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Abstract. This paper reinvestigates a recently introduced notion of backscattering for the
inverse obstacle problem in impedance tomography. Under mild restrictions on the topological prop-
erties of the obstacles it is shown that the corresponding backscatter data are the boundary values
of a function that is holomorphic in the exterior of the obstacle(s), which allows to reformulate the
obstacle problem as an inverse source problem for the Laplace equation. For general obstacles the
convex backscattering support is then defined to be the smallest convex set that carries an admissible
source, i.e., a source that yields the given (backscatter) data as the trace of the associated poten-
tial. The convex backscattering support can be computed numerically; numerical reconstructions
are included to illustrate the viability of the method.
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1. Introduction. The inverse obstacle problem in electric impedance tomogra-
phy consists in the reconstruction of an unknown inclusion (an insulating obstacle,
say) in some object of known homogeneous conductivity from electrostatic measure-
ments at the boundary of the object. Appropriate measurements are, for example,
the electrostatic potential at the boundary of the object when a certain current is
injected through the boundary into the object. Depending on the physical properties
of the inclusion and on the number of boundary currents to which the object is ex-
posed, different numerical methods can be applied to reconstruct the inclusion, cf.,
e.g., [1, 2, 6, 8, 12, 16, 17, 19, 21, 24].

In this paper we consider the (two-dimensional) inverse obstacle problem with
a nonstandard set of data that has been introduced and termed backscatter data
recently in [9]: A pair of electrodes is used to drive a given current and record the
resulting voltage while being rotated around the object. The notion ‘backscattering’
has been adopted for this setup because of the relation to the ‘usual’ backscattering
of electromagnetic waves with very low frequencies.

In [9] it has been shown that one insulating obstacle is uniquely determined by
the associated backscatter data: The proof given in [9] is constructive and can be
utilized for a numerical algorithm to be published elsewhere. A shortcoming of this
approach, however, is that the method appears to break down if the inclusion has
different physical properties (it can be extended to perfect conductors, though), or if
more than one obstacle exists within the body.

Both of these limitations can be managed to some extent with an approach that
goes back to work by Kusiak and Sylvester [22], who introduced in 2003 the concept
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2 M. HANKE, N. HYVÖNEN, AND S. REUSSWIG

of scattering supports for the localization of admissible sources for a given scattered
wave (in the regime of the Helmholtz equation). This idea has been carried over by
the present authors to the Laplace equation in [7], to the inverse obstacle problem in
impedance tomography with ‘traditional’ data in [8], and, by Haddar, Kusiak, and
Sylvester [5], to the ‘usual’ backscattering problem for the Helmholtz equation.

In this paper, we apply the techniques from [7, 8] to the aforementioned backscat-
tering problem in impedance tomography. To this end, we start by showing that the
backscatter data can be interpreted as the boundary values of a potential that satisfies
the Laplace equation with homogeneous Neumann data and a source term supported
in the convex hull of the inclusion(s). In fact, we show that they are the boundary
values of a holomorphic function. Under mild restrictions on the topological proper-
ties of the inclusions the domain of analyticity of this potential extends even up to
the boundary of the inclusions. We can then use the algorithm described in [8] to
numerically compute what we call the convex backscattering support, i.e., the smallest
convex set that carries an electrostatic source for which the associated potential coin-
cides with the backscatter data on the object boundary. As such, this set is guaranteed
to be a subset of the convex hull of the true inclusion(s), and can thus be utilized to
localize them. We mention that these results match well with the corresponding ones
from [5] for the Helmholtz equation, although the methods from [5] do not appear to
extend to our setting.

Numerical results indicate that our method provides very reasonable approxima-
tions of the inclusions in the absence of noise – even better ones than those in [8] for
the traditional measurement setup with the boundary potential for one fixed input
current as data. Being a severely ill-posed problem, though, the reconstructions de-
teriorate in the presence of measurement noise, but can still be used to localize the
unknown inclusions for a moderate amount of noise.

In Section 2, we provide a rigorous specification of the particular version of the
inverse obstacle problem that we are looking at and, in particular, review our notion
of backscatter data. Then, in Sections 3 and 4 we prove that these data are the bound-
ary values of a function that is holomorphic in the homogeneous part of the object,
imposing only very mild restrictions on the topological properties of the inclusions.
To this end, we first investigate the difference of two Neumann-to-Dirichlet operators
that are familiar objects in the analysis of inverse obstacle problems in impedance to-
mography, and utilize a factorization of this difference operator similar to others that
have already been used quite successfully in the context of the so-called factorization
methods, see Brühl [1], Kress and Kühn [20], and Gebauer [4], for example. Subse-
quently, in Section 5, we briefly recall the definition of the convex source support from
[7], and show how to apply the corresponding theory to localize the convex hull of the
inclusions from the given backscatter data. Finally, some numerical reconstructions
are presented in Section 6.

2. Problem setting. Let D be the open unit disk and assume that the conduc-
tivity σ ∈ L∞(D) inside D satisfies the conditions

σ ≥ c > 0 and supp(σ − 1) is a compact subset of D,

which means, in particular, that σ = 1 near the boundary T = ∂D. Of course, the
support of σ − 1 can be very complicated topologically. We therefore fix an open
set Σ, which consists of finitely many simply connected domains Σj , j = 1, . . . ,m,
with Σi ∩ Σj = ∅ for i 6= j, such that

supp (σ − 1) ⊂ Σ ⊂ D .
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For example, if σ is piecewise smooth, and the support of σ − 1 itself consists of
m connected components, then Σ could be such that Σ becomes what has been called
the infinity support of σ− 1 in [7, 22], i.e., the set of points that cannot be connected
to infinity without intersecting the support of σ−1. As another very simple example,
we could choose Σ to be the interior of the convex hull of supp (σ − 1). In fact, this
latter situation will move into our focus for the numerical examples in the second part
of this paper.

