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Abstract. We consider the boundary value problem of calculating the
electrostatic potential for a homogeneous conductor containing finitely
many small insulating inclusions. We give a new proof of the asymp-
totic expansion of the electrostatic potential in terms of the background
potential, the location of the inhomogeneities and their geometry, as the
size of the inhomogeneities tends to zero. Such asymptotic expansions
have already been used to design direct (i.e. non-iterative) reconstruc-
tion algorithms for the determination of the location of the small inclu-
sions from electrostatic measurements on the boundary, e.g. MUSIC-
type methods. Our derivation of the asymptotic formulas is based on
integral equation methods. It demonstrates the strong relation between
factorization methods and MUSIC-type methods for the solution of this
inverse problem.

1. Introduction

Inverse boundary value problems for partial differential equations, in prin-
ciple, are difficult to solve since they are both nonlinear and ill-posed. Re-
cently new solution methods such as linear sampling methods and factor-
ization methods have been developed which avoid the issue of nonlinearity.
Basically, these methods make use of some sort of symmetric or self-adjoint
factorization

M = LFL∗

of some (measurement) operator M . Then the idea, introduced first by
Colton and Kirsch [20] (sampling method) and by Kirsch [29] (factorization
method) in the context of inverse obstacle scattering problems, is to char-
acterize the support of an obstacle by the range of some operator related
to M . These methods have since then been applied to a variety of dif-
ferent applications, cf., e.g., the papers [17–19, 26] (sampling method) and
[25,28,30,31,33] (factorization method), and the many references therein.

In order to handle the ill-posedness it is generally advisable to incorporate
all available a-priori knowledge about the unknown parameter and to try to
determine very specific features. Embarking on this strategy the purpose
could be to determine the location and size of diametrically small inclusions
inside a homogeneous background. This situation arises for example in mine-
detection and non-destructive testing. For this special case reconstruction
methods for inverse boundary value problems, which make use of asymptotic
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expansions of the solutions of the corresponding direct problems, have been
developed during the last years. Among these, MUSIC-type algorithms,
introduced by Devaney [23], seem to be very stable and therefore particularly
useful for noisy data.

In this paper we consider an inverse boundary value problem for the
Laplace equation as discussed in [5, 9, 12, 15, 24] in the case of small insu-
lating inclusions. We prove an asymptotic expansion of the corresponding
measurement operator similar to the asymptotic formulas in [24] but in a
more functional analytic setting. Our proof is based on a factorization of the
measurement operator developed in [11] and on layer potential techniques.
We expand the three operators occurring in the factorization separately and
use these expansions to calculate the leading order term in the asymptotic
formula for the measurement operator. This way of proving the asymp-
totic expansion points out the strong relation between MUSIC-type algo-
rithms and linear sampling methods explicitely (cf. also [16]). Moreover,
this method should be applicable to other inverse boundary value problems,
where a factorization of the measurement operator is already available, cf.
e.g. [26].

For closely related works concerning asymptotic expansions and recon-
struction algorithms for inverse boundary value problems with diametrically
small inclusions based on such expansions cf., e.g., [1–4,7–10,13,14,36], the
monograph [6] and the many references therein.

The outline of this paper is as follows. In Section 2 we introduce our no-
tation and review the factorization of our measurement operator, i.e. of the
difference of two Neumann-to-Dirichlet operators. Here and in the following
three sections we restrict our derivations to the case of a single inclusion.
Preliminary results concerning surface potentials are investigated in Section
3. In order to establish the asymptotic expansion we require some technical
estimates and identities; these are found in Section 4. Then, in Section 5, we
derive our main result on the asymptotic factorization in the case of a single
inclusion in Theorem 5.9 and its corollary. The case of multiple inclusions
is treated in Section 6.

2. Factorization of the Neumann-to-Dirichlet Operator

Let Ω ⊂ Rd, d ≥ 2, denote a bounded simply connected domain with
boundary ∂Ω of class C1,α, 0 < α < 1. Suppose Ω contains a small inclu-
sion Dε := z + εB, where B is a bounded simply connected C1,α domain
containing the origin. Here, the point z ∈ Ω determines the location of the
inclusion and B describes its relative shape. The inhomogeneity size is spec-
ified by the parameter ε > 0 which is assumed to be small. We suppose that
the domain Dε is well separated from the boundary, i.e. dist(z, ∂Ω) ≥ c0
for some constant c0 > 0 and ε is sufficiently small. Let ν denote the unit
outward normal to the boundaries ∂Ω, ∂B and ∂Dε, relative to Ω, B and
Dε, respectively.

In this section several results are stated without proof; these can be found
in [11] or references therein.
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Given a conductivity distribution of the form

σε(x) :=

{
0, for x ∈ Dε,

1, for x ∈ Ω \Dε,

and a prescribed boundary current

f ∈ H
−1/2
¦ (∂Ω) :=

{
φ ∈ H−1/2(∂Ω)

∣∣∣
∫

∂Ω
φ dσ = 0

}
,

let uε denote the electrostatic potential in presence of the inclusion Dε, i.e.
the unique solution

uε ∈ H1
¦,∂Ω(Ω \Dε) :=

{
u ∈ H1(Ω \Dε)

∣∣∣
∫

∂Ω
u dσ = 0

}

to

∆uε = 0, in Ω \Dε,(2.1a)

∂uε
∂ν

= f, on ∂Ω,(2.1b)

∂uε
∂ν

= 0, on ∂Dε.(2.1c)

The background potential u0 is the electrostatic potential for the same input
current f but without inclusions. That is, u0 denotes the unique solution

u0 ∈ H1
¦ (Ω) :=

{
u ∈ H1(Ω)

∣∣∣
∫

∂Ω
u dσ = 0

}

to

∆u0 = 0, in Ω,(2.2a)

∂u0

∂ν
= f, on ∂Ω.(2.2b)

The relations between the applied boundary current f and the boundary
voltages uε|∂Ω and u0|∂Ω define two linear mappings

Λε : H
−1/2
¦ (∂Ω) → H

1/2
¦ (∂Ω), f 7→ uε|∂Ω

and

Λ0 : H
−1/2
¦ (∂Ω) → H

1/2
¦ (∂Ω), f 7→ u0|∂Ω,

called the Neumann-to-Dirichlet operators associated with the two boundary
value problems (2.1) and (2.2), respectively. Here,

H
1/2
¦ (∂Ω) :=

{
φ ∈ H1/2(∂Ω)

∣∣∣
∫

∂Ω
φ dσ = 0

}
.

These mappings are in fact isomorphisms between these spaces.
In the following we want to examine the difference of the Neumann-to-

Dirichlet operators Λε−Λ0. Therefore we introduce two additional boundary
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value problems and a diffraction problem: First consider the boundary value
problem

∆vε = 0, in Ω \Dε,(2.3a)

∂vε
∂ν

= 0, on ∂Ω,(2.3b)

∂vε
∂ν

= φ, on ∂Dε,(2.3c)

which for φ ∈ H
−1/2
¦ (∂Dε) has a unique solution vε ∈ H1

¦,∂Ω(Ω \Dε). Thus,
we may define

(2.4) Lε : H
−1/2
¦ (∂Dε) → H

1/2
¦ (∂Ω), φ 7→ vε|∂Ω,

which is a bounded linear operator that takes Neumann data on ∂Dε and
maps them onto the associated Dirichlet values on ∂Ω. Recalling (2.1) and

(2.2) we see that Lε(−
∂u0

∂ν

∣∣
∂Dε

) = Lε(
∂uε
∂ν

∣∣
∂Dε

− ∂u0

∂ν

∣∣
∂Dε

) = (uε − u0)|∂Ω.

