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Abstra
t

We study hybrid methods for the solution of linear ill-posed prob-

lems. Hybrid methods are based on the Lan
zos pro
ess, whi
h yields

a sequen
e of small bidiagonal systems approximating the original ill-

posed problem. In a se
ond step, some additional regularization, typ-

i
ally the trun
ated SVD, is used to stabilize the iteration. We in-

vestigate two di�erent hybrid methods and interpret these s
hemes as

well-known proje
tion methods, namely least-squares proje
tion and

the dual least-squares method. Numeri
al results are provided to il-

lustrate the potential of these methods. This gives interesting insight

into the behavior of hybrid methods in pra
ti
e.

Keywords: 65F10, 65F22

1 Introdu
tion

We 
onsider the solution of a linear system Ax = b obtained by appropriate

dis
retization of some ill-posed operator equation. For simpli
ity we shall

assume throughout that A 2 R

m�n

has full 
olumn rank, i.e., m � n and A

is inje
tive. However, all the results extend to general matri
es A and even

to linear operators in Hilbert spa
es.

Linear systems of this sort share a number of remarkable properties:

� The singular values of A 
luster at zero giving rise to huge 
ondition

numbers

�
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� The exa
t right-hand side b satis�es a so-
alled dis
rete Pi
ard 
ondi-

tion, i.e., in the singular value expansion the magnitude of a 
ompo-

nent of b in the dire
tion of a left singular ve
tor of A is 
onne
ted

to the magnitude of the 
orresponding singular value. This means

that despite its huge 
ondition number the linear system is e�e
tively

well-
onditioned a

ording to a notion by Chan and Foulser [4℄.

� Reality is di�erent, though, due to data perturbations, whi
h e�e
t all


omponents of b in mu
h the same way.

As a matter of fa
t, stable approximations of the true solution x

y


an

only be 
omputed if the linear system is properly regularized. For example,

one 
an use Tikhonov regularization or the trun
ated singular value de
om-

position. However, these two methods are very expensive to implement for

large-s
ale appli
ations.

Another option is the 
onjugate gradient iteration 
gls applied to the

normal equation system A

�

Ax = A

�

b. It is well-known that 
gls semi
on-

verges for this kind of problems, i.e., the iterates �rst seem to 
onverge to

the true solution ve
tor x before they are misled by noisy 
omponents in the

data and subsequently deteriorate. Thus, the 
onjugate gradient iteration

will only give useful results if terminated early. We emphasize that this is

an amenable feature in terms of work load.

For this reason, the 
onjugate gradient iteration is probably the most

eÆ
ient tool for solving large-s
ale dis
rete ill-posed problems. In fa
t, it has

been shown before and we will provide additional numeri
al eviden
e below,

that the a

ura
y obtained with 
gls 
ompares well with other 
ompeting

algorithms { provided the iteration is properly terminated.

Su
h stopping rules are not as easy to �nd, though. The so-
alled dis
rep-

an
y prin
iple is probably the most reliable rule, but it requires knowledge

of the noise level in the data. Other stopping rules that have been suggested

in the literature are working for some examples, but fail for many others.

Some 
onjugate gradient type methods are intimately 
onne
ted to the

Lan
zos pro
ess. With the Lan
zos pro
ess the linear system is proje
ted

onto in
reasing Krylov subspa
es, and approximate solutions in these sub-

spa
es are 
omputed by subsequently solving small-dimensional linear sys-

tems. Being small, however, these systems allow for some additional regu-

larization without mu
h 
omputational overhead.

In this work we will reinvestigate some of these methods within the

framework of proje
tion methods. It is known that proje
tion methods

have a regularizing side-e�e
t, 
f., e.g., [6℄ or [15, Chapter 17℄, be
ause they

restri
t the number of possible degrees of freedom. We will show that 
gls
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and another 
onjugate gradient method (
gme) 
an be viewed as a least-

squares proje
tion and as a dual least-squares method, respe
tively. These

interpretations extend to hybrid variants based on the trun
ated singular

value de
omposition.

2 Least-squares proje
tion

A 
ommon way of proje
ting a large-s
ale linear system Ax = b onto a

small-dimensional problem is by 
hoosing subspa
es V

k

� R

n

of dimension

k, say, and solving the least-squares problem

kb�Axk

2

�! min over x 2 V

k

:

This method is 
alled least-squares proje
tion.

