out of the s
alar-valued expression in (5.1) but has got noin�uen
e on the dire
tion of the derivative.) Pre
isely, (5.1) is a sum ofdire
tional derivatives of the m 
omponents of the ve
tor U . This derivativeis evaluated at the point x+σ∇nλk
n, where σ = τ − tn+1. If we parameterizethe integration path by θ, i. e. we set

n = n(θ) = (cos θ, sin θ), (5.2)then our goal is to show that the dire
tion of ea
h of the dire
tional deriva-tives in (5.1) is tangential to the derivative with respe
t to θ of the point atwhi
h (5.1) is evaluated, i. e. tangential to ∂θ∇nλk
n(θ). But it follows from the
hara
teristi
 theory that ∂θ∇nλk

n(θ) is always orthogonal to n(θ). This is



5.2 Evaluation of the spatial derivatives 15be
ause ∂θ∇nλk
n(θ) is of 
ourse tangential to the wave front, whereas n(θ) isknown to be the normal dire
tion, i. e. normal to the wave front (see also [14,end of Se
tion 3.4℄; note that n is 
alled p there). Sin
e in R

2 the dire
tionof a ve
tor is uniquely given by a nonzero normal ve
tor, it su�
es to showthat the dire
tion of ea
h of the dire
tional derivatives in (5.1) is orthogonalto n. In symbols, we have to show that
lkn

d
∑

s=1

(∂nsλ
k
n · 1 − As)ns

!
= 0.But we get

lkn

d
∑

s=1

(∂nsλ
k
n · 1 − As)ns = lkn

d
∑

s=1

∂nsλ
k
nns · 1 − lkn

d
∑

s=1

Asns

= lkn(n · ∇nλk
n − λk

n).Again using the 
hara
teristi
 theory, we see that this in fa
t vanishes sin
e
n · ∇nλk

n = λk
n, see [14, Lemma 3.4.3℄. Thus, we have proven that theintegral in the se
ond part of the evolution operator (3.2) 
an always (ex
eptin singular 
ases, see below) be transformed in su
h a way that the spatialderivatives of U disappear. We have obtained the following resultLemma 5.1 In the se
ond part of the evolution operator (3.2), the dire
tionof the dire
tional derivative of ea
h 
omponent of U is always tangential tothe integration path, as long as the parameterization by θ does not be
omesingular.We will now demonstrate how this transformation 
an a
tually be found.The result of the pre
eding paragraph is that the dire
tion of the dire
tionalderivative of ea
h 
omponent of U in (5.1) is tangential to ∂θ∇nλk

n(θ), i. e.there must be a ve
tor vk
n su
h that

lkn(∂nsλ
k
n · 1 − As) = vk

n∂θ∂nsλ
k
n, s = 1, . . . , d, (5.3)where n is always given by (5.2). Inserting this into (3.2), we get that
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∫

Sd−1

r
k
nlkn

d
∑

s=1

(∂nsλ
k
n · 1 − As)∂xsU(x + σ∇nλk

n, τ) dn (5.4a)
=

∫ 2π

0
r

k
nvk

n

d
∑

s=1

∂θ∂nsλ
k
n∂xsU(x + σ∇nλk

n, τ) dθ (5.4b)
=

∫ 2π

0
r

k
nvk

n

(

∂θ∇nλk
n · ∇xU(x + σ∇nλk

n, τ)
)

dθ (5.4
)
=

∫ 2π

0
r

k
nvk

n ·
1

σ

d

dθ
U(x + σ∇nλk

n, τ) dθ (5.4d)
= −

1

σ

∫ 2π

0

d

dθ
(rk

nvk
n)U(x + σ∇nλk

n, τ) dθ, (5.4e)where the last equality is the integration by parts with respe
t to θ; theboundary terms 
an
el due to the periodi
ity of the integrand. Furthermore,from (5.3), it follows that
vk

n =
1

|∂θ∇nλk
n|

2
lkn

d
∑

s=1

∂θ∂nsλ
k
n · (∂nsλ

k
n · 1 − As). (5.5)We thus have found a transformation of the n integral of the evolutionoperator into a form where no derivatives of the solution U o

ur and theonly derivatives that appear 
an be determined in advan
e. However, thistransformation 
annot be applied in the following two 
ases:

