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Abstract

A novel genuinely multi-dimensional relaxation scheme is proposed. Based on a new
discrete velocity Boltzmann equation, which is an improvement over previously introduced
relaxation systems in terms of isotropic coverage of the multi-dimensional domain by the
foot of the characteristic, a finite volume method is developed in which the fluxes at the
cell interfaces are evaluated in a genuinely multi-dimensional way, in contrast to the tra-
ditional dimension-by-dimension treatment. This algorithm is tested on some bench-mark
test problems for hyperbolic conservation laws.
Keywords: genuinely multi-dimensional schemes, relaxation systems, isotropy, hyper-
bolic conservation laws, discrete velocity Boltzmann equation.

1 Introduction

Finite volume methods have been popular for the numerical solution of hyperbolic conservation
laws in the last three decades. Numerical schemes based on kinetic theory represent interest-
ing alternatives to the classical Riemann solver based schemes. A review ofupwindmethods
based onkinetic theoryis given in [6]. Jin and Xin [7] have introduced a new categoryof up-
wind method called relaxation schemes. A relaxation systemconverts a nonlinear convection
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equation into linear convection equations with nonlinear source terms. The numerical methods
based on arelaxation systemare calledrelaxation schemes. These schemes avoid solution of
Riemann problems. The diagonal form of the relaxation system can be viewed as adiscrete ve-
locity Boltzmann equation[1]. The so calleddiscrete kinetic schemesare based on the discrete
velocity Boltzmann equation. Some of the numerical investigations using the discrete Boltz-
mann equation can be found in [1], [2], [14]. For multi-dimensional flows, however, the tradi-
tional finite volume methods are typically based on a dimension-by-dimension treatment using
one-dimensional approximate Riemann solver. As a result ofthis inherently one-dimensional
treatment, the discontinuities which are oblique to the coordinate directions are not be resolved
accurately. Developing genuinely multi-dimensional algorithms has been a topic of intense re-
search in the last decade and a half. The reader is referred to[5], [8], [9], [11], [15], [17] for
some multi-dimensional schemes. In the present work, we have developed a genuinely multi-
dimensional relaxation scheme using a discrete velocity Boltzmann equation. In the relaxation
system of Aregba-Driollet and Natalini [1], the foot of the bicharacteristic curves are not dis-
tributed in an isotropic way. To overcome this deficiency Manishaet. al [12] have given an
isotropic relaxation systemin which the foot of the characteristic traverses all quadrants in an
isotropic way. The goal of this paper is to derive a genuinelymulti-dimensional finite volume
scheme based on the relaxation system in [12], that follows the work of Lukáčová; see [10],
[11] and the references therein.

2 Relaxation systems for hyperbolic conservation laws

In this section we introduce relaxation systems for conservation laws. For the sake of con-
venience we present the details only for two space dimensions. Extension to arbitrary space
dimensions is straight forward. Consider the following Cauchy problem

∂tu + ∂xg1(u) + ∂yg2(u) = 0, (1)

u(x, y, 0) = u0(x, y), (2)

whereu ∈ R
n is the unknown vector,g1 ∈ R

n, g2 ∈ R
n are locally Lipschitz continuous flux

functions. We assume that the system (1) is hyperbolic.
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2.1 Relaxation system of Jin and Xin

Jin and Xin [7] has proposed the following relaxation systemfor (1).

∂tu + ∂xv + ∂yw = 0,

∂tv + λ2
1∂xu =

1

ǫ
(g1(u) − v) ,

∂tw + λ2
2∂yu =

1

ǫ
(g2(u) − w) (3)

with the initial conditions

v(x, y, 0) = g1 (u0(x, y)) , w(x, y, 0) = g2 (u0(x, y)) . (4)

Herev, w are new variables,λ1 andλ2 are positive constants andǫ is a small positive constant
called the relaxation parameter. In the relaxation limit asǫ → 0, from the last two equations in
(3) it can be seen that,

v = g1(u), w = g2(u), (5)

up to first order terms. Then from the first equation in (3) one recovers the original conservation
law (1). The state satisfying (5) is called alocal equilibrium. Solution of (3) with the initial
conditions (4) in the limitǫ → 0 formally satisfies the Cauchy problem (1)-(2). The main
advantage of using (3) is that the convection terms are linear. The nonlinear source terms on the
right hand side of (3) can be separated by a splitting method,see [7] for more details.

