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1 FVEG schemes and hyperbolic balance laws

Many problems arising in geophysics and engineering yield hyperbolic balance
laws. Let us mention, for example, the compressible duct flow, multiphase flow
or shallow water flow with variable bottom topography. All of them can be
written in the following form

ut +

d
∑

i=1

(f(u))xi
= b(u), (1)

where d is the space dimension. This system belongs to the class of non-

conservative systems, i.e. systems which cannot be written in the divergence
form. The non-conservative products cannot be defined in the distributional
way and new tools have to used for theoretical investigations, see Dal Maso,
LeFloch and Murat [DLM95]. Additionally, the system is nonstrictly hyper-

bolic with resonant behaviour, i.e. we have for the extended system with an
additionally equation b(u)t = 0, cf. (9), some coinciding eigenvalues and lin-
early dependent eigenvectors.

As showed by several authors one can construct nonunique solutions of the
one-dimensional Riemann problem, which locally satisfy entropy criterion,
see, e.g., Chinnaya, LeRoux and Seguin [CLS04], Andrianov and Warnecke
[AW04a], [AW04b]. For further theoretical results on resonant systems see
also Goatin and LeFloch [GL04].

Despite these theoretical difficulties several numerical schemes have been
proposed in order to solve problem (1). One possibility is to use the operator-
splitting technique which yields two subsystems

ut +
d

∑

i=1

(f(u))xi
= 0 (2)
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and
ut = b(u). (3)

They can be solved by some finite volume scheme and a suitable ODE-solver.
Anyway, in the case where the desired solution is close to the equilibrium
state, i.e.

d
∑

i=1

(f(u))xi
= b(u), (4)

the operator-splitting approach is not appropriate. In fact, using two different
types of discretizations for (2) and (3) will produce unbalanced higher order
errors. As a result the balance state (4) can be obtained only for very fine
discretizations, which is not efficient. In the recent literature one can find the
so-called well-balanced schemes, in which the balance between the gradient of
fluxes and the source terms is dictated by the construction of the scheme, see,
e.g., [GL96], [ABBKP04], [BKLL04], [NPPN06].

In [LV05] and [LNK06] the well-balanced finite volume evolution Galerkin
(FVEG) scheme has been proposed for the shallow water equations with
source terms. The FVEG scheme is a two step predictor corrector method. In
the corrector step the classical finite volume update is done. In order to evalu-
ate fluxes on cell interfaces the so called approximate evolution operator E∆t/2

is used. Such an evolution operator is based on the theory of bicharacteris-
tics and takes all of the infinitely many directions of wave propagation into
account. Derivation of evolution operators can be found in [LMW00], [LS03],
[LSW02], [LMW04] and [LNK06]. Thus, in the predictor step the values on
cell interfaces are evolved at certain integrations points at the intermediate
time tn+1/2 := tn + ∆t/2. Let us denote by E∆t/2U

n the predicted value of
the approximate solution at time tn+1/2. Then the fluxes at the cell interfaces
can be approximated by

f̄
n+1/2

k :=
∑

j

ωjfk(E∆t/2U
n(xj(E))), (5)

where the ωj denote the weights of the integration rule and E is the cell
interface.

Let us consider, for simplicity, a regular rectangular mesh consisting of
mesh cells Ωij = [xi− h̄/2, xi + h̄/2]× [yj − h̄/2, yj + h̄/2], i, j ∈ Z, h̄ is a mesh
size. Further, let us denote the cell averages at time tn by Un

ij and the central

difference operator in xk-direction by δij
xk

, i.e. δij
x1

u = ui+1/2,j −ui−1/2,j . Then
the finite volume update reads

Un+1

ij = Un
ij − λ

2
∑

k=1

δij
xk

f̄
n+1/2

k + λB
n+1/2

ij , (6)

where λ = ∆t/h̄ and Bij stands for the approximation of the source term
multiplied by the mesh size, h̄b. Note that in order to obtain a well-balanced
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scheme a care has to be taken in order to approximate the source term. In our
scheme we are using the cell interface approach, see [J01], [LV05], [LNK06].