• If σ = 0, the transformation is unde�ned. But sin
e we approximatethe time integral with the re
tangle rule, we are only interested in the
ase σ = tn − tn+1 6= 0.
• If ∂θ∇nλk

n = 0, the transformation is also unde�ned. This is in parti
-ular the 
ase for those modes whose wave fronts degenerate to points.For these modes, we have that the ray velo
ity ∇nλk
n is independent of

n (and thus of θ). We have not yet examined whether modes for whi
hthe wave front is only lo
ally singular also 
ause problems. We havehere in mind su
h modes, where ∂θ∇nλk
n = 0 at a single point, but

∂θ∇nλk
n is not entirely independent of θ, 
f. the slow magneto-a
ousti
waves of the MHD equations.The a
tual terms whi
h appear in the transformed integral may be
omevery 
ompli
ated. We found out that there is also a suitable approximationof the integrand, whi
h is 
omparatively simple. Re
all that we anywayapproximate the integral by evaluation of the integrand in a �nite numberof quadrature points. Let θi be these quadrature points with respe
t to θ,



5.2 Evaluation of the spatial derivatives 17and let
ni = n(θi) = (cos θi, sin θi) and qk

i = x + σ∇nλk
nibe the respe
tive quadrature points with respe
t to n and with respe
t to x.By qk

i,s, we denote the s-th 
omponent of the ve
tor qk
i . Consider now theintegrand in (5.4d) at θ = θi and approximate the θ derivative by a one-sideddi�eren
e given by the points θi and θi+1. This yields

1

σ
r

k
nvk

n

d

dθ
U(x + σ∇nλk

n)
∣

∣

∣

n=ni

≈
1

σ
r

k
ni

vk
ni

U(qk
i+1) − U(qk

i )

∆θ
. (5.6)If we now insert the representation of vk

n given in (5.5) and approximateall θ derivatives in that representation in the same way as above, we 
anapproximate the right hand side of (5.6) by
1

σ
r

k
ni

σ2∆θ2

|qk
i+1 − qk

i |
2
lkni

d
∑

s=1

qk
i+1,s − qk

i,s

σ∆θ
· (∂nsλ

k
ni

· 1 − As)
U(qk

i+1) − U(qk
i )

∆θ

= r
k
ni

lkni

d
∑

s=1

(∂nsλ
k
ni

· 1 − As)
(qk

i+1,s − qk
i,s)(U(qk

i+1) − U(qk
i ))

|qk
i+1 − qk

i |
2

.We have thus found an approximation of the integral whi
h does neither 
on-tain any derivatives nor essentially more 
ompli
ated terms than the originalintegral. Furthermore, we see that our approximation 
an formally be ob-tained by just repla
ing the derivative
∂xsU(qk

i ) with (qk
i+1,s − qk

i,s)(U(qk
i+1) − U(qk

i ))

|qk
i+1 − qk

i |
2

. (5.7)Note however that there is no reason why this repla
ement should be asensible approximation for ea
h s individually. This is only true for thewhole integrand. The same result, of 
ourse, holds if one uses ba
kwarddi�eren
es, i.e. one repla
es
∂xsU(qk

i ) with (qk
i−1,s − qk

i,s)(U(qk
i−1) − U(qk

i ))

