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Abstract

We study hybrid methods for the solution of linear ill-posed prob-
lems. Hybrid methods are based on the Lanczos process, which yields
a sequence of small bidiagonal systems approximating the original ill-
posed problem. In a second step, some additional regularization, typ-
ically the truncated SVD, is used to stabilize the iteration. We in-
vestigate two different hybrid methods and interpret these schemes as
well-known projection methods, namely least-squares projection and
the dual least-squares method. Numerical results are provided to il-
lustrate the potential of these methods. This gives interesting insight
into the behavior of hybrid methods in practice.
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1 Introduction

We consider the solution of a linear system Ax = b obtained by appropriate
discretization of some ill-posed operator equation. For simplicity we shall
assume throughout that A € R™*"™ has full column rank, i.e., m > n and A
is injective. However, all the results extend to general matrices A and even
to linear operators in Hilbert spaces.

Linear systems of this sort share a number of remarkable properties:

e The singular values of A cluster at zero giving rise to huge condition
numbers
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e The exact right-hand side b satisfies a so-called discrete Picard condi-
tion, i.e., in the singular value expansion the magnitude of a compo-
nent of b in the direction of a left singular vector of A is connected
to the magnitude of the corresponding singular value. This means
that despite its huge condition number the linear system is effectively
well-conditioned according to a notion by Chan and Foulser [4].

o Reality is different, though, due to data perturbations, which effect all
components of b in much the same way.

As a matter of fact, stable approximations of the true solution z! can
only be computed if the linear system is properly regqularized. For example,
one can use Tikhonov reqularization or the truncated singular value decom-
position. However, these two methods are very expensive to implement for
large-scale applications.

Another option is the conjugate gradient iteration CGLS applied to the
normal equation system A*Ax = A*b. It is well-known that CGLS semicon-
verges for this kind of problems, i.e., the iterates first seem to converge to
the true solution vector x before they are misled by noisy components in the
data and subsequently deteriorate. Thus, the conjugate gradient iteration
will only give useful results if terminated early. We emphasize that this is
an amenable feature in terms of work load.

For this reason, the conjugate gradient iteration is probably the most
efficient tool for solving large-scale discrete ill-posed problems. In fact, it has
been shown before and we will provide additional numerical evidence below,
that the accuracy obtained with CGLS compares well with other competing
algorithms — provided the iteration is properly terminated.

Such stopping rules are not as easy to find, though. The so-called discrep-
ancy principle is probably the most reliable rule, but it requires knowledge
of the noise level in the data. Other stopping rules that have been suggested
in the literature are working for some examples, but fail for many others.

Some conjugate gradient type methods are intimately connected to the
Lanczos process. With the Lanczos process the linear system is projected
onto increasing Krylov subspaces, and approximate solutions in these sub-
spaces are computed by subsequently solving small-dimensional linear sys-
tems. Being small, however, these systems allow for some additional regu-
larization without much computational overhead.

In this work we will reinvestigate some of these methods within the
framework of projection methods. It is known that projection methods
have a regularizing side-effect, cf., e.g., [6] or [15, Chapter 17], because they
restrict the number of possible degrees of freedom. We will show that CGLS



and another conjugate gradient method (CGME) can be viewed as a least-
squares projection and as a dual least-squares method, respectively. These
interpretations extend to hybrid variants based on the truncated singular
value decomposition.

2 Least-squares projection

A common way of projecting a large-scale linear system Az = b onto a
small-dimensional problem is by choosing subspaces Vi C R”™ of dimension
k, say, and solving the least-squares problem

b — Az||2 — min over = € V.

This method is called least-squares projection.

Examples include the truncated singular value decomposition and the
conjugate gradient iteration CGLS. We start with the former and denote by
{0}, uj,v; : j =1,...,n} the singular value decomposition of A, where
{v;} is the associated orthonormal basis of R" and {u;} the corresponding
orthonormal basis of R(A). By our assumption on A the singular values o;
are positive and we assume them to be in nonincreasing order.

