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Abstract

The subject of the paper is the derivation of finite volume evolution Galerkin schemes for
the three-dimensional wave equation system. The aim is to construct methods which take
into account all of the infinitely many directions of propagation of bicharacteristics. The
idea is to evolve the initial function using the characteristic cone and then to project onto
a finite element space. Numerical experiments are presented to demonstrate the accuracy
and the multidimensional behaviour of the solutions. Moreover, we construct further new
EG schemes by neglecting the so-called source term, i.e. we mimic Kirchhoff’s formula.
The numerical test shows that such schemes are more accurate and some of them are of
second order.

Key words: hyperbolic systems, wave equation, evolution Galerkin schemes, recovery stage,
finite volume.

1 Introduction

Evolution Galerkin methods, EG-methods, were proposed to approximate evolutionary prob-
lems for first-order hyperbolic systems. They belong to the class of genuinely multidimensional
schemes. The main aim is to have a scheme which takes into account all infinitely many di-
rections of wave propagation. We refer the reader to [1], [4], [5], [8], [12], [23] for other recent
multidimensional schemes.
The EG-schemes were introduced by Morton et al. for scalar problems and one-dimensional
systems, see [10, 11]. Actually the research of Bill Morton and his collaborators was motivated
by the pioneering work of Butler [3] and related works of Prasad [25, 26]. It was Stella
Ostkamp [24] who firstly generalized these schemes to approximate the solution of the wave
equation system as well as the Euler equations of gas dynamics in two space dimensions. In
[13] Lukáčová, Morton and Warnecke derived for the linear two-dimensional wave equation
system new EG-schemes with better accuracy and stability. Further, in [29] the approximate
evolution operator of the wave equation system in three space dimensions as well as other two-
dimensional evolution Galerkin schemes have been derived by Zahaykah. The EG-methods or
the finite volume EG methods were applied to the Maxwell equations, the Euler equations of
gas dynamics, shallow water magnetohydrodynamic equations as well as to the shallow water
equations with source terms, see [16], [18], [19], [9], [20]. Higher order finite volume evolution
Galerkin (FVEG) methods have been introduced and studied in [15], [17], [18], [21], where
the sharp shock-capturing properties are demonstrated as well.
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Theoretical error analysis of the FVEG schemes was done for the linearized systems of hy-
perbolic conservation laws in [18]. It has been shown that if a bilinear recovery is used the
method is of the second order in time and space. New approximate evolution operators devel-
oped in [14] improved stability of the whole finite volume EG scheme, yielding the stability
limit which is close to a natural limit of CFL=1; see also [22] for stability study using the
Fourier analysis. In general, relatively high global accuracy of the FVEG schemes in compar-
ison to commonly used schemes has been noticed and confirmed by an extensive numerical
treatment [16], [18], [14]. In particular, we have shown that the FVEG schemes derived in
[14] are approximately 6-7 times more accurate than the Lax-Wendroff scheme or the wave
propagation algorithm of LeVeque [12]. In [27], [28] generalization of the FVEG schemes on
unstructured triangular grids has been realized.

The main objective of this paper is to demonstrate the applicability of theory of bicharacteris-
tics in order to construct numerical methods for three-dimensional problems. We start in this
paper with a linear system of wave equation, which describes propagation of three-dimensional
acoustic waves. This study is, analogously to our previous papers for two-dimensional sys-
tems of hyperbolic conservation laws, an important preparatory step in order to consider
three-dimensional Euler equations of gas dynamics, which is our future goal.
In order to derive the FVEG scheme for three-dimensional wave equation system we start with
the derivation of exact integral equations, which are based on the theory of bicharacteristics.
Applying numerical quadratures we derive the approximate evolution operators. The latter
are used in order to predict solution at cell interfaces. Afterwards, in the corrector step the
finite volume update is applied.

The outline of this paper is as follows: in the next section we briefly describe the general
theory used to derive the exact integral equations. In Section 3 we introduce the finite
volume evolution Galerkin schemes. The exact integral equations as well as the approximate
evolution operators for the three-dimensional wave equation system are given in Section 4.
The derivation of the first-order schemes is given in Section 5. In Section 6 numerical tests,
which demonstrate the accuracy and the multidimensionality of our schemes, are presented.
Finally in Section 7 we define further new FVEG schemes based on neglecting the so-called
source term, we test and discuss their accuracy.

2 General Theory

In this section we recall the derivation of the exact integral equations for a general linear
hyperbolic system using the concept of bicharacteristics. The general form of the linear
hyperbolic system is given as

ut +
d∑

k=1

Akuxk
= 0, x = (x1, . . . , xd)T ∈ R

d (2.1)

where the coefficient matrices Ak, k = 1, ..., d, are elements of R
p×pand the dependent variables

are u = (u1, ..., up)T = u(x, t) ∈ R
p. Let A(n) =

∑d
k=1 nkAk be the pencil matrix, where

n = (n1, ..., nd)T is a directional vector in R
d. The matrix A(n) has p real eigenvalues λk, k =

2
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Figure 1: Bicharacteristics along the Mach cone through P and Qi(n), d = 2.

