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Studies and industrial computations frequently need a measure of uncertainty of com-

puted results based on the uncertainty of the underlying data. Often simple gradients are

sufficient for an engineer to judge results, but sometimes a more accurate prediction is

necessary. A tool for general use is the Monte Carlo method, which gives a prediction for

the distribution of results calculated with stochastic data but lacks hard error bounds for

many nonlinear problems and may need a lot of computing capacity for higher dimensional

systems.

A comparison will be made with a finite volume method and a modified TRAIL approach

that uses appropriate Ansatz functions, that are propagated over time. These give alter-

natives, that may not only be easier to compute in a limited area or for a large number

of states but as well provide error bounds. The result is a probability density function at

all time steps, from which all interesting quantities, e.g. probabilities for exceeding critical

values, can directly be derived.

Even though the alternatives may have some limitations at the current state of devel-

opment, they may be already interesting for specific purposes. In this paper theoretical

background will be given and an example will be presented.

I. Introduction: Extension of Deterministic Models

Many deterministic engineering calculations are based on input data which is still subject to alterations.
Even though the process of calculations in early design phases of a product may be close to that of a final
one, a lot of data beeing derived from more time consuming methods still cannot be provided and some
design descisions may not be finally agreed. If possible, these risks are taken into account by additional
scaling factors on the obtained results.

I.A. Stochastic Data

Some data is usually described naturally by a stochastic formulation. Regions of chaotic behaviour, e.g.
turbulence in a fluid, are often described in terms of a power spectral density. The term ’naturally’ refers to
the huge amount of data, which can only be conceived sensibly in a stochastic manner. However, material
properties or manufacturing tolerances would normally fit into this category as well, but in many applications
their variance is small enough, such that they can be considered deterministic.
But not all of the parameters that are considered deterministic are so from the beginning. Even though for
a certain design their value may be considered fixed, since the design changes quickly in early stages, their
precise value is not entirely clear. Hence to judge the calculation it would be interesting to see the effect of
that uncertainty.
An example may be a specific coefficient which may be hard to compute or measure precisely at a given
point of time where an assessment of an engineering design solution is desired. However, a sensible value
can be estimated as before with some variance added, depending in size on the engineering knowledge, e.g.
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experience from previous projects at similar stages or even from an uncertainty analysis for the process of
origin.
The salient point is to obtain a sensible probability distribution. In some cases it may make sense just to
fit a Gaussian curve through the two side points given by an interval from engineering judgement. But as
soon as a property is part of personal interest, e.g. if a value is not to exceed a critical value, the probability
density will typically show some additional skewness.

I.B. Uncertainty Analysis

For highly crucial computations there are highly optimized interval methods, e.g. robust analysis, that give
hard limits, in which the result is guaranteed to stay within a given range. In some situations, however, a
strict boundary is not necessary or even misleading, since very rare parameter combinations may lead to
extreme results. This is of importance especially in a design phase, where uncertainties are still large, but the
allowed risks are large too. For an engineer only interested in the significance of calculated data, a tendency
or feeling for the involved risk is often sufficient.
Depending on the accuracy of the required statements there are appropriate methods available. Just to
quickly obtain tendencies a qualitative analysis may just compute simple gradients. These gradients corre-
spond to uncorrelated variances in linearized systems already and can simply be obtained by finite differences
or by an automatic differentiation5 scheme. This approach can even be refined. Using higher order deriva-
tives even lightly noninear effects can be taken into account, but only as long as the system stays sufficiently
smooth.
To get a deeper understanding of nonlinear effects, the behaviour of discrete states and the effect of corre-
lation, in a quantitative approach the Monte Carlo analysis (MCA) can be performed. Depending on the
number of states and the accuracy needed, computational costs may be high. For nonlinear systems it may
not be possible to guarantee hard error bounds for the resulting stochastic distributions.6

The advantages of MCA are overwhelming in practice. A calculation framework may be set up entirely in-
dependent of the equations in use and a calculation can be parallelized easily. But still, if sufficient structure
in the problem can be exploited, other methods, e.g. finite volume (FV) or the Modified TRAIL scheme
(MTS), may become more interesting. The existence of hard error bounds allows vindication of safety factors
or callibration of MCA. The exploited structure may bring down needed computing power. Such a proven
quantitative analysis will be the main topic in the following.