We consider the boundary value problem

∇ · (σ∇u) = 0 in D,
∂

∂ν
u = f on T , (2.1)

where ν is the exterior unit normal of T . For any boundary current f in

Hs
⋄(T ) = {g ∈ Hs(T ) | 〈g, 1〉 = 0}, s ∈ R, (2.2)

problem (2.1) has a unique solution u in

Hs := (Hmin{1,s+3/2}(D) ∩H1
loc(D))/C, (2.3)

where

H1
loc(D) = {v ∈ D′(D) | v|U ∈ H1(U) for every open U with U ⊂ D};

see Theorem A.2 in the appendix. Here and in what follows, 〈·, ·〉 : Hs(T )×H−s(T ) →
C denotes the dual evaluation between Sobolev spaces on T ; if there is no possibility
for a mix-up we refrain from marking the spaces in brackets and use this same notation
for the induced duality between Hs

⋄(T ) and H−s(T )/C.
Remark 1. The norm of a generic quotient distribution space H/C is defined in

the natural way:

‖v‖H/C
= inf

c∈C

‖v − c‖H . (2.4)

On the left-hand side of (2.4), v denotes an element of H/C, i.e., an equivalence class,
whereas on the right-hand side v stands for any particular representative of the class
in question. Unless there is a possibility of confusion, we do not distinguish between
quotient equivalent classes and elements spanning them. It is well-known that (2.4)
defines a norm and H/C inherits completeness from H . Note, in particular, that

c‖∇v‖L2(D) ≤ ‖v‖H1(D)/C ≤ C‖∇v‖L2(D)

for some C ≥ c > 0 independent of v ∈ H1(D)/C (cf. Lemma 2.5 of [13]).
Remark 2. The definition of Hs as a quotient space emphasizes the fact that

the electromagnetic potential is unique up to the choice of the ground level, that is,
up to an additive constant. For regular input currents, i.e., for s ≥ −1/2, the solution
space Hs is just H1(D)/C; even if s > −1/2, one cannot ask for more regularity in the
whole of D since σ is only assumed to be in L∞(D). On the other hand, Hs equals
(Hs+3/2(D)∩H1

loc(D))/C if s < −1/2: Although a distributional input current makes
the corresponding potential irregular near the boundary T , the solution u of (2.1) will
still possess enough ‘interior regularity’ to make the multiplication of ∇u by σ well
defined in the support of σ − 1.

We define the Neumann-to-Dirichlet, or current-to-voltage, map Λ via

Λ : f 7→ u|T , Hs
⋄(T ) → Hs+1(T )/C, (2.5)
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which is well defined and bounded for every s ∈ R according to Theorem A.3 in the
appendix. In the same manner, we introduce the reference Neumann-to-Dirichlet map

Λ0 : f 7→ u0|T , Hs
⋄(T ) → Hs+1(T )/C,

where u0 ∈ Hs+3/2(D)/C is the unique solution of (2.1) when σ is replaced by 1,
cf. Lions and Magenes [23, Chapter 2, Remark 7.2], i.e.,

∆u0 = 0 in D,
∂

∂ν
u0 = f on T . (2.6)

Since σ is identically 1 in some (interior) neighborhood of T , it follows from the
regularity theory of elliptic partial differential equations that u − u0 is smooth near
the boundary T , and, in fact, that the difference boundary map

Λ − Λ0 : H−s
⋄ (T ) → Hs(T )/C (2.7)

is bounded for every s ∈ R; see Theorem A.3 again.
Let us then consider a more specific local current pattern f = δ′θ ∈ H−3/2−ǫ(T ),

ǫ > 0, which is defined by

〈δ′θ, v〉 = −
∂v

∂τ
(zθ) for every v ∈ H3/2+ǫ(T ), (2.8)

where zθ = (cos θ, sin θ) and τ is the arc length parameter of T . Since δ′θ has zero
mean, i.e., 〈δ′θ, 1〉 = 0, and due to the continuity of the boundary operator (2.7), the
quantity

b(zθ) = 〈(Λ − Λ0)δ
′
θ, δ

′
θ〉 (2.9)

is well defined. The function b : T → R is what we call the backscatter data; see [9]
for an interpretation of b as data gathered by a single (small) pair of close electrodes
moving along the boundary T . Note that b(zθ) is defined by measurements made at
the single point zθ, and thus our data is truly local in nature.

3. Factorization of Λ − Λ0. We choose Ωj , j = 1, . . . ,m, to be simply con-
nected C∞-domains, such that Σj ⊂ Ωj , Ωj ⊂ D and Ωi ∩ Ωj = ∅ for i 6= j, and let
Γj be the boundary of Ωj . We set Ω = ∪Ωj , and denote by Γ = ∪Γj its boundary.
Then we introduce the spaces

H1(Ω)/Cm := (H1(Ω1)/C) ⊕ · · · ⊕ (H1(Ωm)/C)

and

Hs(Γ)/Cm := (Hs(Γ1)/C) ⊕ · · · ⊕ (Hs(Γm)/C), s ∈ R .

The dual space of Hs(Γ)/Cm with respect to the dual pairing induced by the L2(Γ)
inner product is

H−s
⋄⋄ (Γ) := H−s

⋄ (Γ1) ⊕ · · · ⊕H−s
⋄ (Γm), (3.1)

where the component spaces are defined in accordance with (2.2).
Now, consider the boundary value problem

∆v = 0 in D \ Ω,
∂

∂ν
v = f on T ,

∂

∂ν
v = 0 on Γ, (3.2)
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where ν is the exterior unit normal of Γ. For any f ∈ Hs
⋄(T ), problem (3.2) has

a unique solution v ∈ Hs+3/2(D \ Ω)/C (cf. [23, Chapter 2, Remark 7.2]), which is
smooth near the inner boundary Γ due to the regularity theory for elliptic partial
differential equations. In fact, the linear operator

R : f 7→ v|Γ, Hs
⋄(T ) → H1/2(Γ)/Cm, (3.3)

is bounded for every s ∈ R (cf. Theorem A.3). Although the Dirichlet trace of v
on Γ is indeed defined up to only one additive constant, here we interpret v|Γ as an
element of H1/2(Γ)/Cm by letting each component v|Γj , j = 1, . . . ,m, of v|Γ define an

equivalence class in the corresponding component quotient space H1/2(Γj)/C; notice
that — even with this interpretation — R is injective due to the principle of unique
continuation. According to Brühl [1] (in full generality, as it is required here, the
result can be found in [10]) the difference Λ − Λ0 obeys the factorization

Λ − Λ0 = R∗FR, (3.4)

where F : H1/2(Γ)/Cm → H
−1/2
⋄⋄ (Γ) is a bounded linear operator that coincides with

its own dual.
To be more precise, F is defined with the help of the transmission problem

∇ · (σ∇h) = 0 in D \ Γ,
∂

∂ν
h = 0 on T ,

h+ − h− = ψ,
∂

∂ν
h+ −

∂

∂ν
h− = 0 on Γ,

(3.5)

where the superscripts + and − correspond to traces taken from within D \ Ω and
Ω, respectively. The problem (3.5) has a unique solution h ∈ (H1(Ω)/Cm)⊕ (H1(D \
Ω)/C) that depends continuously on the data ψ ∈ H1/2(Γ)/Cm (cf., e.g., Kirsch [18,
p. 262], or [10]). The operator F in the middle of the factorization (3.4) is given by

F : ψ 7→
∂

∂ν
(h− h0)|Γ,

where h0 is the solution of (3.5) when σ is replaced by 1. By virtue of Green’s identity

