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Abstrat. In this paper we extend reent work on the detetion of inlusions using eletrostati

measurements to the problem of rak detetion in a two-dimensional objet. As in the inlusion ase

our method is based on a fatorization of the di�erene between two Neumann-Dirihlet operators. The

fatorization possible in the ase of raks is muh simpler than that for inlusions and the analysis

is greatly simpli�ed. However, the diretional information arried by the rak makes the pratial

implementation of our algorithm more omputationally demanding.
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Introdution

In non-destrutive testing an important area of researh is the detetion of raks within the material being

investigated. There are a wide variety of methods that are used to solve this problem but most devies exploit

one of two basi approahes. The �rst type use aousti or eletromagneti sattering data while the seond

use elastostati or eletrostati measurements made on the surfae of the objet.

In this work we onsider the use of eletrostati measurements following in this way the landmark paper of

Friedman and Vogelius [6℄: We assume that a set of eletrodes is attahed to the surfae of an objet and that

these eletrodes injet a sequene of independent urrents into the body. Ignoring some tehnial diÆulties

we shall also assume that the same eletrodes an be used to obtain measurements of the resulting surfae

potential. In mathematial terms the potential is the solution of an ellipti boundary value problem, and

the known boundary data orrespond to some partial knowledge of the Neumann-Dirihlet operator for the

assoiated di�erential operator. To detet raks we have to determine from these data essential features of the

di�usion oeÆient in the di�erential operator. This is an inverse boundary value problem.

Our approah to solving this inverse problem is based on the assumption that the body is homogeneously

onduting, exept for the raks, whih are insulating. For ease of simpliity we restrit ourselves to two spae

dimensions in whih ase a rak is an ar.

We propose a numerial algorithm for reonstruting the raks from the given measurements whih is non-

iterative. This is quite di�erent from most ompeting shemes, see for instane [4, 13, 14℄ and the referenes

therein. In our algorithm we need to solve only one forward problem per boundary urrent, orresponding to
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a homogeneous body without raks. While it is known that only two urrents suÆe to identify any �nite

distribution of raks (f. [1, 7℄), our method requires a moderate number of measurements in pratie. We

emphasize that the number of raks, on the other hand, need not be known a priori.

The method itself is an extension of an algorithm from [2, 3℄ for an inverse problem in eletrial impedane

tomography. This algorithm an be used to deide whether a given point within the body belongs to the interior

of an insulating inlusion | it will not reognize points on the boundary as being part of the inlusion. In spite

of the similarity of these two inverse problems, the rak problem auses new diÆulties beause raks have

empty interior. We therefore have to modify this algorithm to see raks.

On the other hand, the subtle di�erene between the two inverse problems allows an alternative way to

derive the theoretial basis of the algorithm in the rak ontext. This new analysis is shorter and muh more

elementary than the one in [2℄. Although we urrently do not see how to extend this new analysis to the

impedane tomography problem we believe that the new tehnique deepens our understanding of the general

ase.

Historially, the method in [2℄ followed an approah by Kirsh [8℄ for ertain inverse sattering problems.

Kirsh's method also fails when it omes to deteting points on the boundary of the sattering obstale. Reently

Kirsh and Ritter [9℄ have therefore modi�ed the algorithm from [8℄ to reonstrut raks from the far-�eld

pattern of sattering data. These modi�ations are similar to the one that we propose here. However, the

theoretial derivation in [9℄ parallels the original one in [8℄, and is di�erent in spirit from the one we give here.

As far as we know, our new analysis does not yet have an appropriate analog in the inverse sattering ontext.

1. The forward problem

Consider a bounded, simply onneted domain 
 � R

2

representing a homogeneously onduting objet.

Let � = �
 be the suÆiently smooth boundary of 
 with outer normal � on �.

In the absene of raks the solution u of the boundary value problem

�u = 0 in 
 ;

�u

��

=

(

f on �

0

;

0 on � n �

0

;

(1)

is the potential resulting from a boundary urrent with support on �

0

� �. We may think of �

0

as being the

part of the boundary overed by eletrodes. In order to guarantee solvability of (1) we need to assume that

f 2 L

2

�

(�

0

) = f f 2 L

2

(�

0

) :

Z

�

0

f ds = 0 g :

We denote by

g = uj

�

0

2 L

2

�

(�

0

) (2)

the boundary values of the potential on �

0

, where we impose the normalization in (2) to enfore uniqueness of

the potential.

