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Abstrat

We study hybrid methods for the solution of linear ill-posed prob-

lems. Hybrid methods are based on the Lanzos proess, whih yields

a sequene of small bidiagonal systems approximating the original ill-

posed problem. In a seond step, some additional regularization, typ-

ially the trunated SVD, is used to stabilize the iteration. We in-

vestigate two di�erent hybrid methods and interpret these shemes as

well-known projetion methods, namely least-squares projetion and

the dual least-squares method. Numerial results are provided to il-

lustrate the potential of these methods. This gives interesting insight

into the behavior of hybrid methods in pratie.

Keywords: 65F10, 65F22

1 Introdution

We onsider the solution of a linear system Ax = b obtained by appropriate

disretization of some ill-posed operator equation. For simpliity we shall

assume throughout that A 2 R

m�n

has full olumn rank, i.e., m � n and A

is injetive. However, all the results extend to general matries A and even

to linear operators in Hilbert spaes.

Linear systems of this sort share a number of remarkable properties:

� The singular values of A luster at zero giving rise to huge ondition

numbers

�
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� The exat right-hand side b satis�es a so-alled disrete Piard ondi-

tion, i.e., in the singular value expansion the magnitude of a ompo-

nent of b in the diretion of a left singular vetor of A is onneted

to the magnitude of the orresponding singular value. This means

that despite its huge ondition number the linear system is e�etively

well-onditioned aording to a notion by Chan and Foulser [4℄.

� Reality is di�erent, though, due to data perturbations, whih e�et all

omponents of b in muh the same way.

As a matter of fat, stable approximations of the true solution x

y

an

only be omputed if the linear system is properly regularized. For example,

one an use Tikhonov regularization or the trunated singular value deom-

position. However, these two methods are very expensive to implement for

large-sale appliations.

Another option is the onjugate gradient iteration gls applied to the

normal equation system A

�

Ax = A

�

b. It is well-known that gls semion-

verges for this kind of problems, i.e., the iterates �rst seem to onverge to

the true solution vetor x before they are misled by noisy omponents in the

data and subsequently deteriorate. Thus, the onjugate gradient iteration

will only give useful results if terminated early. We emphasize that this is

an amenable feature in terms of work load.

For this reason, the onjugate gradient iteration is probably the most

eÆient tool for solving large-sale disrete ill-posed problems. In fat, it has

been shown before and we will provide additional numerial evidene below,

that the auray obtained with gls ompares well with other ompeting

algorithms { provided the iteration is properly terminated.

Suh stopping rules are not as easy to �nd, though. The so-alled disrep-

any priniple is probably the most reliable rule, but it requires knowledge

of the noise level in the data. Other stopping rules that have been suggested

in the literature are working for some examples, but fail for many others.

Some onjugate gradient type methods are intimately onneted to the

Lanzos proess. With the Lanzos proess the linear system is projeted

onto inreasing Krylov subspaes, and approximate solutions in these sub-

spaes are omputed by subsequently solving small-dimensional linear sys-

tems. Being small, however, these systems allow for some additional regu-

larization without muh omputational overhead.

In this work we will reinvestigate some of these methods within the

framework of projetion methods. It is known that projetion methods

have a regularizing side-e�et, f., e.g., [6℄ or [15, Chapter 17℄, beause they

restrit the number of possible degrees of freedom. We will show that gls
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and another onjugate gradient method (gme) an be viewed as a least-

squares projetion and as a dual least-squares method, respetively. These

interpretations extend to hybrid variants based on the trunated singular

value deomposition.

2 Least-squares projetion

A ommon way of projeting a large-sale linear system Ax = b onto a

small-dimensional problem is by hoosing subspaes V

k

� R

n

of dimension

k, say, and solving the least-squares problem

kb�Axk

2

�! min over x 2 V

k

:

This method is alled least-squares projetion.