(applied to each subdomain Ωj), Fψ belongs to H
−1/2
⋄⋄ (Γ). Moreover, there exists a

representative of the equivalence class h − h0 that has continuous Dirichlet trace
over every Γj and thus satisfies the Laplace equation in some neighborhood of Γ.
In consequence, it follows from the regularity theory for elliptic partial differential
equations that F can, in fact, be extended to a bounded map

F : Hs(Γ)/Cm → H−s
⋄⋄ (Γ) (3.6)

for any s ∈ R (cf. Theorem A.3).
For our purposes it would be useful to have a factorization similar to (3.4) with

R replaced by the linear operator

B : f 7→ u0|Γ, Hs
⋄(T ) → H1/2(Γ)/Cm , (3.7)

where u0 is the unique solution of (2.6) and u0|Γ is interpreted as an element of
H1/2(Γ)/Cm in the same sense as v|Γ in (3.3). Once again, we refer to Theorem A.3
for a proof that B is well defined and bounded. Such a factorization has indeed been
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derived previously by Kress and Kühn [20] for a very similar problem. Here, we utilize
the results from [1, 10] instead to establish this alternative factorization.

To this end, we introduce two auxiliary operators

Λ−1
1 : ψ 7→

∂v1
∂ν

∣

∣

∣

Γ
, H1/2(Γ)/Cm → H

−1/2
⋄⋄ (Γ),

Λ2 : φ 7→ v2|Γ, H
−1/2
⋄⋄ (Γ) → H1/2(Γ)/Cm.

(3.8)

Here, v1 ∈ H1(Ω)/Cm is the unique solution of the Dirichlet problem

∆v1 = 0 in Ω, v1 = ψ on Γ, (3.9)

and v2 ∈ H1(D \ Ω)/C is the unique solution of the Neumann problem

∆v2 = 0 in D \ Ω,
∂

∂ν
v2 = 0 on T ,

∂

∂ν
v2 = φ on Γ, (3.10)

whose Dirichlet trace on Γ is interpreted as an element of H1/2(Γ)/Cm. Take note
that both Λ−1

1 and Λ2 remain bounded operators, if the Sobolev smoothness indices
1/2 and −1/2 in (3.8) are replaced by s and s−1, respectively, for any s ∈ R; see [23,
Chapter 2, Remark 7.2] and the trace theorems [23, Chapter 1, Theorem 9.4] and [23,
Chapter 2, Theorems 6.5 and 7.3], together with the related remarks. The following
lemma shows how the operator R of (3.3) can be rewritten with the help of B, Λ−1

1

and Λ2.
Lemma 3.1. The operator R obeys the factorization

R = (I − Λ2Λ
−1
1 )B

where I is the identity operator.
Proof. Let u0 ∈ Hs+3/2(D)/C be the solution of (2.6), and let v2 ∈ H1(D \Ω)/C

be the solution of (3.10) for φ = (∂u0/∂ν)|Γ, which is a smooth and mean-free function
on each Γj (cf. Lemma A.1 in the appendix). Since u0|Ω satisfies (3.9) for ψ = u0|Γ,
it follows that (∂u0/∂ν)|Γ = Λ−1

1 Bf , and hence

(I − Λ2Λ
−1
1 )Bf = (u0 − v2)|Γ.

Since the difference u0|D\Ω − v2 satisfies (3.2), the proof is complete.

Making use of Lemma 3.1 in (3.4), we obtain the factorization sought after:
Corollary 3.2. The operator Λ − Λ0 can be factored as

Λ − Λ0 = B∗GB, (3.11)

where G : H1/2(Γ)/Cm → H
−1/2
⋄⋄ (Γ) is a bounded linear operator, which coincides

with its dual operator. Moreover, G can be extended to a continuous operator from
Hs(Γ)/Cm to H−s

⋄⋄ (Γ) for any s ∈ R.
Proof. The first part of the claim follows immediately from (3.4) and Lemma 3.1.

The second part is a consequence of the boundedness of the map (3.6) together with
the fact that (I − Λ2Λ

−1
1 ) maps Hs(Γ)/Cm continuously to itself for any s < 1/2.

Remark 3. In [1, 10] the factorization (3.4) has been established when Λ − Λ0

is considered as an operator on H
−1/2
⋄ (T ), but the result extends, e.g., by continuity,

to the more general case considered in this work. Also, although it has been assumed
in [1, 10] that Γ is a (smooth) boundary of an inhomogeneity, the factorization (3.4)
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holds true for any (finite set of) smooth injective curves Γj separating the inclusions
and the outer boundary T (cf. [15, Theorem 3.1]). Finally, as in [1, 10] we have

treated F as an operator from H1/2(Γ)/Cm to H
−1/2
⋄⋄ (Γ), but it follows easily that F

is, actually, well defined and bounded on the whole of H1/2(Γ) and maps functions
that are constant on each component Γj of Γ to zero. To see the latter, take note that
for such piecewise constant ψ the solution h of (3.5) is constant on each subdomain Ωj ,
and on D\Ω. Hence, F , and G, may indeed, be treated as bounded operators between
H1/2(Γ) and H−1/2(Γ), or Hs(Γ) and H−s(Γ) for any s ∈ R; this interpretation will
be useful when proving Theorem 4.2 below.

4. Analyticity of the backscatter data. In this section, we will use the fac-
torization (3.11) to show that the backscatter data can be interpreted as the boundary
value of a function that is (complex) analytic in D \ Σ, where Σ has been fixed in
Section 2. To this end, let Ω and Γ be as in the previous section, and note that
for smooth enough f the function Bf — or more precisely, one representative of the
equivalence class — can be written as

Bf(x) =

∫

T

N(x, z)f(z) ds(z) , x ∈ Γ, (4.1)

where N is the Neumann function for the Laplacian in D, i.e.,

N(x, z) =















−
1

2π

(

log |x− z| + log

∣

∣

∣

∣

x

|x|
− |x|z

∣

∣

∣

∣

)

, x 6= 0,

−
1

2π
log |z| , x = 0.

(4.2)

Using the density of, say, C∞
⋄ (T ) in H

−3/2−ǫ
⋄ (T ) and the continuous dependence of

the solution of (2.6) on the Neumann data (cf. [23, Chapter 2, Remark 7.2]), it follows
that

Bδ′θ(x) = −
∂

∂zτ
N(x, z)|z=zθ

= −
1

π

x · z⊥θ
|x− zθ|2

, x ∈ Γ,

where z⊥θ = (− sin θ, cos θ).

