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Numerical study of shear-dependent non-Newtonian fluids
in compliant vessels

A. Hundertmark-Zaušková∗†, M. Lukáčová-Medvid’ová∗‡

Abstract

The aim of this contribution is to present recent results on numerical modelling of
non-Newtonian flow in compliant stenosed vessels with application in hemodynamics.
We consider two models of shear-thinning non-Newtonian fluids and compare them
with the Newtonian model. For the structure problem the generalized string equation
for radial symmetric tubes is used and extended to a stenosed vessel. The global
iterative approach to approximate the fluid-structure interaction is used. At the end
we present numerical experiments for some non-Newtonian models, comparisons with
the Newtonian model and the results for hemodynamic wall parameters; the wall shear
stress and the oscillatory shear index.

keywords: non-Newtonian fluids, fluid-structure interaction, shear-thinning flow, hemo-
dynamic wall parameters, stenosis

1 Introduction

Description of blood flow in human arteries is a very complex process. In recent years
there is a growing interest in the use of mathematical models and numerical methods
arising from other fields of computational fluid dynamics in the hemodynamics, see, e.g.,
[4], [6], [10], [13], [16], [19], [21], [22], [23], [24], [31] just to mention some of them.

Many numerical methods used for blood flow simulation are based on the Newtonian
model using the Navier-Stokes equations. This is effective and useful, especially if the flow
in large arteries should be modeled. However, in small vessels blood cannot be considered
as the Newtonian fluid anymore. In capillaries the blood is even not a homogenized con-
tinuum and more precise models, for example mixture theories need to be used. But even
in the intermediate-size vessels the non-Newtonian behavior of blood is demonstrable, see
[25], [2] and the references therein. In fact, blood is a complex fluid showing several non-
Newtonian properties, for example shear-thinning or viscoelasticity [29], [30] yield stress,
stress relaxation [25]. The aim of this paper is to report on recent results concerning
numerical modelling of shear-thinning flow in moving vessels with application in hemody-
namics. We address the significance of non-Newtonian models for reliable hemodynamical
modelling. In particular, we will show that the rheological properties of fluid have an
influence on the wall deformation as well as on the hemodynamical wall indices, such as
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the wall shear stress and oscillatory shear index. Consequently these models yield more
reliable prediction of critical vessel areas, see also our previous preliminary study in [15].

The present paper is organized as follows. In Section 2 we describe mathematical model
of shear thinning non-Newtonian fluid in a moving domain and present typical models for
blood. Section 3 gives a detailed derivation of the generalized string model for cylindrical
symmetric vessels with non-constant radius. In Section 4 we present theoretical results
of well-posedness of weak solution for the coupled fluid-structure interaction problem, the
detailed mathematical analysis goes behind the frame of the present paper and will be
presented in our forthcoming paper [14]. The coupled fluid-structure interaction algo-
rithm based on so-called global iterative method with respect to the domain deformation
is described in Section 5. Section 6 is devoted to a detailed computational study of shear-
thinning fluids in moving domains. Numerical experiments for viscosity data tested by
Sequeira, Nadau [16] has been extended for fixed (solid) and moving vessels, both stenotic
and straight. In hemodynamical wall indices new effects due to the fluid-structure inter-
action has been observed, see Section 6.1. Moreover in Section 6.2 an extensive numerical
study for real physiological parameters is presented. We have considered physiological
viscosity parameters as well as inflow data from iliac artery measurements. Additionally,
we assume different material properties in stenotic regions in order to model accumulated
plug. Finally the influence of different boundary conditions on the convergence of the
complete method for rigid and moving domains is studied in Section 7.

2 Mathematical model: non-Newtonian fluid in a moving

domain, hemodynamical indices

Consider a two-dimensional fluid motion governed by the momentum and the continuity
equation

ρ
∂u

∂t
+ ρ (u · ∇)u − div [2µ(|D(∇u)|)D(∇u)] + ∇p = 0 (1)

div u = 0

with ρ denoting the constant density of fluid, u = (u1, u2) the velocity vector, p the
pressure, D(∇u) = 1

2(∇u + ∇uT ) the symmetric deformation tensor and µ the viscosity
of the fluid. The computational domain

Ω(η) ≡ {(x1, x2, t) : −L < x1 < L, 0 < x2 < R0(x1) + η(x1, t), 0 < t < T}

is given by a reference radius function R0(x1) and the unknown free boundary function
η(x1, t) describing the domain deformation. In this work we restrict ourselves to 2D
domains. The fluid and the geometry of the computational domain are coupled through
the following Dirichlet boundary condition

u2(x1, x2, t) =
∂η(x1, t)

∂t
, u1(x1, x2, t) = 0 on Γw, (2)

where Γw = {(x1, x2); x2 = R0(x1) + η(x1, t), x1 ∈ (−L, L)} is the deforming part
of the boundary. With n we denote the unit outward normal vector to this boundary,
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Figure 1: Viscosity function for both shear dependent models

n := (−∂x1
(R0 + η), 1))/

√

(∂x1
(R0 + η))2 + 1. Moreover, the normal component of the

fluid stress tensor provides the forcing term for the deformation equation of free boundary
η, that will be introduced below.

In what follows we introduce non-Newtonian models that describe the shear thinning
properties of blood. In the literature various non-Newtonian models for the blood flow can
be found. In this paper we consider the so-called Carreau model [29] and the Yeleswarapu-
viscosity model [29]. According to the Carreau model for the shear-thinning fluid, the
viscosity function depends on the deformation tensor in the following way

µ = µ(D(∇u)) = µ∞ + (µ0 − µ∞)(1 + |γD(∇u)|2)q (3)

for some given constants q, µ0, µ∞, γ. According to [29] the physiological values for blood
are µ0 = 0.56P, µ∞ = 0.0345P, γ = 3.313, q = −0.322. Note that in the case q = 0 the
model reduces to the linear Newtonian model used in the Navier-Stokes equations.