1, ..., p, and p corresponding linearly independent right eigenvectors rk = rk(n), k = 1, ..., p.
Let R = [r1|r2|...|rp] be the matrix of right eigenvectors then we can define the characteristic
variable w = w(n) as ∂w(n) = R−1∂u. Since system (2.1) has constant coefficient matrices
Ak we have w = R−1u or u = R w. Multiplying equation (2.1) by R−1 from the left we get

R−1ut +
d∑

k=1

R−1AkRR−1uxk
= 0. (2.2)

Let Bk = R−1AkR = (bk
ij)

p
i,j=1, where k = 1, 2, ..., d, then the equation (2.2) can be rewritten

in the following form

wt +
d∑

k=1

Bkwxk
= 0.

Let us introduce the decomposition Bk=Dk+B′
k, where Dk contains the diagonal part of the

matrix Bk. This yields

wt +
d∑

k=1

Dkwxk
= −

d∑
k=1

B′
kwxk

=: s. (2.3)

The i-th bicharacteristic corresponding to the i-th equation of (2.3) is defined by

dxi

dt̃
= bii(n) = (b1

ii, b
2
ii, ..., b

d
ii)

T ,

where i = 1, ..., p. Here bk
ii are the diagonal entries of the matrix Bk, k = 1, ..., d, i = 1, ..., p.

We consider the bicharacteristics backwards in time. Therefore the initial conditions are
xi(t + Δt,n) = x for all n ∈ R

d and i = 1, ..., p, i.e. xi(t̃,n) = x − bii(n)(t + Δt − t̃).
We will integrate the i-th equation of the system (2.3) from the point P down to the point
Qi(n) := Qi(xi(n, t), t), where the bicharacteristic hits the basic plane, see Figure 1. Note
that bicharacteristics are straight lines because the system is linear with constant coefficients.
Now the i-th equation reads

∂wi

∂t
+

d∑
k=1

bk
ii

∂wi

∂xk
= −

⎛
⎝ d∑

j=1,i�=j

(
b1
ij

∂wj

∂x1
+ b2

ij

∂wj

∂x2
+ ... + bd

ij

∂wj

∂xd

)⎞
⎠ = si, (2.4)
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where P ≡ (x, t + Δt) ∈ R
p × R+ is taken to be a fixed point, while Qi(n) = (x − Δtbii, t).

Taking a vector σi = (b1
ii, b

2
ii, ..., b

d
ii, 1), we can define the directional derivative

dwi

dσi
=

(
∂wi

∂x1
,
∂wi

∂x2
, ...,

∂wi

∂xd
,
∂wi

∂t

)
· σi =

∂wi

∂t
+ b1

ii

∂wi

∂x1
+ b2

ii

∂wi

∂x2
+ ... + bd

ii

∂wi

∂xd
.

Hence the i-th equation (2.4) can be rewritten as follows:

dwi

dσi
= si = −

d∑
j=1,i�=j

(
b1
ij

∂wj

∂x1
+ b2

ij

∂wj

∂x2
+ ... + bd

ij

∂wj

∂xd

)
.

Now the integration from P to Qi(n) gives

wi(P ) − wi(Qi(n),n) = s′i, (2.5)

where

s′i =
∫ t+Δt

t
si(xi(t̃,n), t̃)dt̃ =

∫ Δt

0
si(xi(τ,n), t + Δt − τ)dτ.

Multiplication of equation (2.5) by R from the left and (d − 1)−dimensional integration of
the variable n over the unit sphere O in R

d leads to the exact integral equations for (2.1)

u(P ) = u(x, t + Δt) =
1
|O|

∫
O
R(n)

⎛
⎜⎜⎜⎜⎜⎝

w1(Q1(n),n)
w2(Q2(n),n)
w3(Q3(n),n)

...
wp(Qp(n),n)

⎞
⎟⎟⎟⎟⎟⎠

dO + s̃, (2.6)

where

s̃ = (s̃1, s̃2, ..., s̃p)T =
1
|O|

∫
O
R(n)s′dO =

1
|O|

∫
O

∫ Δt

0
R(n)s(xi(τ,n), t + Δt − τ)dτdO

and |O| corresponds to the measure of the domain of integration.

