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Convex Source Support and Its Application to Electric Impedance Tomography∗
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Abstract. The aim in electric impedance tomography is to recover the conductivity inside a physical body from
boundary measurements of current and voltage. In many situations of practical importance, the
investigated object has known background conductivity but is contaminated by inhomogeneities. In
this work, we try to extract all possible information about the support of such inclusions inside a two-
dimensional object from only one pair of measurements of impedance tomography. Our noniterative
and computationally cheap method is based on the concept of the convex source support, which
stems from earlier works of Kusiak, Sylvester, and the authors. The functionality of our algorithm
is demonstrated by various numerical experiments.
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1. Introduction. Let us consider the inverse boundary value problem of electric impedance
tomography (EIT) in a bounded simply connected domain D ⊂ R

2: Determine the conductiv-
ity σ : D → R, with 0 < σ ≤ σ(x) ≤ σ < ∞, in the elliptic equation

(1.1) ∇ · (σ∇v) = 0 in D, σ
∂v

∂ν
= f on ∂D,

∫
∂D

v ds = 0

using all possible boundary measurement pairs (v|∂D, f). Here, v is the electrostatic potential,
and f is the mean free boundary current inserted into the body. Astala and Päivärinta [1]
have shown that this problem is uniquely solvable for a general isotropic conductivity; see also
[2, 3, 23, 27]. However, due to the severe ill-posedness of the problem, there is little hope of
building a reliable algorithm for reconstructing general conductivities. In particular, this is
true if only a few Cauchy data pairs (v|∂D, f) are available, which in practice is often the case.

In this work we are interested in a more specific application of EIT. Various imaging
problems of practical importance consider locating inhomogeneities inside objects with known
background conductivities. For example, detection of cracks and air bubbles in some building
material and distinguishing cancerous tissue from healthy background fall into this category
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of problems. If the background conductivity is assumed to be constant, say 1, our problem
setting can be expressed as follows: Assuming that

σ − 1 has compact support within D,

i.e., σ is 1 near the boundary of D, gather information on supp (σ − 1) from only one (or a
few) Dirichlet–Neumann pair of boundary data for problem (1.1).

Generating the corresponding harmonic reference potential v0, i.e., the solution of (1.1)
with σ replaced by 1, we can reduce our problem to finding the support of the source in the
Poisson equation

(1.2) Δu = F in D,
∂u

∂ν
= 0 on ∂D,

∫
∂D

uds = 0,

where u = v − v0 and the source can be written formally as

F = ∇ · (1 − σ)∇v .

Note that this notation has to be properly interpreted in a distributional sense if σ lacks the
appropriate smoothness (cf. section 4), but nonetheless, F is always supported within the
support of σ− 1. Also note that each pair of Dirichlet–Neumann data for problem (1.1) leads
to a different source, and thus, in principle, to additional information about the support of
σ − 1.

In a series of papers [7, 19, 20, 24, 25, 26], Kusiak and Sylvester, with varying coauthors,
developed the concept of convex scattering support, which is meant to be the smallest convex
set that contains a scattering source compatible with the far field of a scattered wave. The
corresponding theory was presented in [10] for electrostatics, and the notion of convex source
support was introduced. The purpose of the present paper is to develop an efficient algorithm
for computing the convex source support corresponding to the measurement u|∂D = (v−v0)|∂D

in (1.2) and thus introduce a method for extracting information on the location of the support
of the inhomogeneity σ − 1 from only one (or a few) measurement of EIT.

The outline of our paper is as follows. In section 2 we introduce the concept of convex
source support and study some of its basic properties. Section 3 develops a constructive way
to locate the convex source support, and section 4 builds an efficient numerical algorithm for
detecting inclusions using only one measurement of EIT. The functionality of the algorithm
is then demonstrated in section 5 by numerical examples.

2. The convex source support. Assume that D ⊂ R
2 is a bounded and simply connected

domain with a smooth enough, say C2, boundary. As noted in [10], the problem (1.2) has a
well-defined and unique solution u ∈ ∪m∈ZHm(D) for any distributional source F in

E ′
�(D) =

{
v ∈ E ′(D) | 〈v, 1〉 = 0

}
,

where 〈·, ·〉 : E ′(D) × C∞(D) → C denotes the dual evaluation between compactly supported
distributions and smooth functions in D. Moreover, the solution u is smooth in some neigh-
borhood of the boundary ∂D. In consequence, the following linear operator is well defined:

L :

{
F �→ u|∂D,

E ′�(D) → L2�(∂D),
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where L2�(∂D) denotes the space of square integrable mean free functions on ∂D. We denote
the range and the null space of L by R(L) and N (L), respectively.