A short computation reveals that the dual operator L∗
ε of Lε is defined

via the solution of the problem

∆v∗ε = 0, in Ω \Dε,(2.5a)

∂v∗ε
∂ν

= −ψ, on ∂Ω,(2.5b)

∂v∗ε
∂ν

= 0, on ∂Dε,(2.5c)

which for ψ ∈ H
−1/2
¦ (∂Ω) has a unique solution

v∗ε ∈ H1
¦,∂Dε

(Ω \Dε) :=
{
u ∈ H1(Ω \Dε)

∣∣∣
∫

∂Dε

u dσ = 0
}
,

through

(2.6) L∗
ε : H

−1/2
¦ (∂Ω) → H

1/2
¦ (∂Dε), ψ 7→ v∗ε |∂Dε .

Note that (2.5) coincides with the boundary value problem (2.1), and hence
L∗
εf = −uε|∂Dε + (1/|∂Dε|)

∫
∂Dε

uε dσ, where |∂Dε| denotes the surface
measure of ∂Dε.

Next consider the following diffraction problem with inhomogeneous jump
condition:

∆wε = 0, in Ω \ ∂Dε,(2.7a)

∂wε
∂ν

= 0, on ∂Ω,(2.7b)

[wε]∂Dε = χ,(2.7c)
[
∂wε
∂ν

]

∂Dε

= 0,(2.7d)

which for χ ∈ H
1/2
¦ (∂Dε) possesses a unique solution wε with wε|Ω\Dε

∈

H1
¦,∂Ω(Ω \ Dε) and wε|Dε ∈ H1(Dε). Here, [ · ]∂Dε denotes the difference
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between the respective traces from outside and inside the inner boundary
∂Dε. Because of (2.7d),

(2.8) Fε : H
1/2
¦ (∂Dε) → H

−1/2
¦ (∂Dε), χ 7→ −

∂wε
∂ν

∣∣∣
∂Dε

,

is a well-defined bounded linear operator. Especially for χ := −uε|∂Dε +
(1/|∂Dε|)

∫
∂Dε

uε dσ the function

wε :=

{
−uε + u0, in Ω \Dε,

u0 − (1/|∂Dε|)
∫
∂Dε

uε dσ, in Dε,

is the solution to (2.7). Thus F (−uε|∂Dε +(1/|∂Dε|)
∫
∂Dε

uε dσ)=− ∂u0

∂ν

∣∣
∂Dε

.

Altogether we obtain the following lemma from [11]:

Lemma 2.1. With Lε, L
∗
ε and Fε defined by (2.4), (2.6) and (2.8), respec-

tively, the difference of the Neumann-to-Dirichlet maps can be factorized

as

(2.9) Λε − Λ0 = LεFεL
∗
ε.

Moreover, we find that the factorization yields the following mapping
sequence:

H
−1/2
¦ (∂Ω)

L∗

ε−−−→ H
1/2
¦ (∂Dε)

Fε−−−→ H
−1/2
¦ (∂Dε)

Lε−−−→ H
1/2
¦ (∂Ω)

with

f
L∗

ε7−→ −uε|∂Dε + (1/|∂Dε|)

∫

∂Dε

uε dσ
Fε7−→ −

∂u0

∂ν

∣∣∣
∂Dε

Lε7−→ (uε − u0)|∂Ω.

3. Surface Potentials

Throughout we denote by |x| the Euclidean norm of a point x ∈ Rd, by
(x, y) the scalar product of two vectors x, y ∈ Rd and by ωd the area of the
(d− 1)-dimensional unit sphere. The function

Φ(x− y) :=





−
1

2π
log |x− y|, for d = 2,

1

(d− 2)ωd
|x− y|2−d, for d ≥ 3,

is called fundamental solution for the Laplace equation.
Let N denote the Neumann function for ∆ in Ω, i.e. for all y ∈ Ω, N(·, y)

is the unique solution to

∆xN(x, y) = −δy, for x ∈ Ω,

∂N

∂ν(x)
(x, y) = −

1

|∂Ω|
, for x ∈ ∂Ω,

with the normalization
∫
∂ΩN(x, y) dσ(x) = 0. Then N is symmetric in its

arguments in (Ω × Ω) \ diag(Ω × Ω), i.e. N(x, y) = N(y, x) for (x, y) ∈
(Ω × Ω) \ diag(Ω × Ω), cf. [6]. For each y ∈ Ω and d ≥ 2, the Neumann
function N(x, y) has the form

(3.1) N(x, y) = Φ(x− y) +R(x, y),
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where R(·, y) is the unique solution of the boundary value problem

∆xR(x, y) = 0, for x ∈ Ω,

∂R

∂ν(x)
(x, y) = −

1

|∂Ω|
+

1

ωd

(x− y, ν(x))

|x− y|d
, for x ∈ ∂Ω,

with
∫
∂ΩR(x, y) dσ(x) = −

∫
∂Ω Φ(x − y) dσ(x). Since Φ is symmetric, it

follows that R is symmetric in its arguments in Ω × Ω. As a consequence,
R(x, ·) is a harmonic function on Ω for all x ∈ Ω.

Given a bounded C1,α domain D ⊂ Rd, we denote the single layer poten-
tial and the double layer potential of a function φ ∈ C(∂D) by

(SDφ)(x) :=

∫

∂D
Φ(x− y)φ(y) dσ(y), for x ∈ Rd,

and

(DDφ)(x) :=

∫

∂D

∂Φ(x− y)

∂ν(y)
φ(y) dσ(y), for x ∈ Rd \ ∂D.

Then we have the following trace formulas (cf. e.g. [32]):

∂

∂ν
SDφ

∣∣∣
±

∂D
(x) =

((
∓

1

2
I + K∗

D

)
φ

)
(x), for x ∈ ∂D,(3.2)

DDφ
∣∣∣
±

∂D
(x) =

((
±

1

2
I + KD

)
φ

)
(x), for x ∈ ∂D,(3.3)

where KD is defined by

(KDφ)(x) :=

∫

∂D

∂Φ(x− y)

∂ν(y)
φ(y) dσ(y) =

1

ωd

∫

∂D

(x− y, ν(y))

|x− y|d
φ(y) dσ(y)

for x ∈ ∂D and K∗
D is the adjoint of KD, i.e.

(K∗
Dφ)(x) =

∫

∂D

∂Φ(x− y)

∂ν(x)
φ(y) dσ(y) =

1

ωd

∫

∂D

(y − x, ν(x))

|x− y|d
φ(y) dσ(y)

for x ∈ ∂D.
SD, DD, KD and K∗

D have continuous extensions

SD : H−1/2(∂D) → H1
loc(R

d),

DD

∣∣
D

: H1/2(∂D) → H1(D),

DD

∣∣
Rd\D

: H1/2(∂D) → H1
loc(R

d \D),

KD : H1/2(∂D) → H1/2(∂D),

K∗
D : H−1/2(∂D) → H−1/2(∂D),

and the jump formulas (3.2), (3.3) remain valid for these operators, cf. [21,
34]. Moreover, KD as well as K∗

D is compact [35] and − 1
2I + KD has trivial

nullspace in H1/2(∂D) [6]. Hence, by the Fredholm alternative, − 1
2I + KD

is invertible on H1/2(∂D) and −1
2I + K∗

D is invertible on H−1/2(∂D).