2.2 Discrete velocity Boltzmann equation

We should point out that the relaxation system (3) is not diagonalizable. As it is preferable to
work with a system in diagonal form, Aregba-Driollet and Natalini [1] has given the following
diagonal relaxation system.

∂tf + Λ1∂xf + Λ2∂yf =
1

ǫ
(F − f ). (6)

The system (6) is termed as a discrete velocity Boltzmann equation. The initial condition for
(6) is given by

f(x, y, 0) = F (u0(x, y)) . (7)

For the sake of isotropy (see comments below), we choose

f = (f 1, f 2, f3, f4)
t

F = (F 1, F 2, F 3, F 4)
t .
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Each of thef i’s andF i’s are fromR
n. The system (2.6) consists of4n equations but in very

simple form for numerical integration. The matricesΛ1 andΛ2 are block diagonal matrices.
The quantitiesF i’s are called local Maxwellians. The relaxation system (6) is endowed with a
matrix operatorP such that

PF (u) = u, PΛjF (u) = gj(u), j = 1, 2. (8)

The conditions (8) are necessary for any solution of the relaxation system (6) to converge to the
correct entropy weak solution of the hyperbolic conservation law (1), cf [4], [13]. Under the
assumption that the Maxwellians are monotone, Natalini [13] has proved the convergence of
the solution of a relaxation system (6) to the Kruzkov entropy solution of a scalar conservation
law. The relaxation system (6) is completely determined once the matricesΛi, i = 1, 2 and the
MaxwelliansF i, i = 1, 2, 3, 4 are fixed. Following [1] and [12], we adopt a block structure for
the matricesΛ1 andΛ2 as given below.

Λ1 = diag(−λIn, λIn, λIn,−λIn) , Λ2 = diag(−λIn,−λIn, λIn, λIn) .

Here,In is then × n identity matrix. Note that this choice of the discrete velocities admits
the following nice feature, which we callisotropy. The bicharacteristics curves of (6) through
any pointP (x, y, t + ∆t) falls evenly in all the four quadrants around the pointQ(x, y, t); see
Figure 1.

P(x,y,t+∆ t)

Q1

Q2

Q
3 Q4

Q(x,y,t)

t

y

x

Figure 1: Feet of the bicharacteristics through P

The isotropy is a special property of our relaxation system.This feature enables us to design
a genuinely multi-dimensional finite volume scheme for (6).Following [1], [3] we choose the
MaxwelliansF i, i = 1, 2, 3, 4, in the following way.

F i(u) = αi0u + αi1g1(u) + αi2g2(u), (9)
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where the coefficientsαij are to be fixed so that the conditions (8) are satisfied. A simple
calculation yields

F 1(u) = u
4 −

g
1
(u)

4λ
−

g
2
(u)

4λ
, F 2(u) = u

4 +
g

1
(u)

4λ
−

g
2
(u)

4λ
,

F 3(u) = u
4 +

g
1
(u)

4λ
+

g
2
(u)

4λ
, F 4(u) = u

4 −
g

1
(u)

4λ
+

g
2
(u)

4λ
.

(10)

Let σ (F i(u)) denote the eigenvalues ofF i(u). Then, under some technical assumptions, it is
shown in [3] that the Jacobians∂uF i(u) are diagonalizable. Moreover ifσ (F i(u)) ⊂ [0, +∞[,
then (6) admits a kinetic entropy and in the hydrodynamic limit as ǫ → 0 the Lax entropy
inequality is satisfied; see also [4].