3 Evolution Galerkin Schemes

In this section we recall the definition of the finite volume evolution Galerkin (FVEG) schemes.
We assume that d = 3 and Δx, Δy, Δz > 0 are the mesh size parameters in the x−, y−, z−
direction, respectively. We construct a regular mesh, which consists of the mesh cells

Ωklm =
[
(k − 1

2
)Δx, (k +

1
2
)Δx

]
×

[
(l − 1

2
)Δy, (l +

1
2
)Δy

]
×

[
(m − 1

2
)Δz, (m +

1
2
)Δz

]

=
[
xk − Δx

2
, xk +

Δx

2

]
×

[
yl − Δy

2
, yl +

Δy

2

]
×

[
zm − Δz

2
, zm +

Δz

2

]
,

where k, l, m ∈ Z. Suppose that Sq
h is a finite element space consisting of piecewise polynomials

of degree q ≥ 0 with respect to the mesh and assume constant time step, i.e. tn = nΔt. Let
Un be an approximation in the space Sq

h to the exact solution u(., tn) at time tn ≥ 0. We
denote by Rh : Sq

h → Sr
h a recovery operator, r > q ≥ 0 and by Eτ the so-called approximate

evolution operator, which is a suitable approximation to the exact evolution operator defined
by the integral equation (2.6). In the next section such approximate evolution operators are
derived for the wave equation system.
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Definition 3.1 Starting from some initial data U0 ∈ Sq
h, the finite volume evolution Galerkin

method (FVEG) is recursively defined by means of

Un+1 = Un −
∫ Δt

0

3∑
j=1

1
Δxj

δxj fj(Ũ
n+ τ

Δt )dτ, (3.2)

where we use the equivalent notation for the space variables (x, y, z) = (x1, x2, x3) and denote
by δxj fj(Ũ

n+ τ
Δt ) an approximation to the face flux difference; δx is defined by δx = v(x +

Δx
2 )− v(x− Δx

2 ). The cell boundary value Ũn+ τ
Δt is evolved using the approximate evolution

operator Eτ to tn + τ and averaged along the cell boundary, i.e.

Ũn+ τ
Δt =

∑
k,l,m∈Z

(
1

|∂Ωklm|
∫

∂Ωklm

EτRhUndS

)
χ∂Ωklm

, (3.3)

where χ∂Ωklm
is the characteristic function of ∂Ωklm.

It is important to note that in the update step (3.2) numerical quadrature rules are used
instead of the exact time integration. In this paper we are using the midpoint rule for the
time integration in (3.2). Similarly, to evaluate the intermediate value Ũn+ τ

Δt in (3.3) the
three-dimensional integrals along the cell face are evaluated by means of suitable numerical
quadrature rules, e.g. the trapezoidal rule is used in the numerical experiments below. The
integrals aroud the unit sphere O, which arrive from Eτ , are evaluated exactly. In this way
all of the infinitely many directions of wave propagation are taken into account explicitly.

4 Exact Integral Equations and Approximate Evolution Op-
erators for the Wave Equation System

In this section we derive two first-order approximate evolution operators for the three-dimensional
wave equation system. We begin by applying the general theory given in Section 2. It is well
known that the wave equation can be written as a first-order system of partial differential
equations in the form

φt + c∇ · v = 0,
vt + c∇φ = 0,

(4.1)

where c is a constant, the speed of sound, and v(x, t) := (u, v, w)T (x, t), (x, t) ∈ R
3 × R

+ is
the velocity field. Let u := (φ,v)T be the vector of the unknown variables and let the fluxes
be f1(u) := (c u, c φ, 0, 0)T , f2(u) := (c v, 0, c φ, 0)T and f3(u) := (c w, 0, 0, c φ)T . The system
(4.1) can be written in the conservation form

∂u
∂t

+
3∑

k=1

∂fk(u)
∂xk

= 0. (4.2)

Using Jacobian matrices of the flux functions we can rewrite system (4.2) in the linearized
form

ut + A1ux + A2uy + A3uz = 0. (4.3)
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Figure 2: Spherical coordinates.

Let n := (n1, n2, n3)T := (cos θ sin ϕ, sin θ sinϕ, cos ϕ)T be a directional vector in R
3 with

θ ∈ [0, 2π] and ϕ ∈ [0, π], see Fig 2. Then the system (4.3) has four real eigenvalues λ1 =
−c, λ2 = 0, λ3 = 0, λ4 = c and four corresponding right eigenvectors

r1 =

� −1
n

�
, r2 =

�
���

0
n2

−n1

0

�
��� , r3 =

�
���

0
n3

0
−n1

�
��� , r4 =

�
1
n

�
.

