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SUMMARY

The aim of this contribution is to present recent results on numerical modelling of non-Newtonian
flow in compliant stenosed vessels with application in hemodynamics. We consider two models of the
shear-thinning non-Newtonian fluids and compare them with the Newtonian model. For the structure
problem the generalized string equation for radial symmetric tubes is used and extended to a stenosed
vessel. The global iterative approach to approximate the fluid-structure interaction is used. At the end
we present numerical experiments for some non-Newtonian models, comparisons with the Newtonian
model and the results for hemodynamic wall parameters; the wall shear stress and the oscillatory
shear index.
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1. INTRODUCTION

Description of blood flow in human arteries is a very complex process. In
recent years there is a growing interest in the use of mathematical models and
numerical methods arising from other fields of computational fluid dynamics in
the hemodynamics, see, e.g., [3], [5], [8], [11], [13], [15], [17], [18], [19], [20], [26]
just to mention some of them.

There are many numerical methods used in the blood flow simulation, which
are based on the Newtonian model using the Navier-Stokes equations. This is
effective and useful, especially if the flow in large arteries should be modeled.
However, in small arteries blood cannot be considered as the Newtonian fluid
anymore. In those cappillaries, whose diameter is comparable with the size
of blood red cells, the blood is even not a homogenized continuum and more
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precise models, for example mixture theories need to be used. But even in the
intermediate-size vessels the non-Newtonian behavior of blood is demonstrable,
see [21] and the referencies therein. In fact, blood is a complex rheological
mixture showing several non-Newtonian properties, for example shear-thinning
or viscoelasticity [25], yield stress, stress relaxation [21]. The aim of this paper is
to report on recent results concerning numerical modelling of shear-thinning flow
in moving vessels with application in hemodynamics. We address the significance
of non-Newtonian models for reliable hemodynamical modelling. In particular,
we will show that the rheological properties of fluid have an influence on the
wall deformation as well as on the hemodynamical wall indices, such as the wall
shear stress and oscillatory shear index even in the intermediate-size vessels.

Consider a two-dimensional fluid motion governed by the momentum and the
continuity equation

ρ∂tu+ ρ (u · ∇)u− div [2µ(|D(∇u)|)D(∇u)] +∇p = 0 (1)
div u = 0

with ρ denoting the constant density of fluid, u = (u1, u2) the velocity vector, p
the pressure, D(∇u) = 1

2
(∇u+∇uT ) the symmetric deformation tensor and µ

the viscosity of the fluid. The computational domain

Ω(η) ≡ {(x1, x2, t) : 0 < x1 < L, 0 < x2 < R0(x1) + η(x1, t), 0 < t < T}
is given by a reference radius function R0(x1) and the unknown free boundary
function η(x1, t) describing the domain deformation. In this work we restrict
ourselves to 2D domains. The fluid and the geometry of the computational
domain are coupled through the following Dirichlet boundary condition

u2(x1, x2, t) =
∂η(x1, t)

∂t
, u1(x1, x2, t) = 0 on Γw, (2)

where Γw = {(x1, x2); x2 = R0(x1) + η(x1, t), x1 ∈ (−L, L)} is the deforming
part of the boundary. With N we denote the unit outward normal vector to this
boundary, N := (−∂x1(R0 + η), 1))/

√
(∂x1(R0 + η))2 + 1. Moreover, the normal

component of the fluid stress tensor provides the forcing term for the deformation
equation of the free boundary η, that will be introduced below.

In what follows we describe non Newtonian models that model the shear
thinning properties of blood.

2. NON-NEWTONIAN MODELS FOR FLUID, CONTROL QUANTITIES

In the literature various non-Newtonian models for the blood flow can be found.
In this paper we consider the so-called Carreau model [25] and the Yeleswarapu
model [25]. According to the Carreau model for the shear-thinning fluid, the
viscosity function depends on the deformation tensor in the following way

µ = µ(D(∇u)) = µ∞ + (µ0 − µ∞)(1 + |γD(∇u)|2)q (3)
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Figure 1. Viscosity function for both shear dependent models

for some given constants q, µ0, µ∞, γ. According to [25] the physiological values
for the blood are µ0 = 0.56, µ∞ = 0.0345, γ = 3.313, q = −0.322. Note that
in the case q = 0 the model reduces to the linear Newtonian model used in the
Navier-Stokes equations.

The Yeleswarapu model reads

µ = µ(D(∇u)) = µ∞ + (µ0 − µ∞)
log(1 + γ|D(∇u)|) + 1

(1 + γ|D(∇u)|) . (4)

The physiological measurements give µ0 = 0.736, µ∞ = 0.05, γ = 14.81 [25].
Several physical quantities have been proposed in literature in order to measure

the risk zones in blood vessel. They have been introduced to describe some
mechanisms correlated to intimal thickening of vessel wall. Many observations
show that one reason is the blood flow oscillations during the diastolic phase
of every single heath beat. To identify the occluision risk zones the Oscillatory
Shear Index, is usually studied in literature, see [19]

OSI :=
1

2

(
1−

∫ T
0
τw dt∫ T

0
|τw| dt

)
, (5)

where [0, T ) is the time interval of a single heart beat (T ≈ 1sec) and τw is the
Wall Shear Stress (WSS) defined as