Examples in
lude the trun
ated singular value de
omposition and the


onjugate gradient iteration 
gls. We start with the former and denote by

f�

j

; u

j

; v

j

: j = 1; : : : ; n g the singular value de
omposition of A, where

fv

j

g is the asso
iated orthonormal basis of R

n

and fu

j

g the 
orresponding

orthonormal basis of R(A). By our assumption on A the singular values �

j

are positive and we assume them to be in nonin
reasing order.

We shall use the notation

AV

s

k

= U

s

k

�

k

; A

�

U

s

k

= V

s

k

�

k

;

for the trun
ated singular value de
omposition (tsvd), where V

s

k

=

[v

1

; : : : ; v

k

℄ 2 R

n�k

and U

s

k

= [u

1

; : : : ; u

k

℄ 2 R

m�k

are orthogonal matri-


es made up by the �rst k � n singular ve
tors of A, and �

k

2 R

k�k

is

a diagonal matrix with the k largest singular values on its diagonal. The

tsvd de�nes regularized approximations x

s

k

of the true solution x

y

via

x

s

k

=

k

X

j=1

u

�

j

b

�

j

v

j

2 V

s

k

= R(V

s

k

) : (1)

Be
ause of the orthogonality of the ve
tors fu

j

g it is easy to see that the

Eu
lidean norm of the residual

b�Ax

s

k

=

m

X

j=k+1

(u

�

j

b)u

j

for x = x

s

k

is smaller than for any other ve
tor x 2 V

s

k

.

3



We now turn to the 
onjugate gradient iteration 
gls, a detailed exposi-

tion of whi
h 
an be found in the books [2℄ or [9℄

1

. 
gls has the well-known

optimality property that its kth iterate x


gls

k

minimizes the residual b�Ax

among all ve
tors x from the Krylov subspa
e

V

K

k

= K

k

(A

�

A;A

�

b) = spanfA

�

b; A

�

AA

�

b; : : : ; (A

�

A)

k�1

A

�

bg : (2)

Hen
e, 
gls is another example of a least-squares proje
tion method.

In 
omputational terms the 
gls iterates are mu
h 
heaper to 
ompute

than the tsvd approximations. On the other hand, theoreti
al investiga-

tions predi
t similar error bounds for the optimal errors of tsvd and 
gls

(see [6℄), and these bounds 
an be 
on�rmed numeri
ally. In fa
t, we have

seen numeri
al examples where the optimal re
onstru
tion of tsvd is supe-

rior to 
gls, and vi
e versa. Still, it is 
ommon belief that tsvd is the most

appropriate tool for the solution of ill-posed problems. We a
tually 
onsider

this to be a misbelief, and shall explain this by investigating a representative

numeri
al example.

The example we 
hoose is a standard test problem, deriv(100,3), from

Hansen's toolbox [12℄. For our 
omputations we take the dimension of the

system to be n = 100 and we add 0:5% white noise (a Gaussian random

ve
tor with zero mean and an identity 
ovarian
e matrix) on top of the data

relative to the Eu
lidean ve
tor norm. We only present numeri
al results

for this parti
ular problem and one parti
ular noise sample, but the results

are rather representative for the general situation.

Figure 1 
ontains the relative errors of the tsvd and 
gls approxima-

tions versus the dimension k of the respe
tive subspa
es V

k

. The two error


urves are very similar qualitatively. In either 
ase the error de
ays down

to the minimal value (whi
h is 
omparable for the two methods, namely

0.0194 vs. 0.0211), before it in
reases eventually when the approximations

start to diverge. The interesting observation, however, is that 
gls requires

a lower dimensional subspa
e to a
hieve the same a

ura
y as tsvd. This

observation 
an be supported to some extent by theory.

Example. Consider an in�nite-dimensional problem Ax = b in real Hilbert

spa
es, where the operator A has singular values

�

j

= j

�s

; j 2 N ; s > 0 ; (3)

and the solution x

y

satis�es

h v

j

; x

y

i � j

�q

; j 2 N ; q > 1=2 : (4)

1

In [9℄ the method is 
alled 
gne (
onjugate gradient iteration for the normal equation

system).
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Figure 1: Re
onstru
tion error versus k for tsvd and 
gls.