In the presene of insulating raks, the boundary value problem (1) has to be modi�ed. We de�ne a rak

� � 
 to be a ompat, simple ar (not a point) whih is suÆiently smooth so that we an assign for eah

point x 2 � a unit normal vetor n = n(x) varying smoothly over �. We denote by � � 
 the olletion of all

raks and assume that 
 n � is onneted. If � is not the empty set the same Neumann boundary ondition

as above yields a potential ~u whih solves the di�ration problem

�~u = 0 in 
 n � ;

�~u

��

=

(

f on �

0

;

0 on � n �

0

;

�~u

�n

= 0 on � : (3)
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The last ondition in (3) expresses the fat that no urrent ows aross �, i.e., that the raks are insulating;

see Setion 4 for the modi�ations to the theory neessary in the presene of perfetly onduting raks.

More rigorously speaking, the solutions u and ~u of (1) and (3) are de�ned in the variational sense

Z




gradu � grad� dx =

Z

�

0

f� ds for all � 2 H

1

�

(
) ; (4)

and

Z


n�

grad ~u � grad

~

�dx =

Z

�

0

f

~

� ds for all

~

� 2 H

1

�

(
 n �) ; (5)

respetively. Here we denote by H

1

�

(
) the subspae of the standard Sobolev spae H

1

(
) onsisting of only

those u 2 H

1

(
) with boundary values uj

�

0

2 L

2

�

(�

0

). The other spae H

1

�

(
 n �) is the losure of

C = fu 2 C

1

(
 n �) :

Z


n�

j graduj

2

dx <1;

Z

�

0

u ds = 0 g

with respet to the norm

kuk =

�

Z


n�

j graduj

2

dx

�

1=2

(6)

and its assoiated inner produt

hu; vi =

Z


n�

gradu � grad v dx : (7)

Note that (6) is a norm in H

1

�

(
) and H

1

�

(
 n �) due to the onstraint

R

�

0

u ds = 0.

A funtion u 2 H

1

�

(
 n �) may have di�erent traes on either side of the raks and it belongs to H

1

�

(
) if

and only if these traes oinide, i.e., if the jump [u ℄

�

of u aross � vanishes. The sign of the jump is impliitly

�xed through the diretion of n suh that Green's formula beomes

Z


n�

grad v � gradw dx =

Z

�

v

�w

��

ds+

Z

�

v

�

�w

�n

�

�

ds�

Z


n�

v�w dx ;

valid for all v 2 H

1

�

(
) and all u 2 C with �u 2 L

2

(
).

We shall now investigate the orthogonal omplement of H

1

�

(
) in H

1

�

(
 n �).

Lemma 1.1. The orthogonal omplement K of H

1

�

(
) in H

1

�

(
n�) with respet to the inner produt (7) onsists

of all harmoni funtions w in 
 n � with

�w

��

= 0 on � and

�

�w

�n

�

�

= 0 : (8)

Proof. For v 2 H

1

�

(
) and a harmoni funtion w 2 H

1

�

(
 n �) Green's formula yields

Z


n�

grad v � gradw dx =

Z

�

v

�w

��

ds+

Z

�

v

�

�w

�n

�

�

ds ; (9)

and hene w 2 K if w satis�es the boundary onditions (8).
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Conversely, if w 2 K then

0 = hv; wi =

Z


n�

grad v � gradw dx

for every v 2 H

1

�

(
). It now follows from Weyl's Lemma that w is harmoni in 
 n�, and onsequently that (9)

is valid for every v 2 H

1

�

(
). Hene, w satis�es the given boundary onditions on � and � in the usual weak

sense.