The Yeleswarapu viscosity model reads

µ = µ(D(∇u)) = µ∞ + (µ0 − µ∞)
log(1 + γ|D(∇u)|) + 1

(1 + γ|D(∇u)|) . (4)

The physiological measurements give µ0 = 0.736P, µ∞ = 0.05P, γ = 14.81 [29].
Several hemodynamical indices have been proposed in literature in order to measure

the risk zones in blood vessel. They have been introduced to describe some mechanisms
correlated to intimal thickening of vessel wall. Many observations show that one reason is
the blood flow oscillations during the diastolic phase of every single heart beat. To identify
the occlusion risk zones the Oscillatory Shear Index is usually studied in literature, see
[23]

OSI :=
1

2

(

1 −
∫ T
0 τw dt
∫ T
0 |τw| dt

)

, (5)
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where [0, T ) is the time interval of a single heart beat (T ≈ 1sec) and τw is the Wall Shear
Stress (WSS) defined as

WSS := τw = −Tfn · τ . (6)

Here Tf is the Cauchy stress tensor of fluid Tf = −pI + 2µ(|D(∇u)|)D(∇u), n and
τ are the unit outward normal and the unit tangential vector on the arterial wall Γw,
respectively. OSI index measures the temporal oscillations of the shear stress pointwise
without taking into account the shear stress behavior in an immediate neighborhood of a
specific point.

3 Wall deformation model

The aim of this paper is to study influence of stenotic regions in blood vessels. In order to
model biological structure several models have been proposed in literature. For example,
to model flow in a collapsible tubes a two-dimensional thin shell model can be used, see
results of Wall et al. [9] on flow-thinwalled problems and FSI methods. Recently Čanic̀ et
al. [4] developed a new one-dimensional model for arterial walls, the linearly viscoelastic
cylindrical Koiter shell model, that is closed and rigorously derived by energy estimates,
asymptotic analysis and homogenization techniques. The viscous fluid dissipation imparts
long-term viscoelastic memory effects represented by higher order derivatives.

In the present paper we will consider the generalized string model for vessel wall de-
formation [20]. The model derived in [20] is valid only for straight tubes with constant
reference radius R0. In order to model stenotic occlusion we want to extend this model by
assuming that the arterial reference radius at rest R0 is not constant but a function of an
actual position.

Let us consider a 3D radially symmetric tube, see Fig. 2. We assume to have defor-
mations only in the radial direction and set x1 = z-direction and x2 = r-radial direction.
The radial wall displacement, constant with respect to the angle θ, is defined as

η(z, t) = R(z, t) − R0(z),

where R(z, t) is the actual radius and R0(z) is the reference radius at rest. Since the
actual radius of the compliant tube is given by R(z, t) = R0(z) + η(z, t), the reference
radius R0 and the actual radius R coincides for fixed solid tube and are dependent only
on spatial variable z. The assumption of radial geometry allow us to approximate the
length of arc dc ≈ Rdθ, dc ≈ R0dθ, see Fig. 2 and also [20]. We assume also the small
deformation gradient of displacement (∂zη, ∂θη), which implies the linear constitutive law
(linear elasticity) of the vessel wall. The wall thickness is assumed to be small and constant.
Moreover we approximate the infinitesimal surface in the following way S ≈ dc dl.

The linear momentum law Force = mass×acceleration is applied in the radial direc-
tion to obtain the equation for η.

mass = ρw~ dc dl, acceleration =
∂2R(z, t)

∂t2
=

∂2η(z, t)

∂t2
, (7)

where ρw is the density of the wall and ~ its thickness.
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Figure 2: Small portion of vessel wall with physical characteristics, see also [20]

Now we evaluate forces acting on the vessel wall. The tissue surrounding the vessel
wall interacts with the vessel wall by exerting a constant pressure Pw. The resulting tissue
force is f tissue = −Pwn dc dl ≈ −PwnRdθ dl.

The forces from the fluid on Γw are represented by the normal component of the
Cauchy stress tensor ffluid = −Tf n dc dl. By summing the tissue and fluid forces we get
the resulting external force acting on the vessel wall along the radial direction (f ext =
f tissue + ffluid):

fext

∣

∣

∣

Γw

0

= f ext · er ≈ (−Tf − PwI)n · er
R

R0

√

1 + (∂zR)2

√

1 + (∂zR0)
2

dc dl

≈ −(Tf + PwI)n · er
R

R0
dc dl ≈ −(Tf + PwI)n · erR dθ dl,

where n = 1√
1+(∂zR)2

(−∂zR, 1) is the unit outward normal to the boundary Γw. The term

R
√

1 + (∂zR)2

R0

√

1 + (∂zR0)2

arrives from the transformation to the Lagranian coordinates, in particular we have
the transformation of the curve Γw := {(z, R(z)), z ∈ (−L, L)} to the curve Γw

0 :=
{(z, R0(z)), z ∈ (−L, L)}, see also [8] for more details. Due to the assumption on smallness
of ∂zη we get the final expression.

The internal forces acting on the vessel portion are due to the circumferential stress
σθ (constant with respect to the angle) and the longitudinal stress σz. Both stresses are
directed along the normal to the surface to which they act. Let us denote σθ = σθ · n.
Further the longitudal stress σz is parallel to tangent, i.e. σz = ±σzτ , where the sign is
positive if the versus of the normal to the surface on which σz is acting is the same as
those chosen for τ .
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We have fint = (f θ + f z) · er and

f θ · er =
[

σθ

(

θ̄ +
dθ

2

)

+ σθ

(

θ̄ − dθ

2

)]

· er~ dl = 2|σθ|cos
(π

2
+

dθ

2

)

~ dl

= −2|σθ| sin
(

dθ

2

)

~ dl ≈ −|σθ|~ dθ dl = −E
η

R0
~ dθ dl,

f z · er =
[

σz

(

z∗ +
dz

2

)

+ σz

(

z∗ − dz

2

)]

· er~ dc

=
τ (z∗ + dz

2 ) − τ (z∗ − dz
2 )

dz
· er~|σz| dz dc

≈ |σz|
[dτ

dz
(z∗)

]

· er~ dz dc

≈
(

∂2η

∂z2
+

∂2R0

∂z2

)

[

1 +

(

∂R0

∂z

)2
]−1

n · er|σz|~dz dc.

Here we have used the following properties. According to the linear elasticity assumption
the stress tensor σθ is proportional to the relative circumferential prolongation, i.e.

σθ = E
2π(R − R0)

2πR0
= E

η

R0
, E is Young’s modulus of elasticity.

