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Abstract

We introduce and analyze backscatter data for a three dimensional obstacle
problem in electrostatics. In particular, we investigate the asymptotic behavior
of these data as, (i), the measurement point goes to infinity, and (ii), the obsta-
cles shrink to individual points. We also provide numerical simulations of these
data.
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1. Introduction

Backscatter is a notion for the scattered field – which can be an acoustic or
an electromagnetic wave – at the very same location where the incident field
has been emitted. Its advantage is that a single sensor is sufficient to take these
data. Moreover, for time harmonic excitations, these sensors can be designed
in such a way that they only record the scattered field at the excitation point,
and not the total field, cf., e.g., Griffiths [5]. Accordingly, backscatter can be
measured much more accurately than the scattered wave at any other point,
as the incoming field usually dominates the scattered field. It is therefore of
practical interest to ask whether these data are sufficiently “rich” to solve the
inverse problem of reconstructing the scatterer. Unfortunately, however, this
problem is so far unsolved; we refer to [6, 10, 13, 14] for some partial results.

Nevertheless, inspired by this open problem, we have recently extended the
notion of backscatter data to the two dimensional impedance tomography prob-
lem, where currents and voltages are measured at the boundary of a planar
body. For this application complex variables techniques can be used to set-
tle uniqueness for the inverse problem of reconstructing an insulating obstacle
within the body from these “backscatter” data, cf. [8]; subsequently, in [7, 9, 11]
constructive algorithms have been developed to approximate the obstacle from
these data.

As a step towards the scattered wave problem we study in this note the
analog of backscatter measurements for the Laplace equation in three dimen-

∗Corresponding author
Email address: hanke@math.uni-mainz.de (M. Hanke)

Preprint submitted to Journal of Computational and Applied Mathematics October 18, 2011



sional free space, given the presence of insulating obstacles. With regard to the
standard physical interpretation of the free space Laplace equation we call this
electrostatic backscatter. If one wishes, however, this setting can alternatively
be viewed as a simplistic low-frequency model for the backscatter of a time
harmonic acoustic pressure wave, reflected from a sound-hard scatterer.

In Section 3 we provide some first qualitative properties of these data, that is,
we show that they are positive and decay like O(|x|−4) to zero, as the measure-
ment point x goes to infinity. Then, in Section 4, we determine the asymptotic
behavior of the backscatter at some fixed location, when the obstacles shrink to
distinct points, similar to our findings from [7] for the backscatter in impedance
tomography. We leave it for future work to utilize these results for the inverse
problem.

Finally, we conclude this paper in Section 5 with numerical simulations taken
from [15] to enhance further insight into the information content of the electro-
static backscatter of two insulating inclusions, and with a final summary.

2. Electrostatic backscatter

Let Ω ⊂ R
3 be a nonempty and bounded domain consisting of J connected

C2-components Ωj , j = 1, . . . , J , with connected complements R
3 \ Ωj . We

denote the boundary of Ω by Γ, and those of Ωj by Γj , respectively. We as-
sume that the closures of Ωj are mutually disjoint, and associate with them the
support of electrically insulating obstacles. Inserting a unit charge at a point
x ∈ R

3 \ Ω, this gives rise to an electrostatic potential

U(y;x) = Φ(y, x) + u(y;x) , y ∈ R
3 \ Ω , (1)

where

Φ(y, x) =
1

4π

1

|y − x|
, y 6= x ,

is the fundamental solution of the Laplacian, and u( · ;x) is a harmonic function
in R

3 \ Ω that satisfies the boundary condition

∂

∂yν
u(y;x) = −

∂

∂yν
Φ(y, x) , y ∈ Γ . (2)

Here, ν is the exterior normal of Ω, and u is assumed to converge to zero as
|y| → ∞, uniformly for all directions. Such a solution u( · ;x) of this exterior
Neumann problem for the Laplacian is known to exist and is uniquely defined,
cf., e.g., Kress [12]; it is the induced potential due to the insulator, given a point
charge at x. We also mention that the potential U of (1) is nothing else than
the Neumann function N(y, x) for the Laplacian in the exterior of Ω.

If we assume that the potential u( · ;x) is only known at the location of the
point source, then the corresponding data

b(x) = u(x;x) , x ∈ R
3 \ Ω , (3)
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Figure 1: Backscatter data for the unit ball on an interval M = [−2, 2]2 × {2}.

will be called the electrostatic backscatter of the obstacles Ω.
While in this paper we only investigate qualitative and quantitative proper-

ties of the backscatter, our ultimate interest is in the inverse problem: Given the
backscatter b|M on some two-dimensional manifold M ⊂ R

3 \ Ω, is it possible
to determine Ω from these data – up to trivial symmetries? (For example, if
M is a hyperplane then the backscatter b|M obviously cannot discern on which
side of the plane a certain obstacle is located.)