2. A fatorization of the Neumann-Dirihlet operators

The mapping � : L

2

�

(�

0

) ! L

2

�

(�

0

), whih takes f 2 L

2

�

(�

0

) in (1) onto the respetive g of (2) is alled the

loal Neumann-Dirihlet operator assoiated with the Laplaian in 
, sine it maps the Neumann boundary

values of a potential onto its Dirihlet values. Here the term `loal' refers to the fat that all information is

restrited to �

0

� �. Similarly, the operator

~

� :

(

L

2

�

(�

0

)! L

2

�

(�

0

) ;

f 7! ~g = ~uj

�

0

;

is the loal Neumann-Dirihlet operator assoiated with the boundary value problem (3).

In priniple, it is possible to pursue the approah in [2℄ to derive a LDL

�

-fatorization of the di�erene

between the two Neumann-Dirihlet operators

~

�� � = LDL

�

; (10)

where L : L

2

�

(�) ! L

2

�

(�

0

) and D is an unbounded selfadjoint and positive semide�nite linear operator on

L

2

�

(�); here L

2

�

(�) is an appropriate losed subspae of L

2

(�). Suh a fatorization was a basi ingredient in [2℄

in the haraterization of the range of the square root operator (

~

���)

1=2

. A similar fatorization has also been

used in [9℄ in the sattering ontext to desribe the range of the square root of the assoiated far �eld operator.

Here we shall use a di�erent argument whih evolved from the problem of �nding instead of (10) a normal

equation type fatorization of

~

�� �, i.e., a fatorization

~

�� � = K

�

K ; (11)

whereK has some natural meaning. As we shall see below, the existene of suh a fatorization greatly simpli�es

the haraterization of the range R((

~

�� �)

1=2

).

For the rak problem the fatorization (11) is surprisingly simple. Given an input urrent f 2 L

2

�

(�

0

), de�ne

K :

(

L

2

�

(�

0

)! H

1

�

(
 n �) ;

f 7! ~u� u ;

(12)

where u and ~u are the potentials (1) and (3). Then we immediately have

~

�� � = 

0

K, where



0

:

(

H

1

�

(
 n �)! L

2

�

(�

0

) ;

v 7! vj

�

0

;

is the trae operator assoiated with �

0

. It turns out (see Theorem 2.1 below) that 

0

and the adjoint of K

oinide on R(K), and hene we have established (11).
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Theorem 2.1. The losure of R(K) oinides with the subspae K of Lemma 1.1, and the adjoint operator

K

�

: H

1

�

(
 n �)! L

2

�

(�

0

) of K is given by

K

�

v =

(



0

v ; v 2 K ;

0 ; v 2 H

1

�

(
) :

In partiular, we have

~

�� � = 

0

K = K

�

K :

Proof. Let w 2 R(K); then w = Kf = ~u�u for some input urrent f 2 L

2

�

(�

0

) and orresponding potentials u

and ~u of (1) and (3), respetively. From the weak formulations (4) and (5) of these boundary value problems

we obtain for arbitrary � 2 H

1

�

(
) � H

1

�

(
 n�),

Z


n�

gradw � grad� dx =

Z


n�

grad(~u� u) � grad� dx = 0 ;

beause grad� 2 L

2

(
) and � has Lebesgue measure zero. This proves the orthogonality of R(K) and H

1

�

(
),

and hene, R(K) � K.

Next we determine K

�

. Choosing v 2 K we obtain for any input urrent f 2 L

2

�

(�

0

) and assoiated potentials

u 2 H

1

�

(
) and ~u 2 H

1

�

(
 n �) of (1) and (3)

hKf; vi = h~u� u; vi = h~u; vi � hu; vi = h~u; vi ;

sine hu; vi vanishes beause of the orthogonality of K and H

1

�

(
). From the weak de�nition (5) of ~u we therefore

obtain

hKf; vi =

Z

�

0

fv ds ;

and sine this identity holds for any f 2 L

2

�

(�

0

) we onlude that vj

�

0

= 

0

v equals K

�

v, i.e., K

�

= 

0

on K.

Moreover, sine

H

1

�

(
) � R(K)

?

= N (K

�

) (13)

we have K

�

= 0 on H

1

�

(
).

To omplete the proof we need to show that R(K) is a dense subset of K. To this end we assume that there

is a funtion v 2 K whih is orthogonal to R(K). In this ase we know from (13) that K

�

v = 0, i.e., that

v = 0 on �

0

. By Lemma 1.1 v also has vanishing Neumann values on �

0

. The unique ontinuation property for

harmoni funtions (f. [11℄) therefore implies that v = 0 in 
 n �, and hene, R(K) is dense in K.