WSS := τw = −TfN · τ , (6)

where Tf is the Cauchy stress tensor of fluid Tf = −pI + 2µ(|D(∇u)|)D(∇u),
N and τ are the unit outward normal and the unit tangential vector on the
arterial wall Γw, respectively. OSI index measures the temporal oscillations of
the shear stress pointwisely without taking into account the shear stress behavior
in an immediate neighborhood of a specific point.
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3. WALL DEFORMATION MODEL

The aim of this paper is to study influence of stenotic regions in blood vessels. For
this purpose we extend the generalized string model for vessel wall deformation
[16]. We consider a 3D radially symmetric tube, see Fig. 2. We assume to have
deformations only in the radial direction and set x1 = z-direction and x2 = r-
radial direction.

The radial wall displacement, constant with respect to the angle θ is defined
as difference

η(z, t) = R(z, t)−R0(z),

where = R(z, t), R0(z) are the actual and the reference radius of the tube,
respectively. The assumption of radial geometry allow us to approximate the
length of arc dc ≈ Rdθ, see Fig. 2 and also [16]. We assume also the
small deformation gradient of displacement (∂zη, ∂θη), which implies the linear
constitutive law (linear elasticity) of the vessel wall. The wall of tube is assumed
to be small and constant. Moreover we approximate the infinitesimal surface in
the following way S ≈ dc dl.
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Figure 2. Small portion of vessel wall with physical characteristics, see also [16]

The linear momentum law Force = mass × acceleration is applied in the
radial direction to obtain the equation for η.

mass = ρwhdcdl, acceleration =
∂2R(z, t)

∂t2
=
∂2η(z, t)

∂t2
, (7)

where ρw is the density of the wall and h its thickness. The tissue surrounding
the vessel wall interacts with the vessel wall by exerting a constant pressure
Pw. The forces from the fluid are represented by the Cauchy stress tensor. The
resulting force along the radial direction (by recalling the principle of action and
reaction) is

fext = f ext·er ≈ (−Tf−PwI)N ·er
R

R0

√
1 + (∂zR)2dcdl = (Tf+PwI)n·er

R

R0

dcdl,
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where N = 1√
1+(∂zR)2

(−∂zR, 1) is the unit outward normal to the boundary

Γw and n = −N
√

1 + (∂zR)2. The term R
R0

√
(1 + (∂zR)2) comes from the

transformation of the curve Γw to the line (−L, L).
The internal forces acting on the vessel portion are due to the circumferential

stress σθ (constant with respect to the angle) and the longitudinal stress σz.
Both stresses are directed along the normal to the surface to which they act. We
have fint = (f θ + f z) · er and

f θ · er =
[
σθ

(
θ̄ +

dθ

2

)
+ σθ

(
θ̄ − dθ

2

)]
· erh dl = 2|σθ|cos

(π
2

+
dθ

2

)
h dl

= −2|σθ| sin
(
dθ

2

)
h dl ≈ −|σθ|h dθ dl = −E η

R0
h dθ dl,

f z · er =
[
σz

(
z∗ +

dz

2

)
+ σz

(
z∗ − dz

2

)]
· erh dc

=
τ(z∗ + dz

2
)− τ(z∗ − dz

2
)

dz
· erh|σz| dz dc

≈ |σz|
[dτ
dz

(z∗)
]
· erh dz dc

= −
(
∂2η

∂z2
+
∂2R0

∂z2

)[
1 +

(
∂R0

∂z

)2
]−1

n · er|σz|hdz dc.

Here we have used the following properties. According to the linear elasticity
assumption the stress tensor σθ is proportional to the relative circumferential
prolongation, i. e.

σθ = E
2π(R−R0)

2πR0
= E

η

R0
, E is Young’s modulus of elasticity.

To evaluate the longitudinal force we have used the following result, that is a
generalization of Lemma C.1 in [16].
Lemma. If ∂η

∂z
is small then

dτ

dz
(z∗) = −

(
∂2η

∂z2
+
∂2R0

∂z2

)[
1 +

(
∂R0

∂z

)2
]−1

n.

Proof: Let a parametric curve c be defined at each t on the plane (z, r) by

c : R→ R2, z → (c1(z), c2(z)) = (z, R(z, t)) = (z, R0(z, t) + η(z, t)),

and τ, n, κ denote the tangent, the normal and the curvature of c. Then
according to the Serret-Frenet formula [16] we have

dτ

dz
(z) =

∣∣∣∣
dc

dz
(z)

∣∣∣∣ κ(z)ñ(z).
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Here ñ = ±n is the normal oriented towards the center of the curve. Furthermore
we have

∣∣∣∣
dc

dz
(z)

∣∣∣∣ =

[
1 +

(
∂R

∂z

)2
]1/2

≈
[

1 +

(
∂R0

∂z

)2
]1/2

,

κ =

∣∣∣∣
dc1

dz

d2c2

dz2
− dc2

dz

d2c1

dz2

∣∣∣∣
∣∣∣∣
dc

dz

∣∣∣∣
−3

=

∣∣∣∣
∂2R

∂z2

∣∣∣∣

[
1 +

(
∂R

∂z

)2
]− 3

2

≈
∣∣∣∣
∂2R0 + ∂2η

∂z2

∣∣∣∣

[
1 +

(
∂R0

∂z

)2
]− 3

2

.