II. A Stochastic Approach

Basically any dynamic system can be described as a system of ordinary differential equations (ODE) of
the form

∂

∂t
x̃ = f̃(x̃,p, t) (1)

with some states x̃ that evolve over time t and depend on a vector of parameters p and a possibly nonlinear
vector function f̃ . This equation can futher be simplified by assuming

x =

(

x̃

p

)

and f =

(

f̃

0

)

(2)

such that equation (1) becomes
∂

∂t
x = f(x, t). (3)

II.A. Introduction of Stochastic Data

The most general possible assumption is to define a probability density ρ for the initial states at t = t0 of
equation (3), such that

ρ(x, t0) = ρ0(x). (4)

If only some parameters in equation (1) are uncertain, for some methods the other parameters and initial
states still need to be assumed stochastic as well. Using a very low variance in practice usually does not
seem to harm the overall results, but may sometimes disturb numerical schemes.
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In some cases a trim calculation needs to be solved prior to time integration, e.g. by reordering equation (3)
and solving

0 =
∂

∂t
x − f(x, t). (5)

for unknown states or state derivatives. It was shown1 this could be achieved by Taylor expansion around
the mean value of the initial distribution, which also allowes the error to be controlled.

II.B. Monte Carlo Analysis

Equation (1) is already enough to start a MCA. Whichever variable is assumed to be stochastic, integration
delivers a probability function from the density. Using a waterlevel distribution then for each stochastic vari-
able its inverse probability function returns correctly distributed initial values. For each value a calculation
is started and from the results of the combinations of states the density can be calculated numerically.
Many variants for special numerical behaviour or purpose do exist as well as a lot of sophisticated commercial
software. The statistical error control seems to work sufficiently for a huge number of applications.

II.C. Fokker Planck Approach

To calculate the effect of (3) on the density distribution (4), a small volume Ω is considered. Stating
according to the continuity equation from fluid dynamics that the overall probability density is constant, a
change within a piece of volume must be due to in- and outflow of probability normal n to the surface S

∂

∂t

∫

x∈Ω

ρ(x, t)dV =

∫

x∈∂Ω

ρ(x, t) f(x, t) · n dS (6)

By applying the divergence theorem to the right hand side, equation (6) can be transformed into

∂

∂t

∫

x∈Ω

ρ(x, t)dV =

∫

x∈Ω

div(ρ(x, t) f(x, t)) dV (7)

and by stating this has to be true for all volumes, it follows

∂

∂t
ρ(x, t) = div(ρ(x, t)f(x, t)) (8)

as a general formulation.
This is a form of the Liouville equation for a single system of ODEs or the Fokker2-Planck4 equation with
the diffusion term set to zero. It describes exactly how the probability density evolves over time.
Basically a stochastic ordinary differential equation (SODE) is transformed into a deterministic partial
differential equation (DPDE), for which computational methods can be constructed. However, it has to be
noted that the DPDE has as many dimensions as there are states in the ODE.

II.D. Finite Volume Scheme

Equation (6) gives already a starting point for a solution using a finite volume scheme. The domain is gridded
and each gridpoint consists of a piece of volume Ωi surrounded by borders to pieces of volumes designated
to other gridpoints. Figure (1) shows a 2D example, with a rectangular piece of volume at a grid point. The
outflow at a gridpoint i is calculated by f(bk) and using the area a(bk) of each linear border bk separating
the volumes Ωi and Ωj and a normal vector n(bk) the flow is computed by

∂

∂t

∫

Ωi

ρdV =
∑

j

ρupwind(bk)a(bk)f(bk)n(bk) (9)

where

ρupwind(bk) =

{

ρi if n(bk)f(bk) > 0

ρj if n(bk)f(bk) ≤ 0
(10)
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Figure 1. Finite Volume Method: Flow out of and into each grid point is computed. Computing only gridpoints with

the possibility of a significant flow allows higher dimensionality for sparse problems.

indicates using the value for the density of the piece of volume, where the flow at the boundary is coming
from.
The length of the timestep is calculated from the Courant-Friedrichs-Lewy (CFL) condition

max
i

∆t||f(Ωi)||
∆x

≤ σ (11)

where for a rectangular grid ∆x is the smallest side length, ∆t the largest allowed timestep, and σ a factor
of safety smaller than one, typically σ ≈ 0.8.
For performance reasons it is essential that only gridpoints in the vicinity of areas are actually computed,
where the probability density is sufficiently large, e.g. for a rectangular grid with horizontally and vertically
numbered volumes Ωij larger than some tolerance

TOL > max|ρn,m|n=[i−1,i+1],m=[j−1,j+1]. (12)

In figure (1) the bold black line indicates the calculation region, while the underlying shape indicates an
area with sufficiently large density in the last time step. From step to step only recalculated and adjacent
gridpoints have to be checked for modification, since the CFL condition guarantees no further changes.