To evaluate the longitudinal force we have used the following result, that is a generalization
of Lemma C.1 in [20].
Lemma. If ∂η

∂z is small then

dτ

dz
(z∗) ≈

(

∂2η

∂z2
+

∂2R0

∂z2

)

[

1 +

(

∂R0

∂z

)2
]−1

n.

Proof: Let a parametric curve c be defined at each t on the plane (z, r) by

c : R → R
2, z → (c1(z), c2(z)) = (z, R(z, t)) = (z, R0(z, t) + η(z, t)),

and τ , n, κ denote the tangent, the normal and the curvature of c, respectively. Then
according to the Serret-Frenet formula [20] we have

dτ

dz
(z) =

∣

∣

∣

∣

dc

dz
(z)

∣

∣

∣

∣

κ(z)ñ(z).

Here ñ = ±n is the normal oriented towards the center of curvature. Furthermore since
we assume ∂η

∂z small, we have

∣

∣

∣

∣

dc

dz
(z)

∣

∣

∣

∣

=

[

1 +

(

∂R

∂z

)2
]1/2

≈
[

1 +

(

∂R0

∂z

)2
]1/2

and

κ =

∣

∣

∣

∣

dc1

dz

d2c2

dz2
− dc2

dz

d2c1

dz2

∣

∣

∣

∣

∣

∣

∣

∣

dc

dz

∣

∣

∣

∣

−3

=

∣

∣

∣

∣

∂2R

∂z2

∣

∣

∣

∣

[

1 +

(

∂R

∂z

)2
]− 3

2

≈
∣

∣

∣

∣

∂2R0 + ∂2η

∂z2

∣

∣

∣

∣

[

1 +

(

∂R0

∂z

)2
]− 3

2

.
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Since the sign of ∂2R
∂z2 determines the convexity of curve, ñ = sign

(

∂2R
∂z2

)

n, we obtain the

desired result. �

By summing up all contribution of balancing forces we have from the linear momentum
law














ρw~R
∂2η

∂t2
− |σz|

(

∂2η
∂z2 + ∂2R0

∂z2

)

[

1 +
(

∂R0

∂z

)2
]n · erR~

dz

dl
+

E~η

R0
+ (Tf + PwI)n · erR















dθ dl

= O(dθdl).

Note that n · er = 1/
√

1 + (∂zR)2 ≈ 1/
√

1 + (∂zR0)2 and

dz

dl
≈ cos(∡(ez, τ )) = ez · τ ≈ 1/

√

1 + (∂zR0)2,

see Fig. 2. Thus by dividing the former equation by ρw~ R dθ dl and passing to the limit
for dθ → 0, dl → 0 we obtain the so called vibrating string model. By adding the damping
term −c∂3

tzzη, c > 0 at the left hand side we get the generalized string model for cylindrical
geometry with a non-constant reference radius R0(z)

∂2η

∂t2
− |σz|

ρw

(

∂2η
∂z2 + ∂2R0

∂z2

)

[

1 +
(

∂R0

∂z

)2
]2 +

Eη

ρwR0R
− c

∂3η

∂t∂2z
= −(Tf + PwI)n · er

ρw~

R

R0
. (8)

4 Remark on theoretical results

For the above problem on shear-dependent fluid flow in deforming domain we have proved
the existence and uniqueness of weak solution, see [14], see also [31], [7] for results on
Newtonian fluid. The existence and uniqueness for 2D computational domain Ω(h) =
{(x1, x2, t) : 0 < x1 < L, 0 < x2 < h(x1, t)} is proven, where an a-priori known domain
deformation function h = h(x1, t) is considered, i e. existence for solution for one global
iteration with respect to the domain (explained in Section 5.1) has been proved. The
finalization of this proof for Ω(η), done due limiting process of h − R0 = η(k) → η for
k → ∞ is shown using fixed point theorem for a special case of deformation equation and
for a pseudo-compressible and κ-approximated system (1), (2), (8). See [7, Section 2] for
details on κ− approximation of the interface condition (2)-(8).

In what follows we introduce the main theoretical result given in [14]. We define space

V ≡
{

w ∈ W 1,p(D)2 : w1 = 0 on Sw and w2 = 0 on Sin ∪ Sout ∪ Sc

}

,

Sw = {(y1, 1) : 0 < y1 < L},
Sin = {(0, y2) : 0 < y2 < 1}, (9)

Sout = {(L, y2) : 0 < y2 < 1},
Sc = {(y1, 0) : 0 < y1 < L},
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where y ∈ D = {(y1, y2); 0 < y1 < L, 0 < y2 < 1}, 0 < t < T is a fixed rectangle
computational domain (moving domain Ω(h) has been transformed to the rectangle D).

For viscous shear dependent tensor τ = µ(|D(∇u)|)D(∇u) we assume that there exist
a potential U ∈ C2(R2×2) of τ , such that for some 1 < p < ∞ (we remind that p−2

2 = q),
C1, C2 > 0, we have for all η, ξ ∈ R

2×2
sym and i, j, k, l = 1, 2,

∂U(η)

∂ηij
= τij(η) (10)

U(0) =
∂U(0)

∂ηij
= 0 (11)

∂2U(η)

∂ηmn∂ηrs
ξmnξrs ≥ C1 (1 + |η|)p−2|ξ|2 (12)

∣

∣

∣

∣

∂2U(η)

∂ηij∂ηkl

∣

∣

∣

∣

≤ C2(1 + |η|)p−2. (13)

We denote by (ũ, η̃t) ∈ D the solution in a transformed domain D, i.e.,

ũ(y1, y2, t) = u(y1, h(y1, t), t),

p̃(y1, y2, t) = ρ−1p(y1, h(y1, t), t), y ∈ D,

as well as the boundary data

P̃in(y2, t) = ρ−1Pin(y2h(0, t), t), y2 ∈ (0, 1)

P̃out(y2, t) = ρ−1Pout(y2h(L, t), t), y2 ∈ (0, 1)

P̃w(y1, t) = ρ−1Pw(h(y1, t), t), y1 ∈ (0, L).

Neumann outflow and inflow boundary condition with dynamical pressures Pin/out− ρ
2 |u1|2

on the right hand side have been considered for horizontal velocities, vertical velocities
have been set to zero.