Since the sign of ∂2R
∂z2 determines the convexity of curve, ñ = −sign

(
∂2R
∂z2

)
n, we

obtain the desired result. �

By summing up all contribution of balancing forces we have from the linear
momentum law


ρwhR

∂2η

∂t2
+ |σz|

(
∂2η
∂z2 + ∂2R0

∂z2

)

[
1 +

(
∂R0

∂z

)2
]n · erRh

dz

dl
+
Ehη

R0
− (Tf + PwI)n · er

R2

R0



 dθ dl

= O(dθdl).

Note that n · er = −1 and dz
dl
≈ cos(](ez, τ)) = ez · τ/|τ | ≈ 1/

√
1 + ∂zR0,

see Fig. 2. Thus by dividing the former equation by ρwhRdθ dl and passing to
the limit for dθ → 0, dl → 0 we obtain the so called vibrating string model.
By adding the damping term −c∂3

tzzη, c > 0 at the left hand side we get the
generalized string model for cylindrical geometry with a non-constant reference
radius R0(z)

∂2η

∂t2
−|σz|
ρw

(
∂2η
∂z2 + ∂2R0

∂z2

)

[
1 +

(
∂R0

∂z

)2
]3/2

+
Eη

ρw(R0 + η)R0

−c ∂3η

∂t∂2z
=

(Tfn · er − Pw)

ρwh

R

R0

. (8)

4. REMARK ON THEORETICAL RESULTS

For the above described fluid flow problem on deforming domain with the shear
dependent viscosity the existence and uniqueness result is proven in [12] for a
domain, that moves according to an a-priori known domain deformation function
h ∈ W 1,∞((0, T )× (0, L)). This existence result was obtained for shear thinning
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Carreau-Yasuda fluids (3) with the power q = p−2
2

, p ≥ 1+
√

5
2

; the uniqueness is
proven for shear thickening case p ≥ 2.

The proof in [12] is a generalization of the previous result for Newtonian fluids
in moving domains [26], [6]. In [12] the theory of monotonous operators has
been applied for additional non-linear viscous term. In [6] as well as in [12] the
existence and uniqueness is proven on a-priori known domain Ω(h) for a pseudo-
compressible and κ-approximated system of equations in the first step. The κ-
approximation comes from the following splitting of the interface condition (2),
(8): the right hand side of the deformation equation (8) is replaced by κ(v2−∂tη),
on the other hand the Neumann boundary condition on Γw (the right hand side
of (8)) is equal to κ(v2 − ∂tη) as well. Note that the interface condition (2) will
be fulfilled if κ → ∞. After proving the existence and uniqueness on Ω(h) for
pseudo compressible fluid with κ-approximation of the interface condition, the
existence for original fluid-structure interaction problem is obtained by letting
κ → ∞, however only on Ω(R0 + ηk) = Ω(h), i.e., in one iteration step with
respect to the domain deformation.

Finally, the convergence of η(k) → η for k → ∞ is shown for a special case
of deformation equation and for the pseudo-compressible and κ-approximated
system of equations. To prove the convergence of domain deformation for the
problem with the original interface condition (2), (8) stays still an open problem.

5. NUMERICAL METHODS

5.1. The decoupling method for fluid-structure interaction: the global iterative
method

The coupling between the fluid and the domain is twofold. First, the stress tensor
of the fluid influences the domain deformation since it appears on the right-hand
side of the structure equation (8). On the other hand, the Dirichlet boundary
condition (2) on Γw is related to the domain deformation η.

The fluid-structure interaction given by conditions (2) and (8) is decoupled
by a global iteration with respect to the domain geometry. It means that in the
k-th iteration, the vector (uk, pk, ηk) is obtained as a solution of (1) for all
(x, t) ∈ Ω(η(k−1)), and (8) for all x1 ∈ (L, L). Instead of condition (2) we use

u2(x1, R0 + ηk−1, t) =
∂ηk−1

∂t
= ugrid2 , u1 = 0, on Γw, (9)

where ugrid is the velocity of the mesh movement related to smoothing the
grid after moving its boundary (we allow just movement in the x2 direction, x1

direction is neglected), see also [26].
Further we linearize the equation (8) replacing the non-linear term on its left

hand side by Eη/(ρw(R0 +ηk−1)R0). In order to decouple (1) and (8) we evaluate
the forcing term at the right hand side of (8) at the old time step tn−1, see
also Fig 4. Convergence of this global method was verified experimentally. Our



MODELLING OF SHEAR-DEPENDENT FLUID IN COMPLIANT VESSELS 7

extensive numerical experiences show fast convegence of domain deformation,
two iteration of domain deformation differ about 10−4cm (for e.g., R0 = 1cm)
pointwisely after few, about 5 iterations, see also Fig. 3.
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Figure 3. Convergence of global iterative method, wall deformation of a stenosed vessel at time t=0.36s,
computed for physiological viscosities, RE = 114
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5.2. Discretization methods

For the numerical approximation of (1), (2) and (8) we have used as a basic
software the UG software toolbox [1] and extended it by adding the shear-
dependent viscosity as well as by adding the solver for the wall deformation
equation (8). In UG the problem class library for the Navier–Stokes equations
in moving domain is based on the ALE formulation, see [2]. The spatial
discretization of the fluid equations (1) is realized by the finite volume method
with the pseudo-compressibility stabilization. This stabilization results in the
elliptic equation the for the pressure. The non-linear convective term is linearized
by the Newton or fixed point method, see e.g., [14].