Theorem 2.2. The di�erene

~

��� : L

2

�

(�

0

)! L

2

�

(�

0

) of the two Neumann-Dirihlet operators is a selfadjoint

and positive semide�nite operator. As suh,

~

� � � has a selfadjoint and positive semide�nite square root

(

~

�� �)

1=2

, and a funtion g 2 L

2

�

(�

0

) belongs to the range of this square root operator, if and only if g = 

0

w

for some harmoni funtion w 2 H

1

�

(
 n �) with

�w

��

= 0 on � and

�

�w

�n

�

�

= 0 :

Proof. By virtue of (11)

~

� � � is selfadjoint and positive semide�nite, and following, for example, Proposi-

tion 2.18 in [5℄, its square root (

~

�� �)

1=2

has range

R((

~

�� �)

1=2

) = R(K

�

) :
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Thus, by Theorem 2.1, a funtion g 2 L

2

�

(�

0

) belongs to R((

~

���)

1=2

), if and only if g = 

0

w for some w 2 K.

The assertion now follows from Lemma 1.1.

3. A test for raks

Now we utilize Theorem 2.2 to searh the domain 
 for raks, similar to a reonstrution proedure suggested

by Kirsh and Ritter [9℄ for an inverse sattering problem.

Consider a ompat, simple ar �

0

� 
 and an assoiated double layer potential

v

1

(x) =

1

2�

Z

�

0

�

�n(y)

log

1

jx� yj

'(y) ds(y) ; x 2 
 n �

0

; (14)

with a smooth density ' whih is positive exept at the end points of the raks where it vanishes H�older

ontinuously. It follows from [10, Theorem 8.24℄ that v

1

2 H

1

(
 n �) and hene that we an determine a

onstant  suh that v

1

�  2 H

1

�

(
 n �). Next we investigate the boundary value problem

�v

0

= 0 in 
 ;

�v

0

��

=

�v

1

��

on � : (15)

Aording to the divergene theorem, and using the fat that v

1

is harmoni in 
 n �

0

, we have

Z

�

�v

1

��

ds =

Z


n�

0

�v

1

dx�

Z

�

0

�

�v

1

�n

�

�

0

ds = �

Z

�

0

�

�v

1

�n

�

�

0

ds :

The �nal integral vanishes beause [ �v

1

=�n ℄

�

0

= 0 for the double-layer potential, f. [10, Theorem 6.19℄. This

implies that the boundary value problem (15) has a unique solution v

0

2 H

1

�

(
), and v = v

1

�v

0

� 2 H

1

�

(
n�)

solves the di�ration problem

�v = 0 in 
 n �

0

;

�v

��

= 0 on � ;

�

�v

�n

�

�

0

= 0 : (16)

Theorem 3.1. Let v be as above, and denote by g

�

0

= 

0

v its boundary values on �

0

. Then g

�

0

2 R((

~

���)

1=2

)

if and only if �

0

� �.

Proof. Assume �rst that �

0

� �. Then 
 n�

0

� 
 n� and g

�

0

belongs to the range of (

~

���)

1=2

by virtue of

(16) and Theorem 2.2.

On the other hand, if g 2 R((

~

�� �)

1=2

) then it follows from Theorem 2.2 that g = 

0

w for some harmoni

funtion w 2 H

1

�

(
 n �) whih satis�es (8). This implies that v and w have the same Neumann and Dirihlet

values on �

0

, and hene v = w in 
 n (� [�

0

) aording to the unique ontinuation property. Moreover, v an

be extended to a harmoni funtion in 
 n �. On the other hand, the double-layer potential v has a nonzero

jump aross �

0

, f. [10, Theorem 6.17℄. Therefore, we neessarily have �

0

� �.