|qk
i−1 − qk

i |
2

. (5.8)In order to obtain a symmetri
 formula we use the average of both approxi-mations.In fa
t, the U di�eren
e is mainly determined by the slopes of the pie
e-wise bilinear re
onstru
tion. However, the above approximation automati-
ally in
ludes an approximation to the Dira
-distribution for the dis
onti-nuity of the re
onstru
ted U whenever the integration path 
rosses a 
ellinterfa
e. Just to keep it 
lear we would like to note that the use of (5.4e)
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ipally be possible, but the resulting formulae will be too 
ompli-
ated and we have refrained from this 
hoi
e. Instead we use approximations(5.7), (5.8), whi
h are based on the same fa
t that enables also (5.4e), butmoreover they have an advantage that the Dira
 distribution, whi
h appearswhen the integration path 
rosses a 
ell interfa
e, is automati
ally in
luded.
5.2.2 Singular wave modesFor the modes with singular wave front, the idea in earlier publi
ations, seee. g. [19℄, was to insert the di�erential equation itself into the respe
tive partof the integral equations. This led to a formula where this wave mode wasleft out 
ompletely in the approximate evolution operator and instead 
ertain
omponents of the result were multiplied by 
orresponding fa
tors. We nowfound out that there is a generalization of this idea to arbitrary systems. Thiste
hnique 
an be applied to any subset of wave modes, no matter whetherthey are singular or not. The multipli
ation of 
ertain 
omponents with
ertain fa
tors generalizes to the multipli
ation of the result with the inverseof a 
ertain m × m matrix whi
h in general depends on the linearizationstate. This matrix may, of 
ourse, be more or less di�
ult to invert; it maybe badly-
onditioned or even singular. For the wave equation system as wellas for the shallow water equations, this matrix is a diagonal matrix with
onstant, nonzero diagonal entries, so that the 
omputation of the inverse istrivial.We will now demonstrate how this generalization works. Let K and K ′be two 
omplementary subsets of the set {1, . . . , m} of wave mode indi
es.For any k ∈ K and n ∈ Sd−1, we insert the equality

∫ tn+1

tn

d
∑

s=1

(∂nsλ
k
n · 1 − As)∂xsU(x + (τ − tn+1)∇nλk

n, τ) dτ

=

∫ tn+1

tn

(

∂tU +
d

∑

s=1

∂nsλ
k
n∂xsU

)

(x + (τ − tn+1)∇nλk
n, τ) dτ

=

∫ tn+1

tn

d

dτ
U(x + (τ − tn+1)∇nλk

n, τ) dτ

= U(x, tn+1) − U(x − ∆t∇nλk
n, tn)



5.2 Evaluation of the spatial derivatives 19into the operator (3.2). Colle
ting U(x, tn+1), we get
(

1 −
1

|Sd−1|

∫

Sd−1

∑

k∈K

r
k
nlkn dn

)

U(x, tn+1)

=
1

|Sd−1|

m
∑

k∈K′

(∫

Sd−1

r
k
nlknU(x − ∆t∇nλk

n, tn) dn

+

∫ tn+1

tn

∫

Sd−1

r
k
nlkn

d
∑

s=1

(∂nsλ
k
n ·1−As)∂xsU(x+(τ −tn+1)∇nλk

n, τ) dn dτ

)

.Thus, we leave out 
ompletely the modes 
ontained in K and then multiplythe result of the evolution operator with the inverse of the matrix
J(K) := 1 −

1

|Sd−1|

∫

Sd−1

∑

k∈K

r
k
nlkn dn =

1

|Sd−1|

∫

Sd−1

∑

k∈K′

r
k
nlkn dnAs already mentioned, we 
an 
hoose K to be any subset of {1, . . . , m}.However, the more modes we in
lude in K, the more likely the matrix J(K)might be
ome di�
ult to invert or even singular. In parti
ular, note thatfor K = {1, . . . , m}, we have J(K) = 0. Sin
e we have already found asatisfying way to approximate the evolution operator for the non-singularwave modes, 
f. Subsubse
tion 5.2.1, we will restri
t ourselves to the 
asethat K 
onsists of singular modes.For example, for the shallow water equations, 
f. Luká£ová [18℄, we haveonly one singular wave mode, the so-
alled shear wave mode 
orrespondingto the middle bi
hara
teristi
 
urve, whi
h points out just the adve
tiondire
tion. If we 
hoose K to 
onsist of this one mode, we get

J(K) =









1 0 0

0 1
2 0

0 0 1
2









,whi
h 
an be inverted easily.For the SMHD equations we have three singular wave modes: the twoAlfvén modes (1 and 2) and the non-physi
al mode (5). For K = {1, 2}, weget
J(K) =





















1 0 0 0 0

0 1
2 0 0 0

0 0 1
2 0 0

0 0 0 1
2 0

0 0 0 0 1
2





















, (5.9)
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h is 
omparably easy to handle, but we still have to deal with the non-physi
al mode. If, on the other hand, we 
hoose K = {1, 2, 5}, then we getthe essentially more 
ompli
ated matrix
J(K) =





