Here and in the sequel h � ; � i and k � k denote the inner produ
ts and the

asso
iated norms in the respe
tive Hilbert spa
es.

It follows that for exa
t data b = Ax

y

we have hu

j

; b i = �

j

h v

j

; x

y

i �

j

�q�s

, and it is easy to see from (1) that

kx

y

� x

s

k

k

2

=

1

X

j=k+1

h v

j

; x

y

i

2

�

Z

1

k

t

�2q

dt � k

1�2q

: (5)

For 
gls an upper bound for kx

y

�x


gls

k

k

2


an be obtained with the results

in [10, Se
t. 4℄. Theorem 4.1 in [10℄ provides a bound for the de
ay of the

residuals b � Ax


gls

k

. Referring to the notation in [10℄ we have to estimate

the Christo�el fun
tions for a measure d� over R

+

with jumps at �

2

j

= j

�2s

of height hu

j

; b i

2

� j

�2q�2s

. Thus, it follows from [10, Theorem 4.1℄ that

kb� Ax


gls

k

k

2

� O(k

�4�(s+1)

) ;

where � 
an be any positive number up to (2q+2s�1)=(4s), at most. Then,

using Eq. (4.2) in [10℄ we obtain a similar bound for the error norm, ex
ept

that � has to be repla
ed by � � 1=2, i.e.,

kx

y

� x


gls

k

k

2

� O(k

�(s+1)(4��2)

) :

Taking the range for � into a

ount this 
an be rewritten as

kx

y

� x


gls

k

k

2

= O(k

s+1

s

(1�2q)+�

)
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for any arbitrarily small positive � (in fa
t, for 
ertain values s and parti
ular

x

y

exampli�ed in [10℄ one 
an even take � = 0). Comparing this with (5) we


on
lude as a rule of thumb that

kx

y

� x


gls

k

k . kx

y

� x

s

k

k

(s+1)=s

;

whi
h suggests that the 
gls superiority is more pronoun
ed for ill-posed

problems with more rapidly de
aying singular values.

These results may be interpreted as follows: The singular value expan-

sion determines subspa
es V

s

k

whi
h are suitable for any possible right-hand

side ve
tor of the linear system; on the other hand, the subspa
es V

K

k


hosen

by 
gls are taylored for the parti
ular right-hand side, providing a more

rapid 
onvergen
e.

3 The dual least-squares method

For ill-posed problems the least-squares proje
tion method in its general

form has a 
ertain short
oming: An example of Seidman [19℄ shows that in

in�nite dimensions the subspa
es V

k


an be su
h that even for exa
t data

the approximations x

k

diverge as k !1.

Therefore, Natterer [16℄ suggested the dual least-squares method for the

regularization of linear ill-posed problems. The dual least-squares method is

based on an in
reasing sequen
e of subspa
es U

k

� R

m

, where we shall again

assume that dimU

k

= k. The 
orresponding approximation x

k

is taken as

the least-squares solution of minimal norm of the linear system

P

k

Ax = P

k

b ; (6)

where P

k

is the orthogonal proje
tor onto U

k

. It is known, 
f., e.g., [6,

Theorem 3.24℄, that x

k

is the orthogonal proje
tion of A

y

b onto the subspa
e

A

�

(U

k

). For this reason x

k

always 
onverges to x

y

= A

y

b as k ! 1 when

the data are exa
t, even in in�nite dimensional Hilbert spa
es.

Again, the trun
ated singular value de
omposition is an example for

this s
heme with U

k

= U

s

k

= R(U

s

k

), i.e., the span of the �rst k left singular

ve
tors of A. Then it is obvious that x

s

k

is the solution of (6) of minimal

norm, be
ause x

s

k

is the orthogonal proje
tion of A

y

b onto A

�

(U

s

k

) = V

s

k

.

The 
onjugate gradient method applied to AA

�

y = b, x = A

�

y, some-

times 
alled Craig's method [5℄ or 
gme [9℄, is another example for the dual

least-squares method. Here one has to 
hoose for U

k

the Krylov subspa
e

U

K

k

= K

k

(AA

�

; b) = spanfb; AA

�

b; : : : ; (AA

�

)

k�1

bg ;
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Figure 2: Re
onstru
tion error versus k for tsvd and 
gme (and 
gls).

sin
e the kth iterate x


gme

k

of 
gme is known to minimize the error

kA

y

b � xk

2

within the Krylov spa
e V

K

k

of (2), i.e., x


gme

k

is the orthog-

onal proje
tion of A

y

b onto V

K

k

= A

�

(U

K

k

).