The vector of characteristic variables w = (w1, w2, w3, w4)T is given as

w(n) = R−1(n)u =

⎡
⎢⎢⎣

1
2
u · r1

1
n2

1
u · [(n2

1 + n2
3)r2 − n2n3r3]

1
n2

1
u · [−n2n3r2 + (n2

1 + n2
2)r3]

1
2
u · r4

⎤
⎥⎥⎦ . (4.4)

To determine the points Qi(n), i = 1, 2, 3, 4, recall that the bicharacteristics xi, which
correspond to this system are given as dxi

dt̃
= bii = (b1

ii, b
2
ii, b

3
ii)

T , i = 1, 2, 3, 4. Hence we get
xi(n, t̃) = x − bii(t + Δt − t̃). Therefore we have for the footpoints of the bicharacteristics
Qi(xi(n, t), t) = (x− biiΔt, t). From the diagonal matrices D1, D2, D3, see Section 2, we get
b11 = −cn, b22 = b33 = 0 and b44 = cn. Hence

Q2 ≡ Q3 correspond to λ2,3 = 0,

Q1 corresponds to λ1 = −c,

Q4 corresponds to λ4 = c.

Using symmetry between the points Q1 and Q4 and the property that the characteristic
variables are periodic we can derive the integral equations that are equivalent to the wave
equation system in three dimensions (4.1). In the next lemma we give these integral equations.
Let J = [J0|J1|J2|J3] be the matrix whose columns are the vectors J0 = (0, 0, 0)T , J1 =
(−1, 0, 0)T + n1n, J2 = (0,−1, 0)T + n2n, J3 = (0, 0,−1)T + n3n. Set P̃ = (x, t + Δt − τ),
Q̃ = (x+cτn, t+Δt−τ), P = (x, t+Δt), Q = (x+cΔtn, t) and P ′ = (x, t), where τ ∈ [0, Δt].
Then using some invariance properties for terms in spherical coordinates we get
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Lemma 4.5 The exact integral representation (3.2) for the wave equation system (4.1) reads

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q) · (−1,n)T (−1,n)T dS + s̃, (4.6)

where d is the dimension, i.e. d = 3 in our case, u′(P ′) = (0,v)T (P ′) and

s̃ =
1
|O|

∫
O

∫ Δt

0

(
(−1,n)T s(Q̃) + c∇φ(P̃ )J

)
dτdS, (4.7)

s =
c

1 − n2
3

(
n2

2ux − n1n2(uy + vx) + n2
1vy

)
+

1
τ

dn
dϕ

· dv
dϕ

, (4.8)

c∇φ(P̃ )J = (c∇φ · J0, c∇φ · J1, c∇φ · J2, c∇φ · J3)T .

Proof: See[29]. �

Remark 4.9 Since the point P̃ is independent of the directional vector n we can evaluate
the second part of the integral (4.7) to get

(
1−d

d

)
(u′(P ′) − u′(P )). Then substituting in the

equation (4.6) and rearranging the terms we get the equivalent system of the exact integral
equations

u(P ) =
k

|O|
∫

O
u(Q) · (−1,n)T (−1,n)T dS + ks̃, (4.10)

where s̃ is given as

s̃ =
1
|O|

∫
O

∫ Δt

0
(−1,n)T s(Q̃) dτdS, (4.11)

s is given in the equation (4.8). For the first component of the vector u, i.e. for φ, we have
k = 1, otherwise k = d.

To obtain explicit numerical methods we approximate time integrals in equations (4.7) and
(4.11) using the backward rectangle rule, which gives

s̃ =
Δt

|O|
∫

O

(
(−1,n)T s(Q) + c∇φ(P ′)J )

dτdS + O(Δt2), (4.12)

s̃ =
Δt

|O|
∫

O
(−1,n)T s(Q) dτdS + O(Δt2), (4.13)

respectively. In order to evaluate the integral of the source terms s we need the following
lemma. The proof can be found in [29].
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Lemma 4.18

Δt

∫
O

s(Q)dS =
∫

O
(2n1u(Q) + 2n2v(Q) + 2n3w(Q))dS, (4.19)

Δt

∫
O

n1s(Q)dS =
∫

O

(
(−1 + 3n2

1)u(Q) + 3n1n2v(Q) + 3n1n3w(Q)
)
dS,

(4.20)

Δt

∫
O

n2s(Q)dS =
∫

O

(
3n1n2u(Q) + (−1 + 3n2

2)v(Q) + 3n2n3w(Q)
)
dS,

(4.21)

Δt

∫
O

n3s(Q)dS =
∫

O

(
3n1n3u(Q) + 3n2n3v(Q) + (−1 + 3n2

3)w(Q)
)
dS. (4.22)

�
Using Taylor’s theorem we can approximate the integral of the second term in the equation
(4.12), which yields

∫
O

c∇φ(P ′) · J1dS =
∫

O
−2n1φ(Q)dS + O(Δt2), (4.23)

∫
O

c∇φ(P ′) · J2dS =
∫

O
−2n2φ(Q)dS + O(Δt2), (4.24)

∫
O

c∇φ(P ′) · J3dS =
∫

O
−2n3φ(Q)dS + O(Δt2). (4.25)

Let I(m) = [I0|I1|I2|I3], m ∈ {1, 3}, be the matrix with the column vectors

I0 = (0, 0, 0, 0)T + (1,−3n)T ,

I1 = (0,−1, 0, 0)T + n1(−m, 4n)T ,

I2 = (0, 0,−1, 0)T + n2(−m, 4n)T ,

I3 = (0, 0, 0,−1)T + n3(−m, 4n)T .