It is easy to see that L is not injective and not even the support of F is uniquely determined
by the boundary measurement g = LF (cf. [10, 19]). Furthermore, the intersection of the
supports of the sources compatible with g is, in general, empty (cf. [19]), and this may hold
even if the holes in the supports are included before the intersection is taken [10]. However,
intersecting the convex hulls of the supports of the compatible sources provides information
on the original source as explained in the following (cf. [10]).

The convex support suppcF of F ∈ E ′�(D) is the convex hull of the support suppF of F .
Furthermore, the convex source support Cg is given by

(2.1) Cg =
⋂

LF=g

suppcF

if g ∈ R(L), and Cg is defined to be the convex hull of D, ch D, otherwise. Take note that if
D is nonconvex, Cg is not necessarily a subset of D.

It can been shown that Cg is essentially the smallest convex set that carries a source that
is compatible with g; the following theorem is a restatement of [10, Theorem 4.1] without
the assumption that D is convex. Here and in what follows, Nε(Ω) denotes the open epsilon
neighborhood of a set Ω ⊂ R

2; i.e.,

Nε(Ω) = {x ∈ R
2 | dist(x,Ω) < ε},

where dist(x,Ω) = infy∈Ω |x − y|. The closure of Ω is denoted by Ω.
Theorem 2.1. Let g ∈ R(L). Then, given any ε > 0, there exists a source Fε ∈ E ′�(D) such

that LFε = g and
Cg ⊂ suppcFε ⊂ Nε(Cg).

Moreover, Cg = ∅ if and only if g = 0.
Proof. Assume first that Cg = ∅ and fix an arbitrary ε > 0 such that Nε(Cg) ⊂ ch D. It

follows from a compactness argument (cf. [19]) that we can find a finite number F1, . . . , Fn of
compatible sources such that

C :=
n⋂

k=1

suppcFk ⊂ Nε(Cg).

For each k = 1, . . . , n there exists a harmonic function uk in D \ suppFk with the Cauchy
data (g, 0) on ∂D. Since suppcFk and suppcFj are convex sets, uk and uj coincide in D \
(suppcFk ∪ suppcFj), and all of these functions can be extended (or restricted) as the same
harmonic function u to D \ C ⊃ D \ Nε(Cg). Furthermore, due to the principle of unique
continuation, all uk agree in Nδ(∂D) ∩D for some δ > 0 that depends on the chosen sources.
Hence, we can continue u harmonically to the whole of (D \ C) ∪ (Nδ(∂D) ∩ D) with the
Cauchy data (g, 0) on ∂D. By taking Fε = Δuε, with uε ∈ L2(D) defined as

uε =

{
u in (D \ Nε(Cg)) ∪ (Nδ/2(∂D) ∩ D),
0 otherwise,
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we have thus constructed an appropriate source.
If g = 0, then the trivial source Fε = 0 is compatible with the data and, in particular,

Cg = suppcFε = ∅. On the other hand, if Cg = ∅, then a compactness argument reveals
that there exist a finite number of compatible sources and associated convex supports such
that the intersection C of these convex sets is empty. As above, the corresponding harmonic
potentials can be continued to a univalent harmonic function u that solves the Cauchy problem
for the data (g, 0) in D \ C = D. As u has homogeneous Neumann boundary value, it must
be constant in D, and hence its trace g must vanish as it is mean free. This completes the
proof.

2.1. Extension to a disk. In the following sections we will build a cheap numerical al-
gorithm for reconstructing the convex source support in the case that the domain of interest
is a disk. To show that considering this special case is sufficient from the practical point of
view, let us explain how the measurement g on ∂D, corresponding to a source in D, provides a
stable way to construct the measurement corresponding to problem (1.2) with the very same
source F , but posed in an origin-centered disk Bρ ⊃ D of radius ρ instead of D. At the same
time, we will examine whether the convex source support is affected by this extension process.

Let us consider the transmission problem

(2.2)
Δw = 0 in Bρ \ ∂D,

∂w

∂ν
= 0 on ∂Bρ,

∫
∂Bρ

w ds = 0,

∂w

∂ν

+

− ∂w

∂ν

−
= 0, w+ − w− = g on ∂D,

where g = u|∂D for the solution of (1.2) and the superscripts + and − correspond to traces
taken from within Bρ \D and D, respectively. The problem (2.2) has a unique solution wρ in
H1(D)⊕H1(Bρ \D), i.e., among L2(Bρ)-functions that are in H1 when restricted to D or to
Bρ \D. We denote the zero continuation of u to the whole of Bρ by u0, set uρ = u0 + wρ, and
note that E ′�(D) can be considered as a subspace of E ′�(Bρ) via extension by zero (cf. [6]).