By introducing the complex numbers ξ = ξ(x) = x1 + ix2 and ζ = eiθ, and
identifying D and Ω where necessary with the corresponding subsets of the complex
plane, we obtain the representation

Bδ′θ(x) =
1

2πi

ξζ − ξζ

(ξ − ζ)(ξ − ζ)
=

i

2π

ξζ2 − ξ

(ζ − ξ)(ξζ − 1)
=: g(x, ζ) , x ∈ Γ, (4.3)

which obviously extends as continuous function to Γ × (D \ Ω). The extended g
— still denoted by the same symbol — is complex differentiable with respect to ζ,
and also ∂ζg(x, ζ) is a continuous function of (x, ζ) ∈ Γ × (D \ Ω). The following
lemma demonstrates that [Gg(·, ζ)](x) has the same properties as g(x, ζ); here G is
the operator that was introduced in Corollary 3.2.

Lemma 4.1. The function [Gg(·, ζ)](x), (x, ζ) ∈ Γ× (D \Ω), is complex differen-
tiable with respect to ζ. Moreover, both [Gg(·, ζ)](x) and ∂ζ [Gg(·, ζ)](x) are continuous
in Γ × (D \ Ω).
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Proof. To begin with, note that G maps C(Γ) continuously to C(Γ) due to
Corollary 3.2 and the Sobolev embedding theorems; see [3, p. 100] and [23, Chapter
1, Section 7.3]. Recall that the norm of C(Γ) is defined by

‖ψ‖C(Γ) = max
x∈Γ

|ψ(x)|

for ψ ∈ C(Γ).
Let {xj} ⊂ Γ ⊂ R

2 and {ζj} ⊂ D \ Ω ⊂ C be two sequences that converge to
fixed but arbitrary points x ∈ Γ and ζ ∈ D \ Ω, respectively. With the help of the
boundedness of G : C(Γ) → C(Γ), we obtain

∣

∣

∣
[Gg(·,ζ)](x) − [Gg(·, ζj)](xj)

∣

∣

∣

≤
∣

∣

∣
[Gg(·, ζ)](x) − [Gg(·, ζ)](xj)

∣

∣

∣
+

∣

∣

∣
[Gg(·, ζ)](xj) − [Gg(·, ζj)](xj)

∣

∣

∣
(4.4)

≤
∣

∣

∣
[Gg(·, ζ)](x) − [Gg(·, ζ)](xj)

∣

∣

∣
+ C

∥

∥g(·, ζ) − g(·, ζj)
∥

∥

C(Γ)
.

Since g(z, ζ) is a continuous function of z ∈ Γ, so is [Gg(·, ζ)](z), and thus the first
term on the right-hand side of (4.4) converges to zero as j goes to infinity. On the
other hand, it follows immediately from the representation (4.3) and the compactness
of Γ that g(·, ζj) converges to g(·, ζ) in the topology of C(Γ). Hence, we have shown
that [Gg(·, ζ)](x) is continuous as function of (x, ζ) ∈ Γ × (D \ Ω).

For a fixed ζ ∈ D \ Ω, it follows again from (4.3) and the compactness of Γ that

g(·, ζ + δ) − g(·, ζ)

δ
→ ∂ζg(·, ζ) as δ → 0, δ 6= 0,

in the topology of C(Γ). As a consequence, for any x ∈ Γ,

1

δ

(

[Gg(·, ζ + δ)](x) − [Gg(·, ζ)](x)
)

→ [G∂ζg(·, ζ)](x) as δ → 0 , (4.5)

due to the linearity and continuity of G : C(Γ) → C(Γ); actually, the limit (4.5) is
uniform with respect to x ∈ Γ. We conclude that [Gg(·, ζ)](x) is complex differentiable
with respect to ζ ∈ D\Ω. Finally, the continuity of ∂ζ [Gg(·, ζ)](x) = [G(∂ζg(·, ζ))](x)
in Γ × (D \ Ω) follows from the same line of reasoning as that of [Gg(·, ζ)](x).

Since g(x, ζ) is real if ζ ∈ T , the factorization (3.11) and a slight abuse of notation
provide us with the formula

b(ζ) =

∫

Γ

[Gg(·, ζ)](x) g(x, ζ) ds(x), ζ ∈ T, (4.6)

for the backscatter data b from (2.9). Apparently, the right-hand side of (4.6) extends
to a well defined function of ζ in the whole of D \ Ω. Our aim is to show that this
extension is holomorphic.

Theorem 4.2. The backscatter data b of (2.9) extends as a holomorphic function
to D \ Σ, with Σ as defined in Section 2.

Proof. According to Lemma 4.1 and the material preceding it, the function
[Gg(·, ζ)](x)g(x, ζ), (x, ζ) ∈ Γ × (D \ Ω), is continuous, holomorphic in ζ, and the
corresponding complex derivative with respect to ζ is also continuous on Γ× (D \Ω).
As a consequence, it follows from an obvious variant of [25, Proposition 27] that (4.6)
gives a holomorphic extension of the backscatter data to D \ Ω.
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Next we will show that the extension of the backscatter data provided by (4.6)
is independent of the particular choice of Ω (not taking into account the domain of
definition, of course). To this end, let b1 and b2 be the holomorphic extensions of the
backscatter data given by (4.6) for two different auxiliary sets Ω(1) and Ω(2), respec-
tively. We choose a third C∞-set Ω(3) fulfilling the requirements of Section 3, such
that Ω(3) ⊂ Ω(k), k = 1, 2, and we denote the corresponding holomorphic extension of

the backscatter to D \Ω
(3)

by b3. Since all three extensions have the same boundary
value on T , it follows from the principle of unique continuation that

b1 = b3|D\Ω
(1) and b2 = b3|D\Ω

(2) ,

and, in particular, b1 and b2 coincide in the intersection of their domains of definition,

i.e., in D \ (Ω
(1)

∪ Ω
(2)

) — even if it is not connected.
Finally, for any ζ0 ∈ D \ Σ we can choose a C∞-set Ω as prescribed in Section 3

such that ζ0 /∈ Ω, and use (4.6) to continue the backscatter data holomorphically
to a neighborhood of ζ0. Thus, we conclude that the backscatter data extends as a
univalent holomorphic function to the whole of D \ Σ.

Let us then (re)identify the complex plane with R
2 and write the (extended)

backscatter data as a complex-valued function of z ∈ R2:

b(z) = ub(z) + ivb(z), z ∈ D \ Σ , (4.7)

where ub and vb are real-valued. It follows from Theorem 4.2 that ub is the solution
of a certain Cauchy problem for the Laplacian in D \ Σ.