1 0 0 0 0

0 1
2 0 0 0

0 0 1
2 0 0

0 0 0 1
2 0

0 0 0 0 1
2





















−

−
1

2π

∫

S1

1

(B · n)2 + gh





















(B · n)2 0 0 hn1(B · n) hn2(B · n)

0 0 0 0 0

0 0 0 0 0

gn1(B · n) 0 0 ghn2
1 ghn1n2

gn1(B · n) 0 0 ghn1n2 ghn2
2





















dn.(5.10)It is not easy, but possible, to �nd a 
losed form for the integrals appear-ing in (5.10). The se
ond term on the right hand side of (5.10) is a rank 2matrix. Therefore, J(K) 
an be written as the sum of a diagonal matrix anda rank 2 matrix. The Sherman�Morrison�Woodbury formula (see, for exam-ple, Golub and van Loan [12, page 51℄) enables us to obtain a 
omparativelysimple representation of the inverse of this matrix. A problem o

urs when
B̂ (i. e. the magneti
 �eld of the linearization state) is near zero, be
auseat B̂ = 0 the matrix J(K) be
omes singular. This means that the 
hoi
e
K = {1, 2, 5} is not allowed when B̂ is near zero.Thus, we have the following three main possibilities for repla
ing thespatial derivatives of U in the 
ase of singular wave modes:1. Use K = {} and approximate the spatial derivatives using the slopesof the pie
ewise bilinear re
onstru
tion.2. Use K = {1, 2} (i. e. use the simple matrix given in (5.9)) and approxi-mate the spatial derivatives for the non-physi
al mode using the slopesof the pie
ewise bilinear re
onstru
tion.3. Use K = {1, 2, 5} (i. e. the more 
ompli
ated matrix given in (5.10)) if

B̂ is away from zero, but K = {1, 2} if B̂ is near zero.



5.3 Numeri
al algorithm 21We have experimented numeri
ally with the above three variants. Ournumeri
al results using variants 2 or 3 yield unsatisfa
tory resolutions, seeSubse
tion 6.2. Therefore, we suggest to refrain from these possibilities andapproximate the spatial derivatives for the singular wave fronts just by usingthe pie
ewise bilinear re
onstru
tion. Anyway, note that the problemati

ase that the spatial integration path 
rosses a 
ell interfa
e 
annot o

ur inthese 
ases, sin
e this path redu
es to a point.5.3 Numeri
al algorithm1 Given is a pie
ewise 
onstant approximation at time tn: U
n
ij , i, j ∈ Z,mesh and time steps ~, ∆t.2 re
overy step:Constru
t pie
ewise bilinear fun
tions and apply the limiter pro
edure,e.g. by using the minmod limter, 
f. [21℄, or monotonized minmod lim-iter; 
f. Subse
tion 5.1. This yields the pie
ewise bilinear approxima-tions ψ̂n, where ψ is an arbitrary 
omponent of the ve
tor of primitivevariables (h, u, B)T.3 lo
al linearization:At ea
h vertex as well as at ea
h midpoint of 
ell interfa
es 
hoose alinearization state for lo
al linearization, 
f. (2.5). This is done by ave-raging the two or four neighbouring states for a midpoint or a vertex,respe
tively.4 predi
tor step / approximate evolution:Compute the intermediate solutions at time level tn+1/2 on the 
ellinterfa
es by the approximate evolution operators, 
f. (3.2) (with ∆trepla
ed with ∆t/2), where Û is used as the data at tn. The 
omputa-tion is realized in primitive variables. The approximation of integralsin (3.2) is obtained as follows:a) Integration over Sd−1 is repla
ed with �nitely many quadraturepoints of the re
tangle rule; 
f. Subse
tion 5.1.b) Time integral, or the so-
alled mantle integral, in the se
ond partof (3.2) is approximated using the re
tangle rule at time tn.
) The spatial derivatives are approximated as explained in Subse
-tion 5.2.1 (magneto-gravity modes) or by the slopes of Û (Alfvénand non-physi
al modes), 
f. Subse
tion 5.2.2 variant 1. Alterna-tively, Subse
tion 5.2.2., variant 2. and 3. 
an be used.5 
orre
tor step / FV-update:Do the FV-update in 
onservative variables using the midpoint rule intime and midpoint, trapezoidal or Simpson rule along the 
ell inter-fa
es. In the experiments presented below we have used the Simpson