Substituting equations (4.19-4.25) in the equation (4.6) we get the following approximate
evolution operator, which we call the EG3 for 3D, cf. [16]

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q)I(3)dS + O(Δt2), (4.26)

where U(Q)I(3) = φ(Q)I0 + u(Q)I1 + v(Q)I2 + w(Q)I3.

Remark 4.27 Substituting equations (4.19-4.22) in the equation (4.10) we get the following
approximate evolution operator

u(P ) =
k

|O|
∫

O
u(Q)I(1)dS + O(Δt2), (4.28)

where U(Q)I(1) is defined analogously as U(Q)I(3). This approximate evolution operator is
analogous to the two-dimensional approximate operator EG1, cf. [16].
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5 Numerical Schemes and Discretization

This section is devoted to the numerical experiments using the finite volume EG scheme
based on the approximate evolution operator (4.26) and on Definition 3.1. Analogously to
the two-dimensional case, cf. [29], we use the midpoint rule to approximate the time integral
in the equation (3.2) and the trapezoidal rule to approximate the cell face integrals given in
(3.3). Let Ũl denote the intermediate value corresponding to the left side of the cell ijk, see
Figure 3. Further, let Ũf and Ũb be the intermediate values corresponding to the front and
to the bottom sides, respectively. Let Nx, Ny and Nz be the number of cells along the x−,
y− and z−axis, respectively; recall that Δx, Δy, Δz are the mesh steps in the corresponding
directions. Then the first-order evolution Galerkin algorithm is formulated as follows:

• input of the initial data U0.

• determine the time step Δt from the CFL condition cΔt
min{Δx,Δy,Δz} = ν < 1.

• do the time loop

• calculate the intermediate values φ̃l, ũl, φ̃f , ṽf , φ̃b, w̃b according (3.3) using the
approximate evolution operator EG3-3D, cf. (4.26)

• FV update:

φn+1
ijk = φn

i − cΔt

Δx
(ũl(i + 1jk) − ũl(ijk)) − cΔt

Δy
(ṽf (ij + 1k) − ṽf (ijk))

−cΔt

Δz
(w̃b(ijk + 1) − w̃b(ijk)) , (5.1)

un+1
ijk = un

i − cΔt

Δx

(
φ̃l(i + 1jk) − φ̃l(ijk)

)
, (5.2)

vn+1
ijk = vn

i − cΔt

Δy

(
φ̃f (ij + 1k) − φ̃f (ijk)

)
, (5.3)

wn+1
ijk = wn

i − cΔt

Δz

(
φ̃b(ijk + 1) − φ̃b(ijk)

)
. (5.4)

• impose the boundary conditions.

• end of the time loop.

This is the so-called FVEG3-3D scheme; note that the analogous numerical schemes based
on the approximate evolution operator (4.28) can be derived. Finally, we note that in the
experiments presented below we evaluate the intermediate values Ũ on cell faces by using the
piecewise constant approximate functions, i.e. the scheme is first-order in space. Apparently,
the presented discrete EG schemes are explicit in time, which implies that some stability
condition needs to be satisfied in order to guarantee stability of the schemes. It should be
noted that we have studied the question of stability of the EG as well as the FVEG schemes
extensively in [14, 22]. It has been shown there that the EG schemes are stable under some
stability conditions with the CFL number close to a natural limit of 1.0, see [14, 22] for more
details.
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k+1

k

k-1

Figure 3: Cell ijk and its neighbours

Remark 5.5

The derivation of FVEG schemes might be consider at a first sight as a rather complex task.
However, the implementation is divided into several simpler subtasks as indicated above.
The flux integrals along cell interfaces are approximated by the trapezoidal rule. At each
integration point at cell interfaces the corresponding approximate evolution operator (4.26),
(4.28), (7.1) and (7.2) is implemented directly. The only complexity lies in the implementation
of the exact integrals with integrands being a combination of sin θ sinϕ, cos θ sinϕ and cos ϕ
over [θ1, θ2] × [ϕ1, ϕ2] according to the position of the Mach cone. In order to simplify the
implementation task, e.g. in the case of full three-dimenionsional Euler equations, the integrals
over the sonic ball, i.e. over [0, 2π] × [0, π], can be approximated alternatively by suitable
numerical quadratures.

