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Abstra
t. In this paper we extend re
ent work on the dete
tion of in
lusions using ele
trostati


measurements to the problem of 
ra
k dete
tion in a two-dimensional obje
t. As in the in
lusion 
ase

our method is based on a fa
torization of the di�eren
e between two Neumann-Diri
hlet operators. The

fa
torization possible in the 
ase of 
ra
ks is mu
h simpler than that for in
lusions and the analysis

is greatly simpli�ed. However, the dire
tional information 
arried by the 
ra
k makes the pra
ti
al

implementation of our algorithm more 
omputationally demanding.
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Introdu
tion

In non-destru
tive testing an important area of resear
h is the dete
tion of 
ra
ks within the material being

investigated. There are a wide variety of methods that are used to solve this problem but most devi
es exploit

one of two basi
 approa
hes. The �rst type use a
ousti
 or ele
tromagneti
 s
attering data while the se
ond

use elastostati
 or ele
trostati
 measurements made on the surfa
e of the obje
t.

In this work we 
onsider the use of ele
trostati
 measurements following in this way the landmark paper of

Friedman and Vogelius [6℄: We assume that a set of ele
trodes is atta
hed to the surfa
e of an obje
t and that

these ele
trodes inje
t a sequen
e of independent 
urrents into the body. Ignoring some te
hni
al diÆ
ulties

we shall also assume that the same ele
trodes 
an be used to obtain measurements of the resulting surfa
e

potential. In mathemati
al terms the potential is the solution of an ellipti
 boundary value problem, and

the known boundary data 
orrespond to some partial knowledge of the Neumann-Diri
hlet operator for the

asso
iated di�erential operator. To dete
t 
ra
ks we have to determine from these data essential features of the

di�usion 
oeÆ
ient in the di�erential operator. This is an inverse boundary value problem.

Our approa
h to solving this inverse problem is based on the assumption that the body is homogeneously


ondu
ting, ex
ept for the 
ra
ks, whi
h are insulating. For ease of simpli
ity we restri
t ourselves to two spa
e

dimensions in whi
h 
ase a 
ra
k is an ar
.

We propose a numeri
al algorithm for re
onstru
ting the 
ra
ks from the given measurements whi
h is non-

iterative. This is quite di�erent from most 
ompeting s
hemes, see for instan
e [4, 13, 14℄ and the referen
es

therein. In our algorithm we need to solve only one forward problem per boundary 
urrent, 
orresponding to
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ra
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a homogeneous body without 
ra
ks. While it is known that only two 
urrents suÆ
e to identify any �nite

distribution of 
ra
ks (
f. [1, 7℄), our method requires a moderate number of measurements in pra
ti
e. We

emphasize that the number of 
ra
ks, on the other hand, need not be known a priori.

The method itself is an extension of an algorithm from [2, 3℄ for an inverse problem in ele
tri
al impedan
e

tomography. This algorithm 
an be used to de
ide whether a given point within the body belongs to the interior

of an insulating in
lusion | it will not re
ognize points on the boundary as being part of the in
lusion. In spite

of the similarity of these two inverse problems, the 
ra
k problem 
auses new diÆ
ulties be
ause 
ra
ks have

empty interior. We therefore have to modify this algorithm to see 
ra
ks.

On the other hand, the subtle di�eren
e between the two inverse problems allows an alternative way to

derive the theoreti
al basis of the algorithm in the 
ra
k 
ontext. This new analysis is shorter and mu
h more

elementary than the one in [2℄. Although we 
urrently do not see how to extend this new analysis to the

impedan
e tomography problem we believe that the new te
hnique deepens our understanding of the general


ase.

Histori
ally, the method in [2℄ followed an approa
h by Kirs
h [8℄ for 
ertain inverse s
attering problems.