Example 1. As a simple example we consider a single ball Ω for which the
backscatter can be calculated analytically, due to the knowledge of the associ-
ated Neumann function. To be precise, if Ω is the unit ball of R

3, then

N(y, x) =
1

4π

( 1

|x− y|
+

1

|x| |x∗ − y|
+ log

|x||y| − x · y

1 − x · y + |x||x∗ − y|

)
(4)

is the associated exterior Neumann function for x, y /∈ Ω, and y not on the
ray from the origin to infinity passing through x, cf., e.g., Barton [3]. Here,
x∗ = x/|x|2 denotes the reflection of x at the unit sphere. For y = αx with
α > 0, α 6= 1, and |x|, |y| > 1, (4) extends continuously to

N(αx, x) =
1

4π

( 1

|α− 1||x|
+

1

α|x|2 − 1
+ log

α|x|2 − 1

α|x|2

)
.

It thus follows that

b(x) = lim
y→x

(
N(y, x) − Φ(y, x)

)
=

1

4π

( 1

|x|2 − 1
− log

|x|2

|x|2 − 1

)
(5)

for |x| > 1. Figure 1 shows the graph of the backscatter b over a horizontal
axiparallel square M that is centered two units above the origin, with sides
that are four units long.

Using the inequality log(1 + t) < t for t > 0, it is easy to see that the
backscatter (5) is positive throughout the exterior of the closed unit ball. More-
over, the backscatter only depends on the distance |x| from the origin, and
decays monotonically to zero with increasing distance. Accordingly, the electro-
static backscatter is largest right above the center of the ball. �
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3. General qualitative results

As we have seen in Example 1, the electrostatic backscatter of an insulating
ball is strictly positive in the exterior of the closed ball. We show next that this
property holds for any finite number of insulating obstacles.

Proposition 2. Let Ω fulfill the assumptions in Section 2. Then the electro-

static backscatter associated with Ω is strictly positive in R
3 \ Ω.

Proof. From Green’s formula for the exterior of Ω, and from (2), it is easy to
deduce that for every x ∈ R

3 \ Ω there holds

b(x) = u(x;x) =

∫

Γ

(
u(y;x)

∂

∂yν
Φ(x, y) −

∂

∂yν
u(y;x)Φ(x, y)

)
ds(y)

= −

∫

Γ

u(y;x)
∂

∂yν
u(y;x) ds(y) +

∫

Γ

∂

∂yν
Φ(x, y)Φ(x, y) ds(y)

=

∫

R3\Ω

|∇yu(y;x)|
2 dy +

∫

Ω

|∇yΦ(x, y)|2 dy ,

which is strictly positive. Note that we have used in the last equality that the
gradient of a harmonic function that is bounded in the exterior of a bounded
domain is also square integrable in the exterior of that domain ([12, p. 74]). �

For the sequel we fix x ∈ R
3 \ Ω, and define the potential

w(y) =

{
u(y;x) , y ∈ R

3 \ Ω ,

−Φ(y, x) , y ∈ Ω ,
(6)

which is harmonic in R
3 \ Γ, and decays at infinity. Moreover, by virtue of (2),

w has a continuous flux across Γ. We can therefore rewrite w as a double layer
potential over Γ with density

ψ(z) = [w]Γ , (7)

where [w]Γ = w+
Γ − w−

Γ is the height of the jump (i.e., the exterior trace w+
Γ

minus the interior trace w−
Γ of w on Γ, cf., e.g., [12]):

w(y) =

∫

Γ

ψ(z)
∂

∂zν
Φ(y, z) ds(z) , y /∈ Γ . (8)

We also define the associated double layer integral operator

(Kψ)(y) =

∫

Γ

ψ(z)
∂

∂zν
Φ(y, z) ds(z) , y ∈ Γ , (9)

over Γ, as well as the individual double layer integral operators

(Kjψj)(y) =

∫

Γj

ψj(z)
∂

∂zν
Φ(y, z) ds(z) , y ∈ Γj , (10)
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for j = 1, . . . , J . All these integral operators are well-defined as operators
between the corresponding spaces of continuous functions.