6 Numerical Tests

Example 6.1

Consider the three dimensional wave equation system together with the periodic boundary
conditions and the initial data

φ(x, y, 0) = −1
c
(sin(2πx) + sin(2πy) + sin(2πz)),

u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0. (6.2)
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where (x, y, z) ∈ [−1, 1] × [−1, 1] × [−1, 1]. The exact solution is

φ(x, y, t) = −1
c

cos(2πct)(sin(2πx) + sin(2πy) + sin(2πz)),

u(x, y, t) =
1
c

sin(2πct) cos(2πx),

v(x, y, t) =
1
c

sin(2πct) cos(2πy),

w(x, y, t) =
1
c

sin(2πct) cos(2πz). (6.3)

The following two tables show the L2-error and the experimental order of convergence (EOC),
which is defined using two solutions computed on meshes of sizes N1, N2, as follows

EOC = ln
‖UN1(T ) − Un

N1
‖

‖UN2(T ) − Un
N2

‖/ ln
(

N2

N1

)
.

The numerical experiments are carried out with the FVEG3-3D scheme. We take the final
time T = 0.1 and T = 0.2, respectively, and set the constant c equal to 1. Moreover we
consider a uniform mesh, i.e. we take the mesh size h > 0, h = Δx = Δy = Δz, and set the
CFL number to be 0.5. The last column of Tables 1 and 2 demonstrates that the experimental
order of convergence is 1.

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.55892402464 0.16838548872 0.63044197493
40 0.27817890698 0.09911167224 0.32688358021 0.9476
80 0.13874739504 0.05362621166 0.16696751589 0.9692
160 0.06927101055 0.02788768195 0.08444904569 0.9834
320 0.03460647659 0.01422055263 0.04247682396 0.9914

Table 1: FVEG3-3D scheme, T=0.1, CFL=0.5

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.49587434262 0.59746694762 1.14751541347
40 0.23446528786 0.33325251909 0.62301339926 0.8812
80 0.11224035516 0.17664332961 0.32589337983 0.9349
160 0.05458773142 0.09102322692 0.16683975527 09659
320 0.02686871668 0.04621317753 0.08443282103 0.9826

Table 2: FVEG3-3D scheme, T=0.2, CFL=0.5

In Figures 4 we plot the first and the second components of the solution φ(x, 0.5, 0.5, T )
and u(x, 0.5, 0.5, T ) (on top and on bottom, respectively) restricted to a horizontal line for a
80×80×80 and a 320×320×320 mesh at the end time T = 0.2. The exact solution is plotted
as well. We can notice a good agreement between the approximate and the exact solution.
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Figure 4: Solution of the wave equation system computed using the 80 × 80 × 80 mesh cells
(left) and 320×320×320 mesh cells (right); top: φ(x, 0.5, 0.5, 0.2), bottom: u(x, 0.5, 0.5, 0.2).
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Example 6.4

It is easy to see that the wave equation system preserves exactly the vorticity, i.e. the vector(
∂u

∂y
− ∂v

∂x
,
∂u

∂z
− ∂w

∂x
,
∂v

∂z
− ∂w

∂y

)T

is constant in time. Components of vorticity vector are

trivially zero in Example 6.1, because u depends on x only, v depends on y only while w
depends on z only. In this example we take the following nontrivial initial data for which the
exact solution still has vanishing vorticity

φ(x, y, 0) = − exp(−10(x2 + y2 + z2)),
u(x, y, 0) = v(x, y, 0) = w(x, y, 0) = 0. (6.5)

We compute the vector of discrete vorticity given by the formulae:

DV(1)
klm = μxδyuk+ 1

2
,l+ 1

2
,m− 1

2
− μyδxvk+ 1

2
,l+ 1

2
,m− 1

2
,

DV(2)
klm = μxδzuk+ 1

2
,l− 1

2
,m+ 1

2
− μzδxwk+ 1

2
,l− 1

2
,m+ 1

2
,

DV(3)
klm = μyδzvk− 1

2
,l+ 1

2
,m+ 1

2
− μzδywk− 1

2
,l+ 1

2
,m+ 1

2
(6.6)

for each k, l, m ∈ Z, where we denote by uk+ 1
2
,l+ 1

2
,m− 1

2
:= u((k − 1

2)h, (l + 1
2)h, (m + 1

2)h) the

values at the corner point ((k − 1
2)h, (l + 1

2)h, (m + 1
2)h) of the cubic mesh cell Ωkml. The

other corner-values are defined analogously. The μ, δ−operators are defined, e.g. in the x−
direction, as

δxf(x) = f(x +
h

2
) − f(x − h

2
), μxf(x) =

f(x + h
2 ) + f(x − h

2 )
2

;

the operators in the other directions are defined analogously. In Table 3 we show the average
value of DV(1) (average values of DV(2) and DV(3) are same due to the symmetry of the
problem) at time T = 0.2 using N = 50, N = 100 and N = 200 mesh cells in each direction.
The computational domain is a cube [−1, 1]3 and CFL = 0.55. The results in this table
indicate that the FVEG3-3D preserves the discrete vorticity given by the equation (6.6).
Further in the Figures 5 and 6 we plot the surface of the solution φ for the cross-section
z = 0.5 and the isosurface of φ, respectively.

