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1 Introduction

Many types of flows not necessarily involving water, can be characterised
as shallow water flows. They describe flows of fluids with a free surface un-
der the influence of gravity, where the vertical dimension is much smaller
than any typical horizontal scale. In 1950 von Neumann et al. produced first
weather forecast by simulating the two-dimensional shallow water equations
describing atmospheric flows. Further examples of shallow water are rivers
with their flood plains, flows in lakes generated by wind blows, propagation
of tsunamis, oceanographic and geophysical flows.

Oceanographic flows were simulated in 1956 by Hansen. Traditionally,
tidal flows are computed on the entire globe taking tide-generation forces by
sun and moon into account. The prediction of storm surges is also of inter-
est. In particular, flows and water level variations, generated by atmospheric
pressure differences and wind stresses on the water surface, are important.

For smooth flows different methods, such as finite difference schemes,
finite element methods, or spectral methods perform quite well. Under some
assumptions flows with discontinuities can also be computed numerically. For
example, tidal bores observed in some rivers or the wave resulting from the
bursting of a dam. In this situation, a moving step front develops, which
is comparable to a shock wave in aerodynamics. In our work we consider
problems involving bores or hydraulic jumps and therefore the aim is to
derive such schemes which take the hyperbolic character of the equations
into account and allow modelling of discontinuous flows.

Nowadays there are the so-called finite volume methods which are com-
monly used numerical schemes in order to solve hyperbolic systems of partial
differential equations. In the last decade emphasis has been put on the devel-
opment of genuinely multidimensional finite volume schemes, see, e.g. [1], [2],
[5], [6]. In multidimensional flows, there is in general no longer a finite number
of propagation of information along the bicharactersitics, but rather infinitely
many directions. This has to be taken into account in order to design a re-
liable multidimensional scheme. Instead of solving one-dimensional Riemann
problems in normal directions to cell interfaces the finite volume evolution
Galerkin schemes are based on the genuinely multidimensional approach.
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In order to evaluate fluxes on cell boundary the approximate solution at
cell interfaces is computed by means of an approximate evolution operator
using all of the inifinitely many bicharacteristics explicitly into account. This
is a novel feature of our method and a genuine generalization of Godunov’s
ideas. In the second step the finite volume update is done.

2 Shallow water equations and the exact evolution

operators

Let us consider a fluid which is incompressible, non-viscous, non-heat con-
ducting and neglect the vertical component of the velocity due to the shallow
effects. Then the two-dimensional shallow water equations can be written in
the form of a first order hyperbolic system of conservation laws with a source
term

∂V

∂t
+

∂F (V )

∂x
+

∂G(V )

∂y
= T (V ), x = (x, y)T ∈ IR2, (1)

with

V =





h
hu
hv



 , F (V ) =





hu

hu2 + gh2

2
huv



 ,

G(V ) =





hv
huv

hv2 + gh2

2



 , T (V ) =







0

−gh∂(H−h)
∂x + fhv

−gh∂(H−h)
∂y − fhu






.

Here h denotes the depth of the shallow water, H is the total difference
between the bottom solid surface and the free water surface, u, v are com-
ponents of the depth averaged velocities of the flow, g is the constant of the
gravitational acceleration, and f stays for the Coriolis forces. In this contri-
bution we will consider only homogeneous equations, i.e. T = 0. The study
of influence of the source term is our future goal. It can be included into the
scheme either by the operator splitting approach or directly in the derivation
of the scheme.

In order to derive the exact integral representation of the solution we will
rewrite conservative system (1) with T = 0 in primitive variables. This is the
simplest and the most convenient form for studying bicharacteristics of the
system away from shocks. By freezing the Jacobian matrices of F and G at a
suitable point P̃ = (x̃, ỹ, t̃) we get the linearized system written in primitive
variables

∂U

∂t
+A1(Ũ)

∂U

∂x
+A2(Ũ )

∂U

∂y
= 0, (2)

where U ,A1(Ũ ) and A2(Ũ ) are defined by
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U =





h
u
v



 ,A1(Ũ) =
dF (Ũ )

dŨ
=





ũ h̃ 0
g ũ 0
0 0 ũ



 ,A2(Ũ) =
dG(Ũ )

dŨ
=





ṽ 0 h̃
0 ṽ 0
g 0 ṽ



 .

In two space dimensions an arbitrary vector n can be written in the form
n = n(θ) = (nx, ny)

T = (cos θ, sin θ)T ∈ IR2. The eigenvalues of the matrix
pencil A = A1nx +A2ny are

λ1 = ũ cos θ + ṽ sin θ −

√

gh̃,

λ2 = ũ cos θ + ṽ sin θ,

λ3 = ũ cos θ + ṽ sin θ +

√

gh̃,

where

√

gh̃ = c̃ denotes the wave celerity. The corresponding linearly inde-
pendent right eigenvectors are

r1 =





−1
g
c̃ cos θ
g
c̃ sin θ



 , r2 =





0
sin θ

− cos θ



 , r3 =





1
g
c̃ cos θ
g
c̃ sin θ



 .