The regularizing properties of 
gme have been studied in detail in [9℄.

Be
ause of its optimality property, 
gme will 
onverge even faster than


gls in general, although the optimal iterate is usually inferior to 
gls in

the presen
e of noise. For the model problem from the previous se
tion this

is exampli�ed in Figure 2 (the lighter shaded 
urve shows the 
gls history

from Figure 1).

4 Hybrid methods

Both, the 
gls and the 
gme iterate from V

K

k


an be 
omputed via the

Lan
zos pro
ess. This has been realized by Paige and Saunders [18℄ and

implemented in their 
ode lsqr. The Lan
zos pro
ess, when started with

the right-hand side ve
tor b, provides 
heap re
ursions whi
h generate fa
-

torizations

AV

k

= U

k+1

J

e

k

; k = 1; 2; : : : ; (7)

with orthogonal matri
es U

k

2 R

m�k

and V

k

2 R

n�k

whose 
olumns span

U

K

k

and V

K

k

, respe
tively, and where J

e

k

is a lower bidiagonal (k + 1) � k

dimensional matrix. We denote by J

o

k

2 R

k�k

the �rst k rows of J

e

k

; J

o

k

is a

nonsingular matrix.
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We do not require more spe
i�
 properties of the fa
tors U

k

, V

k

and

J

e

k

, ex
ept for the fa
t that U

k


onsists of the �rst k 
olumns of U

k+1

; in

parti
ular, the �rst 
olumn of U

k

is a multiple of b, i.e.,

U

k

e

1

= b=� with � = kbk

2

and e

1

= [1; 0; : : : ; 0℄

T

being the �rst Cartesian basis ve
tor in R

k

.

Now the 
gls iterate x


gls

k

is obtained from solving the (k + 1) � k

dimensional least-squares problem

k�e

1

� J

e

k

z


gls

k

k

2

�! min ; (8)

and setting x


gls

k

= V

k

z


gls

k

. Similarly, the 
gme iterate x


gme

k

is obtained

from the solution of the k � k dimensional nonsingular linear system

J

o

k

z


gme

k

= �e

1

(9)

via

x


gme

k

= V

k

z


gme

k

: (10)

Using the implementation of lsqr the 
omputation of x


gls

k

or x


gme

k

via

(8) or (9), respe
tively, is only little more expensive than the 
orrespond-

ing 
onjugate gradient implementation. On the other hand, several authors

(e.g., Bj�or
k [1℄ and O'Leary and Simmons [17℄) have envisioned the possibil-

ity of using the above approa
h to stabilize the 
onjugate gradient iteration

and over
ome its semi
onvergen
e. In fa
t, sin
e V

k

is an orthogonal matrix

the divergen
e of x

k

is equivalent to the divergen
e of the 
orresponding

kz

k

k

2

; in other words, the divergen
e of the 
onjugate gradient method sets

in when the proje
ted problems (8) or (9) have be
ome too ill-
onditioned.

The 
ure of the problem might be a regularization of the small bidiag-

onal systems, the most promising tool being the trun
ated singular value

de
omposition (whi
h is 
heap to 
ompute for the small dimensional prob-

lems). Be
ause Lan
zos proje
tion and tsvd then go hand in hand, su
h

s
hemes have been 
alled hybrid methods in [11℄.

4.1 Lan
zos and least-squares proje
tion

When the least-squares problem (8) is solved with tsvd the resulting ap-

proximation is again a least-squares proje
tion of the original system Ax = b.

To see this we denote by

J

e

k

V

e

l

= U

e

l

�

e

l

; J

e

k

�

U

e

l

= V

e

l

�

e

l

; (11)
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the trun
ated singular value de
omposition of J

e

k

, where l � k is the trun-


ation parameter, U

e

l

2 R

(k+1)�l

and V

e

l

2 R

k�l

are orthogonal matri
es,

and �

e

l

2 R

l�l

is a diagonal matrix 
ontaining the l largest singular values

of J

e

k

.

