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Well-balanced finite volume evolution Galerkin methods
for the shallow water equations with source terms†
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SUMMARY

The goal of this paper is to present a new well-balanced genuinely multidimensional high-resolution
finite volume evolution Galerkin method for systems of balance laws. The derivation of the method
will be illustrated for the shallow water equation with geometrical source term modelling the bottom
topography. The results can be generalized to more complex systems of balance laws. Copyright c©
2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the balance law in two space dimensions

ut + f1(u)x + f2(u)y = b(u, x, y), (1)

where u stands for the vector of the conservative variables, f 1, f2 are flux functions and
b(u, x, y) is a source term. For the case of homogenous conservation laws, i.e. b(u, x, y) = 0,
several high-resolutions genuinely multidimensional schemes have been developed in the
literature, see, e.g. [2], [4], [10]. In this paper we are concerned with the finite volume evolution
Galerkin (FVEG) method of Lukáčová, Morton and Warnecke, cf. [5]-[8]. The FVEG methods
couple a finite volume formulation with approximate evolution operators which are based
on the theory of bicharacteristics for the first order systems [6]. As a result exact integral
equations for linear or linearized hyperbolic conservation laws can be derived. They take
all of the infinitely many directions of wave propagation into account. For two-dimensional
conservation laws this is realized by the integration along the sonic circle, i.e. for a parameter
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θ ∈ [0, 2π]. Further integrals appearing in the exact integral equations are the integrals along
time, e.g. from tn to tn+1. Since the exact integral equations are implicit in time appropriate
numerical quadratures have to be applied in time in order to approximate integrals along the
mantle of the so-called bicharacteritic cones. This yields the approximate evolution operators
that is explicit in time. In the finite volume framework the approximate evolution operators are
used to evolve the solution along the cell interfaces in order to compute fluxes on edges. This
step can be considered as a predictor step. In the corrector step the finite volume update is
done. In summary, the FVEG scheme is a genuinely multi-dimensional method that is explicit
in time. The error analysis of the FVEG schemes was studied theoretically for the linearized
systems of hyperbolic conservation laws in [6]. New approximate evolution operators developed
in [7] improved stability of the whole finite volume EG scheme, see also [8]. It has been shown
in [7] that the new FVEG scheme has not only enlarged the area of stability, but it is also
considerably more accurate than other commonly used FV schemes. Relatively high global
accuracy of the FVEG schemes has been confirmed in general by extensive numerical treatment
in series of papers [5], [6], [7] for linear as well as nonlinear conservation laws.

For balance laws with source terms, the simplest approach is to use the operator splitting
method which alternates between the homogenous conservation laws ut+f1(u)x+f2(u)y = 0
and the ordinary differential equation ut = b(u, x, y) in each time step. For many situations
this would be effective and successful. However, the original problem (1) has an interesting
structure, which is due to the competition between the differential terms and the right-hand-
side source term during the time evolution. If we split a priori these terms, that are dominant
for the evolution process, numerical schemes can yield spurious solutions. In particular, the
equilibrium or stationary states, i.e. such u that

f1(u)x + f2(u)y = b(u, x, y),

cause difficulties. These equilibrium solutions usually play an important role because they are
obtained as a limit when time tends to infinity.

In this paper we present an approach which allows to incorporate treatment of the source
in the framework of the FVEG schemes without using the operator splitting approach. Thus,
the stationary states, or quasi-stationary states, will be approximated correctly. The scheme
is called the well-balaced finite volume evolution Galerkin scheme; see also, e.g., [1] (cf. the C
property) and [3] for other related approaches in the literature.

2. SHALLOW WATER EQUATIONS AND THE WELL-BALANCED APPROXIMATE
EVOLUTION OPERATORS

There are many practical applications where the balance laws and the correct approximation
of their quasi-steady states are needed. In what follows we illustrate the methodology on the
example of the shallow water equations with the bottom topography term. This system reads

ut + f1(u)x + f2(u)y = b(u), (2)

where

u =





h
hu
hv



 , f1(u) =





hu
hu2 + 1

2
gh2

huv



 , f2(u) =





hv
huv

hv2 + 1

2
gh2



 , b(u) =





0
−ghbx
−ghby



 .
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Here h denotes the water depth, u, v are vertically averaged velocity components in x− and
y− direction, g stands for the gravitational constant and b = b(x, y) denotes the bottom
topography. It should be pointed out that for practical problems, for example the river or
oceanographic flows, some additional terms modelling the bottom friction or the Coriolis
forces need to be considered as well. Applying the theory of bicharacteristics to (2) leads
to the integral equations in an analogous way as in [6]

h (P ) =
1

2π

∫ 2π

0

h (Q)− c̃

g
u (Q) cos θ − c̃

g
v (Q) sin θdθ

− 1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

c̃

g

(

u(Q̃) cos θ + v(Q̃) sin θ
)

dθdt̃ (3)