2.3 Chapman-Enskog Analysis

The Chapman-Enskog expansion gives the stability condition for the relaxation system. Since
the local equilibrium of the relaxation system (6) is the hyperbolic conservation law (1), we
derive a viscous first order approximation to (1), analogousto the compressible Navier-Stokes
equations in classical kinetic theory. Consider the asymptotic expansion,

f i = F i + ǫf
(1)
i + ǫ2f

(2)
i + · · · . (11)

Substituting this expression in the discrete velocity Boltzmann equation (6) and using the con-
sistency conditions (8) the following system will be obtained.

∂tu + ∂xg1(u) + ∂yg2(u) = ǫ (∂x (Q11∂xu + Q12∂yu) + ∂y (Q21∂xu + Q22∂yu)) . (12)

In (12) the matricesQij are dissipation matrices. For (12) to be parabolic all theQij should
be positive definite. This yields a condition onλ; see [1], [4] for more details. For a scalar
conservation law in two dimensions the stability conditionturns out to be

λ2 ≥ (∂ug1(u))2 + (∂ug2(u))2 . (13)

3 A numerical scheme based on bicharacteristics

In the literature numerous approaches based on the relaxation systems can be found. For ex-
ample, in [7] Jin and Xin classify their schemes into two categories, namely, relaxing schemes
and relaxed schemes.Relaxing schemesdepend onǫ and the artificial variablesv andw. The
zero relaxation limit of the relaxing schemes are called relaxed schemes. Therelaxed schemes
are stable discretizations of the original conservation law and thus are independent ofǫ and the
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artificial variablesv andw. Jin and Xin construct upwinding based on characteristic variables.
To achieve second order accuracy they use van Leer’s MUSCL discretization. Time discretiza-
tion is realized by means of a second order TVD Runge-Kutta method. New discrete kinetic
schemes have been introduced by Aregba-Driollet and Natalini in [1]. The authors start with
a set of decoupled equations, in which the dependent variables are the characteristic variables.
The main advantage in this approach is the fact that upwinding becomes very simple. In order
to treat multi-dimensional systems the dimensional splitting has been used.
Our goal is to use the discrete Boltzmann equation (6) and approximate it in a genuinely multi-
dimensional way using the isotropy of the system. The discrete Boltzmann equation (6) is
solved by splitting method as

∂tf + Λ1∂xf + Λ2∂yf = 0 (convection step), (14)
df

dt
=

1

ǫ
(F − f ) (relaxation step). (15)

The relaxation step is further simplified by takingǫ = 0, leading tof = F . Hence at any stage
we need to solve only the set of linear convection equations in (14). If we integrate (14) over
a mesh cell and over the time interval fromn∆t to (n + 1)∆t, application of Gauss formula
gives,

fn+1 = fn − ∆t

∫ ∆t

0

[

Λ1δxf
n+t̃/∆t + Λ2δyf

n+t̃/∆t
]

dt̃. (16)

In this formula,fn+1 andfn represents the cell averages, whileδxf
n+t̃/∆t involves averages

along the cell edges to the right and left andδyf
n+t̃/∆t along the edges to the top and bottom,

in all cases at an intermediate time stepn + t̃/∆t. We approximate the time integrals in (16)
by midpoint rule bỹt = ∆t/2. Then the cell boundary fluxfn+1/2 is evolved using the exact
evolution operatorE∆t/2 for (14) and suitable recovery operatorsRh. For example on vertical
edges,

fn+1/2 =
1

h

∫ h

0

E∆t/2Rhf
ndsy, (17)

where dsy is an element of arc length along the vertical edges. A similar expression holds for
horizontal edges also. We have used the Simpson rule for the cell interface integrals in (17) and
evaluated the fluxes at the midpoints and corners of the edges. Note that the Simpson quadrature
allows us to take into account the multi-dimensional effects.

4 Numerical results

The new multi-dimensional relaxation scheme is tested on some standard test problems for in-
viscid Burgers equation and the Euler equations in two spacedimensions. In all the problems
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the computations were carried out on uniform Cartesian grids.

Burgers equation test cases: These test cases are taken from Spekreijse [16]. It models a
shock and a smooth variation representing an expansion fan in 2D domain. The inviscid Burgers
equation considered here is given by

∂tu + ∂x

(

u2

2

)

+ ∂yu = 0.