We describe our approximation methods in what follows.
Linearization of the viscous term: According to Taylor’s expansion we have

µ(|D(∇u)|)D(∇u) = µ(|D(∇uold)|)D(∇uold) (10)

+
d [µ(|D(∇u)|)D(∇u)]

d(∇u)
(∇uold)(∇u−∇uold) +O((∇u−∇uold)2),

where

d [µ(|D(∇u)|)D(∇u)]

d(∇u)
(∇uold)

= µ(|D(∇uold)|)1

2
(I + IT ) +

d µ(|D(∇u)|)
d∇u (∇uold)D(∇uold).

Plugging the expression for d[µ(|D(∇u)|)∇u]
d(∇u)

into (10) and neglecting the higher

order term O((∇u − ∇uold)2) we obtain the Newton type iteration. By

neglecting the term d µ(|D(∇u)|)
d(∇u)

(∇uold)D(∇uold) - the second term from the above

expression for derivative of µ(|D(∇u)|)D(∇u) we get the fixed point iterations

µ(|D(∇u)|)D(∇u) ≈ µ(|D(∇uold)|)D(∇u). (11)

Here (.)old denotes the previous iteration.
In order to approximate the structure equation we apply the finite difference

method. First we rewrite the second order equation (8) as a system of two first
order equations. Set ξ = ∂tη. The time discretization is realized by the following
scheme

ξn+1 − ξn
∆t

− aα∂
2ηn+1

∂x2
1

+ bαηn+1 − cα∂
2ξn+1

∂x2
1

= Hn + a(1− α)
∂2ηn

∂x2
1

− b(1− α)ηn + c(1− α)α
∂2ξn

∂x2
1

ηn+1 − ηn
∆t

= αξn+1 + (1− α)ξn,
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where

a =
|σz|
ρw

[
1 +

(
∂R0(x1)

∂x1

)2
]−3/2

, b =
E

ρw(R0 + η)R0
− (Tfn · er − Pw)

ρwhR0
,

c > 0, H =
|σz|
ρw

(
∂2R0(x1)

∂x2
1

)[
1 +

(
∂R0(x1)

∂x1

)2
]−3/2

+
(Tfn · er − Pw)

ρwh
.

Physical meaning of quantities appearing in the coefficients a, b, c is following,
see [7]: the Young’s modulus is E = 0.75.105dynes.cm−2, the wall thickness
h = 0.1cm, the density of the vessel wall tissue ρw = 1.1g.cm−3, |σz| = Gκ,
where κ = 1 is the Timoshenko’s shear correction factor and G is the shear
modulus, G = E/2(1 + σ), where σ = 1/2 for incompressible materials. The
coefficient c = γ/(ρwh), we have used γ = 2.104.

If α = 0 we have an explicit scheme in time, for α = 1 we obtain an implicit
scheme. The parameter α = 1

2
yields the Newmark scheme, which is proven to

be unconditionally stable at least in the case of homogeneous Dirichlet boundary
conditions, see [15].

6. NUMERICAL EXPERIMENTS

In this section we present a series of numerical experiments for fluid flow in
a compliant vessel. The aim is to investigate differences in the behavior of
Newtonian and non-Newtonian fluids in moving domains. We have chosen two
non-Newtonian models for the blood flow often used in the literature, the Carreau
and the Yeleswarapu model. Further, we study the influence of non-Newtonian
rheology on some hemodynamical wall parameters such as the wall shear stress
WSS and the oscillatory shear index OSI.

We consider a two dimensional symmetric tube with a smooth stenosed region.
Due to the symmetry we can restrict our computational domain to the upper half
of the tube. A representative geometry is shown e.g., in Fig. 9. The impermeable
moving wall Γw is modeled as a smooth stenosed constriction given as, see [13],

f(x1) = 1− g

2

(
1 + cos

(πx1

2

))
if x1 ∈ |r|

f(x1) = 1 if x1 ∈ (−L,−r) ∪ (r, L).

We took L = 5, r = 2, g = 0.3. These values give a stenosis with 30% area
reduction which corresponds to a relatively mild occlusion, leading to local small
increment of the Reynolds number.

Let Γin = {(−L, x2); x2 ∈ (0, 1)}, Γout = {(L, x2); x2 ∈ (0, 1)}, Γs =
{(x1, 0); x1 ∈ (−L, L)} denote the inflow, outflow and symmetry boundary,
respectively. We prescribe the pulsatile parabolic velocity profile on the inflow
boundary of the tube

u1(−L, x2) = V (R(t)2 − x2
2)f(t), u2(−L, x2) = 0, (12)
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where f(t) is some temporal function modelling pulses of hearth and R(t) =
R0(0) + ηk(0, t), R0(0) = 1 and V is the maximal velocity at the inflow. For
temporal function f(t) we consider a model function f(t) = sin2 (πt/ω) with
the period ω = 1s as well as the iliac artery flow rate measurements, see Fig.5.