Mesh size 50 × 50 × 50 100 × 100 × 100 200 × 200 × 200
Average vorticity 1.871 × 10−5 6.480 × 10−6 3.350 × 10−6

Table 3: Vorticity preservation for the FVEG3-3D scheme

7 Further EG schemes

It is well known that the solution of the wave equation in a space of odd dimension (>2)
depends on the initial data distributed on the surface of the sphere centered at the observation
point (Kirchhoff’s formula), see [6]. We follow this concept and ignore the s̃ part appearing
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Figure 5: Cross section surfaces (z = 0.5) of the approximated solution φ at T = 0.2 using
160 × 160 mesh cells.

Figure 6: Isosurface of the approximated solution φ(x, y, z, 0.2) using 160 × 160 mesh cells.
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in the exact integral equations (4.6) and (4.10). This leads us to the following approximate
evolution operators:

u(P ) =
(

d − 1
d

)
u′(P ′) +

1
|O|

∫
O

u(Q) · (−1,n)T (−1,n)T dS, (7.1)

u(P ) =
k

|O|
∫

O
u(Q) · (−1,n)T (−1,n)T dS. (7.2)

We call these approximate evolution operators N1 and N2, respectively. Now, we apply the
FVEG schemes based on the N1 and N2 operators to the problem given in the Example 6.1.
The L2 errors and EOC are given in Tables 4-6 and indicate superconvergence of the finite
volume scheme N1. Actually using piecewise constants we have obtained an overall second
order accuracy. Further, Table 6 indicates that the finite volume scheme N2 is of first order.
In Figure 7 we plot the first and the second components φ(x, 0.5, 0.5, 0.2) and u(x, 0.5, 0.5, 0.2)
of the solution, respectively restricted to a horizontal line for 80× 80× 80 mesh applying the
second order scheme FVEG-N1. We plot also the exact solution. Comparing these plots with
these given in the first column of Figure 4 we see that the FVEG-N1 scheme suffered very
less dissipation as one expect.
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Figure 7: Solution of the wave equation system computed with FVEG-N1 scheme using
80 × 80 × 80 mesh cells; left: φ(x, 0.5, 0.5, 0.2), right: u(x, 0.5, 0.5, 0.2).

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.03948481218 0.05612849451 0.10492985314
40 0.01297997347 0.01347014919 0.02669858553 1.9746
80 0.00360947268 0.00326143223 0.00670366419 1.9937
160 0.00094540786 0.00080017118 0.00167768226 1.9985
320 0.00024154741 0.00019803770 0.00041952585 1.9996

Table 4: FVEG-N1 scheme, T=0.1, CFL=0.5
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N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.17589540963 0.06529837724 0.20911917497
40 0.04832075618 0.01308638944 0.05337280435 1.9701
80 0.01247555949 0.00283409813 0.01340656261 1.9932
160 0.00315867513 0.00065347754 0.00335534309 1.9984
320 0.00079405157 0.00015651727 0.00083905355 1.9996

Table 5: FVEG-N1 scheme, T=0.2, CFL=0.5

N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
20 0.55892402464 0.11225699162 0.59177779767
40 0.28602634464 0.05665197288 0.30238949704 0.9686
80 0.14568931489 0.02860078232 0.15388109280 0.9746
160 0.07365113809 0.01439264027 0.07775560702 0.9848
320 0.03704518272 0.00722271923 0.03910049337 0.9918

Table 6: FVEG-N2 scheme, T=0.1, CFL=0.5

Example 7.3

In this experiment we apply the first order FVEG3 scheme and the second order FVEG-N1
scheme to the wave equation system combined with the discontinuous initial data

φ(x, y, z, 0) =
{

1, x > 0
−1, x < 0

,

u(x, y, z, 0) = 1.0,

v(x, y, z, 0) = w(x, y, z, 0) = 0.