We shall use the notation

AVE = USSy,, AU = VeSS,

for the truncated singular value decomposition (TSVD), where V; =
[v1,...,v5] € R™* and U$ = [uy,...,ux] € R™** are orthogonal matri-
ces made up by the first k& < n singular vectors of A, and £, € R*¥** is
a diagonal matrix with the k largest singular values on its diagonal. The
TSVD defines regularized approximations xj of the true solution z! via

k
urb
zo= Y v € Vi = R(R). (1)

j=1 9
Because of the orthogonality of the vectors {u;} it is easy to see that the

Euclidean norm of the residual

m

b— Axj, = Z (u;b) u;
=kt

for z = zj is smaller than for any other vector z € V.



We now turn to the conjugate gradient iteration CGLS, a detailed exposi-
tion of which can be found in the books [2] or [9]!. cGLS has the well-known
optimality property that its kth iterate z}"® minimizes the residual b — Az

among all vectors z from the Krylov subspace
VE = Kp(A*A, A*b) = span{A*b, A*AA*D, ..., (A*A)FTA*}. (2)

Hence, CGLS is another example of a least-squares projection method.

In computational terms the CGLS iterates are much cheaper to compute
than the TSVD approximations. On the other hand, theoretical investiga-
tions predict similar error bounds for the optimal errors of TSVD and CGLS
(see [6]), and these bounds can be confirmed numerically. In fact, we have
seen numerical examples where the optimal reconstruction of TSVD is supe-
rior to CGLS, and vice versa. Still, it is common belief that TSVD is the most
appropriate tool for the solution of ill-posed problems. We actually consider
this to be a misbelief, and shall explain this by investigating a representative
numerical example.

The example we choose is a standard test problem, deriv(100,3), from
Hansen’s toolbox [12]. For our computations we take the dimension of the
system to be n = 100 and we add 0.5% white noise (a Gaussian random
vector with zero mean and an identity covariance matrix) on top of the data
relative to the Euclidean vector norm. We only present numerical results
for this particular problem and one particular noise sample, but the results
are rather representative for the general situation.

Figure 1 contains the relative errors of the TSVD and CGLS approxima-
tions versus the dimension k of the respective subspaces V. The two error
curves are very similar qualitatively. In either case the error decays down
to the minimal value (which is comparable for the two methods, namely
0.0194 vs. 0.0211), before it increases eventually when the approximations
start to diverge. The interesting observation, however, is that CGLS requires
a lower dimensional subspace to achieve the same accuracy as TSVD. This
observation can be supported to some extent by theory.

Ezxample. Consider an infinite-dimensional problem Ax = b in real Hilbert
spaces, where the operator A has singular values

oj=3°, jeN, s>0, (3)
and the solution z' satisfies

(vj,ly~j9,  jEN, ¢>1/2. (4)

'Tn [9] the method is called CGNE (conjugate gradient iteration for the normal equation
system).
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Figure 1: Reconstruction error versus k for TSVD and CGLS.

Here and in the sequel ( -, - ) and || - || denote the inner products and the
associated norms in the respective Hilbert spaces.

It follows that for exact data b = Az! we have (u;,b) = oj{v;,zl) ~
j~97%, and it is easy to see from (1) that

o0

let— g2 = % (vj,01)? ~/ £ df ~ B2 (5)

j=k+1 k

For CGLS an upper bound for ||zt —z can be obtained with the results
in [10, Sect. 4]. Theorem 4.1 in [10] provides a bound for the decay of the

residuals b — Az{“"®. Referring to the notation in [10] we have to estimate

the Christoffel functions for a measure da: over R* with jumps at 012. = ;2

of height (u;j,b)? ~ j 24725 Thus, it follows from [10, Theorem 4.1] that

CGLS||2
A

b — Az§ers))? < O(k 1),

where v can be any positive number up to (2g+2s—1)/(4s), at most. Then,
using Eq. (4.2) in [10] we obtain a similar bound for the error norm, except
that v has to be replaced by v — 1/2; i.e.,

||xT _ szLSH2 < O(k—(s+1)(4u—2)) )