0.2 0.4 0.6 0.8

-20

-10

10

20

30

40
Inflow rate, illiac artery

Figure 5. Inflow rate Q(t) in sec.

The flow rate is defined as

Q(t) =

∫

Γin
u1dx2.

By integration inflow velocity (12) over Γin we obtain that Q(t) = 4
3
V R(t)f(t).

Consequently we get the relation for temporal function f(t) in (12),

f(t) = Q(t)
3

4V R(t)
. (13)

On Γs the symmetry boundary condition ∂x1u1 = 0, u2 = 0 is prescribed, on
Γout the Neumann type boundary condition −TfN = PoutIN .

Since the viscosity of the non-Newtonian fluid is a function of shear rate, see
Fig. 1, we compute the Reynolds number using averaged viscosity

RE =
ρV l

1
2
(µ0 + µ∞)

,

where ρ is the fluid density, V is the characteristic velocity (maximal inflow
velocity), l is the characteristic length (we take the diameter of the tube). In
order to take into account also the effects of assymptotical (limitting) viscosity
values, we define RE0 = ρV l/µ0, RE∞ = ρV l/µ∞ and introduce it in the Table I
below as well.

In the following experiments we have chosen in analogy to Nadau and Sequeira
[13], RE0 = 30 or RE0 = 60 and µ∞ = 1

2
µ0 for the Carreau model (3) as

well as for the Yeleswarapu model (4). We should point out that in [13] the
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authors studied similar problem, however they did not consider pulsatile flow
and deforming vessel walls. They used moreover generalized Oldroyd-B model
for blood. Further we have also tested the stability and robustness of the method
for physiological parameters [25], see Table I.

Table I. Experimental data

RE0 = 30 RE0 = 60 RE0 = 30 RE0 = 60
Carreau model Yeleswarapu model

q = 0, q = −0.322, q = −10
λ = 1 λ = 14.81

µ∞ = 1.26P µ∞ = 0.63P µ∞ = 1.26P µ∞ = 0.63P
µ0 = 2.53P µ0 = 1.26P µ0 = 2.53P µ0 = 1.26P

V = 38cm.s−1 V = 38cm.s−1 V = 38cm.s−1 V = 38cm.s−1

RE = 40, RE∞ = 60 RE = 80, RE∞ = 121 RE = 40, RE∞ = 60 RE = 80, RE∞ = 121
physiological parameters physiological parameters
q = −0.322 λ = 3.313

µ∞ = 0.0345P µ∞ = 0.05P
µ0 = 0.56P µ0 = 0.736P

V = 17cm.s−1 V = 22.3cm.s−1

RE = 114, RE∞ = 986 RE = 113, RE∞ = 892

6.1. Experiments for model data

In what follows we have plotted results comparing several aspects of Newtonian
and non-Newtonian flow in the straight channel and in the channel with a
stenotic occlusion. We chose the Dirichlet inflow boundary condition (12), which
model some pulsatile parabolic velocity profile at the inflow. Here we took
f(t) = sin2 (πt/ω), where ω = 1s.

Fig. 6 describes time evolution of the wall deformation function η at two
time instances t = 0.36s and t = 0.96s for the straight and stenotic channel
and for different non-Newtonian viscosities. Clearly, we can see effects due to
the presence of stenosis in Fig. 6. The differencies in wall deformation for non-
Newtonian and Newtonian (q = 0) fluids are not signifficant. Further, the wall
deformation for the Yeleswarapu model and for the Carreau model with q = −10
are comparable. Fig. 7 describes the wall shear stress WSS distribution along
the upper moving wall in the stenosed channel. We compare the WSS for the
Newtonian and non-Newtonian fluids. Analogously as before we see that the
WSS depends considerably on the geometry, we observe a presence of peak in
the WSS due to the stenosis for both Newtonian and non-Newtonian models.
The rheology of the fluid is more significant by measurements of the WSS;
bigger differences in the WSS can be seen for the non-Newtonian models in
comparison with the Newtonian models, in particular at t = 0.96s. Also some
small differences in peak behavior can be observed at this time.

Another important hemodynamic wall parameter is the oscillatory shear index
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OSI. Fig. 8 describes the behavior of the OSI for the straight and stenotic
channel. We can see different effects due to the presence of stenosis in the OSI.
Moreover the peaks in theOSI are more dominant for the non-Newtonian models
in comparison to the Newtonian flow. High OSI values indicate the areas with
the large stenotic plug danger. Fig. 8 indicates, that such areas appear at the
end of stenotic reduction.

We conclude this subsection with a statement, that the fluid rheology and
domain geometry may have a considerable influence on the hemodynamic wall
parameters WSS and OSI.
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Figure 6. Wall deformation, left: the Newtonian (NS) and the Carreau models in the straight channel;
right: the Newtonian (NS), the Yeleswarapu and the Carreau models in the stenosed channel, RE = 80
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in the straight channel (left) and in the stenosed channel (right), RE = 80

6.2. Experiments for physiological parameters

We present several results comparing the behavior of both non-Newtonian
models, the Carreau and the Yeleswerapu model with corresponding
physiological parameters, see Table I. In the first experiment we consider the
pulsatile velocity profile at the inflow as before.