In Figure 8 we plot φ(x, 0.5, 0.5, 0.2) restricted to a horizontal line for 80× 80× 80 mesh. We
plot the exact solution as well. It is clear that the FVEG3 scheme smeared the discontinuity,
cf. Figure 8 (left). Note that it is a first-order scheme. On the other hand, the second-order
FVEG-N1 scheme resolves the discontinuity much better, cf. Figure 8 (right). The oscillations
in the solution found by the FVEG-N1 scheme are expected since we have used here no limiter.
In the Table 7 we present the CPU costs required for the second order FVEG-N1 scheme on
meshes with N × N × N cells. These are reasonable computational costs for second order
three-dimensional computations. The results were obtained using a personal computer with
3,2 GHz Pentium Processor and 4 GB RAM. Moreover, it should be pointed out that the
CPU time of the second FVEG-N1 is actually comparable with that of the first order FVEG
schemes.
We conjecture that the superconvergence phenomenon of the N1 method is due to the fact
that the source term s̃, cf. (4.7), that we have neglected, is actually at least of the order
O(Δt3). Moreover, it is important to keep the term

(
d−1

d

)
u′(P ′) in (7.1), which apparently

increases the order of accuracy. The proof of this fact is still open.
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N CPU costs
20 0.14 sec.
40 2.64 sec.
80 37.42 sec.
160 10 min.
320 163 min.

Table 7: Computational time for the FVEG-N1 scheme, T=0.2, CFL=0.5
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Figure 8: The component φ(x, 0.5, 0.5, 0.2) of the solution of the wave equation system com-
puted with FVEG3 scheme (left) and FVEG-N1 scheme (right) using 80 × 80 × 80 mesh
cells.

8 Conclusions

In this paper we have demonstrated extensibility of the FVEG schemes for three-dimensional
systems of hyperbolic conservation laws. It has been shown that the bicharacteristic theory is
applicable in order to construct fully three-dimensional numerical schemes based on the finite
volume framework. We have illustrated the methodology on a linear system of wave equation.
Using the theory of bicharacteristics for three-dimensional linear (or linearized) hyperbolic
systems the exact integral equations have been derived. Afterwards using rectangle rule for
time integrations and some further manipulations, cf. Lemmas 4.5-4.18 as well as Section 7,
the approximate evolution operators for first and second order schemes have been derived.
They are multidimensional representations of time evolution of solution, which are explicit in
time. Space integrals along the sonic ball, i.e. the base of the bicharacteristic cone for three-
dimensional problems, are evaluated exactly for piecewise constant data. The FVEG scheme
combines the finite volume update with approximate evolution operators. The time integrals
in the finite volume update are approximated by the midpoint rule, space integrations along
the cell interfaces are approximated by the trapezoidal rule. Using the approximate opera-
tor (7.1) the second order FVEG-N1 scheme has been constructed. Numerical experiments
demonstrate the second order EOC.

The main idea of the FVEG schemes is the combination of the finite volume update and mul-
tidimensional evolution along the bicharacteristics. The behaviour of new three-dimensional
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FVEG schemes has been tested extensively on a series of numerical tests; the representative
choice of them is being presented in the paper. The numerical results confirm genuine mul-
tidimensional behaviour and discrete vorticity preservation. The methodology presented in
the paper for the linear system of the wave equation will be generalized for fully nonlinear
problems, e.g. the Euler equations of gas dynamics. This is the goal of our future study.
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[22] M. Lukáčová-Medvid’ová, G. Warnecke and Y. Zahaykah. On the stability of the evolution
Galerkin schemes applied to a two-dimensional wave equation system. in print SIAM J.
Numer. Anal., 2004.

[23] S. Noelle. The MOT-ICE: a new high-resolution wave-propagation algorithm for multi-
dimensional systems of conservative laws based on Fey’s method of transport. J. Comput.
Phys., 164:283-334, 2000.

[24] S. Ostkamp. Multidimensional characteristic Galerkin schemes and evolution operators
for hyperbolic systems. Math. Meth. Appl. Sci., 20:1111–1125, 1997.

[25] P. Prasad and R. Ravindran. Canonical form of a quasilinear hyperbolic system of first
order equations. J. Math. Phys. Sci., 18(4):361–364, 1984.

[26] A.S. Reddy, V.G. Tikekar, and P. Prasad. Numerical solution of hyperbolic equations
by method of bicharacteristics. J. Math. Phys. Sci., 16(6):575–603, 1982.

19



[27] Qurrat-ul-Ain. Multidimensional Schemes for Hyperbolic Conservation Laws on Trian-
gular Meshes. Dissertation, University of Magdeburg, 2005.

[28] Qurrat-ul-Ain, G. Warnecke and Y. Zahaykah: On the finite volume evolution Galerkin
(FVEG) methods for two-dimensional first order hyperbolic systems on structured and
unstructured triangular meshes, in preperation.

[29] Y. Zahaykah. Evolution Galerkin Schemes and Discrete Boundary Conditions for Mul-
tidimensional First Order Systems. Dissertation, Magdeburg, 2002.

20