Since KD1 = −1
2 , we get for each φ ∈ H−1/2(∂D),
∫

∂D
(−

1

2
I + K∗

D)φ dσ = −

∫

∂D
φ dσ.
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Thus, −1
2I + K∗

D maps H
−1/2
¦ (∂D) onto H

−1/2
¦ (∂D).

Next we consider the following modified surface potentials: Let now D
be a bounded C1,α domain compactly contained in Ω. For a function φ ∈
C(∂D) define

(SND φ)(x) :=

∫

∂D
N(x, y)φ(y) dσ(y), for x ∈ Ω,

(DN
Dφ)(x) :=

∫

∂D

∂N(x, y)

∂ν(y)
φ(y) dσ(y), for x ∈ Ω \ ∂D.

According to (3.1) we obtain the following trace formulas:

∂

∂ν
SNDφ

∣∣∣
±

∂D
(x) =

((
∓

1

2
I + K∗

D

)
φ

)
(x) +

∫

∂D

∂R(x, y)

∂ν(x)
φ(y) dσ(y),

DN
Dφ
∣∣∣
±

∂D
(x) =

((
±

1

2
I + KD

)
φ

)
(x) +

∫

∂D

∂R(x, y)

∂ν(y)
φ(y) dσ(y),

for x ∈ ∂D. Define

(3.4) (RDφ)(x) :=

∫

∂D

∂R(x, y)

∂ν(y)
φ(y) dσ(y), for x ∈ ∂D,

and let
KN
Dφ := KDφ+ RDφ.

Then we obtain

∂

∂ν
SNDφ

∣∣∣
±

∂D
(x) =

((
∓

1

2
I + (KN

D )∗
)
φ

)
(x), for x ∈ ∂D,(3.5)

DN
Dφ
∣∣∣
±

∂D
(x) =

((
±

1

2
I + KN

D

)
φ

)
(x), for x ∈ ∂D,(3.6)

where (KN
D )∗ is the adjoint of KN

D .
Recalling (3.1) and the mapping properties of the boundary integral op-

erators above we find that the operators

SND : H−1/2(∂D) → H1(Ω),

DN
D

∣∣
D

: H1/2(∂D) → H1(D),

DN
D

∣∣
Ω\D

: H1/2(∂D) → H1(Ω \D)

are continuous and the jump relations (3.5), (3.6) remain valid for these
extensions. The kernel of the integral operator RD is continuous, so

RD : H1/2(∂D) → H1/2(∂D)

and the corresponding dual operator

R∗
D : H−1/2(∂D) → H−1/2(∂D)

are compact. Therefore the operators

KN
D : H1/2(∂D) → H1/2(∂D),

(KN
D )∗ : H−1/2(∂D) → H−1/2(∂D)

are compact, too.

Lemma 3.1. The operators − 1
2I +KN

D and −1
2I + (KN

D )∗ have trivial null-

space in H1/2(∂D) and H−1/2(∂D), respectively.
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Proof. Let φ ∈ H−1/2(∂D) be a solution to the homogeneous equation
(−1

2I + (KN
D )∗)φ = 0 and define v := SNDφ. Then by (3.5)

∂v

∂ν

∣∣∣
+

∂D
=

(
−

1

2
I + (KN

D )∗
)
φ = 0,

and v is a solution to the Neumann problem

∆v = 0 in Ω \D,
∂v

∂ν

∣∣∣
∂Ω

= C,
∂v

∂ν

∣∣∣
∂D

= 0,

where C := − 1
|∂Ω|

∫
∂D φ dσ is constant. From the Divergence Theorem we

obtain C = 0. Thus we find that v is constant in Ω \ D and therefore on
∂D. Since ∆v = 0 in D we obtain that v is constant in D. From (3.5) we

see that φ = − ∂v
∂ν

∣∣∣
+

∂D
+ ∂v

∂ν

∣∣∣
−

∂D
= 0. Hence, ker(− 1

2I + (KN
D )∗) = {0}.

By the Fredholm alternative it follows that also ker(− 1
2I +KN

D ) = {0} in

H1/2(∂D). ¤

Applying the Fredholm alternative and Lemma 3.1 we find that − 1
2I+KN

D

is invertible on H1/2(∂D) and −1
2I + (KN

D )∗ is invertible on H−1/2(∂D).
Since, for all x ∈ Ω, R(x, ·) is harmonic in D, it follows that

KN
D1 = KD1 + RD1 = KD1 +

∫

∂D

∂R(·, y)

∂ν(y)
dσ(y) = −

1

2
,

and we get as above, that − 1
2I + (KN

D )∗ maps H
−1/2
¦ (∂D) onto H

−1/2
¦ (∂D).

Also as a consequence of this harmonicity, we find that the subspace of con-
stant functions in H1/2(∂D) is contained in the nullspace of RD. Moreover,
applying the harmonicity of RD(·, y) for all y ∈ Ω, we see that R∗

D maps

H−1/2(∂D) into H
−1/2
¦ (∂D). Therefore, in the following we may consider

RD and R∗
D as dual operators from H

1/2
¦ (∂D) to H1/2(∂D) and H−1/2(∂D)

to H
−1/2
¦ (∂D), respectively.

4. First Estimates

In the following sections we often have to deal with changes of coordinates.
Therefore we introduce some notation: Given φ ∈ L2(∂Dε) and ψ ∈ L2(∂B)

we define φ̂, (φ)∧ ∈ L2(∂B) and ψ̌, (ψ)∨ ∈ L2(∂Dε) by

(φ)∧(ξ) := φ̂(ξ) := φ(εξ + z) for a.e. ξ ∈ ∂B,(4.1a)

(ψ)∨(x) := ψ̌(x) := ψ(
x− z

ε
) for a.e. x ∈ ∂Dε,(4.1b)

respectively. The same notation will also be used for functions in H1/2(∂Dε)

orH−1/2(∂Dε) andH1/2(∂B) orH−1/2(∂B), respectively. This makes sense,
since the corresponding Sobolev spaces on Rd−1 are invariant under such
regular changes of coordinates (cf. [34]). Moreover, we apply the notation
to functions in H1(Dε) and H1(B) in the same way.

In our estimates we shall use a generic constant C.
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For bounded C1,α domainsD⊂Rd we use the following norm onH1/2(∂D)
(cf. e.g. [27]):

‖φ‖H1/2(∂D) := inf
u∈H1(D)
u|∂D=φ

‖u‖H1(D), for all φ ∈ H1/2(∂D).