Moreover, for a priori known deformation h = R0 + ηk we assume

0 < α ≤ h(x1, t) ≤ α−1 , (14)
∣

∣

∣

∣

∂hi

∂x1
(x1)

∣

∣

∣

∣

+

∣

∣

∣

∣

hi(x1) − hi−1(x1)

∆t

∣

∣

∣

∣

≤ K (15)

h(0, t) = R0(0), h(L, t) = R0(L), h(x1, 0) = R0(x1) > 0.

We proved the following existence result for some shear thinning and shear thickening
fluids.

Theorem 4.1 (Existence of weak solution). [14]
Let p ≥ (1 +

√
5)/2. Assume that h ∈ W 1,∞((0, T ) × (0, L))satisfies (14), (15) and that

the boundary data P̃in, P̃out ∈ L∞(0, T ; L2(0, 1)), P̃w ∈ L∞(0, T ; L2(0, L)). Furthermore,
assume that the properties (10)–(13) for the viscous stress tensor hold.

Then there exist a weak solution (u, η) of the problem (1), (2), (8) such that
i) (ũ, η̃t) ∈ [Lp(0, T ; V ) × L∞(0, T ; H1

0 (0, L))] ∩ [L∞(0, T ; L2(D)) × H1(0, T ; L2(0, L))],
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ii) u satisfies the divergence free condition div u = 0 a.e on Ω(h) and the following integral
identity holds

∫

Ω(h)







−ρu · ∂ϕ

∂t
+ 2µ(|D(u)|)D(u)D(ϕ) + ρ

2
∑

i,j=1

ui
∂uj

∂xi
ϕj







dxdt

+

∫ T

0

∫

Γout

(

Pout −
ρ

2
|u1|2

)

ϕ1(L, x2, t) dSdt

−
∫ T

0

∫

Γin

(

Pin − ρ

2
|u1|2

)

ϕ1(0, x2, t) dSdt

+

∫ T

0

∫

Γw

(

Pw − ρ

2
u2

(

u2 −
∂h

∂t

))

ϕ2(x1, h(x1, t), t) dSdt

+

∫ T

0

∫ L

0

(

−∂η

∂t

∂ξ

∂t
+ c

∂2η

∂x1∂t

∂ξ

∂x1
+ a

∂η

∂x1

∂ξ

∂x1
− a

∂2R0

∂x2
1

ξ + bη ξ

)

(x1, t) dx1dt = 0

for every test functions

ϕ = (x1, x2, t) = ϕ̃

(

x1,
x2

h(x1, t)
, t

)

, ϕ̃ ∈ Lp(0, T ; V ) ∩ H1(0, T ; L2(D)),

such that div ϕ = 0 a.e on Ω(h),

ξ(x1, t) = ϕ̃2(x1, 1, t)ρw~; ξ(0, ·) = ξ(L, ·) = 0

In this result the structure equation is fulfilled in a slightly modified sense

∂2η

∂t2
− a

∂2η

∂x2
1

+ bη − c
∂3η

∂t∂x2
1

=

− R

R0

Tfn · er

ρw~
− R

R0

PwIn · er

ρw~
+

ρ

2

u2(u2 − ∂th)

ρw~
+ a

∂2R0

∂x2
1

a.e. on [0, L] × (0, T ).

Furthermore, the interface boundary condition

u2(x1, h(x1, t), t) =
∂η

∂t
(x1, t)

holds a.e. at the moving wall Γw. The additional term ρ
2u2(u2 − ∂th) on the right hand

side of deformation equation disappears if h → R0 + η.
The proof of existence and uniqueness is based on energy method, a-priori estimates,

compact imbeddings and theory of monotone operators in order to take into account
growth character of viscous non-linear stress τ(D). The uniqueness and continuous de-
pendence of weak solution on data h, P̃in, P̃out, P̃w are essential for proving the contrac-
tiveness of domain iterations, see [7, Section 10] for details. For related results on shear
dependent fluid or fluid-structure interaction problems see also [18], [11], [5], [26], [28].
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5 Numerical methods

5.1 Decoupling method for fluid-structure interaction: the global itera-

tive method

The coupling between the fluid and the domain is twofold. First, the stress tensor of
the fluid influences the domain deformation since it appears on the right-hand side of the
structure equation (8). On the other hand, the Dirichlet boundary condition (2) on Γw is
related to the domain deformation η.

The fluid-structure interaction given by conditions (2) and (8) is decoupled by a global
iteration with respect to the domain geometry. It means that in the k-th iteration, the
vector (uk, pk, ηk) is obtained as a solution of (1) for all (x, t) ∈ Ω(η(k−1)), and (8) for all
x1 ∈ (−L, L). Instead of condition (2) we use

u2(x1, x2, t) =
∂ηk−1(x1, t)

∂t
= ugrid

2 (x1, x2, t), u1(x1, t) = 0, on Γw,k−1, (16)

where Γw,k−1 = {(x1, x2); x2 = R0(x1) + ηk−1(x1, t), x1 ∈ (−L, L)} and ugrid is the
velocity of mesh movement related to smoothing the grid after moving its boundary (we
allow just movement in the x2 direction, x1 direction is neglected), see also [31].

Further we linearize the equation (8) replacing the non-linear term on its left hand
side by Eη/(ρw(R0 + ηk−1)R0). In order to decouple (1) and (8) we evaluate the forcing
term at the right hand side of (8) at the old time step tn−1, see also Fig 4. Convergence of
this global method was verified experimentally. Our extensive numerical experiences show
fast convergence of domain deformation, two iteration of domain deformation differ about
10−4cm (for e.g., R0 = 1cm) pointwisely after few, about 5 iterations. As an example we
have depicted in Figure 3 a deformed vessel wall after 1, 2, 3 and 4 global iterations at the
same time T = 0.36s. It illustrates that the vessel wall converges to one curve and does
not change significantly already after second iteration, see Fig. 3. For theoretical proof of
the convergence ηk → η see Section 4 and [14].

5.2 Discretization methods

For the numerical approximation of (1), (2) and (8) we have used as a basic software the
UG software toolbox [1] and extended it by adding the shear-dependent viscosity as well
as by adding the solver for the wall deformation equation (8). In UG the problem class
library for the Navier-Stokes equations in moving domain is based on the ALE formulation,
see [3]. The spatial discretization of the fluid equations (1) is realized by the finite volume
method with the pseudo-compressibility stabilization. This stabilization results in the
elliptic equation for the pressure. The non-linear convective term is linearized by the
Newton or fixed point method, see e.g., [17].