22 6 NUMERICAL EXAMPLESrule for the �ow equations (i.e. �rst three equations of (4.2)) and thetrapezoidal rule for the magneti
 �eld equations (i.e. last two equationsof (4.2)). Fluxes at 
ell interfa
es are evaluated at the predi
ted valuesobtained by the approximate evolution operator in Step 4.We would like to remind a reader that the question of suitable quadra-ture rules along 
ell interfa
es has been extensively studied with respe
t tostability of the whole FVEG s
heme in our previous paper [21℄. The use ofmidpoint rule yields a s
heme similar to standard Godunov splitting s
hemes.By using the 
ombination of the trapezoidal and the Simpson rule we havetaken multidimensional e�e
ts into a

ount and obtained a s
heme, whi
hsatisfy the dis
rete divergen
e 
ondition, 
f. Subse
tion 6.3.6 Numeri
al examplesWe now demonstrate the behaviour of the des
ribed s
heme on test problemsfor the SMHD equations in one and two spa
e dimensions. We use a CFLnumber of 0.45 in all 
omputations. We have experimented with di�erentCFL numbers, in fa
t numeri
al results indi
ate that the FVEG s
heme staysstable until CFL ≈ 0.56, whi
h is in agreement with stability investigationsof the FVEG3 s
heme for the linear wave equation system [21℄, [23℄. In [20℄new quadrature rules for time integration along the bi
hra
teristi
 
one havebeen derived and lead to a stability limit 
lose to 1. However, due to a more
omplex stru
ture of the SMHD system the appli
ation of these quadraturesis not straightforward and this point should be investigated in future deeply.6.1 Riemann problemOur �rst test example is the Riemann problem used by Rossmanith [31℄. Itis given by the initial data
x < 0 : h = 1, u = (0, 0), B = (1, 0),

x > 0 : h = 2, u = (0, 0), B = (0.5, 1)and the gravitational 
onstant g = 1. The numeri
al solution, that is shownin Figure 6.1, was 
omputed with a two-dimensional algorithm des
ribedabove at t = 0.4 on the grid with 100 
ells in x-dire
tion and 5 
ells in y−dire
tion.The referen
e solution (solid line) was obtained with the same s
heme,but with 1000× 5 
ells. Comparing the plots with Rossmanith's [31℄ results,we see that the s
heme produ
es a qualitatively 
orre
t solution. We shouldpoint out, however, that there are still some os
illations (at both the low andthe high resolution) in all 
omponents near the right Alfvén dis
ontinuity.Note that the intrinsi
 divergen
e 
onstraint, i. e. ∇ · (hB) = 0, is au-tomati
ally maintained, be
ause the �ux fun
tion F 1 in x1 dire
tion has
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24 6 NUMERICAL EXAMPLESgot a zero in the 
omponent 
orresponding to the 
onservative variable hB1.See also (2.2) and note that the matrix BTu − uTB has vanishing diagonalentries.6.2 Example for approximations of singular wave modesWe now demonstrate what happens when the singular wave modes are han-dled by the di�erent approa
hes proposed in Subse
tion 5.2.2. We 
omputethe same one-dimensional Riemann problem as in Subse
tion 6.1, but nowusing the variants 2 and 3, 
f. page 20. The results are shown in Figures 6.2and 6.3, respe
tively. Both numeri
al solutions look mu
h worse than theresult in Subse
tion 6.1, whi
h was 
omputed using the variant 1. We thussuggest to refrain from variants 2 and 3 at all and approximate, as alreadymentioned in Subsubse
tion 5.2.2, the spatial derivatives for the singularwave modes using the slopes of the pie
ewise bilinear re
onstru
tion. Wethink that for these wave modes a better quadrature rule in time (along thebi
hara
teristi
 
urve), whi
h takes 
are of possible Dira
 distributions fordis
ontinuities of the solution along this 
urve, 
ould bring better results.6.3 Two-dimensional problem with sho
ksThis two-dimensional example is similar to the `rotor problem' used byTóth [35℄ for the MHD equations. The 
omputational domain is [−1, 1] ×
[−1, 1], equipped with zeroth order extrapolation at the boundaries. Theinitial data are