To solve the problems in numerical solutions arising by non-uniqueness
of the Riemann problem for resonant hyperbolic balance laws we propose
to use a parabolic regularization by adding a suitable viscosity term. This is
motivated by an original physical problem from which the hyperbolic problem
arises. Note that approach proposed in this paper is general and can be applied
to any numerical scheme (typically finite volume scheme) for the problem (1).
For the non-local regularization of phase-transition problems see, e.g., Rohde
[R04], Schofer [S06] and the references therein.

2 Shallow water equations with bottom topography

Let us consider the shallow water equations with variable bottom topography.
Such a system arises in many geophysical problems, for example in oceanog-
raphy, river flow or atmospheric flows

ht + (hu)x + (hv)y = 0

(hu)t + (hu2 + gh2/2)x + (huv)y = −ghbx

(hv)t + (huv)x + (hv2 + gh2/2)y = −ghby. (7)

Here h denotes the depth of the shallow water, (u, v)T is the velocity vector,
b represents the bottom topography and g is the gravitational constant.

In [LNK06] the following approximate evolution operator for (7) has been
derived

h (P ) = −b(P )

+
1

2π

∫ 2π

0

(h (Q) + b(Q)) − c̃

g
(u (Q) sgn(cos θ) + v (Q) sgn(sin θ)) dθ

u (P ) =
1

2π

∫ 2π

0

−g

c̃
(h(Q) + b(Q))sgn(cos θ)dθ

+
1

2π

∫ 2π

0

u (Q)

(

cos2 θ +
1

2

)

+ v (Q) sin θ cos θdθ (8)

with an analogous equation for the velocity v. Here P = (x, y, tn + ∆t/2) is
the apex of the so called bicharacteristic cone, i.e. an integration point for
cell interface fluxes. The values c̃, ũ, ṽ are suitable linearizations around P
and Q = (x− ũ∆t/2+ c̃∆t/2 cos θ, y− ṽ∆t/2+ c̃∆t/2 sin θ, tn). This operator,
denoted by Econst

∆t/2
, is used in order to evolve piecewise constant approxi-

mate solutions. An analogous operator for bilinear data has been derived in
[LNK06].
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2.1 Transcritical states and parabolic regularization

We now turn our attention to transcritical flows, i.e. flows that change from
Fr > 1 to Fr < 1 or vice versa, where Fr = ‖(u, v)T ‖2/c denotes the Froude
number and c =

√
gh is the wave celerity. For better understanding let us

consider one-dimensional shallow water equations and rewrite them in an
extended form such that the bottom topography is formally a part of the
variables

bt = 0,

ht + (hu)x = 0

(hu)t + (hu2 + gh2/2)x + ghbx = 0. (9)

We can rewrite these equations in a quasilinear form

wt + A(w)wx = 0, (10)

where

w =





b
h
hu



 , A(w) =





0 0 0
0 0 1
c2 c2 − u2 2u



 . (11)

The eigenvalues of the matrix A are λ1 = 0, λ2 = u − c and λ3 = u + c. The
eigenvectors written in a matrix form give

R =





c2 − u2 0 0
−c2 1 1
0 u − c u + c





c=u
=⇒ R =





0 0 0
−u2 1 1
0 0 2u



 . (12)

So in the case c = ±u the matrix R is singular and the system is parabolic
degenerate locally. This is called in the literature the resonant case, see, e.g.,
[GL04]. It has been pointed out by LeVeque [LeV98] that some schemes relying
closely on the hyperbolic structure of the problem may show some deficiencies
for this type of transcritical states. LeVeque showed, for example, that the
wave propagation algorithm was not able to approximate correctly the steady
transcritical shock. In the next section we will present results obtained by the
FVEG scheme, which also yields some oscillations on transcritical shocks. This
is a typical behavior for resonant systems. However, it has been pointed out by
LeFloch [L99] that these shocks are sensitive on regularization. Thus we use a
parabolic regularization and add a viscous term to the momentum equation.
In [GP00] asymptotic derivation of the viscous shallow water equations was
done. Note that in [GP00] no bottom topography has been considered. In
an analogous way we propose the following form of the viscous term in the
momentum equation for the shallow water system with a bottom topography