II.E. Modified TRAIL Scheme

Starting with equation (8) the TRAIL (Trapezoidal Rule for Adaptive Integration of Liouville Dynamics)
algorithm is proposed3 for describing the evolution of probability densities. It adresses the problem of the
large number of partial derivatives by using an appropriate set of Ansatz functions, which is possible as long
as the probability function stays sufficiently smooth to allow a cost saving algorithm.
The initial density is described by a sum of Gaussian Ansatz functions

ρ(x, t) =
∑

i

yi(t)e
(x−xi)

T Gi(x−xi) (13)

with the free variables yi, xi and λi such that Gi = λiI. Starting with a small number of Ansatz functions
optimization routines, e.g. the Gauss-Newton method or the Nelder-Mead scheme, return appropriate values
for the free variables and the number of Ansatz functions is increased until a prescribed accuracy is matched.
Then an integration is performed using the implicit trapezoidal rule

ρ(t + τ) − τ

2
ρ̇(t + τ) = ρ(t) − τ

2
ρ̇(t) (14)

which provides a local spatial error for each time step by approximating

‖ρ(t + τ) − τ

2
ρ̇(t + τ) − ρ(t) +

τ

2
ρ̇(t)‖2 ≤ TOLx (15)

4 of 8

American Institute of Aeronautics and Astronautics



that can be controlled. The length of the timestep itself can be estimated by comparing with a step of
another order. Values for the free variables of the following time step are obtained by some optimization
routine again. If the required tolerance in equation (15) cannot be met, the Ansatz space has to be extended
by additional Gaussian functions. If the optimization process breaks down due to a singular Jacobian some
Ansatz functions have to be removed.
The whole trouble of the algorithm is the 2-norm in equation (15), which cannot be evaluated exactly. A
sensible idea is to introduce a number of sample points xs to approximate it. This has the advantage that
after linerization the minimization problem becomes an overdetermined system, which can be solved by a
QR decomposition from which the global error and the condition of the influence matrix obtained from
linearizing the system can directly be read from. If the global error becomes to large, more Gaussians will
be added, if the condition becomes too bad, Gaussians will be removed.
The drawback of such an approximation of the 2-norm are frequently strange effect in the optimization,
since local maxima generated by overlapping Gaussians may stay unnoticed and gradients happen to show
discontinuities during the process. Hence a framework needs to be constructed, that filters inappropriate
results and cancels steps if necessary. Using better initial values obtained from linear analysis or good
guessing algorithms for the variance controlling parameters of the Gaussians increases the efficiency of the
algorithm.
For a lower number of Ansatz functions a maximum optimization seems to work as well. Basically instead
of the 2-norm the maximum norm is calculated as an optimization problem

max
x

(ρ(x, t + τ) − τ

2
ρ̇(x, t + τ) − ρ(x, t) +

τ

2
ρ̇(x, t)) ≤ TOLx (16)

using some reliable global branch and bound method. This approach works very well until the number of
variables becomes too large, the global optimization scheme fails more frequently without notice and, hence,
the outer minimization optimization fails as well due to wrong gradients.

III. Two State Example

In the following the three approaches are applied to a simple example. A two state model

v̇ = −g sin(θ) − R
v2

m
(17)

θ̇ = A
v

m
− g

v
cos(θ) + dAv2 (18)

with gravity constant g, aerodynamic constants A and d, and mass m describes a phugoid motion in terms
of the normalized pitch attitude θ and the normalized forward velocity v of a gliding aircraft. A friction
constant R is chosen such that a fixed point solution exists and oscillating motion occurs. The theoretical
solution of this equation returns multiple fixed points, one of which, oscillation about the center, is practically
relevant.
Now assume v and θ to have uncertain initial values and engineering experience gives a guess of their lower
and upper value, e.g. approximately θ ∈ [−0.65, 0.60] and v ∈ [1.5, 2.3], from which a worst case scenario
can be derived.
The engineering experience, translated in stochastic terms may result in the assumption, that more than
95% of all occurences of the initial values are to be within the given bounds, e.g. larger or smaller parameter
values are possible but very rare. Hence the variances σ are σv ≈ 0.18 and σθ ≈ 0.32, respectively.

III.A. Monte Carlo Analysis

For MCA n = 10000 initial points are chosen, distributed according to the initial probability density and
propagated independently. The resulting cloud of points is gridded and the density is visualized. Figure (2)
shows the probability density at t = 0.6. Depending on the number of points, the density converges quickly
to what was expected, but even for a high number of sample points it stays erratic, which visualizes the slow
convergence of the statistical error

statistical error ∝ 1√
n

(19)
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Figure 2. Propagated probability density as 3D view for MCA. The rocky surface give an idea of the error in the

estimation of the probability density. However, the density can be seen slightly tilted, which shows the correlation

between v and θ. The yellow points show the location of the calculated results.

and indicates large relative errors especially in regions with low probability density. Apart from that the
method is implemented entirely independent of the original system, can be parallelized easily and gives
quickly a good impression of what is going on.