The dual space H−1/2(∂D) shall be equipped with the corresponding dual
norm:

‖ψ‖H−1/2(∂D) := sup
φ∈H1/2(∂D)

φ6=0

〈ψ, φ〉∂D
‖φ‖H1/2(∂D)

, for all ψ ∈ H−1/2(∂D),

where 〈·,·〉∂D denotes the duality pairing betweenH1/2(∂D) andH−1/2(∂D).
The following lemma examines the scaling properties of these norms under

changes of coordinates as in (4.1):

Lemma 4.1. There exist constants c and C independent of ε such that for

each φ ∈ H
1/2
¦ (∂Dε) and ψ ∈ H

−1/2
¦ (∂Dε),

ε
d−2

2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dε)
≤ ε

d−2

2 ‖φ̂‖H1/2(∂B),(4.2)

ε
d
2 ‖ψ̂‖H−1/2(∂B) ≤ ‖ψ‖H−1/2(∂Dε)

≤ ε
d
2C‖ψ̂‖H−1/2(∂B).(4.3)

Proof. Let φ ∈ H
1/2
¦ (∂Dε) and ψ ∈ H

−1/2
¦ (∂Dε). By change of coordinates,

ξ := x−z
ε , we observe that for all u ∈ H1

¦ (Dε),

‖u‖2
H1(Dε)

=

∫

Dε

(
|u(x)|2 + |∇xu(x)|

2
)

dx

= εd
∫

B

(
|u(εξ + z)|2 +

1

ε2
|∇ξu(εξ + z)|2

)
dξ

= εd
∫

B

(
|û(ξ)|2 +

1

ε2
|∇ξû(ξ)|

2

)
dξ.

Thus,

‖u‖2
H1(Dε)

≤ εd−2‖û‖2
H1(B),

since ε is assumed to be small, and therefore

‖φ‖H1/2(∂Dε)
≤ ε

d−2

2 ‖φ̂‖H1/2(∂B).

The Poincaré inequality, cf. [22, Chapter IV, Section 7, Proposition 2],
implies that there exists a constant c independent of ε such that for all
u ∈ H1

¦ (Dε),

εd−2c‖û‖2
H1(B) ≤ εd−2‖∇ξû‖

2
L2(B) = ‖∇xu‖

2
L2(Dε)

≤ ‖u‖2
H1(Dε)

.

Hence,

ε
d−2

2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dε)
.
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For the dual norm we obtain by change of coordinates, applying (4.2),

‖ψ‖H−1/2(∂Dε)
= sup

φ∈H1/2(∂Dε)
φ6=0

〈ψ, φ〉∂Dε

‖φ‖H1/2(∂Dε)

≥ sup
φ∈H1/2(∂Dε)

φ6=0

εd−1〈ψ̂, φ̂〉∂B

ε
d−2

2 ‖φ̂‖H1/2(∂B)

= ε
d
2 sup
φ̂∈H1/2(∂B)

φ̂6=0

〈ψ̂, φ̂〉∂B

‖φ̂‖H1/2(∂B)

= ε
d
2 ‖ψ̂‖H−1/2(∂B)

and in the same way

‖ψ‖H−1/2(∂Dε)
≤ sup

φ∈H1/2(∂Dε)
φ6=0

εd−1〈ψ̂, φ̂〉∂B

ε
d−2

2 c‖φ̂‖H1/2(∂B)

= c−1ε
d
2 sup
φ̂∈H1/2(∂B)

φ̂6=0

〈ψ̂, φ̂〉∂B

‖φ̂‖H1/2(∂B)

= ε
d
2C‖ψ̂‖H−1/2(∂B).

Here we put C := c−1. ¤

In the next lemma we investigate the scaling properties of the integral
operators KDε and K∗

Dε
:

Lemma 4.2. Let φ ∈ H1/2(∂Dε) and ψ ∈ H−1/2(∂Dε). Then

KDεφ = (KBφ̂)∨ and K∗
Dε
φ = (K∗

Bφ̂)∨.

Proof. By change of variables, ξ := x−z
ε and η := y−z

ε , we see that for a.e.
x ∈ ∂Dε,

KDεφ(x) =
1

ωd

∫

∂Dε

(x− y, ν(y))

|x− y|d
φ(y) dσ(y)

=
1

ωd

∫

∂B

(εξ − εη, ν(η))

|εξ − εη|d
φ(εη + z)εd−1 dσ(η)

=
1

ωd

∫

∂B

(ξ − η, ν(η))

|ξ − η|d
φ̂(η) dσ(η)

= KBφ̂(ξ).

The second identity follows in the same way. ¤

Next we will estimate the norm of the operator RDε ∈ L(H
1/2
¦ (∂Dε),

H1/2(∂Dε)).

Lemma 4.3. There exists a constant C independent of ε such that for each

φ ∈ H
1/2
¦ (∂Dε),

‖RDεφ‖H1/2(∂Dε)
≤ εdC‖φ‖H1/2(∂Dε)

.

Proof. Let φ ∈ H
1/2
¦ (∂Dε). By R̃Dεφ we denote the extension of RDεφ to

H1(Dε) which is obtained canonically via (3.4). Then, since R and ∇xR are
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uniformly bounded near the centres of the inclusions,

‖RDεφ‖
2
H1/2(∂Dε)

=


 inf

u∈H1(Dε)
u|∂Dε=RDεφ

‖u‖H1(Dε)




2

≤ ‖R̃Dεφ‖
2
H1(Dε)

=

∫

Dε

∣∣∣∣
∫

∂Dε

∂R(x, y)

∂ν(y)
φ(y) dσ(y)

∣∣∣∣
2

dx

+

∫

Dε

∣∣∣∣∇x

∫

∂Dε

∂R(x, y)

∂ν(y)
φ(y) dσ(y)

∣∣∣∣
2

dx

≤

∫

Dε

(∫

∂Dε

(∣∣∣∣
∂R(x, y)

∂ν(y)

∣∣∣∣
2

+

∣∣∣∣∇x
∂R(x, y)

∂ν(y)

∣∣∣∣
2
)

dσ(y)

∫

∂Dε

|φ(y)|2 dσ(y)

)
dx

≤ εd−1C‖φ‖2
L2(∂Dε)

∫

Dε

1 dx ≤ ε2d−1C‖φ‖2
L2(∂Dε)

with a constant C that is independent of ε. Moreover, applying the Sobolev
Imbedding Theorem and Lemma 4.1, we find

‖φ‖2
L2(∂Dε)

= εd−1‖φ̂‖2
L2(∂B) ≤ εd−1C‖φ̂‖2

H1/2(∂B)
≤ εC‖φ‖2

H1/2(∂Dε)

with a constant C that is independent of ε. Combining these two estimates
yields the assertion. ¤

Therefore, we have RDε = O(εd) and

−
1

2
I + KN

Dε
= −

1

2
I + KDε + RDε = −

1

2
I + KDε + O(εd)

in L(H
1/2
¦ (∂Dε), H

1/2(∂Dε)), as ε→ 0, where the remainder estimate O(εd)

is in terms of the operator norm in L(H
1/2
¦ (∂Dε), H

1/2(∂Dε)). By duality
we find that also R∗

Dε
= O(εd) and

(4.4) −
1

2
I + (KN

Dε
)∗ = −

1

2
I + K∗

Dε
+ R∗

Dε
= −

1

2
I + K∗

Dε
+ O(εd),

in L(H−1/2(∂Dε), H
−1/2
¦ (∂Dε)). This latter result holds in L(H

−1/2
¦ (∂Dε),

H
−1/2
¦ (∂Dε)), too.
In the following we consider − 1

2I + K∗
Dε

and −1
2I + (KN

Dε
)∗ as operators

in L(H
−1/2
¦ (∂Dε), H

−1/2
¦ (∂Dε)). From Lemma 4.2 we obtain for all ψ ∈

H
−1/2
¦ (∂Dε) that

(
−

1

2
I + K∗

Dε

)
ψ =

((
−

1

2
I + K∗

B

)
ψ̂

)∨

and
(
−

1

2
I + K∗

Dε

)−1

ψ =

((
−

1

2
I + K∗

B

)−1

ψ̂

)∨

.
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Therefore, applying Lemma 4.1 and Lemma 4.2, we find that