Taking the range for v into account this can be rewritten as

||£ET _ CESGLS“2 _ O(k;stl (172q)+e)



for any arbitrarily small positive € (in fact, for certain values s and particular
z! examplified in [10] one can even take ¢ = 0). Comparing this with (5) we
conclude as a rule of thumb that

" — 2| < flat — af) TV,
which suggests that the CGLS superiority is more pronounced for ill-posed
problems with more rapidly decaying singular values.

These results may be interpreted as follows: The singular value expan-
sion determines subspaces V}; which are suitable for any possible right-hand
side vector of the linear system; on the other hand, the subspaces V,’f chosen
by CGLS are taylored for the particular right-hand side, providing a more
rapid convergence.

3 The dual least-squares method

For ill-posed problems the least-squares projection method in its general
form has a certain shortcoming: An example of Seidman [19] shows that in
infinite dimensions the subspaces Vj can be such that even for exact data
the approximations x; diverge as k — oo.

Therefore, Natterer [16] suggested the dual least-squares method for the
regularization of linear ill-posed problems. The dual least-squares method is
based on an increasing sequence of subspaces U C IR™, where we shall again
assume that dimiUy = k. The corresponding approximation xj; is taken as
the least-squares solution of minimal norm of the linear system

where Py is the orthogonal projector onto Uy. It is known, cf., e.g., [6,
Theorem 3.24], that x, is the orthogonal projection of A'b onto the subspace
A*(Uy). For this reason zj, always converges to zf = Afh as k — co when
the data are exact, even in infinite dimensional Hilbert spaces.

Again, the truncated singular value decomposition is an example for
this scheme with Uy, = U7 = R(U}), i.e., the span of the first k left singular
vectors of A. Then it is obvious that z}, is the solution of (6) of minimal
norm, because zj, is the orthogonal projection of A'b onto A(UR) =V}

The conjugate gradient method applied to AA*y = b, x = A*y, some-
times called Craig’s method [5] or CGME [9], is another example for the dual
least-squares method. Here one has to choose for U}, the Krylov subspace

UF = Kp(AA*,b) = span{b, AA*D,. .., (AA*)*1b}
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Figure 2: Reconstruction error versus k for TSVD and CGME (and CGLS).

since the kth iterate z" of CGME is known to minimize the error
|Atb — z||2 within the Krylov space VI of (2), i.e., z{™® is the orthog-
onal projection of ATb onto VF = A*(UL).

The regularizing properties of CGME have been studied in detail in [9].
Because of its optimality property, CGME will converge even faster than
CGLS in general, although the optimal iterate is usually inferior to CGLS in
the presence of noise. For the model problem from the previous section this
is examplified in Figure 2 (the lighter shaded curve shows the CGLS history
from Figure 1).

4 Hybrid methods

Both, the cGLs and the CGME iterate from V,’f can be computed via the
Lanczos process. This has been realized by Paige and Saunders [18] and
implemented in their code LSQR. The Lanczos process, when started with
the right-hand side vector b, provides cheap recursions which generate fac-
torizations

AV = Uk Jj, k=1,2,..., (7)
with orthogonal matrices U, € R™** and V}, € R"*¥ whose columns span
U,’f and V,’f, respectively, and where Jg is a lower bidiagonal (k + 1) x k

dimensional matrix. We denote by Jg € RF** the first k rows of J o Jpisa
nonsingular matrix.