Lemma 2.2. The distribution uρ ∈ ∪m∈ZHm(Bρ) is the unique solution of the Poisson
problem

(2.3) Δu = F in Bρ,
∂u

∂ν
= 0 on ∂Bρ,

∫
∂Bρ

uds = 0.

Proof. Since the Dirichlet and Neumann boundary values of uρ are continuous over ∂D
and the Laplacians of both u0 and wρ vanish away from the set ∂D ∪ suppF , it follows that

Δuρ = F in Bρ.

Hence, the claim is a consequence of the outer boundary conditions of (2.2).
Notice that (2.2) can be solved in a stable manner. Hence, given the data g ∈ L2�(∂D)

corresponding to (1.2) with a source F ∈ E ′�(D), Lemma 2.2 provides the means to compute
the “propagated” data gρ ∈ L2�(∂Bρ) corresponding to (2.3) and the very same source. Next
we will examine what happens to the convex source support when the domain is expanded in
this way.
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Let Lρ be the operator that maps a source F ∈ E ′�(Bρ) onto the Dirichlet boundary
value of the solution to (2.3) uρ|∂Bρ ∈ L2�(∂Bρ). The following lemma provides a relation
between the convex source supports corresponding to a fixed source and the domains D and
Bρ, respectively. Notice that the convex source support Cρgρ of the data gρ ∈ L2�(∂Bρ) is
defined in accordance with (2.1); i.e.,

(2.4) Cρgρ =
⋂

LρF=gρ

suppcF

if gρ ∈ R(Lρ), and Cρgρ = Bρ otherwise. Bear in mind that in (2.4) the sources live in E ′�(Bρ),
which is a larger space than E ′�(D).

Theorem 2.3. The sets N (L) and N (Lρ) ∩ E ′�(D) coincide. In particular, if g = LF and
gρ = LρF for some F ∈ E ′�(D), then Cρgρ ⊂ Cg, where equality holds if D is convex.

Proof. If LF = 0 for some F ∈ E ′�(D), it follows immediately from Lemma 2.2 and the
unique solvability of (2.2) that also LρF = 0. Assume next that LρF = 0 for some mean
free distribution F supported inside D. The corresponding potential uρ of (2.3) vanishes in
Nε(Bρ \D)∩Bρ for some ε > 0 due to the unique solvability of the Cauchy problem on ∂Bρ.
This implies that uρ|∂D and the flux of uρ across ∂D are both zero, and, hence, uρ|D solves
the source problem (1.2). In particular, LF = uρ|∂D = 0, which completes the first part of
the proof.

Next, let g = LF and gρ = LρF for F ∈ E ′�(D). If g = LF̃ for some other F̃ ∈ E ′�(D),
the first part of the theorem tells us that also gρ = LρF̃ . Hence, Cρgρ ⊂ Cg. Let us then
make the additional assumption that D is convex. Due to Theorem 2.1, there exists a source
Fε ⊂ E ′�(Bρ) such that for a small enough ε > 0

LρFε = gρ, suppcFε ⊂ Nε(Cρgρ) ⊂ Nε(Cg) ⊂ D,

where the last inclusion is a consequence of the convexity of D. Hence, it follows from the
first part of the theorem that LFε = g. In particular, Cg belongs to Nε(Cρgρ) for every ε > 0,
which implies that Cg ⊂ Cρgρ.

Notice that in general the sets Cg and Cρgρ of Theorem 2.3 do not coincide if D is non-
convex, as the following example demonstrates. In other words, the convex source support
does not depend merely on the source generating the data but also on the nonconvex domain
where it lives; for all convex domains the convex source support is the same, however.