Let R be the matrix of the right eigenvectors. Its inverse reads

R
−1 =

1

2





−1 c̃
g cos θ

c̃
g sin θ

0 2 sin θ −2 cosθ
1 c̃

g cos θ
c̃
g sin θ



 .

Let us define the vector of characteristic variables W

W = R
−1

U .

Multiplying system (2) byR−1 from the left yields the following characteristic
system

∂W

∂t
+B1(W̃ )

∂W

∂x
+B2(W̃ )

∂W

∂y
= 0,

where

B1 =





ũ− c̃ cos θ − 1
2 h̃ sin θ 0

−g sin θ ũ g sin θ

0 1
2 h̃ sin θ ũ+ c̃ cos θ



 ,

B2 =





ṽ − c̃ sin θ 1
2 h̃ cos θ 0

g cos θ ṽ −g cos θ

0 − 1
2 h̃ cos θ ṽ + c̃ sin θ



 ,

and the characteristic variables W are

W (n) =





w1

w2

w3



 = R
−1(n)U =





1
2 (−h+ u c̃

g cos θ + v c̃
g sin θ)

u sin θ − v cos θ
1
2 (h+ u c̃

g cos θ + v c̃
g sin θ)



 . (3)
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The quasi-diagonalised system of the linearised shallow water equations
has the following form

∂W

∂t
+





ũ− c̃ cos θ 0 0
0 ũ 0
0 0 ũ+ c̃ cos θ





∂W

∂x
+





ṽ − c̃ sin θ 0 0
0 ṽ 0
0 0 ṽ + c̃ sin θ





∂W

∂y
= S

(4)
with

S =





S1

S2

S3



 =







1
2 h̃(cos θ

∂w2

∂y − sin θ ∂w2

∂x )

g sin θ(∂w3

∂x − ∂w1

∂x ) + g cos θ(∂w1

∂y − ∂w3

∂y )
1
2 h̃(sin θ

∂w2

∂y − cos θ ∂w2

∂x )






.

Let us denote by xℓ the ℓ-th bicharacteristic corresponding to the ℓ-th
equation of system (4). The bicharacteristic xℓ is defined in the following
way

dxℓ(s)

ds
=

(

b1ℓℓ
b2ℓℓ

)

,

where b1ℓℓ, b
2
ℓℓ are the diagonal entries of the matrices B1,B2, respectively.

The bicharacteristics xℓ create the surface of the so-called bicharacteristic
cone, see Fig. 1, with the apex P = (x, y, t+△t) and the footpoints

Q1(θ) = (x− (ũ − c̃ cos θ)△t, y − (ṽ − c̃ sin θ)△t, t),

Q2 ≡ P ′ = (x− ũ△t, y − ṽ△t, t),

Q3(θ) = (x− (ũ + c̃ cos θ)△t, y − (ṽ + c̃ sin θ)△t, t).

P = (x, y, t+∆t)

P ′

Qℓ(θ)

x
y

z

Fig. 1. Bicharacterestics cone.
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Integrating each equation of (4) along the corresponding bicharacteristic
from the apex P down to the footpoints Qℓ we get

wℓ(P ) = wℓ(Qℓ) +

∫ t+△t

t

Sℓ(Qℓ(t̃))dt̃, ℓ = 1, 2, 3. (5)

Now multiplying (5) with R from the left we go back to the original variables
U

U(P ) =

1

2π

∫ 2π

0





−w1(Q1(θ), θ) + w3(Q3(θ), θ)
g
c̃ cos θw1(Q1(θ), θ) + sin θw2(Q2(θ), θ) +

g
c̃ cos θw3(Q3(θ), θ))

g
c̃ sin θw1(Q1(θ), θ) − cos θw2(Q2(θ), θ) +

g
c̃ sin θw3(Q3(θ), θ))



 dθ

+
1

2π

∫ 2π

0





−S
′

1(θ) + S
′

3(θ)
g
c̃ cos θS

′

1(θ) + sin θS
′

2(θ) +
g
c̃ cos θS

′

3(θ)
g
c̃ sin θS

′

1(θ)− cos θS
′

2(θ) +
g
c̃ sin θS

′

3(θ)



dθ, (6)

where S
′

ℓ(θ) =
∫ t+△t

t
Sℓ(xℓ(t̃, θ), t̃, θ)dt̃ is an integral along the ℓ-th bichar-

acteristic.
Since λ1 = −λ3, Q1(θ + π) = Q3(θ), and the characteristic variables wℓ