‖x‖ < 0.1 : h = 10, u = (−x2, x1), B = (0.1, 0),

‖x‖ > 0.1 : h = 1, u = (0, 0), B = (1, 0),and the gravitational 
onstant is g = 1. Note that hB is 
onstant in theinitial data and thus divergen
e-free. The dis
rete divergen
e was 
omputedin a vertex-
entered way given asdiv(hB)i+1/2,j+1/2 = µyδx(hB1)i+1/2,j+1/2+µxδy(hB2)i+1/2,j+1/2, i, j ∈ Z,(6.1)where ψi±1/2,j±1/2 := ψ((i ± 1/2)~, (j ± 1/2)~) denotes the values of anyfun
tion ψ at verti
es of the mesh 
ell Kij . Here we used the �nite di�eren
eoperators
µxψ(x) = 1

2 [ψ(x + ~/2) + ψ(x − ~/2)] , δxψ(x) = ψ(x+~/2)−ψ(x−~/2)with an analogous notation for the y-dire
tion. In fa
t the parti
ular 
hoi
eof the trapezoidal rule for the �ux interfa
e integrals of the Maxwell equationsyields su
h a stru
ture of the FVEG s
heme whi
h ful�lls also more general
onditions needed in order to satisfy the divergen
e-free 
onstraint in general
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6.4 Empiri
al order of 
onvergen
e 27[33℄. We should also point out that in [24℄ the dis
rete vorti
ity for thewave equation system was de�ned in an analogous way to (6.1). It hasbeen shown in [24℄ that the Lax-Wendro� (Ri
htmyer rotated) s
heme isvorti
ity-preserving. A
tually, the multidimensional FVEG s
heme that usesthe trapezoidal rule for 
ell interfa
es shares some similarities with the Lax-Wendro� s
heme.In the following we will show that for the numeri
al solution of the FVEGs
heme the dis
rete divergen
e de�ned in (6.1) is 
onstant in time, morepre
isely we show that if it was zero initially, it stays zero at any time.Consider the last two equations of (2.1), (2.2), i.e. the Maxwell equations,
∂t

(

hB1

hB2

)

+ ∂x

(

0
−f

)

+ ∂y

(

f
0

)

=

(

0
0

)

,where f = hB1u2 − hB2u1 is the �ux fun
tion. Further let us denote by
fi±1/2,j and fi,j±1/2 the approximations of the �uxes at 
ell interfa
es, whi
hare obtained by the trapezoidal rule using the intermediate solution U∗ atverti
es. Thus, we have, for example for the right and upper 
ell interfa
es,

fi+1/2,j = µyf(U∗

i+1/2,j), fi,j+1/2 = µxf(U∗

i,j+1/2).The intermediate approximations at verti
es U∗ are obtained by the approx-imate evolution operator, i.e. using approximation of the evolution operator(3.1) at ea
h vertex.Now assume that at time tn, div(hB)n
i+1/2,j+1/2 = 0, i, j,∈ Z. Then itfollows from the FV update as well as from (6.1) thatdiv(hB)n+1

i+1/2,j+1/2 = (6.2)
−

∆t

~

[

µyδxδyµxf(U∗

i+1/2,j+1/2) − µxδyδxµyf(U∗

i+1/2,j+1/2)
]

= 0.Our numeri
al experiments 
on�rm that the dis
rete divergen
e (6.1) is zeroup to the ma
hine pre
ision for di�erent mesh parameters ~.Contour plots of the result at t = 0.2 for 200 × 200 
ells are shown inFigure 6.4. Plots with higher resolution, i.e. 300 × 300 
ells, are shown inFigure 6.5. We 
an noti
e that the FVEG s
heme resolves 
orre
tly multi-dimensional dis
ontinuities as expe
ted.6.4 Empiri
al order of 
onvergen
eIn this experiment we test experimental order of 
onvergen
e for a smoothsolution. We 
onsider the initial value problem for two-dimensional SMHD
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30 6 NUMERICAL EXAMPLESequation with the initial values
h(x, 0) =

