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Abstract

A novel genuinely multi-dimensional relaxation schemergpoesed. Based on a new
discrete velocity Boltzmann equation, which is an improeetover previously introduced
relaxation systems in terms of isotropic coverage of thetimdirhensional domain by the
foot of the characteristic, a finite volume method is devetbpj which the fluxes at the
cell interfaces are evaluated in a genuinely multi-dimemai way, in contrast to the tra-
ditional dimension-by-dimension treatment. This alduoritis tested on some bench-mark
test problems for hyperbolic conservation laws.

Keywords: genuinely multi-dimensional schemes, relaxation systeswdropy, hyper-
bolic conservation laws, discrete velocity Boltzmann eique

1 Introduction

Finite volume methods have been popular for the numeridatisa of hyperbolic conservation
laws in the last three decades. Numerical schemes basedetickiheory represent interest-
ing alternatives to the classical Riemann solver basedseteA review ofupwind methods
based orkinetic theoryis given in [6]. Jin and Xin [7] have introduced a new categofyip-
wind method called relaxation schemes. A relaxation systenverts a nonlinear convection
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equation into linear convection equations with nonlineaurse terms. The numerical methods
based on aelaxation systenare calledrelaxation schemesThese schemes avoid solution of
Riemann problems. The diagonal form of the relaxation systen be viewed asdiscrete ve-
locity Boltzmann equatiofi]. The so calledliscrete kinetic schemese based on the discrete
velocity Boltzmann equation. Some of the numerical inggdtons using the discrete Boltz-
mann equation can be found in [1], [2], [14]. For multi-dinseanal flows, however, the tradi-
tional finite volume methods are typically based on a dinw@mdiy-dimension treatment using
one-dimensional approximate Riemann solver. As a resuhisfinherently one-dimensional
treatment, the discontinuities which are oblique to therdimate directions are not be resolved
accurately. Developing genuinely multi-dimensional aignons has been a topic of intense re-
search in the last decade and a half. The reader is referi&gl {&], [9], [11], [15], [17] for
some multi-dimensional schemes. In the present work, we Haveloped a genuinely multi-
dimensional relaxation scheme using a discrete velocitzBann equation. In the relaxation
system of Aregba-Driollet and Natalini [1], the foot of thielharacteristic curves are not dis-
tributed in an isotropic way. To overcome this deficiency Mhaet. al [12] have given an
isotropic relaxation systenm which the foot of the characteristic traverses all quatiran an
isotropic way. The goal of this paper is to derive a genuimelyti-dimensional finite volume
scheme based on the relaxation system in [12], that follbvsatork of Lukacova; see [10],
[11] and the references therein.

2 Relaxation systemsfor hyperbolic conservation laws

In this section we introduce relaxation systems for coretéyu laws. For the sake of con-
venience we present the details only for two space dimessi@xtension to arbitrary space
dimensions is straight forward. Consider the following €lauproblem

O + 0,9, (u) + 9ygy(u) = 0, (1)

’U/(.’L’,y,O) = ’U;o(l‘,y), (2)

whereu € R" is the unknown vectogy, € R", g, € R™ are locally Lipschitz continuous flux
functions. We assume that the system (1) is hyperbolic.



2.1 Relaxation system of Jin and Xin

Jin and Xin [7] has proposed the following relaxation systen{1).
Ou + 0,v + 0w = 0,

1
0w + Ndsu = — (gy(u) —v).
1
0w + N3Dyu = — (g5(u) —w) 3)
with the initial conditions

’U(.’L’,y,O) =4g; (’U,O(l',y)), ’LU(.’L’,y,O) =9g> (U’O(xvy))' (4)

Herewv, w are new variables); and )\, are positive constants ards a small positive constant
called the relaxation parameter. In the relaxation limit as 0, from the last two equations in
(3) it can be seen that,

'l):gl(U), w292(“’)> (5)
up to first order terms. Then from the first equation in (3) e@edvers the original conservation
law (1). The state satisfying (5) is calledacal equilibrium Solution of (3) with the initial
conditions (4) in the limitt — 0 formally satisfies the Cauchy problem (1)-(2). The main
advantage of using (3) is that the convection terms arerlifdee nonlinear source terms on the
right hand side of (3) can be separated by a splitting metbeel[7] for more details.

2.2 Discretevelocity Boltzmann equation

We should point out that the relaxation system (3) is notai@djzable. As it is preferable to
work with a system in diagonal form, Aregba-Driollet and &lati [1] has given the following
diagonal relaxation system.