Example 1. Consider the auxiliary function u1(x) = arg(x − (1/2, 0)) − arg(x + (1/2, 0))
in the disk Bρ, ρ = 1; here the function arg returns the polar angle θ ∈ (−π, π] of its
argument. A simple symmetry argument reveals that the Neumann boundary value of u1

has vanishing mean, which implies that the source F1 = Δu1, supported on the closed line
segment Γ1 := [(−1/2, 0), (1/2, 0)], belongs to E ′�(Bρ). When restricted to the lower half-plane,
u1 can be continued harmonically across the open line segment corresponding to Γ1, making
it possible to define a second auxiliary function u2 that is harmonic in the complement of
the dashed curve Γ2 depicted in the left-hand image of Figure 1 and agrees with u1 in the
complement of the closed D-shaped region bounded by Γ1 and Γ2. In particular, u1 and u2

jump by 2π when crossing Γ1 and Γ2, respectively. We define a second source, supported on
Γ2, by F2 = Δu2. Since the Neumann boundary values of u1 and u2 can be made homogeneous
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Γ1

Γ2
Γ

Figure 1. Geometry of Example 1 (see text). Left: The supports of two equivalent sources in a disk; the
lower one coincides with the corresponding convex source support. Right: The upper source in a kite-shaped
domain; the corresponding convex source support is the closed region filled with vertical lines.

by subtracting the same harmonic function, it follows easily that LρF1 = LρF2 =: gρ. As in
Example 3.3 of [10], we may argue that every source compatible with the data gρ must contain
both (−1/2, 0) and (1/2, 0) in its convex support, meaning that Cρgρ = Γ1. (Take note that
Γ2 could have been chosen as any smooth curve that is contained in the intersection of Bρ and
the upper half-plane, does not intersect itself, and has the end points (−1/2, 0) and (1/2, 0).)

Consider then the above defined source F2 ∈ E ′�(D) in the kite-shaped domain D marked
by the thick solid curve in the right-hand image of Figure 1; it is important that D is chosen
so that Γ2 is its subset, but Γ1 is not. Since the solution of (1.2) corresponding to F2, say
ũ2, differs from u2|D by a harmonic function that has the same Neumann boundary value as
u2 on ∂D, it follows that ũ2 also jumps by 2π when crossing the curve Γ2. In particular, ũ2

is discontinuous in any neighborhood of (−1/2, 0), or in that of (1/2, 0), and it follows easily
from the principle of unique continuation that the Cauchy data (LF2, 0) cannot be continued
harmonically to any neighborhood of either of these two points. As a consequence, every
E ′�(D)-source that is compatible with the data g := LF2 must contain both (−1/2, 0) and
(1/2, 0) in its convex support.

Let Γ be the dashed vertical line segment depicted in Figure 1; it is important that Γ
divides D into two connected components and that (−1/2, 0) and (1/2, 0) are on different
sides of Γ. Every compact subset of D that supports a source that is compatible with the
data g must intersect Γ. Otherwise, due to the principle of unique continuation, there would
exist ε > 0 and a harmonic function in Nε(∂D ∪ Γ) ∩ D that would coincide with ũ2 in
(Nε(∂D ∪ Γ) ∩ D) \ Γ2, which contradicts the jump condition of ũ2 on Γ2. To sum up, any
source that is compatible with g must contain the points (−1/2, 0) and (1/2, 0) and some part
of Γ in its convex support, and so it follows from the definition (2.1) that Cg = Γ1. This
shows that the convex source supports corresponding to the measurements LF2 and LρF2 do
not coincide. (By letting the curve Γ2 approach the bottom edge of D from above, one can
actually argue that Cg is the closed, almost triangular, region filled by vertical lines in the
right-hand image of Figure 1.) This completes the example.

To sum up, if D is convex, the convex source support is not affected by extending the source
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problem to a disk containing the original domain D. On the other hand, if D is nonconvex,
this procedure can make the convex source support smaller. However, in all cases the new
convex source support is still a nonempty subset of the convex hull of the unknown source
generating the original measurement, and thus it contains quite a bit of useful information.

If we confine ourselves to looking for the convex source support corresponding to the
original source generating the data and any convex domain enclosing the original domain, up
to solving one elliptic boundary value problem of the type (2.2), we may assume that our
two-dimensional domain of interest is a disk to begin with. After appropriate scaling, this
disk can be considered to be the unit disk. This is the convention we will adopt in the rest of
this work.

3. Constructive approximation of the convex source support. From now on, we will
assume that D is the unit disk. In this section we will build a criterion for deciding if the
convex source support Cg lies in the intersection of D and a given closed disk B ⊂ R

2. Since
the closed disks enclosing a closed and convex set define that set uniquely, this gives us a tool
for reconstructing Cg.