1

4
, B1(x, 0) =

1

2
, B2(x, 0) = 1,

u(x, 0) = 1 +
1

2
sin(πy) +

1

4
cos(πx),

v(x, 0) = 1 +
1

4
sin(πx) +

1

2
cos(πy);see also [34℄ for an analogous test problem for the full MHD system. Al-though an exa
t solution is not known, we 
an still study the experimentalorder of 
onvergen
e (EOC). This is 
omputed in the following way usingthree meshes of sizes N1, N2 := N1/2, N3 := N2/2, respe
tivelyEOC = log2

‖Un
N2

− U
n
N3

‖

‖Un
N1

− U
n
N2

‖
.Here U

n
N is the approximate solution on the mesh with N × N 
ells. The
omputational domain [−1, 1]×[−1, 1] was 
onse
utively divided into 20×20,

40 × 40, . . . , 160 × 160 
ells. The �nal time was taken to be t = 0.2. Thefollowing two tables show the experimental order of 
onvergen
e 
omputedin the L2 and L1 norms. We also show the 
onvergen
e rate for the �rst
omponent h as well as for the magneti
 �eld B. It 
an be seen 
learlythat the experimental order of 
onvergen
e is 2. Note, however, a slightlyde
reasing order of the 
onvergan
e rate on �ner meshes. We believe thata more suitable quadrature rules for time integrals in the se
ond part ofthe integral equations (3.2), whi
h would be analogous to those of the Eulerequations [20℄, will in
rease a stability range of the s
heme as well as itsglobal a

ura
y. To do this it would be ne
essary to derive an approximateevolution operator without spatial derivatives of unknown fun
tion. This isa point for future study.Table 1: FVEG s
heme / Convergen
e in the L2 normN ‖Un
N/2 − U

n
N‖ EOC ‖hn

N/2 − hn
N‖ EOC ‖Bn

N/2 − Bn
N‖ EOC20 0.007317 0.002130 0.00323440 0.001721 2.0880 0.000501 2.0879 0.000793 2.027980 0.000406 2.0837 0.000116 2.1107 0.000204 1.9588160 0.000107 1.9239 0.000034 1.7705 0.000056 1.8651
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riti
al �ow 31Table 2: FVEG s
heme / Convergen
e in the L1 normN ‖Un
N/2 − U

n
N‖ EOC ‖hn

N/2 − hn
N‖ EOC ‖Bn

N/2 − Bn
N‖ EOC20 0.011766 0.001508 0.00256940 0.002837 2.0522 0.000344 2.1322 0.000647 1.989480 0.000702 2.0148 0.000080 2.1043 0.000172 1.9114160 0.000187 1.9084 0.000024 1.7370 0.000047 1.87166.5 Two-dimensional explosion problem / trans
riti
al �owThis is a two-dimensional analogy of the 
ylindri
al explosion problem forthe gas dynami
s, 
f. the Sod 2D problem [20℄. The initial data are

h = 1, u1 = 0, u2 = 0, B1 = 1, B2 = 0, ‖x‖ < 0.3

h = 0.1, u1 = 0, u2 = 0, B1 = 0.1, B2 = 0 else.In an analogy to the Sod problem for gas dynami
s, the �ow is trans
rit-i
al, i.e. Fr :=
√

u2
1 + u2

2/
√

gh + B2
1 + B2

2 is larger, equal or smaller than1, 
f. Figure 6.7. It should be pointed out that the FVEG method needs nospe
ial entropy �x 
orre
tion in order to resolve 
orre
tly 
riti
al states, i.e.
Fr = 1. This is again analogous to the situation of the Euler equations, seealso [21℄.The 
omputational domain is a square [−1, 1]× [−1, 1], the mesh is re
t-angular and the initial data are implemented by 
utting the initial dis
on-tinuity and assigning it by modi�ed area-weighted values a