Fig. 9 describes the velocity field at different times. In Fig. 10 the streamlines
and the pressure distribution for the Yeleswarapu model at different time
instances can be seen. At time t = 0.96, where the inflow velocity is decreasing
we can observe reverse flow and vertices in the streamlines. Only marginal
differences between the Carreau and the Yeleswerapu model are observed in
the wall deformation η, Fig. 6.2. More visible differences between these two non-
Newtonian models can be observed in the WSS and OSI indices, see Fig. 12
and Fig. 13.
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Figure 9. Physiological experiment: the Carreau model, RE = 80, t = 0.36s, t = 0.96s, velocity field

Moreover, our experiments confirm, that the differences between Newtonian
and non-Newtonian fluids in the wall deformation, wall shear stress and also
OSI increase with increasing Reynolds numbers, see Figs. 14, 15, 16.
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Figure 10. Physiological experiment: the streamlines and the pressure distribution for the Yeleswarapu
model in two time distances, upper: t = 0.36s, bottom t = 0.96, RE = 80
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Figure 13. Physiological experiment: the OSI index for non-Newtonian models

-4 -2 2 4

0.01
0.02
0.03
0.04

t=0.36s

RE=114
___Carreau
---NS

-4 -2 2 4

0.01
0.02
0.03
0.04

t=0.36s

RE=182
___Carreau
---NS

-4 -2 2 4

-0.04

-0.03

-0.02

-0.01

0.01
t=0.96s

RE=114
___Carreau

---NS

-4 -2 2 4

-0.04

-0.03

-0.02

-0.01

0.01
t=0.96s

RE=182
___Carreau

---NS

Figure 14. Physiological experiment: comparison of wall deformations for different Reynolds numbers
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Figure 15. Physiological experiment: comparison of wall shear stresses for different Reynolds numbers

-4 -2 0 2 4
cm

0.1

0.2

0.3

0.4

0.5

0.6

OSI, RE=95

___NS RE=114
___NS RE=182

___Carreau,RE=114

___Carreau,RE=182

-4 -2 0 2 4
cm

0.2

0.4

0.6

0.8
OSI

Figure 16. Physiological experiment: left: the OSI indices for different Reynolds numbers, right: OSI
index for illiac artery inflow, Neumann boundary condition for η and damping of deformation in

stenotical region



MODELLING OF SHEAR-DEPENDENT FLUID IN COMPLIANT VESSELS 17

In the second physiological experiment we considered the Neumann type
boundary condition for deformation equation on the inflow boundary. This
condition represents a free movement of vessel wall on the inflow and outflow part
and seems to be more natural for modelling the flow in a part of elastic vessel.
In this experiment, moreover, we introduced some damping of deformation in
stenotical region. This is reasonable, since the stenotic occlusion is created by
fat accumulated on the vessel wall and the stenotical plug may have different
elastic properties. We considered Young’s modulus E and damping parameter c
in structure equation (8) being following functions of longitudinal variable x

E = E(x) =

{
E x ∈ (−5,−2) ∪ (2, 5)
E[1 + 0.1(x2 − 4)] x ∈ 〈−2, 2〉,

c = c(x) =

{
20.000 x ∈ (−5,−2) ∪ (2, 5)
20.000[1− 0.01(x2 − 4)] x ∈ 〈−2, 2〉.

In order to obtain more realistic hemodynamical situation, the parabolic velocity
profile at the inflow was multiplied with temporal function derived from iliac
artery measurements, see Fig. 5 and (13). We set the period T = 0.9s and final
computational time is chosen to be t = 1.8s. The numerical results are presented
in Figs. 16, 17, 19, 18.
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Figure 17. Physiological experiment: wall deformation at four different time instances

Notice that the vessel wall at inflow and outflow are not fixed and the radius
of vessel wall is increasing and decreasing according to the acting flow forces,
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Fig. 17. Due to the increased damping parameter and decreased elasticity in the
stenosed area the wall deformation presented in Fig. 17 is reduced considerably
in comparison to the previous experiments (e.g. Fig. 14). Effects of different
elasticity behavior at the stenosed part have also considerable influence on the
behavior of hemodynamical wall parameters OSI and WSS, see Figs. 16, 18.

Comparing pictures for streamlines as well as pressure presented in Fig. 19
we see much more complex phenomena, different types of recirculation as well
as flow behavior. This different flow and wall shear stress development, notice
also Fig. 18, is conditioned by realistic temporal pulses at the inflow part of the
vessel coming from illiac artery measurements.
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Figure 18. Physiological experiment: wall shear stress at four different time instances
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Figure 19. Physiological experiment: wall deformation at five different time steps t = 0.1s, t =
0.2s, t = 0.36s, t = 0.56s, t = 9s, free ends of tube, damping in the stenotical region, illiac artery

inflow
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7. CONVERGENCE STUDY

In the following we study the experimental order of convergence using L2 errors
of solution at different meshes, cf. e.g. in [10]

EOC = log2

‖vh − vh/2‖L2

‖vh/2 − vh/4‖L2

,

where vh is the solution on the mesh with mesh size h. The computational
domain Ω(η) is consequently divided into 16 × 2 elements (mesh 1.), 32 × 4
elements (mesh 2.), 64 × 8 elements (mesh 3.), 128 × 16 elements (mesh 4.),
where the element size ∆x and ∆y is halved. We worked with piecewise linear
approximation for fluid velocities and the backward Euler method for time
discretization [1], [14], [26]. We considered stationary case for both the rigid
as well as the deforming tube.