1
Of + MO:f + Asdyf = —(F — f). (6)
The system (6) is termed as a discrete velocity Boltzman@atemu The initial condition for
(6) is given by

For the sake of isotropy (see comments below), we choose

f:(f1>f2af3>f4)t F:(F17F27F3>F4)t'



Each of thef,’s and F';’s are fromR". The system (2.6) consists ¢f equations but in very
simple form for numerical integration. The matricks and A, are block diagonal matrices.
The quantitiegF’;’s are called local Maxwellians. The relaxation system g¢&@ndowed with a
matrix operatorP such that

PF(u)=u, PAjF(u)=g;(u), j=1,2 (8)

The conditions (8) are necessary for any solution of thexe¢ian system (6) to converge to the
correct entropy weak solution of the hyperbolic conseorataw (1), cf [4], [13]. Under the
assumption that the Maxwellians are monotone, Natalinj [ proved the convergence of
the solution of a relaxation system (6) to the Kruzkov engreplution of a scalar conservation
law. The relaxation system (6) is completely determinecedhe matrices\;,i = 1,2 and the
MaxwelliansF';,i = 1,2, 3,4 are fixed. Following [1] and [12], we adopt a block structuse f
the matrices\; andA, as given below.

Ay =diag(—AIL,, A\, \1,,,—\I,), As=diag(—AI,,—\I,,\I,,\1I,).

Here, I,, is then x n identity matrix. Note that this choice of the discrete véies admits
the following nice feature, which we ca#iotropy. The bicharacteristics curves of (6) through
any pointP(z,y,t + At) falls evenly in all the four quadrants around the pa@pit:, y, t); see
Figure 1.

P(x,y,t#At)

Figure 1: Feet of the bicharacteristics through P

The isotropy is a special property of our relaxation systéhis feature enables us to design
a genuinely multi-dimensional finite volume scheme for @llowing [1], [3] we choose the
MaxwelliansF';,i = 1,2, 3, 4, in the following way.

Fi(u) = ajou + ai1g, (u) + aiagy(u), )



where the coefficients;; are to be fixed so that the conditions (8) are satisfied. A smpl
calculation yields

w9 _ g w9 g
Fi(u)=7 -y — " Fw =7+ — % 10)
)= B0 80 p ) g g

Let o (F';(u)) denote the eigenvalues &f;(u). Then, under some technical assumptions, it is
shown in [3] that the Jacobiabs F';(u) are diagonalizable. Moreoverdf(F;(u)) C [0, +ool,
then (6) admits a kinetic entropy and in the hydrodynamidgtlms ¢ — 0 the Lax entropy
inequality is satisfied; see also [4].

2.3 Chapman-Enskog Analysis

The Chapman-Enskog expansion gives the stability comdftothe relaxation system. Since
the local equilibrium of the relaxation system (6) is the ésgwlic conservation law (1), we

derive a viscous first order approximation to (1), analogoute compressible Navier-Stokes
equations in classical kinetic theory. Consider the asgtigpéxpansion,

Fi=Fitef) +Ef7 (12)

Substituting this expression in the discrete velocity Bolann equation (6) and using the con-
sistency conditions (8) the following system will be obtdn

dru+ 091 (w) + 9ygs(u) = € (0: (Q110:u + Q10yu) + 9y (Q10:u + Qp0yu)) . (12)

In (12) the matrice€),; are dissipation matrices. For (12) to be parabolic all@ghe should
be positive definite. This yields a condition an see [1], [4] for more details. For a scalar
conservation law in two dimensions the stability conditioms out to be

N > (0ug1(w)” + (Buga(w))” . (13)

3 A numerical scheme based on bicharacteristics

In the literature numerous approaches based on the redaxsstems can be found. For ex-
ample, in [7] Jin and Xin classify their schemes into two gatées, namely, relaxing schemes
and relaxed schemeRelaxing schemedepend or and the artificial variables andw. The
zero relaxation limit of the relaxing schemes are calledxetl schemes. Thelaxed schemes
are stable discretizations of the original conservati@ndad thus are independent«énd the
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artificial variablesy andw. Jin and Xin construct upwinding based on characteristiabées.
To achieve second order accuracy they use van Leer's MUSS&tratization. Time discretiza-
tion is realized by means of a second order TVD Runge-Kuttdhate New discrete kinetic
schemes have been introduced by Aregba-Driollet and Matali1l]. The authors start with
a set of decoupled equations, in which the dependent vasatre the characteristic variables.
The main advantage in this approach is the fact that upwinbl@comes very simple. In order
to treat multi-dimensional systems the dimensional spgthas been used.

Our goal is to use the discrete Boltzmann equation (6) antbappate it in a genuinely multi-
dimensional way using the isotropy of the system. The discBoltzmann equation (6) is
solved by splitting method as

Of + A0 f +A20,f =0 (convection step) (24)
%—{ = 1(F — f) (relaxation step) (15)
€

The relaxation step is further simplified by takiag- 0, leading tof = F'. Hence at any stage
we need to solve only the set of linear convection equatinr{¢4). If we integrate (14) over
a mesh cell and over the time interval from\¢ to (n + 1)At, application of Gauss formula
gives,
At ~ _
fn-i—l — fn i At/ [Al(smfn-i—t/At + Agéyfn+t/At:| dt~ (16)
0