Using the jump relations of double layer potentials, we obtain a second kind
integral equation for ψ, namely

(I − 2K)ψ = ψ − ψ − 2w−
Γ = 2Φ( · , x) . (11)

Recall that I − 2Kj has a trivial null space, and hence, by the Riesz theory, is
continuously invertible. The same argument (cf., e.g., the proof of Theorem 6.20
in [12]) can be used to show that I − 2K is invertible. Accordingly, the density
ψ is uniquely determined from (11). Summarizing our findings so far, we obtain
from (3), (6), and (8) that

b(x) = w(x) =

∫

Γ

ψ(z)
∂

∂zν
Φ(x, z) ds(z) , (12)

with ψ the unique solution of (11). We emphasize that x is still fixed in (12),
and that the density ψ depends on the particular choice of x.

Before we can investigate the backscatter when x goes to infinity we also need
to introduce the so-called polarization tensor (cf., e.g., Ammari and Kang [2])

M = 2

∫

Γ

ν(y)
(
(I − 2K)−1yT

)
ds(y) ∈ R

3×3 (13)

associated with the insulating obstacles Ω.1 We will utilize below that the po-
larization tensor of some obstacle(s) Ω is always symmetric and positive definite.

Theorem 3. Let Ω fulfill the assumptions in Section 2. Then the electrostatic

backscatter associated with Ω satisfies

b(x) =
1

(4π)2
x

|x|3
·M

x

|x|3
+ O(|x|−5) , |x| → ∞ ,

uniformly for all directions. where the polarization tensor M is given by (13).

Proof. We start with the observation that

Φ(y, x) =
1

4π

1

|x|
+

1

4π

x · y

|x|3
+ O(|x|−3) , (14)

and
∂

∂zν
Φ(x, z) =

1

4π

ν · (x− z)

|x− z|3
=

1

4π

x · ν

|x|3
+ O(|x|−3) , (15)

1In (13), ν and y are considered to be column vectors. Also note the slight abuse of notation:
(I − 2K)−1yT denotes the preimage (I − 2K)−1id of the identity function, id(zT ) = zT for
every z ∈ Γ, evaluated at y ∈ Γ.
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as z stays bounded and |x| goes to infinity, uniformly for all directions. Next
we recall that

∫

Γj

∂

∂zν
Φ(y, z) ds(z) =

{
−1/2 , y ∈ Γj ,

0 , y ∈ R
3 \ Ωj ,

(16)

and hence, densities ψ that are constant on every connected component of Γ
are eigenfunctions of K. It thus follows from (14) that the solution ψ of (11)
satisfies

ψ(y) =
1

4π

1

|x|
+

1

2π

x

|x|3
· (I − 2K)−1y + O(|x|−3) , (17)

uniformly on all of Γ and for all x sufficiently large. Using (16) once more
we conclude that the constant part of ψ does not affect the value (12) of the
backscatter, and hence, the assertion follows from inserting (15) and (17) into
(12). �

4. Small insulating obstacles

In the sequel we consider the situation when the obstacles are of the form

Ωj = zj + εOj , j = 1, . . . , J , (18)

where zj are distinct points in R
3, and Oj are bounded and connected C2-

domains with connected complements R
3 \Oj . Moreover, we assume that ε > 0

is so small that the closures of Ωj are mutually disjoint. We are interested in
the asymptotic behavior of the backscatter as ε → 0, in the spirit of, e.g., the
results in [2]; we refrain, however, from adding subscripts ε to the backscatter
b and the domains Ωj , in order to keep the notation simple.

For the asymptotic analysis of the backscatter we require the following fun-
damental result.

Lemma 4. Let K andKj be the double layer integral operators in (9), resp. (10).
Then I−2K is invertible, and its inverse is uniformly bounded as ε→ 0. More-

over, if g ∈ C(Γ) and ψ = (I − 2K)−1g, then

ψ|Γj
= (I − 2Kj)

−1g|Γj
+ rj ,

where the remainder satisfies

‖rj‖Γj
≤ cε2‖g‖Γ , (19)

j = 1, . . . , J , for some constant c > 0. Here, ‖ · ‖G refers to the maximum

norm of C(G) for a given compact set G.

Proof. This result is known, essentially. Its proof can follow the arguments
that are developed in detail in Sections 4, 5, and the appendix of [1]. �
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To derive the asymptotic form of the backscatter (12) we first expand

Φ(y, x) = Φ(x, y) = Φ(x, zj) + ∇zΦ(x, zj) · (y − zj) + O(ε2)

for y ∈ Γj , and hence, rewrite (11) as

(I − 2K)ψ = g(0) + g(1) + h , (20)

where g(0) is constant on each connected component of Γ,

g(1)(y) = 2∇zΦ(x, zj) · (y − zj) = O(ε) , y ∈ Γj , (21)

and ‖h‖Γ = O(ε2), uniformly on all of Γ, and for all x with distance d(x,Ω) ≥ δ
for any chosen δ > 0.