Table I. demonstrates the second order in space convergence for the Newtonian
as well as non-Newtonian flow in the rigid tube, see the Fig. 20 for the
geometry and boundary conditions. The non-Newtonian model (Carreau model,
µ∞ = 0.63, µ0 = 1.26, Vinflow = 38cm.s1, q = −0.2) is compared to Newtonian
fluid (µ = 0.63, Vinflow = 38 cm.s−1). On the finer meshes the effect of shear
thickening is stronger at the boundary layer and may cause the reduction of the
convergence in the non-Newtonian case.

Dirichlet 
outflowDirichlet

inflow

Dirichlet u=0

Dirichlet u=0

1 cm

Figure 20. Boundary conditions in first experiment

In the following tables we use following notations:

Err(vh) = ‖vh − vh/2‖L2/|Ω|, Err(ηh) = ‖ηh − ηh/2‖2

Table II shows convergence results for non-Newtonian as well as Newtonian
fluid in rigid halved domain with symmetry condition at the central line, see Fig.
21. We can notice slightly worse second order convergence rate in the velocity,
however the convergence is rapidly reduced with refining the grid especially
in the non-Newtonian case. This effect is caused by using different boundary
conditions (the Neumann boundary condition at the outflow and the symmetry
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Table II. Convergence order in rigid tube for Newtonian and non-Newtonian fluid

1.exp. Newt. fluid q = 0 non-Newtonian fluid, q = −0.2
mesh ∆t Err(vh) EOC Err(vh) EOC ∆t Err(vh) EOC
2/1 0.002 8.577022 9.342948 0.02 7.988901
3/2 0.002 1.442296 2.572 1.502546 2.636 0.01 1.352937 2.562
4/3 0.002 0.299673 2.267 0.293375 2.357 0.002 0.293375 2.205

symmetry condition

Dirichlet u=0

Dirichlet
Neumann1 cm

Figure 21. Boundary conditions in the second experiment

condition at the central line). Note the differences in convergence order obtained
for shear-dependent-viscosity fluid and constant-viscosity fluid. For comparison
the convergence order for another shear-thickening exponents are given in Table
IV. Note that in the case q = −0.1 the convergence order on finer meshes is even
worse.

Table III. Convergence order in rigid tube

2. exp. Newtonian fluid q = 0 non-Newt. fluid q = −0.2
mesh ∆t Err(vh) EOC Err(vh) EOC
2/1 0.002 1.078302 0.985871
3/2 0.002 0.275817 1.967 0.276619 1.834
4/3 0.002 0.008409 1.714 0.124013 1.157

Experiments for deforming tubes follow. We performed experiments on the
halved domain with symmetry or Dirichlet boundary condition an the central
line and the Neumann boundary condition at the outflow, see Fig. 21, 22. Eleven
iteration of domain geometry has been performed in global framework (i.e.
the values from previous domain iteration has been used in order to deform
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Table IV. Convergence order in rigid tube

2. exp. non-Newt. fluid q = −0.1 non-Newt. fluid q = −0.3
mesh ∆t Err(vh) EOC Err(vh) EOC
2/1 0.002 0.9307086 1.025074
3/2 0.002 0.2627934 1.824 0.2806220 1.869
4/3 0.002 0.1207427 1.122 0.1131567 1.310

the domain in actual fluid-structure computation). In each global iteration the
computational time was 0.8 sec. The stationary solution has not been obtained
until the time 0.8 sec, because of small temporal oscillations of the deformation
function and consequently the domain size. Therefore we compare the solution
in one fixed time step t = 0.8sec.

Table V. Convergence order in deforming tube

2. exp. non-Newtonian fluid q = −0.2 domain size
mesh ∆t Err(vh) EOC(vh) Err(ηh) EOC(ηh) |Ω(ηh/2)|
2/1 0.002 1.026306 0.011956 3.185052
3/2 0.002 0.281130 1.853 0.005477 1.126 3.187671
4/3 0.002 0.1210801 1.231 0.002272. 1.269 3.188426

We observe again the second order convergence for spatial discretization
method for fluid problem. However, the spatial discretization method for domain
deformation is only of first order. The lower convergence rate for η as expected
(we used Newmark scheme, which is of 2. order) may be caused by coupling
with the velocity and pressure through the forcing term on the right hand side
of deformation equation.

For comparison we have performed also experiments on halved domain with
Dirichlet boundary condition on the central line of the domain, see Fig. 22.
For this kind of boundary conditions we have obtain better convergence order
for velocity and η as well, however the EOC for η is decreasing extremely
with refining the grid, see the Table VI and VII for non-Newtonian as well
as Newtonian fluid.