We describe our approximation methods in what follows.
Linearization of the viscous term: According to Taylor’s expansion we have

µ(|D(∇u)|)D(∇u) = µ(|D(∇uold)|)D(∇uold) (17)

+
d [µ(|D(∇u)|)D(∇u)]

d(∇u)
(∇uold)(∇u −∇uold) + O((∇u −∇uold)2),
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Re = 40, cf. (21)
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Figure 4: The sketch of the global iterative method

where

d [µ(|D(∇u)|)D(∇u)]

d(∇u)
(∇uold)

= µ(|D(∇uold)|)1
2
(I + IT ) +

d µ(|D(∇u)|)
d∇u

(∇uold)D(∇uold).

Plugging the expression for d[µ(|D(∇u)|)∇u]
d(∇u) into (17) and neglecting the higher order
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term O((∇u − ∇uold)2) we obtain the Newton type iteration. By neglecting the term
d µ(|D(∇u)|)

d(∇u) (∇uold)D(∇uold) - the second term from the above expression for derivative of

µ(|D(∇u)|)D(∇u) we get the fixed point iterations

µ(|D(∇u)|)D(∇u) ≈ µ(|D(∇uold)|)D(∇u). (18)

Here (.)old denotes the previous iteration.
In order to approximate the structure equation we apply the finite difference method.

First we rewrite the second order equation (8) as a system of two first order equations.
Set ξ = ∂tη. Time discretization is realized by the following scheme

ξn+1 − ξn

∆t
− Aα

∂2ηn+1

∂x2
1

+ Bαηn+1 − Cα
∂2ξn+1

∂x2
1

= Hn + A(1 − α)
∂2ηn

∂x2
1

− B(1 − α)ηn + C(1 − α)α
∂2ξn

∂x2
1

ηn+1 − ηn

∆t
= αξn+1 + (1 − α)ξn,

where

A =
|σz|
ρw

[

1 +

(

∂R0(x1)

∂x1

)2
]−2

, B =
E

ρw(R0 + η)R0
+

(Tf + PwI)n · er

ρw~R0
,

C > 0, H =
|σz|
ρw

(

∂2R0(x1)

∂x2
1

)

[

1 +

(

∂R0(x1)

∂x1

)2
]−2

− (Tf + PwI)n · er

ρw~
.

Physical meaning of quantities appearing in the coefficients A, B, C is following, see [8]:
the Young modulus is E = 0.75.105dyn/cm2, the wall thickness ~ = 0.1cm, the density
of the vessel wall tissue ρw = 1.1g/cm3, |σz| = Gκ, where κ = 1 is the Timoshenko
shear correction factor and G is the shear modulus, G = E/2(1 + σ), where σ = 1/2 for
incompressible materials. The coefficient C = γ/(ρw~), we have used γ = 2.104.

If α = 0 we have an explicit scheme in time, for α = 1 we obtain an implicit scheme.
The parameter α = 1

2 yields the Newmark scheme, which is proven to be unconditionally
stable at least in the case of homogeneous Dirichlet boundary conditions, see [19].

6 Numerical experiments

In this section we present a series of numerical experiments for fluid flow in a compliant ves-
sel. The aim is to investigate differences in the behavior of Newtonian and non-Newtonian
fluids in moving domains. We have chosen two non-Newtonian models for the blood flow
often used in the literature, the Carreau and the Yeleswarapu model. Further, we study
the influence of non-Newtonian rheology and of fluid-structure interaction on some hemo-
dynamical wall parameters such as the wall shear stress WSS and the oscillatory shear
index OSI.
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We consider a two dimensional symmetric tube with a smooth stenosed region. Due
to the symmetry we can restrict our computational domain to the upper half of the tube.
A representative geometry is shown e.g. in Fig. 10. The impermeable moving wall Γw is
modeled as a smooth stenosed constriction given as, see [16],

f(x1) = 1 − g

2

(

1 + cos
(πx1

2

))

if x1 ∈ |r|
f(x1) = 1 if x1 ∈ (−L,−r) ∪ (r, L).

We took L = 5, r = 2, g = 0.3. These values give a stenosis with 30% area reduction
which corresponds to a relatively mild occlusion, leading to local small increment of the
Reynolds number.

Let Γin = {(−L, x2); x2 ∈ (0, 1)}, Γout = {(L, x2); x2 ∈ (0, 1)}, Γs = {(x1, 0); x1 ∈
(−L, L)} denote the inflow, outflow and symmetry boundary, respectively. We prescribe
the pulsatile parabolic velocity profile on the inflow boundary of the tube

u1(−L, x2) = V (R(t)2 − x2
2)f(t), u2(−L, x2) = 0, (19)

where R(t) = R0(0) + ηk(0, t), R0(0) = 1 and V is the maximal velocity at the inflow.
For temporal function f(t) modelling pulses of heart we have used two variants: f(t) =
sin2 (πt/ω) with the period ω = 1s as well f(t) arising from the iliac artery flow rate, see
Fig.5. The flow rate is defined as

0.2 0.4 0.6 0.8
time HsL

-20

-10

10

20

30

40
flow rateHml�sL

Flow rate in iliac artery

Figure 5: Flow rate Q(t) in iliac artery, the period is T = 0.9s, (data obtained from [27]
Fig. 3)

Q(t) =

∫

Γin

u1dx2.

By integration inflow velocity (19) over Γin we obtain that Q(t) = 4
3V πR(t)3f(t). Conse-

quently we get the relation for temporal function f(t) in (19),

f(t) = Q(t)
3

4V πR(t)3
. (20)
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For Γs the symmetry boundary condition ∂x2
u1 = 0, u2 = 0 is prescribed and for Γout

the Neumann type boundary condition −Tfn = PoutIn is used. Since the viscosity of
the non-Newtonian fluid is a function of shear rate, see Fig. 1, we compute the Reynolds
number using averaged viscosity

Re =
ρV l

1
2(µ0 + µ∞)

, (21)

where ρ is the fluid density, V is the characteristic velocity (maximal inflow velocity), l is
the characteristic length (we take the diameter of the tube). In order to take into account
also the effects of asymptotical viscosity values, we define Re0 = ρV l/µ0, Re∞ = ρV l/µ∞

and introduce them in the Table 1 below as well.
In the following numerical experiments we have chosen in analogy to Nadau and Se-

queira [16], Re0 = 30 or Re0 = 60 and µ∞ = 1
2µ0 for the Carreau model (3) as well as for

the Yeleswarapu model (4). We should point out that in [16] the authors studied similar
problem, however they did not consider pulsatile flow and deforming vessel walls. They
used however the generalized Oldroyd-B model for blood. In Section 6.2 we will also test
the stability and robustness of the method for physiological parameters [29], see Table 1.