(hu)t + (hu2 + gh2/2)x = −ghbx + 4µ(hux)x, (13)

where µ is a viscosity parameter. Our aim is to choose µ in a numerical scheme
in such a way, that it vanishes as the mesh is refined.
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2.2 Numerical Experiments

Transcritical shock

Let us consider the one-dimensional transcritical flow problem firstly proposed
by LeVeque in [LeV98]. The computational domain is [0, 1] and the bottom
topography is given by

b(x) :=

{

0.25(cos(π(x − 0.5)/0.1) + 1) if |x − 0.5| < 0.1
0 otherwise

. (14)

The initial data for the water depth h are h(x, 0) = 1−b(x) and for the velocity
u(x, 0) = 0.3. The gravitational constant is set to be g = 1. The numerical
solution has been computed up to the final time T = 5, where a steady state
is already formed. The interest of this example is a steady transcritical shock
(hydraulic jump) at which the FVEG scheme produces oscillatory behavior
which does not disappear as the grid size is refined.

In all our examples a second order accurate scheme is used and the minmod
limiter is applied. We have used extrapolation boundary conditions at x = 0
and x = 1. Figure 1 shows the water depth h with bottom topography (left)
and the Froude number Fr (right) calculated by the FVEG scheme without a
parabolic regularization. From left to right the flow turns continuously from
subcritical (fluvial) to supercritical (torrential) and then through a transcrit-
ical shock it goes back to subcritical. As can be noticed the oscillations arise
under the great change in the bottom topography and a sudden change of the
flow regime from the supercritical to subcritical flow.
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Fig. 1. Transcritical shock without parabolic regularization, 100 mesh cells.

Recall that we have denoted by un
i the cell average of u on the i-th cell at

time tn. Define the following finite difference operators

δxui := ui+1/2 − ui−1/2, µxhi := (hi+1/2 + hi−1/2)/2.

We approximate the viscous term by the central finite differences at the time
tn as follows
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4µ(hux)x ≈ 4µδx(µxhn
i δxun

i )/h̄2. (15)

The viscosity parameter µ needs to be chosen as small as possible but big
enough to damp the oscillations completely. Numerical experiments indicated
that µ should be of the form

µ = αh̄, (16)

where α is a constant, α = O(1), h̄ is a mesh size. For this choice of α
the regularization acts in a uniform manner for different mesh sizes. For our
experiments we set α = 0.1. Furthermore, the regularization term is a first
order term and thus one wants to apply the regularization only if necessary. A
suitable switch has to be found in order to localize the resonant phenomenon.
In the examples presented in this paper the regularization has been applied
over the whole computational domain.

In Figure 2 the water depth h is plotted for a mesh with 100 mesh cells.
We can notice a stable steady transcritical shock without any oscillations. The
shock is smeared slightly due the added numerical diffusion. For finer meshes
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Fig. 2. Transcritical shock with parabolic regularization, 100 mesh cells.

the schock resolution is sharper, see Figure 3, where the results on a mesh
with 1000 cells are shown.

Transcritical steady state without shock

Now, we consider the same problem as before but assume the following initial
data for the velocity u(x, 0) = 0.6. We set the final time to T = 10. In this
case the steady state is again transcritical but smooth. In Figure 4 the bottom
topography and water depth are depicted (left) as well as the momentum hu
(right). Note, that no regularization has been necessary now.
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Fig. 3. Transcritical shock with parabolic regularization, 1000 mesh cells.
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Fig. 4. Transcritical flow without parabolic regularization, 1000 mesh cells.
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