Note, that the EOC for η in the 2. experiment (with the symmetry boundary
condition at the central line) is little bit more than 1 and even increases
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Dirichlet
Neumann1 cm

Dirichlet condition u=umax

Dirichlet condition u=0

Figure 22. Boundary conditions in the third experiment

Table VI. Convergence order in deforming tube

3. exp. non-Newtonian fluid q = −0.2 domain size
mesh ∆t Err(vh) EOC(vh) Err(ηh) EOC(ηh) |Ω(ηh/2)|
2/1 0.002 1.404563 0.047666 3.220798
3/2 0.002 0.2561264 2.455 0.014985 1.669 3.211087
4/3 0.002 0.03979248 2.686 0.010263 0.546 3.208564

Table VII. Convergence order in deforming tube

3. exp. Newtonian fluid q = 0 domain size
mesh ∆t Err(vh) EOC(vh) Err(ηh) EOC(ηh) |Ω(ηh/2)|
2/1 0.002 1.199429 0.066524 3.251774
3/2 0.002 0.2391076 2.327 0.017199 1.952 3.239012
4/3 0.002 0.05107463 2.227 0.007592 1.180 3.236897

with grid refinement. The reason for decreasing the convergence order of η
in the 3. experiment (Dirichlet boundary condition at the central line) is the
decreasing of the convergence of pressure, which is particularly the force for
domain deformation. The Table VIII shows the comparisons of EOC for complete
solution (velocity and pressure p) u = (v, p) for both experiments 2. and 3. We
can conclude, that the symmetry boundary condition are better for preserving
the convergence for pressure and consequently the domain deformation η, on
the other hand the Dirichlet boundary condition helps to achieve the 2. order
convergence for velocity.
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Table VIII. Comparisons of EOC in rigid tube for both experiments: with Dirichlet boundary condition
and symmetry condition at the central line

non-Newtonian fluid 2. experiment 3. experiment
q = −0.20 symmetry condition Dirichlet condition

mesh ∆t Err(uh) EOC Err(uh) EOC
2/1 0.002 37.2222 108.8875
3/2 0.002 7.708046 2.272 24.44905 2.155
4/3 0.002 1.581982 2.285 12.07363 1.018

8. CONCLUSIONS

In this paper we have simulated blood flow in a part of elastic vessel and analyzed
some hemodynamical control quantities. We have modeled blood as a shear-
thinning non-Newtonian fluid and chosen two well-known models, the Carreau
(or Carreau-Yasuda) model and the Yeleswerapu model. Comparisons with the
Newtonian model are presented as well. We compared the wall deformation
and the hemodynamical wall parameters, the wall shear stress WSS and the
oscillatory shear index OSI for a straight and stenotic tube.

The fluid equations were approximated by the finite volume method with the
pseudo-compressibility stabilization for spatial discretization. We have linearized
the non-linear Cauchy stress tensor by fixed point iterations. For the deformation
equation we used the Newmark scheme and the finite difference scheme. The
global iterations with respect to the domain geometry are based on the ALE
formulation and on the decoupling of the fluid and structure. Numerical
experiments indicate, that the global iterative method is robust and relatively
fast. The stability and accuracy of numerical method have been tested for several
model parameters, including the physiological parameters for shear dependent
viscosity and inflow rate.

The presented results demonstrate a significant influence of the non-Newtonian
fluid model, especially for hemodynamical control quantities such as the WSS
and OSI. Larger negative absolute values of WSS appears in the case of
non-Newtonian fluids modeled with physiological viscosities. According to some
authors this indicates the appearance of recirculation zones and reversal flows
around stenosis, which seems to be better predicted by the non-Newtonian
models. Further, the domain geometry has also a considerable influence on the
wall deformation as well as on the WSS and OSI. Moreover the maximum
values of OSI are larger for the non-Newtonian models in comparison to the
Newtonian flow. Such high OSI values at the end of stenotic occlusion indicate
a large oscillatory nature of the wall shear stress and could yield further to
additional stenotic plug.

Experiments for physiological viscosities have been performed as well. We
have shown that for higher Reynolds numbers the effect of non-Newtonian
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rheology are even more profound. All results confirm a significant influence of
the fluid rheology and domain geometry on the wall deformation as well as on
the hemodynamics wall parameters.

In future we want to extend the model and consider the generalized Oldroyd-
B model that includes the viscoelastic properties of blood as well. Additionally,
we want to consider more complex vessel geometries, e.g. bifurcations. Thus, we
will not restrict ourselves only to the deformation in one direction but consider
the domain deformation in both x1 and x2 direction, η = (η1, η2). An important
point of numerical simulation is a correct outflow boundary condition, reflecting
the influence of the rest of the circulatory system. According to the [23] this can
be realized by so-called impedance condition arising from coupling the model
with some less dimensional model (1D or 0D lumped model).

The theoretical analysis of similar problems for Newtonian fluids in a moving
domain is studied e.g., in [24], [9], [4], [22], etc. Theoretical results of existence
and uniqueness of the weak solution to our shear-dependent non-Newtonian fluid-
structure problem have been presented in Section 4. In [12] however only the
existence and uniqueness of the solution for one global iteration has been shown.
The convergence of global iterative method has been shown only for a special
case in [6]. Our future goal is to show the convergence of global iterations, whose
convergence is indicated by our numerical experiments.
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