Let F ∈ E ′�(D) ⊂ E ′�(Bρ), ρ ≥ 1, be a fixed but unknown source and consider both g = LF
and gρ = LρF as functions of the polar angle θ. We denote the Fourier coefficients of g and
gρ by {αj}∞j=−∞ and {βj}∞j=−∞, respectively, i.e.,

αj =
1
2π

∫ π

−π
g(θ)e−ijθ dθ, βj =

1
2π

∫ π

−π
gρ(θ)e−ijθ dθ, j ∈ Z.

The following lemma provides a simple relation between the above sets of Fourier coefficients.
Lemma 3.1. The Fourier coefficients of g and gρ are related through

(3.1) βj =
αj

ρ|j|
, j ∈ Z.

Proof. It is easy to see that in our concentric framework the solution of (2.2) can be given
in polar coordinates as

wρ(r, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

∞∑
j=−∞

αj

(
ρ−2|j| − 1

)
r|j|eijθ, (r, θ) ∈ (0, 1) × (−π, π],

1
2

∞∑
j=−∞

αj

(
ρ−2|j|r|j| + r−|j|) eijθ, (r, θ) ∈ (1, ρ) × (−π, π].

In particular, according to Lemma 2.2, we have

gρ(θ) = (wρ|∂Bρ)(θ) =
∞∑

j=−∞

αj

ρ|j|
eijθ,

which proves the claim.
Given a general closed disk B ⊂ R

2 and Bρ, with a large enough radius ρ ≥ 1, containing
B, there is a conformal map, more precisely, a Möbius transformation Φ : Bρ → D, that maps



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVEX SOURCE SUPPORT AND EIT 371

Φ−1

Φ

B BR

Bρ D

Figure 2. The conformal mapping.

Bρ onto D and B onto some disk BR ⊂ D centered at the origin (cf. Figure 2); the radius
R = R(B, ρ) of BR is uniquely determined by B and ρ (cf., e.g., Henrici [11]). We denote the
Fourier coefficients of gρ ◦Φ−1 by {αj(Φ)}∞j=−∞. Notice that they can be computed efficiently
from the mere knowledge of g and Φ by using the representation given in Lemma 3.1.

Theorem 3.2. The function gρ ∈ L2�(∂Bρ) can be written as gρ = LρF̃ for some F̃ ∈ E ′�(Bρ)
with supp F̃ ⊂ B if and only if there exists m ∈ Z such that

∞∑
j=−∞

|αj(Φ)|2
R(B, ρ)2|j|

〈j〉m < ∞,

where we have used the notation 〈j〉 = (1 + j2)1/2.
Proof. The claim follows by using the exact same reasoning as in the proof of [10, Lemma

5.3].
Corollary 3.3. Let g ∈ R(L). Then we have Cg = Cρgρ ⊂ B ∩ D if and only if

(3.2)
∞∑

j=−∞

|αj(Φ)|2
(R + ε)2|j|

< ∞

for R = R(B, ρ) and every ε > 0.
Proof. In our concentric framework, the relation Cg = Cρgρ is a consequence of Theorem

2.3. Moreover, the claim about Cρgρ is obtained by following the line of reasoning leading to
[10, Corollary 5.4] and bearing in mind that the original source is supported inside D.

Since Φ can be written explicitly and the closed and convex set Cg ⊂ R
2 is determined

uniquely by the closed disks enclosing it, Corollary 3.3 can be used to formulate an efficient
numerical algorithm for reconstructing the convex source support. This matter is considered
in the framework of electric impedance tomography in the following section.

4. An application: Electric impedance tomography. We now turn to the impedance
tomography problem of recovering partial information about the unknown conductivity

σ ∈ Σ :=
{

σ ∈ L∞(D) :
σ − 1 has compact support, and there
exists a constant σ > 0 with σ ≥ σ a. e.

}
in (1.1) from one or a few boundary measurements. Even if σ ∈ Σ is further restricted to
be piecewise continuous, little is known about the identifiability of the support of σ − 1; see
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Isakov [15] for a survey of the corresponding state of the art. On the other hand, this inverse
problem has been approached numerically by various authors (cf., e.g., [5, 12, 16, 17, 18, 21])
with quite encouraging results. With the exception of the one in [21], the corresponding
numerical algorithms are iterative in nature. However, iterative methods require a repeated
solution of varying boundary value problems in the course of the iteration, which may add
significantly to the overall cost of these algorithms.

Kwon, Seo, and Yoon [21] have approached the problem from a different viewpoint: They
have developed a cheap noniterative method that yields a certain point P ∈ D which is
claimed to be close to the support of σ − 1. The numerical results shown in [21] indicate that
the point P may indeed provide some useful information about the location of supp (σ− 1); a
rigorous theoretical analysis for the general setting σ ∈ Σ, however, is still missing (see [9]). In
what follows we will apply the results of the previous sections to come up with an alternative
approach for locating this set without much cost.