Remark 3.2. Theorem 3.1 gives rise to a onstrutive test whether some ar �

0

is part of � or not. We

emphasize that it is not neessary to solve the boundary value problem (15) to implement this test, beause

only the Dirihlet values 

0

v

0

of v

0

are required for the omputation. By de�nition, these Dirihlet values an

be obtained from the loal Neumann-Dirihlet operator for the Laplaian,

v

0

j

�

0

= �

�

�

��

v

1

�

�

�

0

�

:

We therefore only need to ompute v

1

j

�

0

and �v

1

=��j

�

0

, and then have

g

�

0

= v

1

j

�

0

� �

�

�

��

v

1

�

�

�

0

�

�  ; (17)
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where  is the onstant whih makes g

�

0

2 L

2

�

(�

0

).

4. Perfetly onduting raks

Very similar results an be established when the raks are perfetly onduting rather than insulating. In

this ase, the boundary urrent f yields a potential û 2 H

1

�;�

whih solves the weak problem

Z




grad û � grad

^

� dx =

Z

�

0

f

^

�ds for all

^

� 2 H

1

�;�

;

where H

1

�;�

� H

1

�

(
) is the set of all funtions

^

� 2 H

1

�;�

whih are onstant along eah of the raks in �. The

orthogonal omplement

^

K (with respet to (7)) of H

1

�;�

in H

1

�

(
) onsists of all harmoni funtions w in 
 n �

with homogeneous Neumann data on �; furthermore, instead of the ux ondition (8) w satis�es

Z

�

�

�w

�n

�

�

ds = 0 for eah rak � 2 � : (18)

The results of Setion 2 need some obvious modi�ations in the onduting ase: In this ase

~

��� is negative

semide�nite and we have the normal equation type fatorization

��

~

� =

^

K

�

^

K ;

^

K :

(

L

2

�

(�

0

)! H

1

�;�

;

f 7! u� û :

The range of

^

K is dense in

^

K and

^

K

�

equals the trae operator on

^

K. In other words, a funtion w belongs to

R((��

~

�)

1=2

) if and only if it is the trae of some funtion w 2 H

1

�

(
) with homogeneous Neumann values on

�, and whih is harmoni in 
 n �.

Beause of the requirement w 2 H

1

�

(
) these funtions are ontinuous aross �, and hene, the double-layer

potential v

1

in (14) an no longer serve to onstrut test funtions as in Setion 3. Instead we have to use a

single-layer potential (with, e.g., pieewise onstant density ') for v

1

in the onduting ase,

v

1

(x) =

1

2�

Z

�

0

log

1

jx� yj

'(y) ds(y) ; x 2 
 n �

0

:

In order to onstrut v

0

as in (15) we require that ' satis�es the integrability ondition

0 =

Z

�

0

�

�v

1

�n

�

�

0

ds =

Z

�

0

' ds ;

where the last equality follows from the jump relation of the single-layer potential.

5. Numerial experiments

In pratie we fae the problem that a given ar �

0

will rarely lie exatly on an atual rak �. The best we

an hope for is that g

�

0

of (17) is `almost' ontained in R((

~

���)

1=2

) if the test rak �

0

is `lose' to �. To put

this in onrete terms, we briey review how the test whether g 2 R((

~

���)

1=2

) or not, has been aomplished

numerially in [3℄. Sine

~

�� � is selfadjoint, positive semide�nite and ompat there exists a ountable set of

nonnegative eigenvalues �

j

and eigenfuntions v

j

suh that

(

~

�� �)f =

1

X

j=1

�

j

hf; v

j

iv

j

:
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PSfrag replaements

�1 0 1

�1

0

1

Figure 1. A rak phantom (thin line) and a test rak (thik line).

Equipped with these prerequisites the Piard riterion yields the equivalene

g 2 R((

~

�� �)

1=2

) if and only if g ? N (

~

�� �) and

1

X

j=1

hg; v

j

i

2

�

j

<1 : (19)

Numerial omputations reveal an essentially geometri deay of the terms in the series (19); therefore we use

a least squares �t to estimate a deay rate 1=� suh that

hg; v

j

i

2

�

j

�

1

�

j

:

Aordingly we onlude that g 2 R((

~

�� �)

1=2

) if and only if � > 1, see [3℄ for more details.

In the sequel we present some numerial experiments based on simulated data. These were generated using

a boundary integral method whih requires the solution of a system of integral equations. One of these involves

a hypersingular integral operator whih an be disretized utilizing an idea of M�onh [12℄.