Kirs
h's method also fails when it 
omes to dete
ting points on the boundary of the s
attering obsta
le. Re
ently

Kirs
h and Ritter [9℄ have therefore modi�ed the algorithm from [8℄ to re
onstru
t 
ra
ks from the far-�eld

pattern of s
attering data. These modi�
ations are similar to the one that we propose here. However, the

theoreti
al derivation in [9℄ parallels the original one in [8℄, and is di�erent in spirit from the one we give here.

As far as we know, our new analysis does not yet have an appropriate analog in the inverse s
attering 
ontext.

1. The forward problem

Consider a bounded, simply 
onne
ted domain 
 � R

2

representing a homogeneously 
ondu
ting obje
t.

Let � = �
 be the suÆ
iently smooth boundary of 
 with outer normal � on �.

In the absen
e of 
ra
ks the solution u of the boundary value problem

�u = 0 in 
 ;

�u

��

=

(

f on �

0

;

0 on � n �

0

;

(1)

is the potential resulting from a boundary 
urrent with support on �

0

� �. We may think of �

0

as being the

part of the boundary 
overed by ele
trodes. In order to guarantee solvability of (1) we need to assume that

f 2 L

2

�

(�

0

) = f f 2 L

2

(�

0

) :

Z

�

0

f ds = 0 g :

We denote by

g = uj

�

0

2 L

2

�

(�

0

) (2)

the boundary values of the potential on �

0

, where we impose the normalization in (2) to enfor
e uniqueness of

the potential.

In the presen
e of insulating 
ra
ks, the boundary value problem (1) has to be modi�ed. We de�ne a 
ra
k

� � 
 to be a 
ompa
t, simple ar
 (not a point) whi
h is suÆ
iently smooth so that we 
an assign for ea
h

point x 2 � a unit normal ve
tor n = n(x) varying smoothly over �. We denote by � � 
 the 
olle
tion of all


ra
ks and assume that 
 n � is 
onne
ted. If � is not the empty set the same Neumann boundary 
ondition

as above yields a potential ~u whi
h solves the di�ra
tion problem

�~u = 0 in 
 n � ;

�~u

��

=

(

f on �

0

;

0 on � n �

0

;

�~u

�n

= 0 on � : (3)



CRACK DETECTION USING ELECTROSTATIC MEASUREMENTS 3

The last 
ondition in (3) expresses the fa
t that no 
urrent 
ows a
ross �, i.e., that the 
ra
ks are insulating;

see Se
tion 4 for the modi�
ations to the theory ne
essary in the presen
e of perfe
tly 
ondu
ting 
ra
ks.

More rigorously speaking, the solutions u and ~u of (1) and (3) are de�ned in the variational sense

Z




gradu � grad� dx =

Z

�

0

f� ds for all � 2 H

1

�

(
) ; (4)

and

Z


n�

grad ~u � grad

~

�dx =

Z

�

0

f

~

� ds for all

~

� 2 H

1

�

(
 n �) ; (5)

respe
tively. Here we denote by H

1

�

(
) the subspa
e of the standard Sobolev spa
e H

1

(
) 
onsisting of only

those u 2 H

1

(
) with boundary values uj

�

0

2 L

2

�

(�

0

). The other spa
e H

1

�

(
 n �) is the 
losure of

C = fu 2 C

1

(
 n �) :

Z


n�

j graduj

2

dx <1;

Z

�

0

u ds = 0 g

with respe
t to the norm

kuk =

�

Z


n�

j graduj

2

dx

�

1=2

(6)

and its asso
iated inner produ
t

hu; vi =

Z


n�

gradu � grad v dx : (7)

Note that (6) is a norm in H

1

�

(
) and H

1

�

(
 n �) due to the 
onstraint

R

�

0

u ds = 0.

A fun
tion u 2 H

1

�

(
 n �) may have di�erent tra
es on either side of the 
ra
ks and it belongs to H

1

�

(
) if

and only if these tra
es 
oin
ide, i.e., if the jump [u ℄

�

of u a
ross � vanishes. The sign of the jump is impli
itly

�xed through the dire
tion of n su
h that Green's formula be
omes

Z


n�

grad v � gradw dx =

Z

�

v

�w

��

ds+

Z

�

v

�

�w

�n

�

�

ds�

Z


n�

v�w dx ;

valid for all v 2 H

1

�

(
) and all u 2 C with �u 2 L

2

(
).