Corollary 4.3. The function ub of (4.7) satisfies the Cauchy problem

∆ub = 0 in D \ Σ, ub = b on T ,
∂

∂ν
ub = 0 on T . (4.8)

Proof. Since ub is the real part of a holomorphic function, it is harmonic in its
domain of definition D \ Σ. Moreover, as b|T is real-valued, ub and b coincide on T .
Finally, because vb — and, in particular, its tangential derivative — vanishes on T , it
follows from the Cauchy-Riemann equations that ub has vanishing normal derivative
on T . Note that the Cauchy-Riemann equations may be used on T since b extends by
reflection to a holomorphic function in some neighborhood of T , cf., e.g., Henrici [11].

Remark 4. It has been shown in [9, Corollary 3.4] that Theorem 4.2 and Corol-
lary 4.3 are also valid for a simply connected insulating cavity within D, which would
correspond to the degenerate situation where σ = 0 inside the inhomogeneity. Alter-
natively, one can treat insulating obstacles with the techniques of the previous sections
by introducing homogeneous boundary conditions at the corresponding inclusions, to
show that Theorem 4.2 and its corollary also apply if some obstacles are insulating
while others are penetrable. In any case, it follows that the numerical algorithm to
be presented below, applies to penetrable obstacles (with σ ≥ c > 0) and insulating
inclusions alike.

5. Convex backscattering support. Our aim is to show that the algorithm
introduced in [8] can be applied to backscatter data to reconstruct an approximation
of the convex hull of the inhomogeneities given by supp (σ−1). This set will be called
the convex backscattering support, see Definition 5.1 below, in analogy to the corre-
sponding definition in [5] within the context of acoustic scattering. We emphasize,
however, that the mathematical techniques used here are different from those in [5].
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In what follows, b : T → R denotes again the given backscatter data of (2.9), Σ
of Section 2 will be fixed to be the interior of the convex hull of supp (σ − 1), and
ub is the solution of the Cauchy problem (4.8) in D \ Σ. On occasion, we interpret
b = ub|T as an element of L2(T )/C.

We begin by considering the Poisson problem

∆w = F in D,
∂

∂ν
w = 0 on T, (5.1)

which has a unique solution w ∈
⋃

m∈Z
Hm(D)/C for any distributional source F in

E ′
⋄(D) = {v ∈ E ′(D) | 〈v, 1〉 = 0} ,

where 〈·, ·〉 : E ′(D) × C∞(D) → C denotes the dual evaluation between compactly
supported distributions and smooth functions in D; see [7, Section 2]. Since the
solution w is smooth near the boundary T , the linear measurement operator

L : F 7→ w|T , E ′
⋄(D) → L2(T )/C ,

is well defined.
Definition 5.1. Denote by suppcF the convex hull of the support suppF of

F ∈ E ′
⋄(D). Then the convex backscattering support Bb is defined to be

Bb =
⋂

LF=b

suppcF.

The convex backscattering support Bb is, in essence, the convex source support,
as defined in [7, Definition 4.1], corresponding to the boundary data b. Theorem 5.2
below elucidates the significance of this definition, for it inherits useful properties from
the convex source support. In what follows, we will denote the open ǫ-neighborhood
and the convex hull of a set Ω ⊂ R2 by Nǫ(Ω) and chΩ, respectively.

Theorem 5.2. The convex backscattering support Bb is a subset of the convex
hull Σ of the inhomogeneity supp (σ − 1). Moreover, Bb = ∅, if and only if b is a
constant, i.e., the zero element of L2(T )/C.

Proof. We fix ǫ > 0 such that Nǫ(Σ) ⊂ D and consider the L2(D)-function

wǫ =

{

ub in D \Nǫ(Σ),

0 otherwise.

According to Corollary 4.3, the source Fǫ = ∆wǫ ∈ E ′
⋄(D) ∩H−2(D) is supported in

Nǫ(Σ) and, moreover,

LFǫ = wǫ|T = ub|T = b .

Since ǫ was chosen arbitrarily, we deduce that

Bb ⊂
⋂

ǫ>0

chNǫ(Σ) =
⋂

ǫ>0

Nǫ(Σ) = Σ .

This proves the first part of the assertion. The second part follows immediately from
the properties of the convex source support established in [7, Theorem 4.1].

From a practical point of view, the most important property of the convex
backscattering support is that it can be approximated — or even defined — in a
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constructive manner; see [8, Sections 3 and 4]. To this end, interpret b as a function
of the polar angle and denote its Fourier coefficients by

βj =
1

2π

∫ π

−π

b(θ)e−ijθ dθ, j ∈ Z .

Moreover, define the auxiliary (extended) backscatter data as

bρ(θ) =
∑

j∈Z

βj

ρ|j|
eijθ, θ ∈ [−π, π) , (5.2)

for ρ ≥ 1 (cf. [8, Lemma 3.1]).
Let B ⊂ R2 be an arbitrary closed disk and Bρ be an open disk of large enough

radius ρ > 0 centered at the origin, such that Bρ ⊃ B. There exists a Möbius
transformation Φ that maps Bρ onto D, and B onto some disk BR around the origin.
The radius R = R(B, ρ) of BR is uniquely determined by B and ρ. We denote the
angular map corresponding to Φ|∂Bρ by

ϕ : θ 7→ arg Φ(ρeiθ), [−π, π) → [−π, π),

and the Fourier coefficients of bρ ◦ ϕ−1 by {βj(Φ)}, i.e.,

βj(Φ) =
1

2π

∫ π

−π

bρ(θ)e
−ijϕ(θ)ϕ′(θ) dθ, j ∈ Z . (5.3)

With the help of these definitions, we have the following characterization, cf. [8,
Corollary 3.3]: The convex backscattering support Bb is a subset of B, if and only if

∑

j∈Z

|βj(Φ)|2

(R+ ǫ)2|j|
<∞ (5.4)

for R = R(B, ρ) and every ǫ > 0.
The inequality (5.4) provides a means to test whether Bb ⊂ B for any closed disk

B ⊂ R2. Since the closed and convex set Bb ⊂ R2 is uniquely determined by all closed
disks enclosing it, (5.4) can be used to formulate an efficient numerical algorithm for
reconstructing the convex backscattering support.

6. Numerical reconstructions. In this section, we give a short description of
the algorithm presented in detail in [8]; as stated in Section 5, this algorithm yields
the convex backscattering support when used with backscatter data as input. Later
on, we present some numerical reconstructions obtained in this way. In all of our
numerical examples, the conductivity is constant in the connected components of the
inhomogeneity supp(σ − 1).

The algorithm checks for a number of (well chosen) disks whether they contain
the convex backscattering support for given backscatter data or not. Subsequently,
all those disks which do so are intersected to arrive at a reconstruction of the convex
backscattering support.