∥∥∥∥
(
−

1

2
I + K∗

Dε

)−1∥∥∥∥
∂Dε

= sup
ψ∈H

−1/2

¦ (∂Dε)
ψ 6=0

∥∥∥
(
−1

2I + K∗
Dε

)−1
ψ
∥∥∥
H−1/2(∂Dε)

‖ψ‖H−1/2(∂Dε)

≤ sup
ψ∈H

−1/2

¦ (∂Dε)
ψ 6=0

ε
d
2C

∥∥∥∥
((

−1
2I + K∗

Dε

)−1
ψ
)∧∥∥∥∥

H−1/2(∂B)

ε
d
2 ‖ψ̂‖H−1/2(∂B)

= C sup
ψ̂∈H

−1/2

¦ (∂B)

ψ̂ 6=0

∥∥∥
(
−1

2I + K∗
B

)−1
ψ̂
∥∥∥
H−1/2(∂B)

‖ψ̂‖H−1/2(∂B)

= C

∥∥∥∥
(
−

1

2
I + K∗

B

)−1∥∥∥∥
∂B

,

where ‖ · ‖∂Dε and ‖ · ‖∂B denote the operator norm on L(H
−1/2
¦ (∂Dε),

H
−1/2
¦ (∂Dε)) and L(H

−1/2
¦ (∂B), H

−1/2
¦ (∂B)), respectively, and the constant

C is independent of ε.
From this estimate follows that ‖(− 1

2I+K∗
Dε

)−1‖∂Dε ≤ C, with a constant
C that is independent of ε. Together with (4.4) and a Neumann series
argument, cf. e.g. [32], we thus obtain

(
−

1

2
I + (KN

Dε
)∗
)−1

=

(
−

1

2
I + K∗

Dε

)−1

+ PDε

with PDε = O(εd) in L(H
−1/2
¦ (∂Dε), H

−1/2
¦ (∂Dε)).

5. Asymptotic Expansion

Now we consider the boundary value problem (2.3) and the operator Lε

from (2.4). For φ ∈ H
−1/2
¦ (∂Dε) we define vε ∈ H1

¦,∂Ω(Ω \Dε) by

vε := SNDε

(
−

1

2
I + (KN

Dε
)∗
)−1

φ.

Then vε is a solution to (2.3) and on ∂Ω we have

vε|∂Ω =

∫

∂Dε

N(·, y)

((
−

1

2
I + (KN

Dε
)∗
)−1

φ

)
(y) dσ(y)

=

∫

∂Dε

N(·, y)

((
−

1

2
I + K∗

Dε

)−1
φ

)
(y) dσ(y)

+

∫

∂Dε

N(·, y) (PDεφ) (y) dσ(y).

Using the Taylor expansion we obtain for x ∈ ∂Ω, z ∈ Ω and η ∈ ∂B as
ε→ 0,

N(x, εη + z) =

∞∑

|j|=0

1

j!
ε|j|∂jyN(x, z)ηj .
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Thus, recalling Lemma 4.2 and the fact that − 1
2I + (KN

Dε
)∗ and PDε map

H
−1/2
¦ (∂Dε) into H

−1/2
¦ (∂Dε), we obtain the following asymptotic formula:

vε|∂Ω = εd−1

∫

∂B
N(·, εη + z)

((
−

1

2
I + K∗

Dε

)−1
φ

)
(εη + z) dσ(η) + O(ε2d)

= εd∇yN(·, z) ·

∫

∂B
η

((
−

1

2
I + K∗

B

)−1
φ̂

)
(η) dσ(η) + O(εd+1).

The remainder term is bounded by Cεd+1‖φ̂‖H−1/2(∂B) in H
1/2
¦ (∂Ω), where

the constant C is independent of ε and φ.

Definition 5.1. Define

(5.1) L : H
−1/2
¦ (∂B) → H

1/2
¦ (∂Ω),

Lϕ := ∇yN(·, z) ·

∫

∂B
η

((
−

1

2
I + K∗

B

)−1
ϕ

)
(η) dσ(η).

Then L is a bounded linear operator and we have shown the following
asymptotic formula:

Proposition 5.2. For all φ ∈ H
−1/2
¦ (∂Dε),

(5.2) Lεφ = εdLφ̂+ ELφ̂,

as ε → 0, where the operator EL is bounded by Cεd+1 in the norm of

L(H
−1/2
¦ (∂B), H

1/2
¦ (∂Ω)), and the constant C is independent of ε.

Remark 5.3. By duality, the adjoint operator E∗
L is O(εd+1) in L(H

−1/2
¦ (∂Ω),

H
1/2
¦ (∂B)).

Next we return to the diffraction problem (2.7) and the operator Fε from

(2.8). Given χ ∈ H
1/2
¦ (∂Dε) we define

wε := DN
Dε
χ.

Then wε is a solution to (2.7) and from (3.6) we obtain

wε|
−
∂Dε

=

(
−

1

2
I + KN

Dε

)
χ.

For ϕ ∈ H1/2(∂Dε) we consider the interior Dirichlet problem

(5.3) ∆w = 0 in Dε, w = ϕ on ∂Dε,

and the corresponding interior Dirichlet-to-Neumann operator,

Υε : H1/2(∂Dε) → H
−1/2
¦ (∂Dε), Υεϕ :=

∂w

∂ν

∣∣∣
∂Dε

.

Since wε solves the diffraction problem (2.7), we obtain

∂wε
∂ν

∣∣∣
∂Dε

= Υε

(
−

1

2
I + KN

Dε

)
χ.

We define the interior Dirichlet-to-Neumann operator Υ : H1/2(∂B) →

H
−1/2
¦ (∂B) on ∂B in the same way as Υε. These Dirichlet-to-Neumann

maps are bounded linear operators. Next we take a closer look at the scal-
ing properties of Υε.
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Lemma 5.4. Let ϕ ∈ H1/2(∂Dε). Then

ε−1 (Υϕ̂)∨ = Υεϕ.

Proof. Suppose w is a solution to (5.3). By change of variables, ξ := x−z
ε ,

we find that ŵ satisfies

∆ξŵ(ξ) = ε2∆xw(x) = 0 for a.e. ξ ∈ B,

∂ŵ

∂ν(ξ)
(ξ) = ε

∂w

∂ν(x)
(x) for a.e. ξ ∈ ∂B,

ŵ(ξ) = w(x) for a.e. ξ ∈ ∂B.

Hence,

(Υŵ|∂B)(ξ) =
∂ŵ

∂ν(ξ)
(ξ) = ε

∂w

∂ν(x)
(x) = ε(Υεw|∂Dε)(x),

for a.e. ξ ∈ ∂B and x = εξ + z ∈ ∂Dε. ¤

Lemma 5.5. There exists a constant C independent of ε such that for each

ϕ ∈ H
1/2
¦ (∂Dε),

‖(ΥεRDεϕ)∧‖H−1/2(∂B) ≤ εd−1C‖ϕ̂‖H1/2(∂B).