The computational domain is[0, 1] × [0, 1]. The following two test cases has been considered.

Test case 1:The boundary conditions are given by

u(0, y) = 1 0 < y < 1, u(1, y) = −1 0 < y < 1, u(x, 0) = 1 − 2x 0 < x < 1.

The solution is computed for timeT = 1.5 on a128 × 128 grid with a CFL number0.7. The
solution contains a shock originating at the point(0.5, 0.5). The isolines of the solution is given
in Figure 2.

Test case 2:The boundary conditions are

u(0, y) = 1.5 0 < y < 1, u(1, y) = −0.5 0 < y < 1, u(x, 0) = 1.5 − 2x 0 < x < 1.

The solution is computed for timeT = 1.5 on a128 × 128 grid with a CFL number0.7. The
solution contains an oblique shock originating at the point(0.75, 0.5). See Figure 2.

Euler equations test cases:

Test case 3:The first test case is the cylindrical explosion problem. Thecomputational
domain is the square[−1, 1] × [−1, 1]. The initial data read,

ρ = 1, u = 0, v = 0, p = 1, |x| < 0.4, ρ = 0.125, u = 0, v = 0, p = 0.1, else.

The solution is computed at timeT = 0.2 with a CFL number0.7. The solution exhibits a
circular shock and circular contact discontinuity moving away from the centre of the circle
and circular rarefaction wave moving in the opposite direction. The isolines of the density,
x−component of the velocity,y−component of the velocity and pressure are given in Figure 3.

Next two test cases are two-dimensional Riemann problems. The computational domain
[−1, 1]× [−1, 1] is divided into four quadrants. The initial data consist of single constant states
in each of these four quadrants. These constant values are chosen in such a way that each pair

7



test case 1
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Figure 2: Burgers equation test cases on a128 × 128 mesh
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Figure 3: Cylindrical explosion problem: Isolines of the solution calculated on a400 × 400
mesh at timeT = 0.2

of quadrants defines a one-dimensional Riemann problem.
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Test case 4:In this test problem we choose the initial data in such a way that two forward
moving shocks and two standing slip lines are produced. The initial data read,

ρ = 0.5313, u = 0.0, v = 0.0, p = 0.4, if x > 0, y > 0,

ρ = 1.0, u = 0.0, v = 0.7276, p = 1.0, if x > 0, y < 0,

ρ = 1.0, u = 0.7276, v = 0.0, p = 1.0, if x < 0, y > 0,

ρ = 0.8, u = 0.0, v = 0.0, p = 1.0, if x < 0, y < 0.

The solution is computed at timeT = 0.52 with a CFL number0.7. The isolines of the density
and pressure are given in Figure 4.
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Figure 4: Two dimensional Riemann problem containing two shocks/two slip lines. Isolines of
density and pressure calculated on a400 × 400 mesh at timeT = 0.52

Test case 5:This test case is a two dimensional Riemann problem that produces two forward
moving shocks and two backward moving shocks. Initial data are taken as

ρ = 1.1, u = 0.0, v = 0.0, p = 1.1, if x > 0, y > 0,

ρ = 0.5065, u = 0.0, v = 0.8939, p = 0.35, if x > 0, y < 0,

ρ = 0.5065, u = 0.8939, v = 0.0, p = 0.35, if x < 0, y > 0,

ρ = 1.1, u = 0.8939, v = 0.8939, p = 1.1, if x < 0, y < 0.
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Computation are done until timeT = 0.25 with a CFL number0.7. The density and pressure
isolines are given in Figure 5.
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Figure 5: Two dimensional Riemann problem with four shocks.Isolines of density and pressure
calculated on a400 × 400 mesh at timeT = 0.25

5 Conclusions

A novel genuinely multi-dimensional relaxation scheme is presented, based on a multi-dimensional
relaxation system in which the foot of the characteristics traverses all quadrants in an isotropic
way. This scheme is tested on some bench-mark problems for scalar and vector conservation
laws in two dimensions and the results demonstrate its efficiency in capturing the flow features
accurately.
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