The 
orresponding approximation x

e

kl

of x


gls

k

belongs to the subspa
e

V

e

kl

= R(V

k

V

e

l

), namely

x

e

kl

= V

k

z

e

kl

; z

e

kl

= V

e

l

(�

e

l

)

�1

U

e

l

�

(�e

1

) : (12)

Any ve
tor x 2 V

e

kl


an be written in the form x = V

k

V

e

l

w for some w 2 R

l

,

and satis�es in view of (7) and (11)

kb� Axk

2

= kb� AV

k

V

e

l

wk

2

= kb� U

k+1

J

e

k

V

e

l

wk

2

= kU

k+1

(�e

1

� U

e

l

�

e

l

w)k

2

= k�e

1

� U

e

l

�

e

l

wk

2

:

It follows that the residual b�Ax is minimized over V

e

kl

for x = V

k

V

e

l

w with

w = (�

e

l

)

�1

U

e

l

�

(�e

1

), i.e., for the tsvd approximation in (12).

We have therefore shown that the tsvd regularized approximation x

e

kl

of

x


gls

k

is a least-squares proje
tion over V

e

kl

of the original problem Ax = b.

4.2 Lan
zos and the dual least-squares method

Now, let

J

o

k

V

o

l

= U

o

l

�

o

l

; J

o

k

�

U

o

l

= V

o

l

�

o

l

; (13)

be the 
orresponding trun
ated singular value de
omposition of J

o

k

. Then

the tsvd approximation x

o

kl

of x


gme

k

is given by

x

o

kl

= V

k

z

o

kl

; z

o

kl

= V

o

l

(�

o

l

)

�1

U

o

l

�

(�e

1

) : (14)

x

o

kl

belongs to the subspa
e V

o

kl

= R(V

k

V

o

l

). We now denote by

Q

kl

= V

k

V

o

l

V

o

l

�

V

�

k

the orthogonal proje
tor onto V

o

kl

and by Q

k

= V

k

V

�

k

the orthogonal proje
tor onto V

K

k

= A

�

(U

K

k

). We re
all from Se
tion 3 that

x


gme

k

= Q

k

A

y

b = V

k

V

�

k

A

y

b :

On the other hand we have from (10) that x


gme

k

= V

k

z


gme

k

, and sin
e V

k

has full 
olumn rank, this implies

z


gme

k

= V

�

k

A

y

b :

9



In view of (14) and (9) we therefore 
on
lude that

Q

kl

A

y

b = V

k

V

o

l

V

o

l

�

V

�

k

A

y

b = V

k

V

o

l

V

o

l

�

z


gme

k

= V

k

z

o

kl

= x

o

kl

:

This means that x

o

kl

is the orthogonal proje
tion of A

y

b onto V

o

kl

, and hen
e,

x

o

kl

is a dual least-squares approximation of A

y

b provided that V

o

kl

= A

�

(U

o

kl

)

for some subset U

o

kl

.

To prove this latter assertion we let U

o

kl

= R(U

k

U

o

l

) and 
onsider the

matrix A

�

U

k

U

o

l

whose 
olumns span the range A

�

(U

o

kl

). Sin
e V

K

k

= A

�

(U

K

k

)

and the 
olumns of U

k

and V

k

span U

K

k

and V

K

k

, respe
tively, multipli
ation

of A

�

U

k

U

o

l

with the orthogonal proje
tor V

k

V

�

k

onto V

K

k

yields

A

�

U

k

U

o

l

= V

k

V

�

k

A

�

U

k

U

o

l

: (15)

Furthermore, we have from (7) that U

�

k

AV

k

= U

�

k

U

k+1

J

e

k

; sin
e U

k+1

is

an orthogonal matrix and U

k


onsists of the �rst k 
olumns of U

k+1

, there

holds U

�

k

U

k+1

J

e

k

= J

o

k

, and hen
e, U

�

k

AV

k

= J

o

k

. Inserting this into (15) we

arrive at

A

�

U

k

U

o

l

= V

k

J

o

k

�

U

o

l

;

and therefore it follows from (13) that

A

�

U

k

U

o

l

= V

k

V

o

l

�

o

l

:

Sin
e �

o

l

is a nonsingular matrix this shows that A

�

(U

o

kl

) = R(V

k

V

o

l

) = V

o

kl

,

as was to be shown.