Examples inlude the trunated singular value deomposition and the

onjugate gradient iteration gls. We start with the former and denote by

f�

j

; u

j

; v

j

: j = 1; : : : ; n g the singular value deomposition of A, where

fv

j

g is the assoiated orthonormal basis of R

n

and fu

j

g the orresponding

orthonormal basis of R(A). By our assumption on A the singular values �

j

are positive and we assume them to be in noninreasing order.

We shall use the notation

AV

s

k

= U

s

k

�

k

; A

�

U

s

k

= V

s

k

�

k

;

for the trunated singular value deomposition (tsvd), where V

s

k

=

[v

1

; : : : ; v

k

℄ 2 R

n�k

and U

s

k

= [u

1

; : : : ; u

k

℄ 2 R

m�k

are orthogonal matri-

es made up by the �rst k � n singular vetors of A, and �

k

2 R

k�k

is

a diagonal matrix with the k largest singular values on its diagonal. The

tsvd de�nes regularized approximations x

s

k

of the true solution x

y

via

x

s

k

=

k

X

j=1

u

�

j

b

�

j

v

j

2 V

s

k

= R(V

s

k

) : (1)

Beause of the orthogonality of the vetors fu

j

g it is easy to see that the

Eulidean norm of the residual

b�Ax

s

k

=

m

X

j=k+1

(u

�

j

b)u

j

for x = x

s

k

is smaller than for any other vetor x 2 V

s

k

.
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We now turn to the onjugate gradient iteration gls, a detailed exposi-

tion of whih an be found in the books [2℄ or [9℄

1

. gls has the well-known

optimality property that its kth iterate x

gls

k

minimizes the residual b�Ax

among all vetors x from the Krylov subspae

V

K

k

= K

k

(A

�

A;A

�

b) = spanfA

�

b; A

�

AA

�

b; : : : ; (A

�

A)

k�1

A

�

bg : (2)

Hene, gls is another example of a least-squares projetion method.

In omputational terms the gls iterates are muh heaper to ompute

than the tsvd approximations. On the other hand, theoretial investiga-

tions predit similar error bounds for the optimal errors of tsvd and gls

(see [6℄), and these bounds an be on�rmed numerially. In fat, we have

seen numerial examples where the optimal reonstrution of tsvd is supe-

rior to gls, and vie versa. Still, it is ommon belief that tsvd is the most

appropriate tool for the solution of ill-posed problems. We atually onsider

this to be a misbelief, and shall explain this by investigating a representative

numerial example.

The example we hoose is a standard test problem, deriv(100,3), from

Hansen's toolbox [12℄. For our omputations we take the dimension of the

system to be n = 100 and we add 0:5% white noise (a Gaussian random

vetor with zero mean and an identity ovariane matrix) on top of the data

relative to the Eulidean vetor norm. We only present numerial results

for this partiular problem and one partiular noise sample, but the results

are rather representative for the general situation.

Figure 1 ontains the relative errors of the tsvd and gls approxima-

tions versus the dimension k of the respetive subspaes V

k

. The two error

urves are very similar qualitatively. In either ase the error deays down

to the minimal value (whih is omparable for the two methods, namely

0.0194 vs. 0.0211), before it inreases eventually when the approximations

start to diverge. The interesting observation, however, is that gls requires

a lower dimensional subspae to ahieve the same auray as tsvd. This

observation an be supported to some extent by theory.

Example. Consider an in�nite-dimensional problem Ax = b in real Hilbert

spaes, where the operator A has singular values

�

j

= j

�s

; j 2 N ; s > 0 ; (3)

and the solution x

y

satis�es

h v

j

; x

y

i � j

�q

; j 2 N ; q > 1=2 : (4)

1

In [9℄ the method is alled gne (onjugate gradient iteration for the normal equation

system).
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Figure 1: Reonstrution error versus k for tsvd and gls.

Here and in the sequel h � ; � i and k � k denote the inner produts and the

assoiated norms in the respetive Hilbert spaes.