We shall now investigate the orthogonal 
omplement of H

1

�

(
) in H

1

�

(
 n �).

Lemma 1.1. The orthogonal 
omplement K of H

1

�

(
) in H

1

�

(
n�) with respe
t to the inner produ
t (7) 
onsists

of all harmoni
 fun
tions w in 
 n � with

�w

��

= 0 on � and

�

�w

�n

�

�

= 0 : (8)

Proof. For v 2 H

1

�

(
) and a harmoni
 fun
tion w 2 H

1

�

(
 n �) Green's formula yields

Z


n�

grad v � gradw dx =

Z

�

v

�w

��

ds+

Z

�

v

�

�w

�n

�

�

ds ; (9)

and hen
e w 2 K if w satis�es the boundary 
onditions (8).
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Conversely, if w 2 K then

0 = hv; wi =

Z


n�

grad v � gradw dx

for every v 2 H

1

�

(
). It now follows from Weyl's Lemma that w is harmoni
 in 
 n�, and 
onsequently that (9)

is valid for every v 2 H

1

�

(
). Hen
e, w satis�es the given boundary 
onditions on � and � in the usual weak

sense.

2. A fa
torization of the Neumann-Diri
hlet operators

The mapping � : L

2

�

(�

0

) ! L

2

�

(�

0

), whi
h takes f 2 L

2

�

(�

0

) in (1) onto the respe
tive g of (2) is 
alled the

lo
al Neumann-Diri
hlet operator asso
iated with the Lapla
ian in 
, sin
e it maps the Neumann boundary

values of a potential onto its Diri
hlet values. Here the term `lo
al' refers to the fa
t that all information is

restri
ted to �

0

� �. Similarly, the operator

~

� :

(

L

2

�

(�

0

)! L

2

�

(�

0

) ;

f 7! ~g = ~uj

�

0

;

is the lo
al Neumann-Diri
hlet operator asso
iated with the boundary value problem (3).

In prin
iple, it is possible to pursue the approa
h in [2℄ to derive a LDL

�

-fa
torization of the di�eren
e

between the two Neumann-Diri
hlet operators

~

�� � = LDL

�

; (10)

where L : L

2

�

(�) ! L

2

�

(�

0

) and D is an unbounded selfadjoint and positive semide�nite linear operator on

L

2

�

(�); here L

2

�

(�) is an appropriate 
losed subspa
e of L

2

(�). Su
h a fa
torization was a basi
 ingredient in [2℄

in the 
hara
terization of the range of the square root operator (

~

���)

1=2

. A similar fa
torization has also been

used in [9℄ in the s
attering 
ontext to des
ribe the range of the square root of the asso
iated far �eld operator.

Here we shall use a di�erent argument whi
h evolved from the problem of �nding instead of (10) a normal

equation type fa
torization of

~

�� �, i.e., a fa
torization

~

�� � = K

�

K ; (11)

whereK has some natural meaning. As we shall see below, the existen
e of su
h a fa
torization greatly simpli�es

the 
hara
terization of the range R((

~

�� �)

1=2

).

For the 
ra
k problem the fa
torization (11) is surprisingly simple. Given an input 
urrent f 2 L

2

�

(�

0

), de�ne

K :

(

L

2

�

(�

0

)! H

1

�

(
 n �) ;

f 7! ~u� u ;

(12)

where u and ~u are the potentials (1) and (3). Then we immediately have

~

�� � = 


0

K, where




0

:

(

H

1

�

(
 n �)! L

2

�

(�

0

) ;

v 7! vj

�

0

;

is the tra
e operator asso
iated with �

0

. It turns out (see Theorem 2.1 below) that 


0

and the adjoint of K


oin
ide on R(K), and hen
e we have established (11).
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Theorem 2.1. The 
losure of R(K) 
oin
ides with the subspa
e K of Lemma 1.1, and the adjoint operator