Accordingly, the crucial part in terms of the algorithm’s performance is a prudent
choice of the disks to be examined as well as an effective criterion to determine whether
a disk contains the convex backscattering support. We meet these demands by fixing
ρ > 1 and considering Möbius transformations of the following type:

Φζ(z) = ρ
z − ζ

ρ2 − ζz
, (6.1)
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Fig. 6.1. Reconstructions of convex backscattering supports for insulating inclusions (left col-
umn) and conducting obstacles (right column; the conductivity within these obstacles is σ = 0.5,
except for the small kite in the bottom row with conductivity σ = 2)

which map Bρ onto D. Under Φζ , the preimage of any disk BR with 0 < R < 1 is a
closed disk Φ−1

ζ (BR) containing the parameter point ζ ∈ Bρ, see [11]. As R varies,

the corresponding disks Φ−1
ζ (BR) are nested. Our algorithm determines for any such

Φζ the smallest Rζ for which the series in (5.4) converges. The convex backscattering
support is then a subset of B = Φ−1

ζ (BRζ
) but not of Φ−1

ζ (BR) for any R < Rζ , cf. [7,
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Corollary 5.4].
As Φζ in (6.1) is uniquely determined by ζ (for ρ fixed), we choose a grid Z of

points ζ ∈ Bρ and compute for each of these the minimal Rζ . Finally, we approximate

Bb ≈
⋂

ζ∈Z

Φ−1
ζ

(

BRζ

)

. (6.2)

Our experience shows that points ζ close to the origin scarcely contribute to the
overall intersection in (6.2). Hence, we choose Z to be a set of M equidistant points
on a concentric circle with radius ρ0 < ρ. In terms of the stability of the algorithm,
the parameters ρ and ρ0 should be linked; see [8] for details. The setting of ρ in
turn results from a trade-off between the quality of the approximation in (6.2) and
the stability of the algorithm. That is to say, on the one hand, we approximate
the convex set Bb by intersecting subdisks of Bρ. In this respect, if ρ is large, the
approximation (6.2) improves as we can take more and larger disks into account. On
the other hand, using (5.2) to extend the backscatter data to the boundary of a larger
disk Bρ results in a loss of information as subtleties in the data are levelled. According
to our observations in [8], ρ = 1.4 and with it ρ0 = 0.7 is a feasible choice.

To find the smallest R for which the series in (5.4) converges, we exploit the
following observation: With increasing frequency, the Fourier coefficients {βj(Φζ)}
in (5.3) typically show exponential decay. Therefore, we estimate the decay rate of
log |βj(Φζ)| by linear regression, i.e.,

log |βj(Φζ)| ≈ m|j| + c . (6.3)

We now assume that the series in (5.4) converges whenever R > em, and hence let
Rζ = em.

For our numerical experiments, we use a boundary element code to compute the
relative boundary potential (Λ − Λ0)δ

′
θ for N = 768 equidistant locations zθ of the

current dipole (cf. [9, Example 2.2]). From these, we collect the backscatter data
(2.9) at the very same 768 grid points. To solve the inverse problem, we compute the
‘extended’ backscatter data bρ using (5.2), and the corresponding Fourier coefficients
{βj(Φζ)} of (5.3) for M = 64 equispaced parameters ζ ∈ ∂Bρ0 .

An important issue in terms of the stability of the algorithm is to decide which
Fourier coefficients are reliable enough to be used in (6.3). The number of authentic
coefficients does not only depend on the level of noise inherent in the data but also on
the individual decay rate of the sequence (5.3) for each ζ. If there is only ‘numerical
noise’, we choose the truncation index adaptively by cutting away all those frequencies
which satisfy

|βk(Φζ)| < 2 · 104 min
j

|βj(Φζ)| .

In the presence of (uniformly distributed) random noise of 1%, added on top of the
data, we have found that only the first five Fourier coefficients contain reliable infor-
mation and therefore use only those for the corresponding reconstructions.

Figure 6.1 presents different examples of reconstructions obtained in this man-
ner from exact data. The pictures show as solid lines the unit circle (black) and
the respective inclusion(s) (blue). Furthermore, the multicolored circles depict the
boundaries of the 64 disks in (6.2) so that the white area displays their intersection.

In the first line of Figure 6.1, the convex hull of the inclusions and the computed
convex backscattering supports almost coincide. The kite-shaped inclusion on the
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Fig. 6.2. Reconstructions of convex backscattering supports with 1% noise. The conductivities
of the inclusions are as in the last two lines of Figure 6.1

left-hand side in the first line is insulating whereas the conductivity of the kite on the
right is σ = 0.5. The reconstructions for the two cases are of comparable quality. We
investigated the kite with conductivity σ = 0.5 before in [8], using there Dirichlet data
corresponding to certain trigonometric input currents instead of backscatter data. The
reconstructed inclusions obtained in [8] were generally smaller and less accurate than
the reconstructions from backscatter data.

The two reconstructions in the middle row of Figure 6.1 also account for the
accuracy of the convex backscattering support: The oval (σ = 0) on the left is almost
exactly reconstructed. Likewise, the convex hull of the hourglass-shaped inclusion
with σ = 0.5 is properly detected by the algorithm.

The left picture in the bottom line shows the case where the (insulating) inclusion
is a disk. For this problem, the backscatter data can be continued analytically up to
a single point in the interior of this disk, cf. [9, Corollary 3.4], and hence, the true
convex backscattering support consists of only this one point. Again, this is properly
reproduced by the algorithm.

As yet another example, in the bottom right image of Figure 6.1 we consider
an instance with two inclusions of different conductivities, namely σ = 0.5 for the
hourglass-shaped obstacle and σ = 2 for the small kite. As expected, the algorithm
determines a convex set that contains both inclusions, not quite the convex hull,
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though. Apparently, the difference in the conductivities of the two inclusions has
no substantial effect on this reconstruction. This case shows how the choice of the
parameter ρ affects the quality of the reconstruction: To improve the reconstruction
we would need to enlarge ρ to include circles with small curvature in the ‘shadow
region’ in the overall intersection (6.2). In fact, the reconstruction does improve, e.g.,
if ρ = 2; however, some of the other examples do not perform well with this larger
value of ρ because of the increasing instabilities. We therefore stick to the well-tried
parameter ρ = 1.4 also for this example.

In a second series of examples, we add 1% noise to the above considered data
sets, and use only the first five Fourier coefficients for estimating the decay rate in
(6.3). Figures 6.2 and 6.3 show the corresponding results. In the four examples of
Figure 6.2 there is a distinct intersection of all 64 disks: The white area provides
reliable information on the location of the inclusions whereas their shapes are no
longer discernible.