5 Numeri
al results

Re
ent work on hybrid methods ([3, 14℄, see also [8, 13, 7℄) has mostly

been fo
used on the 
hoi
e of appropriate regularization parameters, i.e.,

the stopping index k for the Lan
zos pro
ess and the trun
ation index l

for the embedded tsvd regularization. While this question is 
ertainly the

most important one for pra
ti
al purposes, one should investigate �rst the

potential of these methods.

This is what we shall do in the sequel by 
omputing all respe
tive ap-

proximations numeri
ally for our model problem. Figure 3 illustrates in a

gray-s
ale plot the relative errors of the least-squares proje
tions x

e

kl

and

the dual least-squares approximations x

o

kl

, respe
tively, in dependen
e on

k = 0; 1; 2; : : : and 0 � l � k. The bla
k dots in this �gure highlight the

optimal value l(k) for whi
h the error kx

y

� x

kl

k

2

is minimized for �xed k.

From this we 
an distinguish three phases of the iteration:
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Figure 3: Relative errors of x

e

kl

(left) and x

o

kl

(right) versus k and l.

1. In the early stage of the iteration, i.e., for 0 � k � k

1

we have l(k) = k,

i.e., the optimal re
onstru
tion of the hybrid s
heme is the 
orre-

ponding 
onjugate gradient iterate. In our example, k

1

is also the

point where the 
onjugate gradient iteration attains the minimal error

(k

1

= 6 for 
gls and k

1

= 2 for 
gme).

2. Then there is a transient region k

1

< k < k

2

where l(k) is nonde
reas-

ing but remains below k, i.e., k

1

= l(k

1

) � l(k) < k.

3. In the �nal regime k � k

2

the parameter l(k) remains 
onstant; for

both s
hemes this happens when k

2

= 11 with l(k) = 9 thereafter. As

one might expe
t, the trun
ation parameter l = 9 is also optimal for

tsvd applied to the full problem Ax = b, 
f. Figure 1.

Figure 4 
ompares the minimal errors kx

y

� x

k;l(k)

k

2

of the hybrid

s
hemes with the errors kx

y

�x

k

k

2

of the 
orresponding 
onjugate gradient

iteration. As desired, the hybrid s
heme \regularizes" the plain 
onjugate

gradient method and maintains the error at the optimal level when the 
on-

jugate gradient iteration starts to diverge.

Due to so-
alled \ghosts", i.e., singular values of J

o

k

or J

e

k

whi
h are

doubled in the 
ourse of the iteration be
ause of round-o� errors and loss of

orthogonality in the matri
es U

k

and V

k

of (7), the behaviour of the hybrid

methods is somewhat di�erent in pra
ti
e. To avoid this short
oming we

performed a full reorthogonalization of the Lan
zos ve
tors for the prepara-

tion of these �gures whenever ne
essary.
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Figure 4: Relative errors of x

k;l(k)

and x

k

versus k.

We mention, though, that in general the loss of orthogonality o

urring

in lsqr does not a�e
t the �nal a

ura
y of the approximations, but merely

slows down the iteration pro
ess; every doubling of a singular value will

roughly 
ause one additional iteration.

6 Con
lusion

We have studied hybrid methods based on the Lan
zos pro
ess and tsvd

regularization in terms of proje
tion methods for ill-posed problems. The

methods based on least-squares proje
tion had already been introdu
ed in

the literature; the dual least-squares approximations have not yet been in-

trodu
ed, ex
ept for the basi
 Krylov s
heme whi
h 
orresponds to Craig's

method 
gme.

It has been shown by numeri
al examples (partly supported by theory)

that the Krylov subspa
es are more appropriate to use for a proje
tion

method than the subspa
es asso
iated with the singular value de
omposition

of the orginal matrix.

Further numeri
al results indi
ate that the hybrid methods 
an have the

desired e�e
t of stabilizing the iteration error at its minimum even when

the 
onjugate gradient type method is diverging. At this point the optimal

trun
ation index is 
lose to the optimal trun
ation index of tsvd for the

orginal problem. This indi
ates that parameter 
hoi
e strategies whi
h work

for tsvd should also work for the hybrid s
heme, provided that the Krylov

subspa
e is so large that the minimal error is attainable.
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