We do not require more specific properties of the factors Uy, Vi and
Ji, except for the fact that Uj consists of the first & columns of Upy;; in
particular, the first column of Uy is a multiple of b, i.e.,

Uker =b/p with B = ||b||2

and e; = [1,0,...,0]T being the first Cartesian basis vector in R¥.
Now the CGLS iterate z;°"® is obtained from solving the (kK + 1) x k
dimensional least-squares problem

|Ber — Jgz§%5]l2 — min, (8)

and setting x%" = V2", Similarly, the CGME iterate z“™* is obtained

from the solution of the k£ x k£ dimensional nonsingular linear system
TRz = Pey (9)
via
oM = Vg [OME (10)

Using the implementation of LSQR the computation of %" or """ via

(8) or (9), respectively, is only little more expensive than the correspond-
ing conjugate gradient implementation. On the other hand, several authors
(e.g., Bjorck [1] and O’Leary and Simmons [17]) have envisioned the possibil-
ity of using the above approach to stabilize the conjugate gradient iteration
and overcome its semiconvergence. In fact, since V} is an orthogonal matrix
the divergence of zj is equivalent to the divergence of the corresponding
||zk || 2; in other words, the divergence of the conjugate gradient method sets
in when the projected problems (8) or (9) have become too ill-conditioned.

The cure of the problem might be a regularization of the small bidiag-
onal systems, the most promising tool being the truncated singular value
decomposition (which is cheap to compute for the small dimensional prob-
lems). Because Lanczos projection and TSVD then go hand in hand, such
schemes have been called hybrid methods in [11].

4.1 Lanczos and least-squares projection

When the least-squares problem (8) is solved with TSVD the resulting ap-
proximation is again a least-squares projection of the original system Az = b.
To see this we denote by

JVE=Ursr,  JEUD =V (11)



the truncated singular value decomposition of J¢, where | < k is the trun-
cation parameter, Uf € RE+DXE and Ve e R**! are orthogonal matrices,
and X} € R is a diagonal matrix containing the I largest singular values
of J¢.

The corresponding approximation zf,; of zy“"® belongs to the subspace
Vs, = R(Vi V), namely

zh = Vizh, = VE(SH U (Ber) - (12)

Any vector x € Vi, can be written in the form z = V,V/w for some w € R/,
and satisfies in view of (7) and (11)

16— Azll2 = [|b = AViV w2 = [|b = Up1 JgViw] 2
= [[Uks1(Ber = UrBjw)l2 = |[Ber — U Ejwl|2.

It follows that the residual b — Az is minimized over V;, for x = V; V,w with
w = (2F)"1Uf*(Ber), i.e., for the TSVD approximation in (12).

We have therefore shown that the TSVD regularized approximation zf; of

z3 %" is a least-squares projection over Vg, of the original problem Az = b.

4.2 Lanczos and the dual least-squares method
Now, let
Ve =%y, JPUP =V, (13)

be the corresponding truncated singular value decomposition of J_. Then

the TSVD approximation zf, of ™" is given by

e =Virky, 2= V()0 (Ber). (14)

x7, belongs to the subspace V7, = R(V4V°). We now denote by
Qr = ViV,°V°*V;® the orthogonal projector onto Vg, and by Qi = ViV
the orthogonal projector onto VX = A*(UL). We recall from Section 3 that

g™ = QrATD = ViV Alb.

On the other hand we have from (10) that ™" = Vj2,/°M", and since V},
has full column rank, this implies

2TME — 17 AT



In view of (14) and (9) we therefore conclude that
QuAd = ViVPVE VEAlb = ViVPVZ* 2™ = Vizgy = oy

This means that x7; is the orthogonal projection of Atb onto V7, and hence,
x7; is a dual least-squares approximation of A'b provided that Vi = A" (Ug)
for some subset U});.

To prove this latter assertion we let U7, = R(UU}) and consider the
matrix A*UUy whose columns span the range A*(Ug)). Since V) = A*(UX)
and the columns of Uy and V}, span U,’CC and V,’f, respectively, multiplication
of A*U,Up with the orthogonal projector V3V onto V,’f yields

A*UkUlo — Vka*A*UkUlo (15)

Furthermore, we have from (7) that Uy AV, = UjUgy1J5; since Ugyq is
an orthogonal matrix and Uy, consists of the first k£ columns of Uy, there
holds U} Uy41Jg = Jg, and hence, U AV}, = J¢. Inserting this into (15) we
arrive at

A*UkUlo = VkJ]g*Ulo,
and therefore it follows from (13) that
A UUP = ViVexse

Since ¥? is a nonsingular matrix this shows that A*(U2) = R(VxV,°) = Vg,
as was to be shown.