In doing so we shall restrict our attention to only one fixed but arbitrary boundary current
f ∈ L2�(∂D) and introduce the corresponding reference potential v0 defined by

(4.1) Δv0 = 0 in D,
∂v0

∂ν
= f on ∂D,

∫
∂D

v0 ds = 0 .

By subtracting the variational equations for v, v0 ∈ H1(D) (cf., e.g., [6]), it is easy to see that
u = v − v0 satisfies

(4.2)
∫

D
∇u · ∇w dx =

∫
D

(1 − σ)∇v · ∇w dx for all w ∈ H1(D),

which has a unique solution among H1(D) elements that integrate to zero over ∂D due to
the Lax–Milgram lemma. From (4.2) and Weyl’s lemma it follows that the Laplacian of u
vanishes away from the support of σ − 1; moreover, by a standard variational argument, u
satisfies the homogeneous Neumann condition on ∂D. As a consequence, u ∈ H1(D) is a
solution of (1.2) for some source in H−1(D)∩E ′�(D) supported in supp (σ − 1) and depending
on the unknown conductivity and the unknown potential v in (1.1). Note that in real life the
needed difference data u|∂D = (v − v0)|∂D can be approximated via electrode measurements
[13, 14, 22]. However, in this work we restrict our attention to the ideal situation where the
data is given continuously along the boundary; the implementation of our algorithm in the
framework of simulated electrode measurements is considered in [8].

To be more specific, we first assume that σ is smooth: In this case partial integration in
(4.2) reveals that the source can be written as

F = ∇ · (1 − σ)∇v,

which obviously is supported in supp (σ−1). On the other hand, if σ is piecewise constant, i.e.,
it equals 1 outside some smooth enough domain Ω, for which Ω ⊂ D, and some other constant
within Ω, then (4.2), together with the grounding of the potential on ∂D, is equivalent to the
transmission problem

Δu = 0 in D \ ∂Ω,
∂u

∂ν
= 0 on ∂D,

∫
∂D

uds = 0,

∂u

∂ν

+

− ∂u

∂ν

−
= (σ− − 1)

∂v

∂ν

−
, u+ − u− = 0 on ∂Ω,
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where the superscripts + and − correspond to traces taken from within D \Ω and Ω, respec-
tively. This transmission problem can be interpreted as a source problem of the type (1.2)
with a distributional source F supported on the boundary of supp (σ − 1).

Recall from the previous sections that the convex source support Cg of some Dirichlet
data g = u|∂D, with u given by (1.2), is contained in the convex hull of the support of the
source F of (1.2). Moreover, there are compatible sources supported in any arbitrarily small
neighborhood of Cg. Accordingly, if we let u = v−v0 be the solution of (4.2) and set g = u|∂D,
then Cg is a subset of the convex hull of the support of σ − 1. Of course, we need to solve
one forward problem, namely, the Laplace equation (4.1), to obtain v0|∂D and thus g; for a
more general domain D we also need to solve the diffraction problem (2.2). Still, our method
is much cheaper than the iterative methods mentioned above.

Our numerical algorithm for computing Cg is based on Corollary 3.3. It is well known (see
again [11]) that all Möbius transformations that map Bρ onto the unit disk have the form (in
complex variables)

(4.3) Φ(z) = ρeic z − ζ

ρ2 − ζz
, z ∈ Bρ ,

where ζ ∈ Bρ is a free parameter and c is a real number. Since our interest is restricted to
mappings Φ which take some given closed disk B ⊂ Bρ onto a disk BR centered at the origin
as in Figure 2, the parameter c is irrelevant for our purposes and will be set to zero in what
follows. We emphasize that Φ maps ζ onto the origin, but does not map a disk centered at
ζ onto a disk centered at the origin—unless ζ = 0. However, any closed disk B ⊂ Bρ can be
mapped by some transformation Φ of this form, with ζ ∈ B and c = 0, onto some concentric
disk BR. Moreover, R and ζ are uniquely determined this way. As a consequence, we can
test all disks in Bρ by varying the parameter ζ ∈ Bρ and 0 < R < 1 and checking (3.2) for
convergence.