K

�

: H

1

�

(
 n �)! L

2

�

(�

0

) of K is given by

K

�

v =

(




0

v ; v 2 K ;

0 ; v 2 H

1

�

(
) :

In parti
ular, we have

~

�� � = 


0

K = K

�

K :

Proof. Let w 2 R(K); then w = Kf = ~u�u for some input 
urrent f 2 L

2

�

(�

0

) and 
orresponding potentials u

and ~u of (1) and (3), respe
tively. From the weak formulations (4) and (5) of these boundary value problems

we obtain for arbitrary � 2 H

1

�

(
) � H

1

�

(
 n�),

Z


n�

gradw � grad� dx =

Z


n�

grad(~u� u) � grad� dx = 0 ;

be
ause grad� 2 L

2

(
) and � has Lebesgue measure zero. This proves the orthogonality of R(K) and H

1

�

(
),

and hen
e, R(K) � K.

Next we determine K

�

. Choosing v 2 K we obtain for any input 
urrent f 2 L

2

�

(�

0

) and asso
iated potentials

u 2 H

1

�

(
) and ~u 2 H

1

�

(
 n �) of (1) and (3)

hKf; vi = h~u� u; vi = h~u; vi � hu; vi = h~u; vi ;

sin
e hu; vi vanishes be
ause of the orthogonality of K and H

1

�

(
). From the weak de�nition (5) of ~u we therefore

obtain

hKf; vi =

Z

�

0

fv ds ;

and sin
e this identity holds for any f 2 L

2

�

(�

0

) we 
on
lude that vj

�

0

= 


0

v equals K

�

v, i.e., K

�

= 


0

on K.

Moreover, sin
e

H

1

�

(
) � R(K)

?

= N (K

�

) (13)

we have K

�

= 0 on H

1

�

(
).

To 
omplete the proof we need to show that R(K) is a dense subset of K. To this end we assume that there

is a fun
tion v 2 K whi
h is orthogonal to R(K). In this 
ase we know from (13) that K

�

v = 0, i.e., that

v = 0 on �

0

. By Lemma 1.1 v also has vanishing Neumann values on �

0

. The unique 
ontinuation property for

harmoni
 fun
tions (
f. [11℄) therefore implies that v = 0 in 
 n �, and hen
e, R(K) is dense in K.

Theorem 2.2. The di�eren
e

~

��� : L

2

�

(�

0

)! L

2

�

(�

0

) of the two Neumann-Diri
hlet operators is a selfadjoint

and positive semide�nite operator. As su
h,

~

� � � has a selfadjoint and positive semide�nite square root

(

~

�� �)

1=2

, and a fun
tion g 2 L

2

�

(�

0

) belongs to the range of this square root operator, if and only if g = 


0

w

for some harmoni
 fun
tion w 2 H

1

�

(
 n �) with

�w

��

= 0 on � and

�

�w

�n

�

�

= 0 :

Proof. By virtue of (11)

~

� � � is selfadjoint and positive semide�nite, and following, for example, Proposi-

tion 2.18 in [5℄, its square root (

~

�� �)

1=2

has range

R((

~

�� �)

1=2

) = R(K

�

) :
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Thus, by Theorem 2.1, a fun
tion g 2 L

2

�

(�

0

) belongs to R((

~

���)

1=2

), if and only if g = 


0

w for some w 2 K.

The assertion now follows from Lemma 1.1.

3. A test for 
ra
ks

Now we utilize Theorem 2.2 to sear
h the domain 
 for 
ra
ks, similar to a re
onstru
tion pro
edure suggested

by Kirs
h and Ritter [9℄ for an inverse s
attering problem.