III.B. Finite Volume Method

The domain is gridded for the FV approach into 50 times 70 small rectangles. To each of them and for
each time step equation (9) is solved. From inspection of equations (17) and (18) a maximum gradient for
the CFL condition is obtained. Even though the grid is quite coarse the overall result is very good. In
2D the accelleration of the computation due to ommitting unchanged gridpoints is very small due to the
overhead costs of the analysis of the gridpoints. However, for a large number of dimensions, this would
change dramatically.

III.C. Modified TRAIL Scheme

In a first step the initial density has to be decomposed into a sum of Gaussian Ansatz functions. Similar to
equation (15) the sum needs to be close to the target distribution apart from a predefined tolerance

TOLx ≤ ‖
∑

i

yie
(x−xi)

T Gi(x−xi) − ρ0(x)‖2 (20)

which is approximated the same way as equation (15) is. To stay as stable and efficient as possible, the
number of Gaussians is i = 1 in a first step and, if the tolerance cannot be met, i is increased in each
step. Since only Ansatz function with a single variance in all directions are allowed, in this example eleven
functions are needed to obtain the predefined tolerance of TOLx = 10−2.
Then, using an initial timestep, a future density is calculated and the timestep is checked to not to have
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Figure 3. Time series of the probability density for all three methods applied to the example problem: The left column

shows the Monte Carlo method, the center column shows the finite volume method and the right column shows the

Fokker Planck approach, each at t = [0.00, 0.15, 0.30] All three methods basically lead to the same result, but the different

philosophies can be seen: Monte Carlo with its erratic bahaviour, the coarse grid of the finite volume method and the

smooth shape of the Fokker Planck approach.

been too large. If the tolerance cannot be met in an intermediate step, the number of Gaussians has to
be increased, by adding an additional function to the old density with an amplitude of zero, which can be
modified by the optimizer.
Depending on the approximation of the 2-norm this approach may be very fast and gives easily a low error.
The most appropriate approximation for it turned out to be a Monte Carlo like estimation of sample points.
But if local maxima due to an overlay of Gaussians are not detected by that scheme, a sudden breakdown
of the optimizer is possible. Then typically more sample points need to be added at the right places and the
optimizations needs to be restarted. With this happening more frequently a bad choice of samplepoints or
initial guesses can enlarge the computational time significantly.

III.D. Overall Result

Using the corner points of the given intervals from above as extreme values, at t = 0.6 the worst case scenario
gives a velocity of v(0.6) = 2.6. Now having performed stochastic analysis in a variety of ways, the whole
distribution at any point of time is given. Figure 2, for example, visualizes the probability density of the
two states at t = 0.6 obtained by MCA. θ seems likely to stay in a very limited range compared to the
initial value of the variance at that point of time and hence gains certainty which is balanced by greater
uncertainty in the velocity. Figure (3) suggests, that during the motion indeed uncertainty is shifted back
and forth between the two states. As a result of nonlinearities in the underlying equation, the uncertainty
band is also tilted slightly, hence showing a correlation between v and θ.
Integrating the density or using geometrical information from the Gaussian Ansatz functions hard numbers
can be obtained. For example using the error controlled MTS reveals that the probability for being above
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a velocity threshold of 2.3 is only 2.6% and for being above 2.5 is only 0.15%, maybe tolerable risks at an
early stage of design.

IV. The Way Ahead

Typically making use of decreasing computational costs leads to calculations using more realistic and
more complex dynamic systems, such that for analysis the effect of more input data becomes ever more
complex. At the same time development cycles become shorter and in early design stages some data may
not be available, while nevertheless first approximations are requested already. Risk analysis proves to
become hence more and more important. Stochastic analysis gives very detailed results on this.
In this paper three different methods were described. The following table gives an overview about the
features of each method.

Method MCA FV MTS

Computational Cost low-high high potentially low

Parallelisation very good good possible in parts

Error Control statistical error control only yes yes

Probability Conservation by construction yes within error bounds

Discontinuities yes yes difficult

Code Modifications not necessary possibly necessary possibly necessary

MCA is very common and available in many commercial packages. FV methods are available as well but less
common for risk analysis. Especially for low dimensional problems it is robust and allows error control. MTS,
making use of the smoothness of many problems, is new and hence not yet available as directly applicable
package. But it is promising since it avoids the curse of dimensionality,3 from which both MCA and FV
suffer, and provides hard error bounds as well.
Further improvements of the algorithm will be developed to make it more stable and reliable also for larger
equation systems. An appropriate methodology for treating the 2-norm is of importance here. For very few
discontinuities extensions may be possible by integrating connected but seperate systems. This will be a
topic of future work.
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