In this formula, f**' and f" represents the cell averages, while™ /%" involves averages
along the cell edges to the right and left aiygf" /2" along the edges to the top and bottom,
in all cases at an intermediate time step- £/At. We approximate the time integrals in (16)
by midpoint rule byt = At/2. Then the cell boundary flug™*'/? is evolved using the exact
evolution operatofa,/» for (14) and suitable recovery operatdts. For example on vertical
edges,
1

h
3 [ Esphigrds, a7
0

where d&, is an element of arc length along the vertical edges. A simeXaression holds for
horizontal edges also. We have used the Simpson rule foethterface integrals in (17) and
evaluated the fluxes at the midpoints and corners of the etiges that the Simpson quadrature
allows us to take into account the multi-dimensional eect

fn+1/2 _

4 Numerical results

The new multi-dimensional relaxation scheme is tested omesstandard test problems for in-
viscid Burgers equation and the Euler equations in two sganensions. In all the problems
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the computations were carried out on uniform Cartesiarsgrid

Burgers equation test cases: These test cases are taken from Spekreijse [16]. It models a
shock and a smooth variation representing an expansion £ domain. The inviscid Burgers
equation considered here is given by

2

yu+ 0, (%) +8,u = 0.

The computational domain |8, 1] x [0, 1]. The following two test cases has been considered.

Test case 1The boundary conditions are given by
u0,y)=1 0<y<l,u(l,yy=—-1 0<y<l,u(z,0)=1-2x 0<z<l.

The solution is computed for timE = 1.5 on a128 x 128 grid with a CFL numbef.7. The
solution contains a shock originating at the pdint, 0.5). The isolines of the solution is given
in Figure 2.

Test case 2The boundary conditions are
uw(0,y) =15 0<y<1, u(l,y)=-05 0<y<l, u(z,00=15-2z 0<z<l.

The solution is computed for timE = 1.5 on a128 x 128 grid with a CFL numbef.7. The
solution contains an oblique shock originating at the p(irit5, 0.5). See Figure 2.

Euler equationstest cases:

Test case 3:The first test case is the cylindrical explosion problem. Thmputational
domain is the square-1, 1] x [—1, 1]. The initial data read,

p=1Lu=0,v=0,p=1,]z| <04, p=0.125 u=0, v=0, p=0.1,else

The solution is computed at timiB = 0.2 with a CFL numbel0.7. The solution exhibits a

circular shock and circular contact discontinuity movirngag from the centre of the circle

and circular rarefaction wave moving in the opposite dicgct The isolines of the density,

x—component of the velocity;—component of the velocity and pressure are given in Figure 3.
Next two test cases are two-dimensional Riemann problenh& cbmputational domain

[—1,1] x [-1, 1] is divided into four quadrants. The initial data consistiobe constant states

in each of these four quadrants. These constant values asercin such a way that each pair
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test case 1 test case 2

-05 0 05 -05 0 05

Figure 3: Cylindrical explosion problem: Isolines of thdwgmn calculated on @00 x 400
mesh at tim&” = 0.2

of quadrants defines a one-dimensional Riemann problem.



Test case 4in this test problem we choose the initial data in such a way tivo forward
moving shocks and two standing slip lines are produced. fitialidata read,

p = 0.5313, u = 0.0, v = 0.0, p=04, ifz>0,y>0,
p =10, u = 0.0, v =10.7276, p= 1.0, ifz>0,y<0,
p =10, u = 0.7276, v =20.0, p=1.0, if £ <0, y>0,
p = 0.8, u = 0.0, v = 0.0, p=1.0, ifr <0, y<O.

The solution is computed at tin¥e = 0.52 with a CFL numbef.7. The isolines of the density
and pressure are given in Figure 4.

rho p
0.8 @L“ 0.8 mL‘
0.6 0.6
0.4 0.4

0.2

-0.2
-0.4
-0.6
-0.8

0.5 -0.5 0 0.5

Figure 4: Two dimensional Riemann problem containing twackls/two slip lines. Isolines of
density and pressure calculated of0a x 400 mesh at tim&” = 0.52

Test case 5This test case is a two dimensional Riemann problem thaupesitwo forward
moving shocks and two backward moving shocks. Initial deg¢aa@ken as

p=11, u = 0.0, v =0.0, p=1.1, if x>0, y>0,
p = 0.5065, u = 0.0, v = (0.8939, p = 0.35, if x>0, y<0,
p=05065, w=08939, v=00, p=035  ifr<0, y>0,
p=11, uw=08939, ©v=08939, p=11, if 2 <0, y<0.



Computation are done until tim& = 0.25 with a CFL numbe®.7. The density and pressure
isolines are given in Figure 5.

rho p
0.8 0.8
0.6 0.6
04> 0.4
0.2 ¢ 0.2
0 0
-0.2 4 -0.2 @
-04 -04
-0.6 -0.6
-0.8 -0.8
-0.5 0 05 -0.5 0 05

Figure 5: Two dimensional Riemann problem with four shod&slines of density and pressure
calculated on @00 x 400 mesh at tim&” = 0.25

5 Conclusions

A novel genuinely multi-dimensional relaxation schemeesgnted, based on a multi-dimensional
relaxation system in which the foot of the characteristiagdrses all quadrants in an isotropic
way. This scheme is tested on some bench-mark problemsdtarsnd vector conservation
laws in two dimensions and the results demonstrate its @fioyi in capturing the flow features
accurately.
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