It follows that for exat data b = Ax

y

we have hu

j

; b i = �

j

h v

j

; x

y

i �

j

�q�s

, and it is easy to see from (1) that

kx

y

� x

s

k

k

2

=

1

X

j=k+1

h v

j

; x

y

i

2

�

Z

1

k

t

�2q

dt � k

1�2q

: (5)

For gls an upper bound for kx

y

�x

gls

k

k

2

an be obtained with the results

in [10, Set. 4℄. Theorem 4.1 in [10℄ provides a bound for the deay of the

residuals b � Ax

gls

k

. Referring to the notation in [10℄ we have to estimate

the Christo�el funtions for a measure d� over R

+

with jumps at �

2

j

= j

�2s

of height hu

j

; b i

2

� j

�2q�2s

. Thus, it follows from [10, Theorem 4.1℄ that

kb� Ax

gls

k

k

2

� O(k

�4�(s+1)

) ;

where � an be any positive number up to (2q+2s�1)=(4s), at most. Then,

using Eq. (4.2) in [10℄ we obtain a similar bound for the error norm, exept

that � has to be replaed by � � 1=2, i.e.,

kx

y

� x

gls

k

k

2

� O(k

�(s+1)(4��2)

) :

Taking the range for � into aount this an be rewritten as

kx

y

� x

gls

k

k

2

= O(k

s+1

s

(1�2q)+�

)
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for any arbitrarily small positive � (in fat, for ertain values s and partiular

x

y

exampli�ed in [10℄ one an even take � = 0). Comparing this with (5) we

onlude as a rule of thumb that

kx

y

� x

gls

k

k . kx

y

� x

s

k

k

(s+1)=s

;

whih suggests that the gls superiority is more pronouned for ill-posed

problems with more rapidly deaying singular values.

These results may be interpreted as follows: The singular value expan-

sion determines subspaes V

s

k

whih are suitable for any possible right-hand

side vetor of the linear system; on the other hand, the subspaes V

K

k

hosen

by gls are taylored for the partiular right-hand side, providing a more

rapid onvergene.

3 The dual least-squares method

For ill-posed problems the least-squares projetion method in its general

form has a ertain shortoming: An example of Seidman [19℄ shows that in

in�nite dimensions the subspaes V

k

an be suh that even for exat data

the approximations x

k

diverge as k !1.

Therefore, Natterer [16℄ suggested the dual least-squares method for the

regularization of linear ill-posed problems. The dual least-squares method is

based on an inreasing sequene of subspaes U

k

� R

m

, where we shall again

assume that dimU

k

= k. The orresponding approximation x

k

is taken as

the least-squares solution of minimal norm of the linear system

P

k

Ax = P

k

b ; (6)

where P

k

is the orthogonal projetor onto U

k

. It is known, f., e.g., [6,

Theorem 3.24℄, that x

k

is the orthogonal projetion of A

y

b onto the subspae

A

�

(U

k

). For this reason x

k

always onverges to x

y

= A

y

b as k ! 1 when

the data are exat, even in in�nite dimensional Hilbert spaes.

Again, the trunated singular value deomposition is an example for

this sheme with U

k

= U

s

k

= R(U

s

k

), i.e., the span of the �rst k left singular

vetors of A. Then it is obvious that x

s

k

is the solution of (6) of minimal

norm, beause x

s

k

is the orthogonal projetion of A

y

b onto A

�

(U

s

k

) = V

s

k

.

The onjugate gradient method applied to AA

�

y = b, x = A

�

y, some-

times alled Craig's method [5℄ or gme [9℄, is another example for the dual

least-squares method. Here one has to hoose for U

k

the Krylov subspae

U

K

k

= K

k

(AA

�

; b) = spanfb; AA

�

b; : : : ; (AA

�

)

k�1

bg ;
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Figure 2: Reonstrution error versus k for tsvd and gme (and gls).

sine the kth iterate x

gme

k

of gme is known to minimize the error

kA

y

b � xk

2

within the Krylov spae V

K

k

of (2), i.e., x

gme

k

is the orthog-

onal projetion of A

y

b onto V

K

k

= A

�

(U

K

k

).