are 2π-periodic we can, after analogous computations as in [7], reformulate
the exact integral equations (6) in the following way

h(P ) =
1

2π

∫ 2π

0

h(Q)−
c̃

g
u(Q) cos θ −

c̃

g
v(Q) sin θ dθ

−
1

2π

∫ 2π

0

∫ t+△t

t

c̃

g
S(x− (ũ− c̃n(θ))(t+△t− t̃), t̃, θ) dt̃ dθ, (7)

u(P ) =
1

2π

∫ 2π

0

−
g

c̃
h(Q) cos θ + u(Q) cos2 θ + v(Q) sin θ cos θ dθ

+
1

2π

∫ 2π

0

∫ t+△t

t

cos θ S(x− (ũ− c̃n(θ))(t +△t− t̃), t̃, θ) dt̃ dθ

+
1

2
u(P ′)−

g

2

∫ t+△t

t

φx(x− ũ△t, y − ṽ△t, t̃) dt̃, (8)
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v(P ) =
1

2π

∫ 2π

0

−
g

c̃
h(Q) sin θ + u(Q) cos θ sin θ + v(Q) sin2 θ dθ

+
1

2π

∫ 2π

0

∫ t+△t

t

sin θS(x− (ũ− c̃n(θ))(t +△t− t̃), t̃, θ) dt̃ dθ

+
1

2
v(P ′)−

g

2

∫ t+△t

t

φy(x − ũ△t, y − ṽ△t, t̃) dt̃. (9)

Here P = (x, y, t + △t), P ′ = (x − ũ∆t, y − ṽ∆t, t), Q(θ) = Q1(θ) = (x −
(ũ − c̃ cos θ)△t, y − (ṽ − c̃ sin θ)△t, t), and (x − (ũ − c̃n(θ))(t +△t − t̃)) =
(x− (ũ − c̃ cos θ)(t +△t− t̃), y − (ṽ − c̃ sin θ)(t+△t− t̃)).
The term S is given by

S(x, t, θ) := c̃[ux(x, t, θ) sin
2 θ − (uy(x, t, θ) + vx(x, t, θ)) sin θ cos θ

+vy(x, t, θ) cos
2 θ]. (10)

3 Approximate evolution operator and the finite volume

evolution Galerkin method

Equations (7) - (9) give an implicit exact integral representation of the so-
lution to system (2). In order to derive an explicit numerical scheme we will
approximate time-like integrals along bicharacteristics from t up to t+∆t by
the rectangle rule and evaluate integrands at the old time level t.

Spatial derivatives of velocities u and v appearing in the definition of the
term S, cf. (10), can be further eliminating by means of the following lemma,
see [2].

Lemma 1. Suppose w ∈ C1(IR2), and p ∈ C1(IR) are 2π-periodic. Then

integrating round the circle of radius a, with a center having the coordinates

(z1, z2), z1, z2 ∈ R; and denoting a general point by Q ≡ (z1 + a cos θ, z2 +
a sin θ), where z1, z2 ∈ IR, gives

∫ 2π

0

p′(θ)w(Q)dθ − a

∫ 2π

0

p(θ)[wx(Q) sin θ − wy(Q) cos θ]dθ = 0. (11)

Proof. Consider the integral of d
dθ

[p(θ)w(Q)], noting d
dθ

= −a(sin θ ∂
∂x −

cos θ ∂
∂y ).

Taking p = sin θ, w = u and p = − cos θ, w = v with a = c̃∆t, z1 = x−ũ∆t
and z2 = y − ṽ∆t gives from the definition of S in (10)
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∆t

∫ 2π

0

S(t, θ)dθ =

∫ 2π

0

[uQ cos θ + vQ sin θ]dθ. (12)

Analogously we can derive

∆t

∫ 2π

0

S(t, θ) sin θdθ =

∫ 2π

0

[2uQ sin θ cos θ + vQ(2 sin
2 θ − 1)]dθ (13)

and

∆t

∫ 2π

0

S(t, θ) cos θdθ =

∫ 2π

0

[uQ(2 cos
2 θ − 1) + 2vQ sin θ cos θ]dθ. (14)

Now using (12) - (14) and the rectangle rule approximation of the time
integrals we obtain the following approximations of the exact integral repre-
sentations (7), (8) and (9)

h(P ) =
1

2π

∫ 2π

0

h(Q)− 2
c̃

g
u(Q) cos θ − 2

c̃

g
v(Q) sin θdθ +O(∆t2), (15)

u(P ) =
1

2
u(P ′) +

1

2π

∫ 2π

0

− 2
g

c̃
h(Q) cos θ + u(Q)(3 cos2 θ − 1)

+ 3v(Q) sin θ cos θdθ +O(∆t2), (16)

v(P ) =
1

2
v(P ′) +

1

2π

∫ 2π

0

− 2
g

c̃
h(Q) sin θ + 3u(Q) sin θ cos θ

+ v(Q)(3 sin2 θ − 1)dθ +O(∆t2). (17)

Equations (15) - (17) define an approximate evolution operator E∆t,
which is used in order to compute fluxes at cell interfaces.