5 Numerical results

Recent work on hybrid methods ([3, 14], see also [8, 13, 7]) has mostly
been focused on the choice of appropriate regularization parameters, i.e.,
the stopping index k for the Lanczos process and the truncation index [
for the embedded TSVD regularization. While this question is certainly the
most important one for practical purposes, one should investigate first the
potential of these methods.

This is what we shall do in the sequel by computing all respective ap-
proximations numerically for our model problem. Figure 3 illustrates in a
gray-scale plot the relative errors of the least-squares projections zf; and
the dual least-squares approximations z7;, respectively, in dependence on
k=0,1,2,... and 0 <[] < k. The black dots in this figure highlight the
optimal value I(k) for which the error ||zf — x||2 is minimized for fixed k.
From this we can distinguish three phases of the iteration:

10
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Figure 3: Relative errors of zf, (left) and xz, (right) versus k and I.

1. In the early stage of the iteration, i.e., for 0 < k < k; we have I(k) = k,
i.e., the optimal reconstruction of the hybrid scheme is the corre-
ponding conjugate gradient iterate. In our example, k; is also the
point where the conjugate gradient iteration attains the minimal error
(k1 = 6 for cGLs and k; = 2 for CGME).

2. Then there is a transient region k; < k < k2 where [(k) is nondecreas-
ing but remains below k, i.e., k1 = I(k1) < (k) < k.

3. In the final regime k > ko the parameter I(k) remains constant; for
both schemes this happens when ko = 11 with [(k) = 9 thereafter. As
one might expect, the truncation parameter [ = 9 is also optimal for
TSVD applied to the full problem Ax = b, cf. Figure 1.

Figure 4 compares the minimal errors [z! — ) |2 of the hybrid
schemes with the errors ||z — z3||2 of the corresponding conjugate gradient
iteration. As desired, the hybrid scheme “regularizes” the plain conjugate
gradient method and maintains the error at the optimal level when the con-
jugate gradient iteration starts to diverge.

Due to so-called “ghosts”, i.e., singular values of Jy or J; which are
doubled in the course of the iteration because of round-off errors and loss of
orthogonality in the matrices Uy and Vj, of (7), the behaviour of the hybrid
methods is somewhat different in practice. To avoid this shortcoming we
performed a full reorthogonalization of the Lanczos vectors for the prepara-
tion of these figures whenever necessary.

11
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Figure 4: Relative errors of zy ;) and zj versus k.

We mention, though, that in general the loss of orthogonality occurring
in LSQR does not affect the final accuracy of the approximations, but merely
slows down the iteration process; every doubling of a singular value will
roughly cause one additional iteration.

6 Conclusion

We have studied hybrid methods based on the Lanczos process and TSVD
regularization in terms of projection methods for ill-posed problems. The
methods based on least-squares projection had already been introduced in
the literature; the dual least-squares approximations have not yet been in-
troduced, except for the basic Krylov scheme which corresponds to Craig’s
method CGME.

It has been shown by numerical examples (partly supported by theory)
that the Krylov subspaces are more appropriate to use for a projection
method than the subspaces associated with the singular value decomposition
of the orginal matrix.

Further numerical results indicate that the hybrid methods can have the
desired effect of stabilizing the iteration error at its minimum even when
the conjugate gradient type method is diverging. At this point the optimal
truncation index is close to the optimal truncation index of TSVD for the
orginal problem. This indicates that parameter choice strategies which work
for TSVD should also work for the hybrid scheme, provided that the Krylov
subspace is so large that the minimal error is attainable.
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