The regularizing properties of gme have been studied in detail in [9℄.

Beause of its optimality property, gme will onverge even faster than

gls in general, although the optimal iterate is usually inferior to gls in

the presene of noise. For the model problem from the previous setion this

is exampli�ed in Figure 2 (the lighter shaded urve shows the gls history

from Figure 1).

4 Hybrid methods

Both, the gls and the gme iterate from V

K

k

an be omputed via the

Lanzos proess. This has been realized by Paige and Saunders [18℄ and

implemented in their ode lsqr. The Lanzos proess, when started with

the right-hand side vetor b, provides heap reursions whih generate fa-

torizations

AV

k

= U

k+1

J

e

k

; k = 1; 2; : : : ; (7)

with orthogonal matries U

k

2 R

m�k

and V

k

2 R

n�k

whose olumns span

U

K

k

and V

K

k

, respetively, and where J

e

k

is a lower bidiagonal (k + 1) � k

dimensional matrix. We denote by J

o

k

2 R

k�k

the �rst k rows of J

e

k

; J

o

k

is a

nonsingular matrix.
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We do not require more spei� properties of the fators U

k

, V

k

and

J

e

k

, exept for the fat that U

k

onsists of the �rst k olumns of U

k+1

; in

partiular, the �rst olumn of U

k

is a multiple of b, i.e.,

U

k

e

1

= b=� with � = kbk

2

and e

1

= [1; 0; : : : ; 0℄

T

being the �rst Cartesian basis vetor in R

k

.

Now the gls iterate x

gls

k

is obtained from solving the (k + 1) � k

dimensional least-squares problem

k�e

1

� J

e

k

z

gls

k

k

2

�! min ; (8)

and setting x

gls

k

= V

k

z

gls

k

. Similarly, the gme iterate x

gme

k

is obtained

from the solution of the k � k dimensional nonsingular linear system

J

o

k

z

gme

k

= �e

1

(9)

via

x

gme

k

= V

k

z

gme

k

: (10)

Using the implementation of lsqr the omputation of x

gls

k

or x

gme

k

via

(8) or (9), respetively, is only little more expensive than the orrespond-

ing onjugate gradient implementation. On the other hand, several authors

(e.g., Bj�ork [1℄ and O'Leary and Simmons [17℄) have envisioned the possibil-

ity of using the above approah to stabilize the onjugate gradient iteration

and overome its semionvergene. In fat, sine V

k

is an orthogonal matrix

the divergene of x

k

is equivalent to the divergene of the orresponding

kz

k

k

2

; in other words, the divergene of the onjugate gradient method sets

in when the projeted problems (8) or (9) have beome too ill-onditioned.

The ure of the problem might be a regularization of the small bidiag-

onal systems, the most promising tool being the trunated singular value

deomposition (whih is heap to ompute for the small dimensional prob-

lems). Beause Lanzos projetion and tsvd then go hand in hand, suh

shemes have been alled hybrid methods in [11℄.

4.1 Lanzos and least-squares projetion

When the least-squares problem (8) is solved with tsvd the resulting ap-

proximation is again a least-squares projetion of the original system Ax = b.

To see this we denote by

J

e

k

V

e

l

= U

e

l

�

e

l

; J

e

k

�

U

e

l

= V

e

l

�

e

l

; (11)
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the trunated singular value deomposition of J

e

k

, where l � k is the trun-

ation parameter, U

e

l

2 R

(k+1)�l

and V

e

l

2 R

k�l

are orthogonal matries,

and �

e

l

2 R

l�l

is a diagonal matrix ontaining the l largest singular values

of J

e

k

.