Consider a 
ompa
t, simple ar
 �

0

� 
 and an asso
iated double layer potential

v

1

(x) =

1

2�

Z

�

0

�

�n(y)

log

1

jx� yj

'(y) ds(y) ; x 2 
 n �

0

; (14)

with a smooth density ' whi
h is positive ex
ept at the end points of the 
ra
ks where it vanishes H�older


ontinuously. It follows from [10, Theorem 8.24℄ that v

1

2 H

1

(
 n �) and hen
e that we 
an determine a


onstant 
 su
h that v

1

� 
 2 H

1

�

(
 n �). Next we investigate the boundary value problem

�v

0

= 0 in 
 ;

�v

0

��

=

�v

1

��

on � : (15)

A

ording to the divergen
e theorem, and using the fa
t that v

1

is harmoni
 in 
 n �

0

, we have

Z

�

�v

1

��

ds =

Z


n�

0

�v

1

dx�

Z

�

0

�

�v

1

�n

�

�

0

ds = �

Z

�

0

�

�v

1

�n

�

�

0

ds :

The �nal integral vanishes be
ause [ �v

1

=�n ℄

�

0

= 0 for the double-layer potential, 
f. [10, Theorem 6.19℄. This

implies that the boundary value problem (15) has a unique solution v

0

2 H

1

�

(
), and v = v

1

�v

0

�
 2 H

1

�

(
n�)

solves the di�ra
tion problem

�v = 0 in 
 n �

0

;

�v

��

= 0 on � ;

�

�v

�n

�

�

0

= 0 : (16)

Theorem 3.1. Let v be as above, and denote by g

�

0

= 


0

v its boundary values on �

0

. Then g

�

0

2 R((

~

���)

1=2

)

if and only if �

0

� �.

Proof. Assume �rst that �

0

� �. Then 
 n�

0

� 
 n� and g

�

0

belongs to the range of (

~

���)

1=2

by virtue of

(16) and Theorem 2.2.

On the other hand, if g 2 R((

~

�� �)

1=2

) then it follows from Theorem 2.2 that g = 


0

w for some harmoni


fun
tion w 2 H

1

�

(
 n �) whi
h satis�es (8). This implies that v and w have the same Neumann and Diri
hlet

values on �

0

, and hen
e v = w in 
 n (� [�

0

) a

ording to the unique 
ontinuation property. Moreover, v 
an

be extended to a harmoni
 fun
tion in 
 n �. On the other hand, the double-layer potential v has a nonzero

jump a
ross �

0

, 
f. [10, Theorem 6.17℄. Therefore, we ne
essarily have �

0

� �.

Remark 3.2. Theorem 3.1 gives rise to a 
onstru
tive test whether some ar
 �

0

is part of � or not. We

emphasize that it is not ne
essary to solve the boundary value problem (15) to implement this test, be
ause

only the Diri
hlet values 


0

v

0

of v

0

are required for the 
omputation. By de�nition, these Diri
hlet values 
an

be obtained from the lo
al Neumann-Diri
hlet operator for the Lapla
ian,

v

0

j

�

0

= �

�

�

��

v

1

�

�

�

0

�

:

We therefore only need to 
ompute v

1

j

�

0

and �v

1

=��j

�

0

, and then have

g

�

0

= v

1

j

�

0

� �

�

�

��

v

1

�

�

�

0

�

� 
 ; (17)
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where 
 is the 
onstant whi
h makes g

�

0

2 L

2

�

(�

0

).

4. Perfe
tly 
ondu
ting 
ra
ks

Very similar results 
an be established when the 
ra
ks are perfe
tly 
ondu
ting rather than insulating. In

this 
ase, the boundary 
urrent f yields a potential û 2 H

1

�;�

whi
h solves the weak problem

Z




grad û � grad

^

� dx =

Z

�

0

f

^

�ds for all

^

� 2 H

1

�;�

;

where H

1

�;�

� H

1

�

(
) is the set of all fun
tions

^

� 2 H

1

�;�

whi
h are 
onstant along ea
h of the 
ra
ks in �. The

orthogonal 
omplement

^

K (with respe
t to (7)) of H

1

�;�

in H

1

�

(
) 
onsists of all harmoni
 fun
tions w in 
 n �

with homogeneous Neumann data on �; furthermore, instead of the 
ux 
ondition (8) w satis�es