+
1

2π
c̃

∫ tn+1

tn

∫ 2π

0

(

bx(Q̃) cos θ + by(Q̃) sin θ
)

dθdt̃

u (P ) =
1

2
u (Q0) +

1

2π

∫ 2π

0

−g
c̃
(h (Q) + b (Q)) cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ dθ

−1

2
g

∫ tn+1

tn

(

hx(Q̃0)− bx(Q̃0)
)

dt̃ (4)

− 1

2π
g

∫ tn+1

tn

∫ 2π

0

(

bx(Q̃) cos2 θ + by(Q̃) cos θ sin θ
)

dθdt̃

+
1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(

u(Q̃) cos 2θ + v(Q̃) sin 2θ
)

dθdt̃

with an analogous equation for the second velocity component v. Here P = (x, y, tn+1) is the
pick of the bicharacteristic cone, Q0 = (x − ũ∆t, y − ṽ∆t, tn) denotes the center of the sonic
circle, Q̃0 = (x − ũ(tn + ∆t − t̃), y − ṽ(tn + ∆t − t̃), t̃), Q̃ = (x − ũ(tn + ∆t − t̃) + c(tn +
∆t− t̃) cos θ, y− ṽ(tn+∆t− t̃)+ c(tn+∆t− t̃) sin θ, t̃) stays for arbitrary point on the mantle

and Q = Q(t̃)
∣

∣

∣

t̃=tn
denotes a point at the perimeter of the sonic circle at time tn. The local

velocities are denoted by ũ, ṽ, c̃ =

√

gh̃.

Lemma 2.1. The well-balanced approximation of the integral equations (3), (4) reads

h (P ) = −b(P ) +
1

2π

∫ 2π

0

(h (Q) + b(Q))− c̃

g
u (Q) cos θ − c̃

g
v (Q) sin θdθ (5)

− 1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

c̃

g

(

u(Q̃) cos θ + v(Q̃) sin θ
)

dθdt̃+O
(

∆t2
)

u (P ) =
1

2
u (Q0) +

1

2π

∫ 2π

0

−g
c̃
(h (Q) + b (Q)) cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ dθ

− 1

2π

g

c̃

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(

h(Q̃) + b(Q̃)
)

cos θ dθdt̃ (6)

+
1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(

u(Q̃) cos 2θ + v(Q̃) sin 2θ
)

dθdt̃+O
(

∆t2
)
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with an analogous equations for the second velocity v.

Lemma 2.1 can be proved by applying the trapezoidal rule for time integrals and the Taylor
expansion as well as the Gauss theorem on the sonic circle. The approximations (5), (6) are
well-balanced in the sense that the steady equilibrium states, i.e. u, v = 0, h+ b = const. are
preserved, see [9] for details of the proof. An important property of the evolution operator
(5), (6) is that the bottom elevation and the depth of the water are represented by the
same terms. The next step is to approximate appropriately the mantle integrals, i.e. time
integrals from tn to tn+1. This is done by means of the numerical quadratures which were
proposed in [7] in such a way that any planar one-dimensional wave is calculated exactly.
These quadratures are now used systematically for approximation of all mantle integrals,

i.e. integrals
∫ tn+1

tn

∫ 2π

0
. Following [7] we get the well-balanced approximate evolution

operator Econst
∆ for piecewise constant functions

h (P ) = −b(P ) +
1

2π

2π
∫

0

(h (Q) + b(Q))− c̃

g
u (Q) sgn(cos θ)− c̃

g
v (Q) sgn(sin θ)dθ +O

(

∆t2
)

u (P ) =
1

2π

2π
∫

0

−g
c̃
(h (Q) + b (Q)) sgn(cos θ) + u (Q)

(

cos2 θ +
1

2

)

+v (Q) sin θ cos θdθ +O
(

∆t2
)

. (7)

The approximate evolution Ebilin
∆ for bilinear functions can be derived from (5), (6) in an

analogous way as in [7].