Table 1: Parameters for numerical experiments

Re0 = 30 Re0 = 60 Re0 = 30 Re0 = 60
Carreau model Yeleswarapu model

q = 0, −0.322, −10
λ = 1 λ = 14.81

µ∞ = 1.26P µ∞ = 0.63P µ∞ = 1.26P µ∞ = 0.63P
µ0 = 2.53P µ0 = 1.26P µ0 = 2.53P µ0 = 1.26P
V = 38 cm/s V = 38 cm/s V = 38 cm/s V = 38 cm/s

Re = 40 Re = 80 Re = 40 Re = 80
Re∞ = 60 Re∞ = 121 Re∞ = 60 Re∞ = 121

physiological parameters physiological parameters
q = −0.322 λ = 3.313

µ∞ = 0.0345P µ∞ = 0.05P
µ0 = 0.56P µ0 = 0.736P
V = 17cm/s V = 22.3cm/s

Re = 114 Re = 113
Re∞ = 986 Re∞ = 892

6.1 Numerical experiments for model data

In what follows we plot the results comparing several aspects of Newtonian and non-
Newtonian flow in the straight channel and in the channel with a stenotic occlusion. We
chose the Dirichlet inflow boundary condition (19), which model some pulsatile parabolic
velocity profile at the inflow. Here we took f(t) = sin2 (πt/ω), where ω = 1s.
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Fig. 6 describes time evolution of the wall deformation function η at two time instants
t = 0.36s and t = 0.96s for the straight and stenotic compliant channel and for different
non-Newtonian viscosities. Clearly, we can see effects due to the presence of stenosis in
Fig. 6. The differences in wall deformation for non-Newtonian and Newtonian (q = 0)
fluids are not significant. Fig. 7,8 describe the wall shear stress distribution (WSS) along
the moving or fixed (solid) wall in the straight channel and in stenotic channel, respectively.
We compare the WSS for the Newtonian and non-Newtonian fluids. Analogously as before
we see that the WSS depends considerably on the geometry. In Fig. 8 peaks in the WSS
due to the stenosis can be identified clearly for both Newtonian and non-Newtonian models.
Fluid rheology is even more significant for WSS measurements; see different behaviour
of WSS at t = 0.36s in Fig. 7 and Fig. 8. Moreover, we can conclude that the WSS at
t = 0.36s is in general lower in compliant vessel than in solid one, see Fig. 7 for straight
channel and Fig. 8 for stenotic situation.

Another important hemodynamic wall parameter is the oscillatory shear index OSI.
Fig. 9 describes the behavior of the OSI in the straight and stenotic channel (both solid
and compliant case). We can see new effects due to the presence of stenosis in the OSI.
Moreover the peaks in the OSI are more dominant for the non-Newtonian models in
comparison to the Newtonian flow. High OSI values indicate the areas with the large
stenotic plug danger. Fig. 9 indicates, that such areas appear at the end of stenotic
reduction. Numerical simulation with solid vessel walls indicates even higher oscillation of
the wall shear stress. Thus, simulations without fluid-structure interaction would indicate
more critical shear stress situation in vessels as they are actually present in elastic moving
vessels.

We conclude this subsection with a statement, that the fluid rheology and domain
geometry may have a considerable influence on the hemodynamic wall parameters WSS
and OSI. The fluid-structure interaction aspect plays definitely significant role in the pre-
diction of hemodynamical indices and should be involved in reliable computer simulations.
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Figure 6: Deformation of the compliant vessel wall, left: the Newtonian (NS) and the
Carreau models in the straight channel; right: the Newtonian (NS), the Yeleswarapu and
the Carreau models in the stenosed channel, Re = 40
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nian (NS) and the Carreau model, Re = 40, left: t = 0.36s, right: t = 0.96s

6.2 Numerical experiments for physiological parameters

We present several results comparing the behavior of both non-Newtonian models, the
Carreau and the Yeleswarapu model with corresponding physiological parameters, see
Table 1. In the first numerical experiment we consider the pulsatile velocity profile at the
inflow as in Section 6.1.

Fig. 10 describes the velocity field at different times. We can clearly notice reversal
flow areas due to pulsatile behavior of blood flow. In Fig. 11 the streamlines and the
pressure distribution for the Yeleswarapu model at different time instants can be seen.
Again at time t = 0.96, where the inflow velocity is decreasing we can observe reversal
flow and vortices in the streamlines. Note also that some differences between the Carreau
and the Yeleswarapu model have been observed in the wall deformation η, the OSI, as
well as in the WSS, see Figs. 12, 13, respectively.

Further, our numerical experiments confirm, that the differences between Newtonian
and non-Newtonian fluids in the wall deformation, wall shear stress and also OSI increase
with increasing Reynolds numbers, see Figs. 14, 15 (left), 16.

In the next numerical experiment we consider the Neumann type boundary condi-
tion for deformation equation on the inflow boundary. This condition represents a free
movement of vessel wall on the inflow and outflow part and seems to be more natural for
modelling the flow in a part of elastic vessel. In this numerical experiment, moreover, we
have introduced some damping of deformation in stenotic region. This is reasonable, since
the stenotic occlusion is created by fat accumulated on the vessel wall and the stenotic
plug may have different elastic properties. We considered Young’s modulus E and damp-
ing parameter c in the structure equation (8) being following functions of longitudinal
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Figure 8: WSS along the vessel wall in stenosed compliant(top) and solid (bottom) chan-
nel, the Newtonian (NS), the Yeleswarapu and the Carreau models at two time instants,
Re = 40

variable x

E = E(x) =

{

E x ∈ (−5,−2) ∪ (2, 5)
E[1 + 0.1(x2 − 4)] x ∈ 〈−2, 2〉,

c = c(x) =

{

20.000 x ∈ (−5,−2) ∪ (2, 5)
20.000[1 − 0.01(x2 − 4)] x ∈ 〈−2, 2〉.