Z

�

�

�w

�n

�

�

ds = 0 for ea
h 
ra
k � 2 � : (18)

The results of Se
tion 2 need some obvious modi�
ations in the 
ondu
ting 
ase: In this 
ase

~

��� is negative

semide�nite and we have the normal equation type fa
torization

��

~

� =

^

K

�

^

K ;

^

K :

(

L

2

�

(�

0

)! H

1

�;�

;

f 7! u� û :

The range of

^

K is dense in

^

K and

^

K

�

equals the tra
e operator on

^

K. In other words, a fun
tion w belongs to

R((��

~

�)

1=2

) if and only if it is the tra
e of some fun
tion w 2 H

1

�

(
) with homogeneous Neumann values on

�, and whi
h is harmoni
 in 
 n �.

Be
ause of the requirement w 2 H

1

�

(
) these fun
tions are 
ontinuous a
ross �, and hen
e, the double-layer

potential v

1

in (14) 
an no longer serve to 
onstru
t test fun
tions as in Se
tion 3. Instead we have to use a

single-layer potential (with, e.g., pie
ewise 
onstant density ') for v

1

in the 
ondu
ting 
ase,

v

1

(x) =

1

2�

Z

�

0

log

1

jx� yj

'(y) ds(y) ; x 2 
 n �

0

:

In order to 
onstru
t v

0

as in (15) we require that ' satis�es the integrability 
ondition

0 =

Z

�

0

�

�v

1

�n

�

�

0

ds =

Z

�

0

' ds ;

where the last equality follows from the jump relation of the single-layer potential.

5. Numeri
al experiments

In pra
ti
e we fa
e the problem that a given ar
 �

0

will rarely lie exa
tly on an a
tual 
ra
k �. The best we


an hope for is that g

�

0

of (17) is `almost' 
ontained in R((

~

���)

1=2

) if the test 
ra
k �

0

is `
lose' to �. To put

this in 
on
rete terms, we brie
y review how the test whether g 2 R((

~

���)

1=2

) or not, has been a

omplished

numeri
ally in [3℄. Sin
e

~

�� � is selfadjoint, positive semide�nite and 
ompa
t there exists a 
ountable set of

nonnegative eigenvalues �

j

and eigenfun
tions v

j

su
h that

(

~

�� �)f =

1

X

j=1

�

j

hf; v

j

iv

j

:
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Figure 1. A 
ra
k phantom (thin line) and a test 
ra
k (thi
k line).

Equipped with these prerequisites the Pi
ard 
riterion yields the equivalen
e

g 2 R((

~

�� �)

1=2

) if and only if g ? N (

~

�� �) and

1

X

j=1

hg; v

j

i

2

�

j

<1 : (19)

Numeri
al 
omputations reveal an essentially geometri
 de
ay of the terms in the series (19); therefore we use

a least squares �t to estimate a de
ay rate 1=� su
h that

hg; v

j

i

2

�

j

�

1

�

j

:

A

ordingly we 
on
lude that g 2 R((

~

�� �)

1=2

) if and only if � > 1, see [3℄ for more details.

In the sequel we present some numeri
al experiments based on simulated data. These were generated using

a boundary integral method whi
h requires the solution of a system of integral equations. One of these involves

a hypersingular integral operator whi
h 
an be dis
retized utilizing an idea of M�on
h [12℄.

Before we show any numeri
al re
onstru
tions we 
omment on the sensitivity of � with respe
t to the lo
ation

of �

0

whi
h is 
ru
ial for the performan
e of our algorithm. More spe
i�
ally, we examine the sensitivity of �

with respe
t to shifts and rotations of �

0

. To this end we 
onsider the 
ra
k phantom � shown in Figure 1 (the

thin line) and a test 
ra
k �

0

� � indi
ated by the thi
k line in Figure 1; we emphasize that �

0

is not a straight

line. We move this test 
ra
k in the verti
al dire
tion, and for ea
h position we determine the 
orresponding

value of �. These numbers are drawn in Figure 2 (left) versus the amount of verti
al shift. The label 0 at

the horizontal axis marks the original position of the test 
ra
k, where �

0

� �. The sharp peak of the graph

indi
ates a very high sensitivity of � with respe
t to displa
ements, and only for the zero shift does the de
ay

rate approa
h the threshold � = 1.