Before we show any numerial reonstrutions we omment on the sensitivity of � with respet to the loation

of �

0

whih is ruial for the performane of our algorithm. More spei�ally, we examine the sensitivity of �

with respet to shifts and rotations of �

0

. To this end we onsider the rak phantom � shown in Figure 1 (the

thin line) and a test rak �

0

� � indiated by the thik line in Figure 1; we emphasize that �

0

is not a straight

line. We move this test rak in the vertial diretion, and for eah position we determine the orresponding

value of �. These numbers are drawn in Figure 2 (left) versus the amount of vertial shift. The label 0 at

the horizontal axis marks the original position of the test rak, where �

0

� �. The sharp peak of the graph

indiates a very high sensitivity of � with respet to displaements, and only for the zero shift does the deay

rate approah the threshold � = 1.

For omparison we repeat this experiment with a `degenerated' rak whih onsists of only one single point

and orresponds to a dipole singularity in this point. This degenerate ase oinides exatly with the test for

inlusions utilized in [3℄. Note that the strong singularity of the dipole prevents the boundary values of the

assoiated potential v from belonging to R((

~

�� �)

1=2

), sine v =2 H

1

�

(
 n �). The results of these alulations

are shown in Figure 2 (right). Apparently, the two plots are qualitatively very similar, the main di�erene being

that in the degenerate ase the peak fails to reah the threshold � = 1, as is onsistent with the theory.

A similar experiment an be used to study the dependene of � on the orientation of the test rak. To this

end we rotate �

0

shown in Figure 1 around its enter point. The orresponding numbers for � are displayed in

Figure 3 (left). As before, the right hand side plot orresponds to a test with a dipole on the atual rak �



CRACK DETECTION USING ELECTROSTATIC MEASUREMENTS 9

PSfrag replaements

�1:5 �1 �0:5 0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1

PSfrag replaements

�1:5 �1 �0:5 0

0:1

0:2

0:3

0:4

0:5

0:6

0:7

0:8

0:9

1

Figure 2. Deay rate � vs. vertial shift of test rak (left) and point dipole (right), respetively.
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Figure 3. Deay rate � vs. rotation angle of test rak (left) and point dipole (right), respetively.

but with rotating dipole axis. Again, the two �gures are very similar and exhibit the strong sensitivity of �.

These experiments show that both kinds of test funtions are feasible for the loalization of raks provided

that the test is based on an appropriate threshold level for �. On the other hand, the sharp peaks in the �gures

make lear that a very �ne grid of test points is neessary to ahieve good reonstrutions.

The result of suh a grid searh is shown in Figure 4. In this ase the grid is an equidistant square mesh with

mesh width 0:01. For eah of the 3165 grid points within the disk and eah of 100 equi-angled dipole axes we

ompute the test funtion of the orresponding point dipole and its assoiated value �, i.e. for eah grid point

we perform the same alulations as for Figure 3 (right). The maximum of these values of � is assigned to this

point as a graysale value, and from this the plot in Figure 4 is obtained. The rak is well reonstruted by

this proedure although there our some artefats near the rak.

As another means of visualization Figure 5 shows the rak phantom and ontains for all grid points with � >

0:75 the orresponding dipole axis for whih the maximum was attained. The zoom on the right demonstrates

that these dipole axes are niely aligned with the atual rak.

A further example shows the reonstrution of two raks, f. Figure 6. We emphasize that a-priori knowledge

about the number of raks is not required in advane.
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Figure 4. Reonstrution of the rak phantom.

Figure 5. Points with � > 0:75 and orresponding dipole axes.
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Figure 6. Reonstrution of two raks.
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6. Conlusions

In this work we developed a haraterization of raks in a similar manner as in the ase of inlusions [2, 3℄.

The use of the fatorizaton (11) rather than an analog of (10) simpli�es the subsequent analysis substantially.

However, the fat that a rak arries a diretional information inorporates an additional dimension to the

reonstrution in the inverse problem. For this reason the numerial realization of our method is signi�antly

more expensive than in the ase of inlusions and forms a real omputational hallenge.
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