Proof. Let ϕ ∈ H
1/2
¦ (∂Dε). Using Lemma 5.4, the continuity of Υ, Lemma

4.1 and Lemma 4.3 we obtain

‖(ΥεRDεϕ)∧‖H−1/2(∂B) = ε−1‖ΥR̂Dεϕ‖H−1/2(∂B)

≤ ε−1C‖R̂Dεϕ‖H1/2(∂B)

≤ ε−1Cε
2−d
2 ‖RDεϕ‖H1/2(∂Dε)

≤ ε−
d
2Cεd‖ϕ‖H1/2(∂Dε)

≤ ε
d
2Cε

d−2

2 ‖ϕ̂‖H1/2(∂B)

= εd−1C‖ϕ̂‖H1/2(∂B),

and the constant C is independent of ε and ϕ. ¤

Note, that from the previous Lemma and (4.3) it also follows that

‖ΥεRDεχ‖H−1/2(∂Dε)
≤ ε

3d
2
−1C‖χ̂‖H1/2(∂B),

with a constant C that is independent of ε and χ. Therefore, applying
Lemma 5.4 and Lemma 4.2, we can calculate

∂wε
∂ν

∣∣∣
∂Dε

= Υε

(
−

1

2
I + KN

Dε

)
χ

= Υε

(
−

1

2
I + KDε

)
χ+ ΥεRDεχ

=
1

ε

(
Υ

((
−

1

2
I + KDε

)
χ

)∧)∨

+ O(ε
3d
2
−1)

=
1

ε

(
Υ
(
−

1

2
I + KB

)
χ̂

)∨

+ O(ε
3d
2
−1).
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The remainder term is bounded by Cε
3d
2
−1‖χ̂‖H1/2(∂B) inH

−1/2
¦ (∂Dε), where

the constant C is independent of ε and χ.

Definition 5.6. Define

(5.4) F : H
1/2
¦ (∂B) → H

−1/2
¦ (∂B), Fϕ := −Υ

(
−

1

2
I + KB

)
ϕ.

Then F is a bounded linear operator and using Lemma 4.1 we obtain the
following asymptotic formula:

Proposition 5.7. For all χ ∈ H
1/2
¦ (∂Dε),

(5.5) Fεχ = ε−1(Fχ̂)∨ + (EF χ̂)∨,

as ε → 0, where the operator EF is bounded by Cεd−1 in the norm of

L(H
1/2
¦ (∂B), H

−1/2
¦ (∂B)), and the constant C is independent of ε.

Next we consider the asymptotic behaviour of the operator L∗
ε from (2.6).

Let φ ∈ H
−1/2
¦ (∂Dε) and ψ ∈ H

−1/2
¦ (∂Ω). For X ∈ {Ω, B,Dε} we denote

by 〈·, ·〉∂X the duality pairing between H
1/2
¦ (∂X) and H

−1/2
¦ (∂X) and use

Proposition 5.2 to calculate

〈φ,L∗
εψ〉∂Dε

= 〈Lεφ, ψ〉∂Ω

=
〈
εdLφ̂+ ELφ̂, ψ

〉

∂Ω

=
〈
φ̂, εdL∗ψ + E∗

Lψ
〉

∂B

=
〈
φ, ε(L∗ψ)∨ + ε1−d(E∗

Lψ)∨
〉

∂Dε

,

where L∗ : H
−1/2
¦ (∂Ω) → H

1/2
¦ (∂B) is the dual operator of L.

Recalling Remark 5.3 we obtain the following asymptotic formula:

Proposition 5.8. For all ψ ∈ H
−1/2
¦ (∂Ω),

(5.6) L∗
εψ = ε(L∗ψ)∨ + ε1−d(E∗

Lψ)∨,

as ε → 0, where the operator E∗
L is bounded by Cεd+1 in the norm of

L(H
−1/2
¦ (∂Ω), H

1/2
¦ (∂B)), and the constant C is independent of ε.

Now we calculate the operator L∗ explicitly. Let again φ ∈ H
−1/2
¦ (∂B)

and ψ ∈ H
−1/2
¦ (∂Ω). Recalling the definition of the operator L from (5.1)

it follows that
〈
Lφ, ψ

〉
∂Ω

=

∫

∂Ω
∇yN(x, z) ·

(∫

∂B
η

((
−

1

2
I + K∗

B

)−1
φ

)
(η) dσ(η)

)
ψ(x) dσ(x)

=

(∫

∂Ω
∇yN(x, z)ψ(x) dσ(x)

)
·

∫

∂B
η

((
−

1

2
I + K∗

B

)−1
φ

)
(η) dσ(η)

=

(∫

∂Ω
∇yN(x, z)ψ(x) dσ(x)

)
·

∫

∂B
φ(ξ)

((
−

1

2
I + KB

)−1
η

)
(ξ) dσ(ξ).
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Note that in the last line of this computation η is the surface variable on ∂B
and therefore (− 1

2I+KB)−1η is defined componentwise for this vector-valued
function. Since N is the solution operator for the Neumann problem

(5.7) ∆v = 0 in Ω,
∂v

∂ν
= ψ on ∂Ω,

with
∫
∂Ω v dσ = 0, we have that

∇v(z) =

∫

∂Ω
∇yN(x, z)ψ(x) dσ(x),

i.e. that

(5.8) L∗ψ = ∇v(z) ·

((
−

1

2
I + KB

)−1
η

)
,

where v is the corresponding solution of (5.7).
Now we put our results together and obtain the main result of this paper:

Theorem 5.9. Let f ∈ H
−1/2
¦ (∂Ω), then

(Λε − Λ0) f = εdLFL∗f + O(εd+1)

in H
1/2
¦ (∂Ω), as ε → 0. More precisely, the remainder term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .

Proof. From Proposition 5.8 we obtain

L∗
εf = ε(L∗f)∨ + ε1−d(E∗

Lf)∨.

So by Proposition 5.7,

FεL
∗
εf = (FL∗f)∨ + ε(EFL

∗f)∨ + ε−d(FE∗
Lf)∨ + ε1−d(EFE

∗
Lf)∨.

With the help of Proposition 5.2, we find for the factorization of (Λε−Λ0)f
of Lemma 2.1 that

(Λε − Λ0)f = LεFεL
∗
εf = εdLFL∗f + ELFL

∗f + εd+1LEFL
∗f

+ εELEFL
∗f + LFE∗

Lf + ε−dELFE
∗
Lf + εLEFE

∗
Lf + ε1−dELEFE

∗
Lf.

Now the assertion follows from the estimates in Proposition 5.2, Proposition
5.7, Proposition 5.8 and the continuity of the operators L, F and L∗. ¤

Figure 1 illustrates the factorization Λε − Λ0 = LεFεL
∗
ε from Lemma 2.1

and the leading order term LFL∗ in the corresponding asymptotic factor-
ization Λε − Λ0 = εdLFL∗ + O(εd+1) from Theorem 5.9.

Finally let f ∈ H
−1/2
¦ (∂Ω) and let u0 be the solution to (2.2). We want to

calculate LFL∗f explicitely: Since (2.2) and (5.7) coincide, we obtain from
(5.8) that

L∗f = ∇u0(z) ·

((
−

1

2
I + KB

)−1
η

)
.