As the intersection of the test disks is hardly distinguishable for the kite-shaped
inclusions, cf. Figure 6.3, we present an alternative visualization of the respective
intersection in the pictures on the right, where the intersection of the disks is high-
lighted in red. The first line corresponds to the insulating kite while the one in the
second line has conductivity σ = 0.5. Again, the reconstructions indicate the location
of the inclusion but carry no distinct information about its shape or size.

We have encountered reconstructions of similar quality for a series of examples
with the same noise level. It is even possible to increase the noise level up to 5% and
still be able to localize the inclusion at those points where most of the disks intersect.
However, the intersection of all the disks is most often empty in this case, making it
difficult to produce an approximation of the convex backscattering support by some
general procedure.

7. Concluding remarks. We have shown that the backscatter data of impedance
tomography can be interpreted as boundary values of a function of a complex variable
that is holomorphic in D \ Σ, where Σ coincides with the support of σ − 1 (together
with the holes in it) under mild assumptions on the conductivity σ. For very rough
conductivities, Σ can be chosen to consist of finitely many simply connected domains,
such that Σ encloses the support of σ− 1. In particular, our results apply to the case
that the closure of Σ is the convex hull of supp (σ−1). Assuming that the backscatter
data is not constant, we can thus use the results from [7, 8] to numerically construct
a nonempty convex set which we call the convex backscattering support, and which
is always contained within the convex hull of supp (σ − 1).

Our results have been formulated for the case that the object of interest is a disk.
However, backscatter data are well-defined whenever the boundary of the domain
is C2. We believe that our results can be extended to the case of more general simply
connected two-dimensional objects with the help of the Riemann mapping theorem.
This idea will be investigated in some future work.

Appendix. The purpose of this appendix is to show that problem (2.1) is
uniquely solvable and to prove that the linear operators in (2.5), (2.7), (3.3), (3.6),
and (3.7) are bounded. We begin with a lemma related to the interior regularity of
certain potentials.

Lemma A.1. Let U,U0 ⊂ R2 be two bounded C∞-domains such that U ⊂ U0.
Assume that v ∈ Hs(U0)/C, s ∈ R, is harmonic. Then,

‖v‖Hr(U)/C ≤ C(r)‖v‖Hs(U0)/C,
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Fig. 6.3. Reconstructions of convex backscattering supports of the kite-shaped inclusion with
1% noise, using the conductivities σ = 0 (top line) and σ = 0.5 (bottom line), respectively (two
different visualizations of the same result)

for every r ∈ R. In particular, v|U ∈ C∞(U)/C.
Proof. Without loss of generality we may assume that s is an integer: Otherwise,

we could work out the proof for some integer that is smaller than s, from which the
result would follow for the original s as well. Throughout the following estimates, we
denote the occurring constants generically by C.

Let v ∈ Hs(U0) be a representative of the quotient equivalence class under in-
vestigation, and let U1 be a C∞-domain such that U ⊂ U1 and U1 ⊂ U0. We
choose a cut-off function ϕ ∈ C∞

0 (U0) that is identically one in U1. The distribution
ṽ = ϕ(v − c), c ∈ C, satisfies the Dirichlet problem

∆ṽ = F in U0, ṽ = 0 on ∂U0,

where F = 2∇ϕ ·∇v+∆ϕ(v− c) is a compactly supported distribution in U0. Hence,
it follows from [23, Chapter 2, Remark 7.2 and Definition 6.1] that

‖v‖Hs+1(U1)/C ≤ ‖v − c‖Hs+1(U1) ≤ ‖ṽ‖Hs+1(U0) ≤ C‖F‖Hs−1(U0)

≤ C
(

‖v‖Hs(U0)/C + ‖v − c‖Hs−1(U0)

)

,

where the last step is a consequence of [23, Chapter 1, Proposition 12.1]. By taking
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the infimum over c ∈ C, we deduce that

‖v‖Hs+1(U1)/C ≤ C‖v‖Hs(U0)/C.

After choosing another auxiliary domain U2, with U ⊂ U2 and U2 ⊂ U1, the same
line of reasoning gives the estimate

‖v‖Hs+2(U2)/C ≤ C‖v‖Hs+1(U1)/C ≤ C‖v‖Hs(U0)/C.

Since this argument may be repeated as often as necessary, the proof is complete.
Next, we move on to consider the unique solvability of the forward problem (2.1).
Theorem A.2. Problem (2.1) has a unique solution in Hs.
Proof. Let f ∈ Hs

⋄(T ), s ∈ R, be the current pattern for (2.1) and (2.6).
According to [23, Chapter 2, Remark 7.2], problem (2.6) has a unique solution
u0 ∈ Hs+3/2(D)/C, which satisfies the estimate

‖u0‖Hs+3/2(D)/C ≤ C‖f‖Hs(T ). (A.1)

Moreover, due to Lemma A.1, u0 is smooth in the interior of D and thus u0 ∈
(Hs+3/2(D) ∩H1

loc(D))/C ⊂ Hs, with Hs introduced in (2.3). We fix a simply con-
nected C∞-domain Ω so that Σ ⊂ Ω and Ω ⊂ D, and introduce a cut-off function
ϕ ∈ C∞

0 (D) that is identically one in Ω. Furthermore, we let Ω0 be another simply
connected C∞-domain such that suppϕ ⊂ Ω0 and Ω0 ⊂ D. We denote the boundaries
of Ω and Ω0 by Γ and Γ0, respectively, and let their unit normals point out of the
respective domains.

Let us consider the variational problem

∫

D

σ∇w · ∇v dx =

∫

D

σ∇u0 · ∇(ϕv) dx for every v ∈ H1(D)/C, (A.2)

and show that it has a unique solution w ∈ H1(D)/C; our ultimate goal is to prove
that u0−w is the solution of (2.1). First of all, it is easy to see that the left-hand side
of (A.2) defines a bounded and coercive sesquilinear form from H1(D)/C×H1(D)/C
to C (cf. [13, Lemma 2.5]). Let us denote the antilinear functional defined by the
right-hand side of (A.2) by A : H1(D)/C → C and show that it is well defined and
bounded. To start with, note that

A(1) =

∫

Ω0\Ω

∇u0 · ∇ϕdx = −

∫

Γ

∂u0

∂ν
ds = 0,

where the second step follows from Green’s identity and the last one from the Diver-
gence Theorem. This shows that A does not see the constant and is thus well defined.
In order to deduce the continuity, we estimate with the help of the Schwarz inequality
as follows:

|A(v)| = |A(v − c)| ≤ ‖σ∇u0‖L2(Ω0)‖∇(ϕ(v − c))‖L2(Ω0)

≤ C(σ, ϕ)‖u0‖H1(Ω0)/C‖v − c‖H1(Ω0). (A.3)

By taking the infimum over c ∈ C, it follows that

|A(v)| ≤ C‖u0‖H1(Ω0)/C‖v‖H1(Ω0)/C ≤ C‖f‖Hs(T )‖v‖H1(D)/C,
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where the second step is a consequence of Lemma A.1 and (A.1). Now, the unique
solvability of (A.2) follows from the Lax-Milgram lemma, cf., e.g., Dautray and Li-
ons [3, p. 368], which also gives the estimate

‖w‖H1(D)/C ≤ C‖f‖Hs(T ). (A.4)

Observe that the solution w ∈ H1(D)/C does not depend on ϕ because a simple
application of Green’s identity reveals that the value of the functional A is independent
of the particular choice of this cut-off function.