In order to obtain more realistic hemodynamical situation, the parabolic velocity profile at
the inflow was multiplied with temporal function derived from iliac artery measurements,
see Fig. 5 and (20). We set the period T = 0.9s and final computational time is chosen
to be t = 1.8s. Numerical results are presented in Figs. 15 (right), 17, 18, 19.

Notice that the vessel wall at inflow and outflow are not fixed and the radius of vessel
wall is increasing and decreasing according to the acting flow forces, Fig. 17. Due to
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Figure 10: Numerical experiment using physiological parameters: the Carreau model,
Re = 80, t = 0.36s (top) and t = 0.96s (bottom), velocity field

the increased damping parameter and decreased elasticity in the stenosed area the wall
deformation presented in Fig. 17 is reduced considerably in comparison to the previous
experiments, e.g. Fig. 14. Effects of different elasticity behavior at the stenosed part have
also considerable influence on the behavior of hemodynamical wall parameters OSI and
WSS, see Figs. 15, 18. Comparing pictures for streamlines as well as pressure presented
in Fig. 19 we can notice much more complex phenomena, different types of recirculation
zones as well as flow patterns.
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Figure 11: Numerical experiment using physiological parameters: the streamlines and the
pressure distribution for the Yeleswarapu model at two time instants, t = 0.36s (top) and
t = 0.96 (bottom), Re = 80
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Figure 12: Numerical experiment in stenosed vessel using physiological parameters, left:
wall deformation at two time instants, right: OSI indices
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Figure 13: Numerical experiment using physiological parameters, comparison of the WSS
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Figure 16: Numerical experiment using physiological parameters: comparison of wall shear
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Figure 17: Numerical experiment with physiological parameters: wall deformation at four
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Figure 19: Streamlines and pressure at five different time steps t = 0.1s, t = 0.2s, t =
0.36s, t = 0.56s, t = 9s, Neumann boundary conditions at the end of vessels, damping in
the stenotic region, iliac artery inflow
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7 Convergence study

The aim of this chapter is to study the experimental order of convergence using the L2

errors of solution at different meshes, cf. e.g. in [12]

EOC = log2

‖uh − uh/2‖L2

‖uh/2 − uh/4‖L2

,

where uh is the solution on the mesh with mesh size h. We use also the notation

Err(uh) = ‖uh − uh/2‖L2/|Ω|, Err(ηh) = ‖ηh − ηh/2‖L2/2L,

analogously Err(ph) for pressure. The computational domain Ω(η) is consecutively divided
into 16×2 elements (mesh 1.), 32×4 elements (mesh 2.), 64×8 elements (mesh 3.), 128×16
elements (mesh 4.), where the element size ∆x and ∆y is halved. We worked with piecewise
linear approximation for fluid velocities and for pressure. For time discretization backward
Euler method was used.

In Table 2 we present convergence order results for stationary flow in the rigid tube,
see the Fig. 20 for the geometry and boundary conditions. In fact, the stationary flow has
been simulated by time dependent equations that has been computed until the final time
T = 0.8s. The non-Newtonian model (Carreau model, µ∞ = 0.63, µ0 = 1.26, Vinflow =
38 cm/s, q = −0.2) has been compared to the Newtonian fluid (µ = 0.63, Vinflow =
38 cm/s). For velocity we have obtained the second order convergence in space for both
the Newtonian as well as non-Newtonian flow. Let us note a reduced convergence rate for
pressure in the non-Newtonian case that might be caused by the parabolic velocity profile
in the Dirichlet boundary conditions. These are better suited for the Newtonian flow.
In order to overcome this problem we have tested in what follows symmetry boundary
conditions and Neumann outflow boundary conditions.

Dirichlet 
outflowDirichlet

inflow

Dirichlet u=0

Dirichlet u=0

1 cm

Figure 20: Boundary conditions in the 1. numerical experiment

Table 3 demonstrates convergence results on rigid halved domain with symmetry con-
dition at the central line, see Fig. 21. We can notice slightly worse convergence rate in
velocity for the Newtonian case. Moreover, in the non-Newtonian case the convergence
in velocity is reduced to 1. This effect can be explained by the influence of symmetry
boundary conditions coupled with the Neumann boundary conditions. On the other hand
this boundary conditions improve convergence of pressure in the non-Newtonian case to
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Table 2: Convergence order in rigid tube for Newtonian and non-Newtonian fluid

1. exp. Newt. fluid q = 0 non-Newtonian fluid q = −0.2

mesh Err(uh) EOC Err(ph) EOC Err(uh) EOC Err(ph) EOC

2/1 8.5771 22.881 9.3429 26.061

3/2 1.4423 2.572 3.5120 2.704 1.5025 2.636 4.9486 2.397

4/3 0.2997 2.267 0.6934 2.341 0.2934 2.357 2.0053 1.303

symmetry condition

Dirichlet u=0

Dirichlet
Neumann1 cm

Figure 21: Boundary conditions in the 2. numerical experiment

the second order. Table 4 presents results for different exponent q, q = −0.1 and q = −0.3.
Similarly, convergence order in velocity is reduced to 1.

Table 3: Convergence order in rigid tube

2. exp. Newtonian fluid q = 0 non-Newt. fluid q = −0.2

mesh Err(uh) EOC Err(ph) EOC Err(uh) EOC Err(ph) EOC

2/1 1.0783 3.5199 0.9859 3.7209

3/2 0.2758 1.967 0.6870 2.357 0.2766 1.834 0.7073 2.395

4/3 0.0084 1.714 0.3204 1.101 0.1240 1.157 0.1577 2.165

In the following we will present numerical experiments for moving domain. We use
halved domain with symmetry flow condition at the central line and the Neumann bound-
ary condition at the outflow, see Fig. 21. Now, the flow is non-stationary and the final
time was set to T = 0.4s. Eleven iterations of domain geometry has been performed in
global framework (i.e. the values from previous domain iteration has been used in order
to deform the domain in actual fluid-structure computation, as described in Section 5.1).