Now let us consider for simplicity a uniform discretization of a computa-
tional domain consisting of squares of size h. The second order finite volume
evolution Galerkin (FVEG) method can be defined in the following way

U
n+1 = U

n −
∆t

h

2
∑

k=1

δxk
F k(U

n+1/2), (18)

where U
n is a piecewise constant approximation of the exact solution at

time step tn, δxk
F k(U

n+1/2) represents an approximation to the edge flux
difference at the intermediate time level tn + ∆t/2. The cell boundary flux

F k

(

U
n+1/2

)

is evolved using the approximate evolution operator E∆t/2 to

tn+∆t/2 and averaged along the cell boundary. Thus, e. g., on vertical edges
for U itself we have

U
n+1/2 =

1

h

∫ h

0

E∆t/2RhU
ndSy. (19)
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We have denoted by Rh a conservative discontinuous piecewise bilinear re-
covery, which is constructed using the vertex values, see, e.g. [3], [5] for a
detailed description.

In order simplify the evaluation of fluxes along the cell interfaces it is suit-
able to approximate cell interface integrals from 0 to h appearing in (19) by
some suitable numerical quadrature. Let us consider a natural CFL number
ν = max(|ũ| + c̃, |ṽ| + c̃)∆t/h <= 1. Then the midpoint rule approxima-
tion of cell interface integrals naturally does not take into account corner
effects since the fluxes are evaluated at tn +∆t/2 and thus the cone radius is
c̃∆t/2. Therefore this quadrature rule is inappropriate for a multidimensional
scheme. It is proven in [4] that also the trapzeoidal rule is not appropriate
for problems with arbitrary advection velocities ũ, ṽ, since it leads to a non-
monotone scheme. This fact is also demonstrated by numerical experiment
in the next section. On the other hand, the Simpson rule approximation of
the cell interface integrals leads to a monotone finite volume scheme, see [4]
for more details.

In order to construct local bicharacteristic cones we need to determine
linearized local flow information ũ, ṽ, c̃. Put the linearization point P̃ at the
cone appex P , i.e. t̃ = tn + ∆t/2. For the scheme with the Simpson rule
approximation of cell interface integrals the points P̃ ≡ P are put in the cell
vertices as well as the midpoints of the cell interfaces. Local flow velocities
ũ, ṽ, c̃ can be computed, e.g. by averaging over four cells adjacent to the
vertex or over two cells adjacent to the midpoint, respectively.

Further integrals with respect to θ, i.e. along the bicharacteristic cone,
will be computed exactly, such that all of the infinitely many directions of
bicharactetristics are taken into account explicitly.

4 Numerical experiment: Dam break problem

Solving a rotationally-symmetric problem on a Cartesian grid causes prob-
lems for many numerical schemes. Typically a grid aligned effects appear. In
this section we present behaviour of the FVEG scheme by solving the so-
called dam break problem. A circular dam separating two stationary water
levels is suddenly removed and rotationally-symetric waves propagate into
these two domains.

We consider a square computational domain [−1, 1]× [−1, 1] with initial
data

h = 1, u = 0, v = 0, ‖x‖ < 0.3

h = 0.1, u = 0, v = 0, else.

Computational domain is divided into 200×200 square cells and numerical
solution is computed at time T = 0.19. CFL number is set to 0.55. Fig. 2
illustrates contour plots of water depth h and x−, y− velocities u and v,
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respectively. We can notice a circular shock wave, the so-called hydraulic
jump, which expands outward of the centre. A circular rarefaction wave is
developed within this circular shock. This drains fluid from the original deep
region to feed the shock. We have compared two versions of the second order
FVEG scheme. The cell interface integrals of fluxes in (19) are approximated
either by the Simpson rule (left part) or by the trapezoidal rule (right part).
As already mentioned above the trapezoidal rule is inappropriate and leads to
oscillations in solution. This is not the case of the FVEG scheme, which uses
the Simpson rule. Here the numerical solution preserves rotational symmetry
in a perfect way and the problem is solved correctly. Note that in this example
the Froude number Fr = |u|/c is sometimes less and sometimes greater than
1. Thus the subcritical and supercritical flows develop. The FVEG scheme
does not need any artifical entropy fix correction in order to resolve the so-
called transcritical rarefaction wave correctly.
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Fig. 2. Isolines of the solution obtained by the second order FVEG scheme with
the Simpson rule (left) and the trapezoidal rule (right) at T = 0.19 on a 200× 200
mesh.