This test for convergence can be implemented using an idea from [4]. With increasing
frequency the Fourier coefficients αj(Φ) of gρ ◦ Φ−1 typically show a geometric decay. It is
therefore natural to approximate

(4.4) log |αj(Φ)| ≈ m|j| + b ,

e.g., by a standard linear regression analysis, and to assume that the series (3.2) converges
whenever R > em. We vary ζ ∈ Z for some finite subset Z ⊂ Bρ, and accordingly Φ = Φζ

from (4.3) with c = 0, and define the associated radii Rζ = em with m = mζ of (4.4). Based
on these computations we find

(4.5) Cg ≈
⋂
ζ∈Z

Φ−1
ζ (BRζ

) .

Note that, as ρ increases, this approximation gets, in principle, better because larger disks
may enter the intersection in (4.5), but at the same time more grid points are needed to
obtain a proper covering of Bρ. Even more importantly, the relation (3.1) shows that the
small details in gρ vanish extremely rapidly as ρ gets larger, and thus increasing ρ makes the
algorithm more susceptible to (even numerical) noise. As a consequence, there is a trade-off
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between the theoretical optimality and the stability of the algorithm. Our numerical tests
indicate that the reconstructions usually deteriorate if ρ > 1.5; in the examples presented
below we use ρ = 1.4.

For our numerical experiments we solved the forward problem with the boundary element
code from [4] using N = 768 equidistant grid points for the Dirichlet boundary value g = u|∂D.
We compute the “propagated data” gρ on ∂Bρ by using the relation (3.1) and then approximate
the Fourier coefficients of gρ ◦ Φ−1

ρ by

αj(Φ) =
1
2π

∫ π

−π
gρ

(
θ(s)

)
e−ijs ds =

1
2π

∫ π

−π
gρ(θ) e−ijs(θ)s′(θ) dθ

≈ 1
N

N∑
k=1

gρ,k e−ijs(θk)s′(θk) ,

where gρ,k = gρ(θk) and θk = kh with h = 2π/N . The function s = s(θ) parameterizes the
boundary map corresponding to Φ; i.e., for ζ = reiϕ ∈ Z and z = ρeiθ with −π < θ ≤ π we
have

s(θ) = ϕ + 2arctan
(

ρ + r

ρ − r
tan

(
θ − ϕ

2

))

(up to multiples of 2π) with derivative

s′(θ) =
ρ2 − r2

ρ2 − 2ρr cos(θ − ϕ) + r2
.

Note that gρ ◦ Φ−1
ρ is no longer given on an equidistant mesh, and the quality of the

above quadrature rule for approximating αj(Φ) thus deteriorates when j becomes large or
when ζ approaches ∂Bρ. We avoid this by restricting Z ⊂ Bρ0 for some number ρ0 < ρ. Our
experience suggests that ρ0 should be less than 0.7ρ, say. It has to be emphasized, though,
that ρ0 should also be big enough to include some ζ between ∂Bρ and the center of mass of any
of the components of the inhomogeneity, since only those values of ζ provide any information
about the inclusion boundary in the “shadow region.” Furthermore, we have observed that
parameters ζ near the origin rarely contribute significantly to the overall intersection (4.5).
Bearing these considerations in mind, we choose Z to be an equidistant grid consisting of 64
points on a circle of radius r0 = 4/7ρ, i.e., r0 = 0.8 in our setting.

Concerning the stability of the algorithm, it is important to note that the number of
Fourier terms that stick out of the inherent noise in the data depends on (besides the amount
of noise, of course) their decay rate, i.e., on Rζ . Therefore, the number of Fourier coefficients
to be considered reliable for (4.4) has to be chosen adaptively and separately for each point
ζ ∈ Z. We also deleted from Z those parameters ζ for which the number of reliable Fourier
coefficients dropped below five.

5. Numerical results. Now we present three numerical examples in the framework of EIT.
Our first test examines the effect that the choice of the input current has on the reconstruction.
In the second experiment, we test how the algorithm works with an inhomogeneity that has
two disjoint components. Finally, the third example considers noisy measurement. In all three
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Figure 3. Reconstructions for different current patterns (see text).

experiments we consider piecewise constant conductivities; the conductivity of the inclusions
is 0.5 if not stated otherwise.