For Newtonian fluids, see Table 5 we observe almost second order convergence in veloc-
ity. Due to the reduced convergence rate in pressure we obtained also reduced convergence
rate in the domain deformation η. The lower convergence rate for η as expected (we used
Newmark scheme that has the second order accuracy) is thus caused by the worse con-



Shear-dependent non-Newtonian fluids in compliant vessels 26

Table 4: Convergence order in rigid tube

2. exp. non-Newt. fluid q = −0.1 non-Newt. fluid q = −0.3

mesh ∆t Err(uh) EOC Err(uh) EOC

2/1 0.002 0.9307086 1.025074

3/2 0.002 0.2627934 1.824 0.2806220 1.869

4/3 0.002 0.1207427 1.122 0.1131567 1.310

Table 5: Convergence order in deforming tube, T = 0.4s, µ = µ∞ = 0.63

2. exp. Newtonian fluid q = 0

mesh Err(uh) EOC(uh) Err(ph) EOC(ph) Err(ηh) EOC(ηh)

2/1 1.1078 3.3068 0.0065

3/2 0.2831 1.968 0.6756 2.291 0.0021 1.6099

4/3 0.0862 1.714 0.3212 1.073 0.0009 1.2814

vergence of the pressure in the force term. Tables 6 and 7 present analogous numerical
experiment for different exponents q, i.e. q = −0.2 and q = −0.3. Convergence rates in
velocity and pressure are similar to those for non-Newtonian fluids in a rigid tube. As a
consequence the second order convergence in pressure influences also the convergence of
the domain deformation η, which is now of the second order as expected.

In conclusion in our future study we want to investigate the question of appropriate
boundary condition more deeply. In particular, we want to derive boundary conditions
suitable for both the Newtonian as well as non-Newtonian fluids, that will preserve the
desired second order convergence in all components as well as in the domain deformation.

8 Conclusions

In this paper we have simulated blood flow in a part of elastic moving vessel and analyzed
some hemodynamical control quantities. We have modeled blood as a shear-thinning non-
Newtonian fluid and chosen two well-known models, the Carreau (or Carreau-Yasuda)
model and the Yeleswarapu model. Comparisons with the Newtonian model are presented
as well. We have investigated the wall deformation and the hemodynamical wall param-
eters, the wall shear stress WSS and the oscillatory shear index OSI for a straight and
stenotic tube.

The fluid equations were approximated by the finite volume method with the pseudo-
compressibility stabilization for spatial discretization. We have linearized the non-linear
Cauchy stress tensor by fixed point iterations. For the deformation equation we used
the Newmark finite difference scheme. The global iterations with respect to the domain
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Table 6: Convergence order in deforming tube, T = 0.4s, µ0 = 1.26, µ∞ = 0.63

2. exp. non-Newtonian fluid q = −0.2

mesh Err(uh) EOC(uh) Err(ph) EOC(ph) Err(ηh) EOC(ηh)

2/1 1.0194 3.4599 0.0074

3/2 0.2825 1.851 0.6944 2.317 0.0023 1.696

4/3 0.1206 1.228 0.1556 2.158 0.0004 2.513

Table 7: Convergence order in deforming tube, T = 0.4s, µ0 = 1.26, µ∞ = 0.63

2. exp. non-Newtonian fluid q = −0.3

mesh Err(uh) EOC(uh) Err(ph) EOC(ph) Err(ηh) EOC(ηh)

2/1 1.0558 3.3672 0.0068

3/2 0.2850 1.889 0.5994 2.490 0.0019 1.840

4/3 0.1109 1.362 0.1522 1.977 0.0004 2.305

geometry are based on the ALE formulation for representation of the fluid-structure in-
teraction. Numerical experiments indicate that the global iterative method is robust and
relatively fast. The stability and accuracy of numerical method have been tested for several
model parameters, including the physiological parameters for shear dependent viscosity
and inflow rate.

The presented results demonstrate a significant influence of the non-Newtonian fluid
model, especially for hemodynamical control quantities such as the WSS and OSI. Larger
negative absolute values of WSS appears in the case of non-Newtonian fluids. According
to some authors [16] this indicates the appearance of recirculation zones and reversal
flows around stenosis, which seems to be better predicted by the non-Newtonian models.
Further, the domain geometry has also a considerable influence on the wall deformation
as well as on the WSS and OSI. Moreover the maximum values of OSI are larger for the
non-Newtonian models in comparison to the Newtonian flow. Such high OSI values at
the end of stenotic occlusion indicate a large oscillatory nature of the wall shear stress and
could yield further to additional stenotic plug. Comparing the measurements of WSS and
OSI for solid and compliant vessel we have obtained significantly higher oscillations of the
wall shear stress for fixed solid vessels. This leads to the conclusion that the fluid-structure
interaction aspect is important for hemodynamical modelling and should be involved in a
reliable computational model.

Numerical experiments for viscosities with physiological parameters have been per-
formed as well. We have shown that for higher Reynolds numbers the effects of non-
Newtonian rheology are even more profound. All results confirm a significant influence
of the fluid rheology and domain geometry on the wall deformation as well as on the
hemodynamic wall parameters.
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In future we want to extend the model and consider the generalized Oldroyd-B model
that includes the viscoelastic properties of blood as well. Additionally, we want to consider
different models for vessel walls, cf. [4] and more complex vessel geometries, e.g. bifurca-
tions. Thus, we will not restrict ourselves only to the deformation in one direction but
consider the domain deformation in both x1 and x2 direction, η = (η1, η2). An important
point of numerical simulation is a correct outflow boundary condition, reflecting the influ-
ence of the rest of the circulatory system. According to the [27] this can be realized by the
so-called impedance condition arising from coupling the model with some less dimensional
model (1D or 0D lumped model).

Theoretical analysis of similar problems for Newtonian fluids in a moving domain is
presented e.g., in [28], [11], [5], [26], etc. Theoretical results of existence and uniqueness
of the weak solution to our shear-dependent non-Newtonian fluid-structure problem have
been presented in Section 4, see also [14]. However, we were able only to show existence
and uniqueness of the solution for one global iteration. Our future goal is to show the
convergence of global iterations that is indicated by our numerical experiments.
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