The orresponding approximation x

e

kl

of x

gls

k

belongs to the subspae

V

e

kl

= R(V

k

V

e

l

), namely

x

e

kl

= V

k

z

e

kl

; z

e

kl

= V

e

l

(�

e

l

)

�1

U

e

l

�

(�e

1

) : (12)

Any vetor x 2 V

e

kl

an be written in the form x = V

k

V

e

l

w for some w 2 R

l

,

and satis�es in view of (7) and (11)

kb� Axk

2

= kb� AV

k

V

e

l

wk

2

= kb� U

k+1

J

e

k

V

e

l

wk

2

= kU

k+1

(�e

1

� U

e

l

�

e

l

w)k

2

= k�e

1

� U

e

l

�

e

l

wk

2

:

It follows that the residual b�Ax is minimized over V

e

kl

for x = V

k

V

e

l

w with

w = (�

e

l

)

�1

U

e

l

�

(�e

1

), i.e., for the tsvd approximation in (12).

We have therefore shown that the tsvd regularized approximation x

e

kl

of

x

gls

k

is a least-squares projetion over V

e

kl

of the original problem Ax = b.

4.2 Lanzos and the dual least-squares method

Now, let

J

o

k

V

o

l

= U

o

l

�

o

l

; J

o

k

�

U

o

l

= V

o

l

�

o

l

; (13)

be the orresponding trunated singular value deomposition of J

o

k

. Then

the tsvd approximation x

o

kl

of x

gme

k

is given by

x

o

kl

= V

k

z

o

kl

; z

o

kl

= V

o

l

(�

o

l

)

�1

U

o

l

�

(�e

1

) : (14)

x

o

kl

belongs to the subspae V

o

kl

= R(V

k

V

o

l

). We now denote by

Q

kl

= V

k

V

o

l

V

o

l

�

V

�

k

the orthogonal projetor onto V

o

kl

and by Q

k

= V

k

V

�

k

the orthogonal projetor onto V

K

k

= A

�

(U

K

k

). We reall from Setion 3 that

x

gme

k

= Q

k

A

y

b = V

k

V

�

k

A

y

b :

On the other hand we have from (10) that x

gme

k

= V

k

z

gme

k

, and sine V

k

has full olumn rank, this implies

z

gme

k

= V

�

k

A

y

b :

9



In view of (14) and (9) we therefore onlude that

Q

kl

A

y

b = V

k

V

o

l

V

o

l

�

V

�

k

A

y

b = V

k

V

o

l

V

o

l

�

z

gme

k

= V

k

z

o

kl

= x

o

kl

:

This means that x

o

kl

is the orthogonal projetion of A

y

b onto V

o

kl

, and hene,

x

o

kl

is a dual least-squares approximation of A

y

b provided that V

o

kl

= A

�

(U

o

kl

)

for some subset U

o

kl

.

To prove this latter assertion we let U

o

kl

= R(U

k

U

o

l

) and onsider the

matrix A

�

U

k

U

o

l

whose olumns span the range A

�

(U

o

kl

). Sine V

K

k

= A

�

(U

K

k

)

and the olumns of U

k

and V

k

span U

K

k

and V

K

k

, respetively, multipliation

of A

�

U

k

U

o

l

with the orthogonal projetor V

k

V

�

k

onto V

K

k

yields

A

�

U

k

U

o

l

= V

k

V

�

k

A

�

U

k

U

o

l

: (15)

Furthermore, we have from (7) that U

�

k

AV

k

= U

�

k

U

k+1

J

e

k

; sine U

k+1

is

an orthogonal matrix and U

k

onsists of the �rst k olumns of U

k+1

, there

holds U

�

k

U

k+1

J

e

k

= J

o

k

, and hene, U

�

k

AV

k

= J

o

k

. Inserting this into (15) we

arrive at

A

�

U

k

U

o

l

= V

k

J

o

k

�

U

o

l

;

and therefore it follows from (13) that

A

�

U

k

U

o

l

= V

k

V

o

l

�

o

l

:

Sine �

o

l

is a nonsingular matrix this shows that A

�

(U

o

kl

) = R(V

k

V

o

l

) = V

o

kl

,

as was to be shown.