In the first example, we try to detect one kite-shaped inclusion. For this test we have used
four different current patterns to compute the reconstructions shown in Figure 3: The two
reconstructions in the top row correspond to trigonometric input currents, f(θ) = sin θ on the
left and f(θ) = cos(5 θ) on the right, respectively. The two reconstructions in the second row
correspond to more localized currents, computed from the partial sum of the first 64 terms of
a trigonometric series approximating a dipole at the boundary of the disk. These currents are
meant to simulate measurements taken with two electrodes that are attached close to each
other on ∂D. The location of the approximate dipole is marked by a big black spot in each
of the two plots: For the left-hand plot the dipole is located close to the inclusion; the right-
hand plot corresponds to a dipole sitting on the opposite side of the circle. Here and in the
subsequent reconstructions, the outer thick solid circle depicts ∂Bρ, the inner thick solid circle
is ∂D, and the dashed curve marks the circle on which the ζ parameters lie. Furthermore,
the many thin circles depict the disks whose intersection—the white area in the interior of the
kite—gives an approximation of Cg.

As Figure 3 demonstrates, our algorithm locates the inclusion with all four current pat-
terns. In fact, the somewhat counterintuitive conclusion is that the reconstructions are pretty
much independent of the used boundary current—at least for exact data. However, as the
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Figure 4. Reconstructions of two disjoint inclusions. Left: The conductivity of the lower inclusion is 0.5.
Right: The conductivity of the lower inclusion is 0.9 (see text).

magnitude of the measured signal typically decreases rapidly for increasing Fourier modes
in the boundary current, the signal-to-noise ratio is usually much better for low-frequency
boundary currents. On the other hand, our experience suggests that the relative size of the
convex source support—or at least that of the reconstruction provided by our algorithm—
depends significantly on the inhomogeneity in question: the more complicated the inclusion,
the larger the convex source support compared to the actual inclusion.

In our second example, we examine how the reconstruction of the first experiment corre-
sponding to the current f(θ) = sin θ is affected if a second inclusion is introduced inside D.
We let the conductivity of the new inhomogeneity take two different values: 0.5 and 0.9. As
Figure 4 illustrates, the convex source support seems to intersect both inclusions with both
conductivity levels. In fact, the conductivity of the lower inclusion does not seem to have
much effect on the reconstruction when dealing with noiseless data. It is probable, however,
that the reconstructions provided by our algorithm are somewhat smoother and larger than
the actual convex source supports since we cannot intersect with arbitrarily large disks (cf. [10]
for a similar conclusion).

In our final example, we investigate the robustness of our algorithm with respect to the
amount of noise in the data. This time around, we aim at locating a roundish inclusion using
once again the boundary current f(θ) = sin θ. Let g ∈ R

768 denote the values of g at the grid
points on ∂D. We simulate noisy measurements by replacing the exact point values g in our
algorithm by

gn,δ = g +
δ

100
n

|n| |g|,

where | · | denotes the Euclidean norm, the components of n ∈ R
768 are realizations of a nor-

mally distributed random variable with zero mean and variance 1, and δ is, loosely speaking,
the percentage of noise in the data.

In Figure 5 the first row corresponds to the noise level δ = 0.1 and the second row to
δ = 1. The left-hand column shows the reconstruction provided by our algorithm, i.e., the
empty set in both cases. Fortunately, with both noise levels the area where almost all test
circles intersect clearly points out the approximate location of the inclusion. The lack of
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Figure 5. Reconstructions with noisy data. Top: 0.1% of noise. Bottom: 1% of noise (see text).

reconstructions has two potential explanations: First, in many instances the initial decay rate
of the Fourier coefficients αj(Φ) is somewhat more pronounced than in the long run. When
the measurement is noisy, the number of reliable Fourier coefficients is low (in this example,
for δ = 0.1 around ten, and for δ = 1 six), which may thus lead to too small test disks and
cause the loss of reconstruction. Second, the measurement noise may also result in deceptively
small outliers in the family of test disks; one such outlier may be enough to make the whole
reconstruction disappear.

In the right-hand column of Figure 5, we have addressed the problem by replacing the
optimal radii {Rζ}ζ∈Z in (4.5) by the slightly larger {Rζ + ε}ζ∈Z , where ε is chosen to be
0.02. With both noise levels this results in the appearance of a small intersection of the
corresponding test disks at the middle of the actual inclusion. Since there is no way of
defining the “correct value” of the auxiliary parameter ε, this approach can point out only
the location of the convex source support, not its shape or size.

6. Concluding remarks. In our numerical examples we have restricted our attention to the
case where only one pair of Cauchy data is available for impedance tomography. If more than
one pair of data is given, one can of course combine the corresponding reconstructions, as each
of them should lie inside the convex hull of supp (σ−1); cf. section 4. However, our numerical
results did not really benefit from such a modification, as all individual reconstructions were
pretty much alike; cf. Figure 3.
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