Thus, by applying (5.4),

FL∗f = −∇u0(z) · Υη = −∇u0(z) · ν(η),
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Dε

Ω

Ω

L

L
∗

F

Lε

Fε

L
∗
ε

Figure 1. Sketch of the factorization Λε−Λ0 = LεFεL
∗

ε (above)
and of the leading order term LFL∗ in the corresponding asymp-
totic factorization Λε − Λ0 = εdLFL∗ + O(εd+1) (below).

where ν denotes the unit outward normal to ∂B, because ηi is the unique
harmonic function on B with Dirichlet data ηi|∂B for 1 ≤ i ≤ d. We deduce
from (5.1) that

LFL∗f

= −∇yN(·, z) ·

∫

∂B
η

((
−

1

2
I + K∗

B

)−1(
ν · ∇u0(z)

))
(η) dσ(η)

= −∇yN(·, z) ·M∇u0(z),

where the matrix M ∈ Rd×d is given by M := (Mij)
d
i,j=1 with

Mij :=

∫

∂B
ηi

((
−

1

2
I + K∗

B

)−1
νj

)
(η) dσ(η)

for i, j = 1, . . . , d. M is the so-called polarization tensor of Pólya-Szegö
corresponding to the insulating inhomogeneity Dε = z + εB. It is a sym-
metric and negative definite matrix that depends on the relative shape of
the inhomogeneity Dε, cf. [6, 24].

We obtain the following corollary:

Corollary 5.10. Let f ∈ H
−1/2
¦ (∂Ω) and let u0 be the solution to (2.2).

Then,

(Λε − Λ0) f = −εd∇yN(·, z) ·M∇u0(z) + O(εd+1)
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in H
1/2
¦ (∂Ω), as ε → 0. More precisely, the remainder term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .

This is exactly the formula derived in [24], cf. also [5, 6].

Remark 5.11. Note that our way of writing the polarisation tensor M differs
from that in [24]. But the two expressions are equivalent except that their
sign is different, as we will show next: In [24] Friedman and Vogelius define
functions Ψj , j = 1, . . . , d, which are the unique solutions to the exterior
problems

∆Ψj = 0, in Rd \B,

∂Ψj

∂ν
= −νj , on ∂B,(5.9)

Ψj(η) → 0, as |η| → ∞.

Then they define the polarisation tensor M̃ := (M̃ij)
d
i,j=1 by

M̃ij :=

∫

∂B
νi(η) (ηj + Ψj(η)) dσ(η),

for i, j = 1, . . . , d.

Now let 1 ≤ i, j ≤ d. If we define φj :=
(
−1

2I + KB

)−1
ηj and uj := DBφj ,

we obtain from the jump relation (3.3) that uj |
−
∂B = ηj and uj |B is the unique

solution to

∆u = 0 in B, u|−∂B = ηj .

Therefore, uj |B = ηj and we have
∂uj

∂ν

∣∣∣
+

∂B
=

∂uj

∂ν

∣∣∣
−

∂B
= νj on ∂B. Thus,

−uj |Rd\B solves (5.9), and from the uniqueness of solutions to (5.9) we get

uj |Rd\B = −Ψj . Again from (3.3) we obtain that φj = uj |
+
∂B − uj |

−
∂B =

−ηj − Ψj |∂B. This gives

M̃ij =

∫

∂B
νi(η) (ηj + Ψj(η)) dσ(η) = −

∫

∂B
νi(η)φj(η) dσ(η)

= −

∫

∂B
νi(ξ)

((
−

1

2
I + KB

)−1
ηj

)
(ξ) dσ(ξ)

= −

∫

∂B
ηj

((
−

1

2
I + K∗

B

)−1
νi

)
(η) dσ(η) = −Mji = −Mij ,

where we used the symmetry of M . Thus M = −M̃ .

6. Multiple inclusions

In this section we extend our results to the practically important case
of finitely many well separated small inclusions. By that we understand
cavities Dε,i := zi + εBi, where Bi is a bounded simply connected C1,α

domain containing the origin, and 1 ≤ i ≤ m. The total collection of
inclusions thus takes the form Dε :=

⋃m
i=1(zi + εBi). The points zi ∈ Ω,

1 ≤ i ≤ m, that determine the location of the inclusions, are assumed to
satisfy

|zi − zj | ≥ c0 ∀i 6= j and dist(zi, ∂Ω) ≥ c0
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for some constant c0 > 0, and the value of ε > 0 is assumed to be sufficiently
small. The piecewise constant conductivity distribution is again given by

σε(x) :=

{
0, for x ∈ Dε,

1, for x ∈ Ω \Dε.

Basically the results and their proofs for a single inclusion from the pre-
vious sections can be adopted with few minor modifications which we will
comment on now.

The factorization of the Neumann-to-Dirichlet operator from Lemma 2.1
can be generalized as described in [11]. Therefore, it is convenient to set
∂Dε = ∂Dε,1 × · · · × ∂Dε,m and to interpret the relevant Sobolev spaces

accordingly as product spaces, e.g. H
±1/2
¦ (∂Dε) = H

±1/2
¦ (∂Dε,1) × · · · ×

H
±1/2
¦ (∂Dε,m). Then the operator Lε is again defined by (2.3) and (2.4),

where the inner Neumann boundary condition should be understood com-
ponentwise, i.e. ∂vε

∂ν = φi on ∂Dε,i, for 1 ≤ i ≤ m and φ = (φ1, . . . , φm) ∈

H
−1/2
¦ (∂Dε). For the corresponding dual operator L∗

ε we consider again the
boundary value problem (2.5), whose solution v∗ε is unique up to an addi-
tive constant. If we fix an arbitrary solution v∗ε and, for 1 ≤ i ≤ m, define
ci :=

∫
∂Dε,i

v∗ε dσ
/
|∂Dε,i|, then the dual operator of Lε is given by

L∗
ε : H

−1/2
¦ (∂Ω) → H

1/2
¦ (∂Dε), ψ 7→ (v∗ε |∂Dε,1 − c1, . . . , v

∗
ε |∂Dε,m − cm).

The definition of the operator Fε remains unchanged if the boundary con-
ditions on ∂Dε are interpreted componentwise. Then the factorization of
Λε − Λ0 stated in Lemma 2.1 holds true in the case of multiple inclusions,
cf. [11].

Now we generalize the asymptotic expansions from Section 5 to the case
of multiple inclusions. First we consider again the operator Lε from (2.4).

For φ = (φ1, . . . , φm) ∈ H
−1/2
¦ (∂Dε) we define vε ∈ H1

¦,∂Ω(Ω \Dε) by

vε :=
m∑

i=1

SNDε,i
ai,

where a := (a1, . . . , am) ∈ H
−1/2
¦ (∂Dε) solves the system of integral equa-

tions



−1
2I + (KN

Dε,1
)∗ ∂

∂νS
N
Dε,2

∣∣∣
∂Dε,1

. . . ∂
∂νS

N
Dε,m

∣∣∣
∂Dε,1

∂
∂νS

N
Dε,1

∣∣∣
∂Dε,2

−1
2I + (KN

Dε,2
)∗ . . . ∂

∂νS
N
Dε,m

∣∣∣
∂Dε,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂
∂νS

N
Dε,1

∣∣∣
∂Dε,m

∂
∂νS

N
Dε,2

∣∣∣
∂Dε,m

. . . −1
2I + (KN

Dε,m
)∗




︸ ︷︷ ︸
=:A




a1

a2

. . .
am


=




φ1

φ2

. . .
φm


.

Since the small inclusions are assumed to be well separated from each
other and from the boundary ∂Ω, we can estimate the non-diagonal entries of
the matrix A, using the regularity of SNDε,i

ϕi away from ∂Dε,i, for 1 ≤ i ≤ m.
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Lemma 6.1. There exists a constant C independent of ε such that for each

ϕ = (ϕ1, . . . , ϕm) ∈ H
−1/2
¦ (∂Dε) and 1 ≤ i 6= j ≤ m,

∥∥∥∥
∂

∂ν
SNDε,i

ϕi

∣∣∣
∂Dε,j

∥∥∥∥
H−1/2(∂Dε,j)

≤ εd−1C‖ϕi‖H−1/2(∂Dε,i)
.