Using the same argument as in the proof of Theorem 3 we conclude from
(16) that

b(x) =

∫

Γ

ψ(1)(z)
∂

∂zν
Φ(x, z) ds(z) + O(ε4) (22)

with
ψ(1) = (I − 2K)−1g(1) = O(ε) , (23)

where, in (22), we have taken into account that (I−2K)−1 is uniformly bounded
according to Lemma 4, and that the remainder h in (20), and the surface mea-
sure |Γ| of Γ, are both O(ε2).

Employing another Taylor expansion, we obtain

∂

∂zν
Φ(x, z) = ν(z) · ∇zΦ(x, zj) + O(ε) , (24)

uniformly for z ∈ Γj , j = 1, . . . , J , and d(x,Ω) ≥ δ, and inserting this into (22),
we conclude that

b(x) =

J∑

j=1

∇zΦ(x, zj) ·

∫

Γj

ψ(1)(z)ν(z) ds(z) + O(ε4) , (25)

where, again, we have used that |Γj | = O(ε2), and estimated ψ(1) as in (23).
Finally, it remains to derive from (23) the asymptotic form of ψ(1) by means

of Lemma 4, which states that

ψ(1)|Γj
= (I − 2Kj)

−1g(1)|Γj
+ rj , j = 1, . . . , J , (26)

with, cf. (21),
‖rj‖Γj

≤ cε2‖g(1)‖Γ = O(ε3) ,

the constant being independent of j = 1, . . . , J . Inserting the definition (21) of
g(1) we thus obtain that

ψ(1)|Γj
= 2

(
(I − 2Kj)

−1( · − zj)
)
· ∇zΦ(x, zj) + O(ε3) .
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Transforming the integrals (25) and (10) to integrals over ∂Oj via the substitu-
tion η = (z − zj)/ε, z ∈ Γj , we eventually arrive at (cf. [1], again, for a similar
computation)

b(x) = ε3
J∑

j=1

∇zΦ(x, zj) ·Mj∇zΦ(x, zj) + O(ε4) , (27)

where the matrices

Mj = 2

∫

∂Oj

ν(η)
(
(I − 2K̂j)

−1ηT
)

ds(η) ∈ R
3×3 , (28)

j = 1, . . . , J , are the polarization tensors associated with the insulating domains
Oj , and

(K̂jχ)(η) =

∫

∂Oj

χ(ζ)
∂

∂ζν
Φ(η, ζ) ds(ζ) , η ∈ ∂Oj ,

denotes the double layer integral operator over ∂Oj .
We summarize our findings in the following theorem.

Theorem 5. The electrostatic backscatter corresponding to the insulating do-

mains Ω =
⋃

Ωj of (18) has the asymptotic form

b(x) = ε3
J∑

j=1

∇zΦ(x, zj) ·Mj∇zΦ(x, zj) + O(ε4) , ε→ 0 ,

with the polarization tensors Mj ∈ R
3×3 defined in (28); the remainder estimate

is uniform for all x ∈ R
3 with d(x,Ω) ≥ δ for any δ > 0.

Example 6. For Oj the unit disk, the polarization tensor is the three by three
identity matrix, multiplied by 2π, cf. [2, Chapter 4], and the associated term of
the backscatter in (27) behaves like

1

8π
ε3 |x− zj |

−4 , ε→ 0 .

In fact, if Ω is a ball of radius ε, centered around the origin, then the corre-
sponding exterior Neumann function is given by 1

ε
N(y/ε, x/ε), with N of (4),

and hence, the associated backscatter equals

b(x) =
1

4πε

( ε2

|x|2 − ε2
− log

|x|2

|x|2 − ε2

)
=

1

4πε

(1

2

ε4

(|x|2 − ε2)2
+ O(ε6)

)

=
1

8π

ε3

|x|4
+ O(ε5)

as ε→ 0. �
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Figure 2: Two insulating objects in free space: a sphere and a heart.

Corollary 7. The electrostatic backscatter corresponding to the insulating do-

mains Ω =
⋃

Ωj of (18) satisfies

b(x) ∼ ε3
J∑

j=1

|x− zj |
−4 ,

where the ∼ sign refers to the fact that the ratio of the expressions on its two

sides is uniformly bounded from above and below by positive constants as ε→ 0,
uniformly for x from any compact subset of R

3 \ Ω.