5 Numerial results

Reent work on hybrid methods ([3, 14℄, see also [8, 13, 7℄) has mostly

been foused on the hoie of appropriate regularization parameters, i.e.,

the stopping index k for the Lanzos proess and the trunation index l

for the embedded tsvd regularization. While this question is ertainly the

most important one for pratial purposes, one should investigate �rst the

potential of these methods.

This is what we shall do in the sequel by omputing all respetive ap-

proximations numerially for our model problem. Figure 3 illustrates in a

gray-sale plot the relative errors of the least-squares projetions x

e

kl

and

the dual least-squares approximations x

o

kl

, respetively, in dependene on

k = 0; 1; 2; : : : and 0 � l � k. The blak dots in this �gure highlight the

optimal value l(k) for whih the error kx

y

� x

kl

k

2

is minimized for �xed k.

From this we an distinguish three phases of the iteration:
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Figure 3: Relative errors of x

e

kl

(left) and x

o

kl

(right) versus k and l.

1. In the early stage of the iteration, i.e., for 0 � k � k

1

we have l(k) = k,

i.e., the optimal reonstrution of the hybrid sheme is the orre-

ponding onjugate gradient iterate. In our example, k

1

is also the

point where the onjugate gradient iteration attains the minimal error

(k

1

= 6 for gls and k

1

= 2 for gme).

2. Then there is a transient region k

1

< k < k

2

where l(k) is nondereas-

ing but remains below k, i.e., k

1

= l(k

1

) � l(k) < k.

3. In the �nal regime k � k

2

the parameter l(k) remains onstant; for

both shemes this happens when k

2

= 11 with l(k) = 9 thereafter. As

one might expet, the trunation parameter l = 9 is also optimal for

tsvd applied to the full problem Ax = b, f. Figure 1.

Figure 4 ompares the minimal errors kx

y

� x

k;l(k)

k

2

of the hybrid

shemes with the errors kx

y

�x

k

k

2

of the orresponding onjugate gradient

iteration. As desired, the hybrid sheme \regularizes" the plain onjugate

gradient method and maintains the error at the optimal level when the on-

jugate gradient iteration starts to diverge.

Due to so-alled \ghosts", i.e., singular values of J

o

k

or J

e

k

whih are

doubled in the ourse of the iteration beause of round-o� errors and loss of

orthogonality in the matries U

k

and V

k

of (7), the behaviour of the hybrid

methods is somewhat di�erent in pratie. To avoid this shortoming we

performed a full reorthogonalization of the Lanzos vetors for the prepara-

tion of these �gures whenever neessary.

11
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Figure 4: Relative errors of x

k;l(k)

and x

k

versus k.

We mention, though, that in general the loss of orthogonality ourring

in lsqr does not a�et the �nal auray of the approximations, but merely

slows down the iteration proess; every doubling of a singular value will

roughly ause one additional iteration.

6 Conlusion

We have studied hybrid methods based on the Lanzos proess and tsvd

regularization in terms of projetion methods for ill-posed problems. The

methods based on least-squares projetion had already been introdued in

the literature; the dual least-squares approximations have not yet been in-

trodued, exept for the basi Krylov sheme whih orresponds to Craig's

method gme.

It has been shown by numerial examples (partly supported by theory)

that the Krylov subspaes are more appropriate to use for a projetion

method than the subspaes assoiated with the singular value deomposition

of the orginal matrix.

Further numerial results indiate that the hybrid methods an have the

desired e�et of stabilizing the iteration error at its minimum even when

the onjugate gradient type method is diverging. At this point the optimal

trunation index is lose to the optimal trunation index of tsvd for the

orginal problem. This indiates that parameter hoie strategies whih work

for tsvd should also work for the hybrid sheme, provided that the Krylov

subspae is so large that the minimal error is attainable.
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