Proof. Let ϕ = (ϕ1, . . . , ϕm) ∈ H
−1/2
¦ (∂Dε) and 1 ≤ i 6= j ≤ m. Using

Lemma 4.1 and the regularity of SNDε,i
ϕi away from ∂Dε,i we obtain

∥∥∥
∂

∂ν
SNDε,i

ϕi

∣∣∣
∂Dε,j

∥∥∥
2

H−1/2(∂Dε,j)
≤ εdC

∥∥∥
( ∂
∂ν

SNDε,i
ϕi

∣∣∣
∂Dε,j

)∧j
∥∥∥

2

H−1/2(∂Bj)

≤ εdC
∥∥∥
( ∂
∂ν

SNDε,i
ϕi

∣∣∣
∂Dε,j

)∧j
∥∥∥

2

L2(∂Bj)

= εC
∥∥∥
∂

∂ν
SNDε,i

ϕi

∣∣∣
∂Dε,j

∥∥∥
2

L2(∂Dε,j)

= εC

∫

∂Dε,j

∣∣∣
∫

∂Dε,i

∂N(x, y)

∂ν(x)
ϕi(y) dσ(y)

∣∣∣
2

dσ(x)

≤ εC

∫

∂Dε,j

∥∥∥
∂N(x, ·)

∂ν(x)

∥∥∥
2

H1/2(∂Dε,i)
‖ϕi‖

2
H−1/2(∂Dε,i)

dσ(x)

≤ εCεd−2‖ϕi‖
2
H−1/2(∂Dε,i)

|∂Dε,i| ≤ ε2d−2C‖ϕi‖
2
H−1/2(∂Dε,i)

Here (·)∧j denotes the usual transformation from (4.1) applied to the j-th
inhomogeneity Dε,j . ¤

Therefore, ∂
∂νS

N
Dε,i

∣∣
∂Dε,j

= O(εd−1) in L(H
−1/2
¦ (∂Dε,i), H

−1/2
¦ (∂Dε,j)), for

1 ≤ i 6= j ≤ m. We deduce that

A =




−1
2I + (KN

Dε,1
)∗ 0 . . . 0

0 −1
2I + (KN

Dε,2
)∗ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −1

2I + (KN
Dε,m

)∗




︸ ︷︷ ︸
=:B

+O(εd−1)

with respect to the maximum row sum of L(H
−1/2
¦ (∂Dε,i), H

−1/2
¦ (∂Dε,j))-

norms, 1 ≤ i, j ≤ m. Thus we obtain that A−1 exists, and A−1 = B−1 +
O(εd−1) with respect to the same norm.

Now, calculating along the lines of Section 5, we obtain the following
asymptotic formula:

vε
∣∣
∂Ω

= εd
m∑

i=1

∇yN(·, zi)·

∫

∂Bi

η

((
−

1

2
I + K∗

Bi

)−1
φ∧i
i

)
(η) dσ(η)+O(εd+1).

Here again, (·)∧i denotes the transformation from (4.1) applied to the i-th in-

clusionDε,i. The remainder term is bounded by Cεd+1 max
1≤i≤m

‖φ∧i
i ‖H−1/2(∂Bi)

in H
1/2
¦ (∂Ω), where the constant C is independent of ε and φ. Therefore, if



ASYMPTOTIC FACTORIZATION 21

we define

(6.1) L : H
−1/2
¦ (∂B1) × · · · ×H

−1/2
¦ (∂Bm) → H

1/2
¦ (∂Ω),

Lϕ :=
m∑

i=1

∇yN(·, zi) ·

∫

∂Bi

η

((
−

1

2
I + K∗

Bi

)−1
ϕi

)
(η) dσ(η),

Proposition 5.2 remains valid in the case of finitely many well separated
small inclusions.

Now we return to the diffraction problem (2.7) and the operator Fε from

(2.8). For χ = (χ1, . . . , χm) ∈ H
1/2
¦ (∂Dε) we define wε :=

∑m
i=1 D

N
Dε,i

χi.

Then, for 1 ≤ i ≤ m,

∂wε
∂ν

∣∣∣
∂Dε,i

= Υε,i

(
−

1

2
I + KN

Dε,i

)
χi + Υε,i

m∑

j=1
j 6=i

(
DN
Dε,j

χj

)∣∣∣
∂Dε,i

,

where Υε,i is the interior Dirichlet-to-Neumann operator on ∂Dε,i. As in
Lemma 5.5 and Lemma 4.3 we can estimate

∥∥∥∥∥

(
Υε,i

m∑

j=1
j 6=i

(
DN
Dε,j

χj

) ∣∣∣
∂Dε,i

)∧i
∥∥∥∥∥
H−1/2(∂Bi)

≤ ε−
d
2C

m∑

j=1
j 6=i

∥∥∥∥
(
DN
Dε,j

χj

)∣∣∣
∂Dε,i

∥∥∥∥
H1/2(∂Dε,i)

≤ εd−1C max
1≤j≤m

‖χ∧j‖H1/2(∂Bj)
,

where the constant C is independent of ε and χ. Therefore, if we define

(6.2)

F : H
1/2
¦ (∂B1) × · · · ×H

1/2
¦ (∂Bm) → H

−1/2
¦ (∂B1) × · · · ×H

−1/2
¦ (∂Bm),

F (ϕ1, . . . , ϕm):=

(
−Υ1

(
−

1

2
I + KB1

)
ϕ1, . . . ,−Υm

(
−

1

2
I + KBm

)
ϕm

)
,

where Υi is the interior Dirichlet-to-Neumann operator on ∂Bi, 1 ≤ i ≤ m,
Proposition 5.7 remains valid in the case of finitely many well separated
small inclusions.

Calculating along the lines of Section 5 we find that Proposition 5.8 re-
mains valid in the case of finitely many well separated small inclusions, too,
and that the adjoint operator

L∗ : H
−1/2
¦ (∂Ω) → H

1/2
¦ (∂B1) × · · · ×H

1/2
¦ (∂Bm)

of L is given by
(6.3)

L∗ψ=

(
∇v(z1)·

((
−

1

2
I + KB1

)−1
η

)
, . . . ,∇v(zm)·

((
−

1

2
I + KBm

)−1
η

))
,

where v is the corresponding solution of (5.7).
Thus we obtain:
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Proposition 6.2. Theorem 5.9 holds true in the case of finitely many well

separated small inclusions, if L, F and L∗ are given as in (6.1), (6.2) and

(6.3), respectively.

For 1 ≤ i ≤ m let M i denote the polarization tensor corresponding to the
i-th inclusion Dε,i = zi + εBi. In the case of finitely many small inclusions
Corollary 5.10 reads as follows:

Corollary 6.3. Let f ∈ H
−1/2
¦ (∂Ω) and let u0 be the solution to (2.2).

Then,

(Λε − Λ0) f = −εd
m∑

i=1

∇yN(·, zi) ·M
i∇u0(zi) + O(εd+1)

in H
1/2
¦ (∂Ω), as ε → 0. More precisely, the remainder term is bounded by

Cεd+1‖f‖H−1/2(∂Ω), where the constant C is independent of ε and f .
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