For 
omparison we repeat this experiment with a `degenerated' 
ra
k whi
h 
onsists of only one single point

and 
orresponds to a dipole singularity in this point. This degenerate 
ase 
oin
ides exa
tly with the test for

in
lusions utilized in [3℄. Note that the strong singularity of the dipole prevents the boundary values of the

asso
iated potential v from belonging to R((

~

�� �)

1=2

), sin
e v =2 H

1

�

(
 n �). The results of these 
al
ulations

are shown in Figure 2 (right). Apparently, the two plots are qualitatively very similar, the main di�eren
e being

that in the degenerate 
ase the peak fails to rea
h the threshold � = 1, as is 
onsistent with the theory.

A similar experiment 
an be used to study the dependen
e of � on the orientation of the test 
ra
k. To this

end we rotate �

0

shown in Figure 1 around its 
enter point. The 
orresponding numbers for � are displayed in

Figure 3 (left). As before, the right hand side plot 
orresponds to a test with a dipole on the a
tual 
ra
k �
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Figure 2. De
ay rate � vs. verti
al shift of test 
ra
k (left) and point dipole (right), respe
tively.
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Figure 3. De
ay rate � vs. rotation angle of test 
ra
k (left) and point dipole (right), respe
tively.

but with rotating dipole axis. Again, the two �gures are very similar and exhibit the strong sensitivity of �.

These experiments show that both kinds of test fun
tions are feasible for the lo
alization of 
ra
ks provided

that the test is based on an appropriate threshold level for �. On the other hand, the sharp peaks in the �gures

make 
lear that a very �ne grid of test points is ne
essary to a
hieve good re
onstru
tions.

The result of su
h a grid sear
h is shown in Figure 4. In this 
ase the grid is an equidistant square mesh with

mesh width 0:01. For ea
h of the 3165 grid points within the disk and ea
h of 100 equi-angled dipole axes we


ompute the test fun
tion of the 
orresponding point dipole and its asso
iated value �, i.e. for ea
h grid point

we perform the same 
al
ulations as for Figure 3 (right). The maximum of these values of � is assigned to this

point as a grays
ale value, and from this the plot in Figure 4 is obtained. The 
ra
k is well re
onstru
ted by

this pro
edure although there o

ur some artefa
ts near the 
ra
k.

As another means of visualization Figure 5 shows the 
ra
k phantom and 
ontains for all grid points with � >

0:75 the 
orresponding dipole axis for whi
h the maximum was attained. The zoom on the right demonstrates

that these dipole axes are ni
ely aligned with the a
tual 
ra
k.

A further example shows the re
onstru
tion of two 
ra
ks, 
f. Figure 6. We emphasize that a-priori knowledge

about the number of 
ra
ks is not required in advan
e.
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Figure 4. Re
onstru
tion of the 
ra
k phantom.

Figure 5. Points with � > 0:75 and 
orresponding dipole axes.

PSfrag repla
ements

0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1

PSfrag repla
ements

0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1

Figure 6. Re
onstru
tion of two 
ra
ks.
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6. Con
lusions

In this work we developed a 
hara
terization of 
ra
ks in a similar manner as in the 
ase of in
lusions [2, 3℄.

The use of the fa
torizaton (11) rather than an analog of (10) simpli�es the subsequent analysis substantially.

However, the fa
t that a 
ra
k 
arries a dire
tional information in
orporates an additional dimension to the

re
onstru
tion in the inverse problem. For this reason the numeri
al realization of our method is signi�
antly

more expensive than in the 
ase of in
lusions and forms a real 
omputational 
hallenge.
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