Proof. The result follows immediately from the fact that the polarization ten-
sors Mj of (28) are positive definite matrices. �

In other words, for small obstacles, the peaks of the backscatter along some
hyperplane M are asymptotically at the orthogonal projections of the loca-
tions of the obstacles; the height of these peaks can be used to approximately
determine the distance of the obstacles.

5. A numerical example

While Theorem 5 and Corollary 7 are useful to get a rough idea of the
qualitative form of the backscatter, we now report on numerical simulations in
[15] for multiple obstacles of finite size to provide additional qualitative insight
into these data. In these simulations the backscatter has been evaluated by
solving the Neumann boundary value problems (2) for several measurement
points x on some finite grid M△.

Figure 2 shows a particular setting with two insulating objects, a sphere and
a heart shaped obstacle. The sphere has a radius ρ = 0.8, and its center has
the coordinates x = (x1, x2, x3) = (1, 34

15 ,
4
3 ); the heart is of comparable size,

and its center of mass is approximately at (2.9, 1.3, 1.1). For this example the
backscatter has been computed on all six faces of the box [0, 4]2 × [0, 3] that
encloses both obstacles (the same box that is displayed in Figure 2). Backscatter
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data have been generated via the solution of a boundary integral equation, using
a standard single layer potential representation for u of (2), cf. [12].

The resulting second kind double layer integral equation has been solved with
a spectral collocation method due to Ganesh, Graham, and Sivaloganathan [4].
This method is based on coordinate transformations that map the individual
boundaries Γj to spheres, and hence, requires the obstacles to be equivalent
to spheres, topologically. Then, for each sphere, the unknown densities are
expanded in 2N × (N − 1) + 2 trigonometric ansatz functions in spherical coor-
dinates (here, N = 15), and a corresponding number of collocation points on an
equidistant spherical grid is used to set up the linear system. For each of these
points, however, the sphere is rotated prior to the discretization of the integral
in order to cancel the singularity of the double layer operator kernel with the
singularity of the spherical coordinate transformation at the north pole.

Once the potential densities have been determined, the single layer potential
is evaluated on equispaced grids on each of the six faces, with a spacing of h = 0.1
between neighboring points along every coordinate direction. The associated
integrals are discretizated with the same technique as before. Figure 3 displays
the values of the backscatter: top and bottom plot show the backscatter at the
top (x3 = 3) and bottom (x3 = 0) of the box, respectively; the four plots in
the center correspond to the backscatter at the four vertical faces to the North
(x2 = 4), East (x1 = 4), West (x1 = 0), and South (x2 = 0) of the box (compare
Figure 2).

Due to the strong decay of the backscatter (see Theorem 3), its values at
the four vertical faces depict only one of the obstacles each, essentially. The
magnitude of the backscatter is connected to the distance between the respective
face and the obstacles. The Eastern/Western faces of the box, being closer
to the obstacles than the other two, exhibit significantly larger values of the
backscatter. The Northern face is farthest away; its distance to the sphere is
dN ≈ 0.93, whereas the distance between the heart and the Southern end of
the box is dS ≈ 0.54. Taking the result of Theorem 3 into account, one would
expect that the corresponding backscatter is about (dN/dS)−4 ≈ 0.11 smaller
at the Northern face than in the South. In fact, the maximal values are 0.0032
in the North, and 0.0124 in the South, which corresponds to a ratio of 0.26,
roughly, and which is only by about a factor of two off from what has been
expected.

Qualitatively, we observe that the Eastern and the bottom faces exhibit
two local extrema: in the East this is due to the two “wings” of the heart;
at the bottom the two extrema are caused by the two different objects. In
contrast to that the backscatter at the top face (from which both objects are
clearly “visible”) has only one maximal value corresponding to the (slightly
closer) sphere; the longer tail of the data is the only indicator for the presence
of a second object. A similar effect occurs when the heart is (slightly) moved
towards the West: then the two peaks at the Eastern face smear out to one
single peak.
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Figure 3: Backscatter for the two obstacles in Figure 2. See explanation in the text.
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6. Summary

We have introduced a notion of electrostatic backscatter for insulating ob-
stacles, in analogy to what is known as the backscatter of sound-hard scatterers
in acoustics. As we have seen both theoretically and numerically, the electro-
static backscatter drops down to (almost) zero very quickly when moving away
from the obstacles. We have also determined its approximate shape for small
obstacles.

Concerning the corresponding inverse problem we can deduce that very close
near-field data will necessarily be required to detect non-convex features of the
obstacles. Even the number of the obstacles will be hard to determine from
far-field data.
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