3. FINITE VOLUME EVOLUTION GALERKIN SCHEME

The above approximate evolution operators will now be used in the finite volume method in
order to compute fluxes on cell interfaces. Let us consider for simplicity a regular rectangular
mesh. The finite volume evolution Galerkin scheme for balance laws reads

Un+1 = Un − ∆t

∆x

2
∑

k=1

δxk
fk(U

n+1/2) + Bn+1/2, fk(U
n+1/2) =

1

h

∫

E

fk(E∆t/2U
n)dS, (8)

where Bn+1/2 stays for the approximation of the source term, δxk
fk(U

n+1/2) represents an
approximation to the edge flux difference at the intermediate time level tn + ∆t/2. The cell

interface fluxes fk

(

Un+1/2
)

are evolved using an approximate evolution operator denoted by

E∆t/2 to tn +∆t/2 and averaged along the cell interface edge denoted by E .
For the first order scheme the approximate evolution operator Econst

∆t/2 for the piecewise
constant data is used. For the second order method the continuous bilinear recovery Rh is
applied first. Then the predicted solution at cell interfaces is obtained in the following way

fk(U
n+1/2) =

1

h

∫

E

fk

(

Ebilin
∆t/2RhU

n + Econst
∆t/2 (1− µ2xµ

2
y)U

n
)

dS, (9)

where µ2xUij = 1/4(Ui+1,j +2Uij +Ui−1,j); an analogous notation is used for the y−direction.
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WELL-BALANCED FINITE VOLUME EVOLUTION GALERKIN METHODS 5

The source term B will be approximated in the so-called interface-based way in order to
reflect a delicate balance between the gradient of flux functions and the right-hand-side source
term for quasi-steady stationary states. In fact, we have for nearly hydrostatic flows that√
u2 + v2 <<

√
gh. In the associated asymptotic limit the leading order water height h satisfies

the balance of momentum flux and momentum source terms. More precisely we have from the
momentum equation in x-direction ∂x(gh

2/2) = −ghbx. This is the condition that yields the
well-balanced approximation of the source term. Integrating, e.g. in the second equation of
(2), the right-hand-side over the mesh cell Ωij we get

1

∆x2

∫

Ωij

B2(U
n+1/2) =

1

∆x2

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

−ghn+1/2bx

≈ −g
∆x

∫ yi+1/2

yi−1/2

h
n+1/2
i+1/2 + h

n+1/2
i−1/2

2

bi+1/2 − bi−1/2

∆x
.

It is easy to see that for quasi-steady stationary cases, i.e. h + b ≈ const., the latter term is
equivalent to the flux differences on cell-interfaces which arise from the finite volume update.

4. NUMERICAL EXPERIMENT

In the following experiment we have tested the resolution of small perturbations of steady
states. The bottom topography consists of one hump

b(x) =

{

0.25(cos(10π(x− 0.5)) + 1) if |x− 0.5| < 0.1
0 otherwise

and the initial data are u(x, 0) = 0,

h(x, 0) =

{

1− b(x) + ε if 0.1 < x < 0.2
1− b(x) otherwise.

The parameter ε is chosen to be 0.2 or 0.01. The computational domain is [0, 1] and the
extrapolation boundary conditions have been used.

In the Figure 1 we can see propagation of small perturbances of the water depth h until time
t = 0.7. The solution is computed on a mesh with 100 cells. In the top picture the parameter
of perturbation ε = 0.2 is relatively large in comparison to the discretization error. In the
bottom picture ε = 0.01. Solution is computed with the first and the second order FVEG
methods using the minmod and the monotonized minmod limiters. The reference solutions
was obtained by the second order FVEG method with the minmod limiter on a mesh with
10000 cells. We can notice correct resolution of small perturbances of the steady state even if
the perturbances are of the order of the truncation error. Similar results have been obtained
also for two-dimensional problems.

The present research is in progress. We are currently studying the approximation of dry
states, i.e. h ≈ 0, as well as other quasi-steady states where the momentums hu, hv are nonzero
constants. The behaviour of such flow depends on the bottom topography and on the free-
stream Froude number Fr =

√
u2 + v2/

√
gh. For intermediate Fr the flow can be transcritical

and the solution can contain a stationary transcritical shock.
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6 M. LUKÁČOVÁ, Z. VLK

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Top surface at time t=0.0

h+
b

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Top surface at time t=0.7

h+
b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

1−st order EG method 
2−nd order EG method with minmod limiter
2−nd order EG method with MNC limiter
reference solution

Figure 1. Propagation of small perturbances, ε = 0.2 (top) and a magnified view for ε = 0.01 (bottom).
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