Choosing v ∈ C∞
0 (D) in (A.2) and using the distributional definition of the di-

vergence (cf. [3, p. 467, Definition 8]) together with the interior regularity of u0, it
follows that

〈∇ · (σ∇w), v〉 = −

∫

D

σ∇w · ∇v dx

=

∫

D

σ∇u0 · ∇((1 − ϕ)v) dx −

∫

D

σ∇u0 · ∇v dx

=

∫

D\Ω

∇u0 · ∇((1 − ϕ)v) dx + 〈∇ · (σ∇u0), v〉,

where the first term on the right-hand side is zero due to Green’s identity since u0 is
harmonic and (1−ϕ)v vanishes on Γ and in some neighborhood of T . In consequence,

∇ · (σ∇w) = ∇ · (σ∇u0) in D

in the distributional sense; in particular, w is harmonic away from the support of
σ − 1. Moreover, applying test functions that are supported away from Ω0 in (A.2),
it follows by a common variational argument that the Neumann trace of w vanishes
on T . Altogether, we have thus deduced that u = u0 − w ∈ Hs is a solution of (2.1),
and the combination of (A.1) and (A.4) gives

‖u‖Hmin{1,s+3/2}(D)/C ≤ C‖f‖Hs(T ). (A.5)

The function u constructed above is, in fact, the unique solution of (2.1) in Hs.
To prove this, let h ∈ Hs be the difference of two solutions to (2.1). In particular, h
satisfies the boundary value problem

∆h = 0 in D \ Ω,
∂

∂ν
h = 0 on T , h = g on Γ,

for some g ∈ H1/2(Γ)/C, due to the trace theorem and the interior regularity of the
distributions in Hs. As a consequence, h|D\Ω ∈ H1(D \ Ω)/C, cf. [23, Chapter 2,

Remark 7.2], and we deduce that h ∈ H1(D)/C. Since h satisfies (2.1) with f = 0, it
now follows from the Lax-Milgram lemma that h is a constant, i.e., the zero element
of Hs. Hence, we have established the unique solvability of (2.1).

To conclude this appendix, we show that the various operators introduced in
Sections 2 and 3 are bounded.

Theorem A.3. The linear operators defined by (2.5), (2.7), (3.3), (3.7) and
(3.6) are well defined and bounded.

Proof. We start with the Neumann-to-Dirichlet operators (2.5) and (2.7). Let
f ∈ Hs

⋄(T ) be arbitrary and denote the corresponding solutions of (2.1) and (2.6)
by u ∈ Hs and u0 ∈ Hs+3/2(D)/C, respectively. Furthermore, choose Ω and Γ as
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in Section 3, and let U and U0 be as in Lemma A.1 and such that Γ ⊂ U and
U0 ⊂ D \ Σ. As u is harmonic in D \ Σ, it follows from [23, Chapter 2, Remark 7.2]
and the appropriate trace theorem (cf. [23, Chapter 2, Theorems 6.5 and 7.3] and the
related remarks) that

‖u‖Hs+1(T )/C ≤ C‖u‖Hs+3/2(D\Ω)/C
≤ C

(

‖f‖Hs(T ) +
∥

∥∂u/∂ν
∥

∥

Hs(Γ)

)

. (A.6)

Furthermore, with the help of the trace theorems in [23], Lemma A.1 and (A.5), we
see that

∥

∥∂u/∂ν
∥

∥

Hs(Γ)
≤ C‖u‖Hs+3/2(U)/C ≤ C‖u‖Hmin{1,s+3/2}(U0)/C ≤ C‖f‖Hs(T ).

Combining this with (A.6), we finally get

‖u‖Hs+1(T )/C ≤ C‖f‖Hs(T ).

Since w = u0 − u has vanishing Neumann trace on T , the same line of reasoning,
together with (A.4), shows also that

‖w‖Hr(T )/C ≤ C‖∂w/∂ν‖Hr−1(Γ) ≤ C‖w‖Hr+1/2(U)/C

≤ C‖w‖H1(U0)/C ≤ C‖f‖Hs(T )

for any r ∈ R. These last two estimates establish the continuity of the operators (2.5)
and (2.7) for every s ∈ R. The boundedness of the operators (3.3) and (3.7) can be
proved using similar techniques.

To complete the proof, we show that the extended operator (3.6) is well defined
and bounded. Let h ∈ (H1(Ω)/Cm)⊕ (H1(D \Ω)/C) be the solution of (3.5) for ψ ∈
H1/2(Γ)/Cm, and h0 ∈ (H1(Ω)/Cm)⊕ (H1(D \Ω)/C) be the corresponding solution
when σ is replaced by 1. Abusing the notation slightly, we pick a representative of
the equivalence class h − h0 having continuous Dirichlet trace over Γ, and continue
denoting it by h− h0. Since the Neumann trace of h− h0 is also continuous over Γ,
it follows that h − h0 is harmonic and, in particular, smooth in the whole of D \ Σ.
Hence, the same argument as for u and w above, gives us the estimate

∥

∥

∂

∂ν
(h− h0)

∥

∥

H−s(Γ)
≤ C‖h− h0‖H1(U0)/C ≤ C‖ψ‖H1/2(Γ)/Cm

for any s ≤ 1/2, where the last step follows from the continuous dependence of
the solution on the data in (3.5) (cf., e.g., [18, 10]). As a consequence, F maps
H1/2(Γ)/Cm continuously to H−s

⋄⋄ (Γ) for any s ∈ R, and thus the dual operator of F

maps Hs(Γ)/Cm continuously to H
−1/2
⋄⋄ (Γ). Since F : H1/2(Γ)/Cm → H

−1/2
⋄⋄ (Γ) and

its dual operator coincide, it follows from interpolation theory, cf., e.g., Triebel [26],
that F has an extension to a bounded operator

F : Hs/2+1/4(Γ)/Cm → H
−s/2−1/4
⋄⋄ (Γ),

compare, for example, the proof of Theorem 2.1 in [14]. By choosing s appropriately
we see that the extension of F given in (3.6) is bounded.
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