ording to the
orresponding 
ell. The initial data are moreover dis
retized in su
h a waythat diveregen
e of hB stays zero. Fig. 6.6 shows the isolines of height and
x−, y− 
omponents of velo
ity, magneti
 �eld and the parameter Fr 
om-puted at time t = 0.25. It 
an be seen 
learly that due to the in�uen
eof the magneti
 �eld the solution is now no more rotationally symmetri
 asit was the 
ase of the Sod 2D problem for the gas dynami
s. The solutionexhibits a sho
k traveling away from the 
enter, a rarefa
tion wave travelingtowards the origin at (0, 0) and two Alfvén waves. In Figure 6.7 the y = 0
ross se
tions are plotted; slower Alfvén waves that are lo
ated between therarefa
tion wave and the sho
k are evident in the tangential 
omponents ofvelo
ity and magneti
 �eld. Small os
illations near the Alfvén modes 
anbe noti
ed, however we should also take into a

ount that the s
alling of u2and B2 graphs is of order 10−3. The dis
rete divergen
e (6.1) stays zero upto the ma
hine a

ura
y.We would like to mention that an analogous initial data problem havebeen studied extensively by many authors for the full ideal MHD system,see, e.g., Brio and Wu [2℄. Sin
e the MHD system is a non
onvex, non-stri
tly hyperboli
 system, there exist dis
ontinuities that are evolutionary
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34 7 CONCLUSIONand nonevolutionary. If a stri
tly 
oplanar problem (2D problem) for theMHD system is 
onsidered the solution 
an be nonunique. Depending ona s
heme a nonevolutionary solution in the form of the so-
alled 
ompoundwave 
an be found. In fa
t, this 
ompound wave is unstable, under nor-mal perturbations in transverse quantities it is 
hanged into a rotationaldis
ontinuity and a slow sho
k, 
f., e.g., [16℄. For the SMHD system it isimportant to realize that ∇λkr
k, k = 3, 4, do not 
hange sign. Thus, themagneto-gravity modes are 
onvex and we do not have 
ompound sho
ks.7 Con
lusionIn the present paper we have derived a se
ond order FVEG s
heme forthe shallow water magnetohydrodynami
 (SMHD) equations. Up to ourknowledge, this is the �rst attempt to apply genuinely multi-dimensional EGte
hnique to a magnetohydrodynami
 model. We have derived an integralequations for the SMHD equations, 
f. (3.2), and dis
ussed its suitable ap-proximation. We have studied more deeply the approximation of the spatialderivatives in the integral equations (3.2) for singular as well as non-singularwave modes. More pre
isely, we have shown that for arbitrary hyperboli

onservation laws, the spatial derivatives of the solution U 
an be repla
edby means of the Gauss theorem with the derivatives of the eigenve
torsthemselves, 
f. Lemma 5.1 and (5.4).Due to the 
omplex eigenstru
ture whi
h arises in the SMHD system, itis still rather 
ompli
ated to apply this result dire
tly. Instead we propose toexploit this result numeri
ally as given in (5.6). Our numeri
al experiments
on�rm the reliability of this approa
h for non-singular wave modes.Treatment of the singular wave modes is more deli
ate. Our numeri
alexperiments show that the approximation of the derivatives in (3.2) by slopesof the bilinear re
onstru
tion yields the best results, 
f. Subse
tion 6.2. Webelieve that more suitable numeri
al quadratures for the mantle integralsfrom tn to tn+1 in the integral equations (3.2) 
an in
rease a

ura
y aswell as stability of the s
heme. They should, analagously as in [20℄, re�e
tpropagation of one-dimensional waves exa
tly. This is a subje
t of our futurestudy.The dis
retization of the �ux interfa
e integrals for the magneti
 �eld,i.e. for the Maxwell equations part, was done by the trapezoidal rule. Insu
h a way the dis
rete divergen
e (6.1) is identi
ally zero at ea
h vertex.One major advantage of the 
urrent des
ription and implementation ofthe FVEG s
heme is that it is designed in a bla
k-box like manner and shouldtherefore be appli
able to any system of hyperboli
 
onservation laws with
omparatively low e�ort, if the 
omplete hyperboli
 stru
ture of the systemis known.
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