
BIT manuscript No.
(will be inserted by the editor)

Convex source support in three dimensions

Martin Hanke · Lauri Harhanen · Nuutti
Hyvönen · Eva Schweickert

Received: date / Accepted: date

Abstract This work extends the algorithm for computing the convex source support
in the framework of the Poisson equation to a bounded three-dimensional domain.
The convex source support is, in essence, the smallest (nonempty) convex set that
supports a source that produces the measured (nontrivial) data on the boundary of the
object. In particular, it belongs to the convex hull of the support of any source that
is compatible with the measurements. The original algorithm for reconstructing the
convex source support is inherently two-dimensional as it utilizes Möbius transfor-
mations. However, replacing the Möbius transformations by inversions with respect
to suitable spheres and introducing the corresponding Kelvin transforms, the basic
ideas of the algorithm carry over to three spatial dimensions. The performance of the
resulting numerical algorithm is analyzed both for the inverse source problem and for
electrical impedance tomography with a single pair of boundary current and potential
as the measurement data.
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1 Introduction

We consider the inverse source problem for the Laplacian in an insulated, bounded
domainD ⊂ R3. More precisely, our goal is to introduce a noniterative numerical
algorithm for extracting information about the mean-free,compactly supported (dis-
tributional) sourceF in the Poisson equation

∆u = F in D,
∂u
∂ν

= 0 on∂D,

∫

∂D
uds= 0 (1.1)

from the value of the potentialu on the boundary∂D. Source problems of this kind
are encountered, e.g., inelectroencephalography(EEG) and geophysics; see [13,19]
and the references therein.

It is easy to see that there exists an infinite number of sources that produce the
same boundary potential on∂D (cf., e.g., [8,19]). This issue of nonuniqueness is of-
ten circumvented by assuming some specific form for the admissible sources, e.g.,
Dirac deltas, dipoles, or characteristic functions; see [8,9,10,19,20,21,30]. In [22],
Kusiak and Sylvester introduced an alternative approach inthe framework of inverse
scattering by introducing theconvex scattering support, which they defined as the
intersection of the convex hulls of the supports of all sources that are compatible with
a given far field pattern of a scattered wave. The convex scattering support has many
useful properties: It is, in essence, the smallest convex set that carries a source that is
compatible with the measured data, it is nonempty for nontrivial measurements and,
remarkably, it can be defined in a constructive manner that enables numerical im-
plementation. Generalizations of the convex scattering support formalism have since
been studied in several articles: for inverse scattering and the Helmholtz equation
in [4,11,23,25,27,28] and for electrostatics andelectrical impedance tomography
(EIT) in [12,15,16,17,18], where the termconvex source support(CSS) is used in-
stead of convex scattering support.

Although the background theory for the CSS is independent ofthe spatial dimen-
sion, the corresponding algorithm, introduced in [16], is inherently two-dimensional
as it utilizes tools of complex analysis — most notably, Möbius transformations. The
purpose of this work is to demonstrate that the CSS reconstruction technique can, in
fact, be carried over to three dimensions by replacing the said Möbius transformations
by Kelvin transforms corresponding to inversions with respect to suitable spheres;
take note that some of the related analysis was presented already in [26]. Since the
interplay between Kelvin transforms and the homogeneous Neumann boundary con-
dition of (1.1) is nontrivial, the resulting numerical algorithm is slightly more com-
plicated than its counterpart in two dimensions. Be that as it may, our numerical
experiments show that the three-dimensional version stillprovides information on
the location and the size of the target source without any prior knowledge about its
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physical properties. Moreover, we also demonstrate that our algorithm can localize
inhomogeneities using a single relative boundary potential of EIT as the input data;
for more details about EIT, we refer to the review articles [3,6,29].

This text is organized as follows. In Section 2, we recall thedefinition and the
basic properties of the CSS. Section 3 describes a constructive way of defining the
CSS in three spatial dimensions; in particular, the needed inversions and Kelvin trans-
forms are defined there. The numerical algorithm is introduced in Section 4 and its
functionality is tested with simulated data in Section 5. Finally, Section 6 lists the
concluding remarks.

2 Convex source support

In this section, we recall the definition and properties of the CSS; for a more complete
review of the results needed in the subsequent sections we refer to [16, Section 2].
Assume thatD ⊂ R3 is a bounded, simply connected domain with a smooth enough
boundary. As noted in [15], the problem (1.1) has a well defined, unique solution
u∈ ∪m∈ZHm(D) for any distributional sourceF in

E
′
⋄(D) =

{

v∈ E
′(D) | 〈v,1〉 = 0

}

,

where〈·, ·〉 : E ′(D)×E (D)→C denotes the dual evaluation between compactly sup-
ported distributions and smooth functions inD. (To be precise, [15,16] consider only
the two-dimensional case, but the spatial dimension plays no role in the considera-
tions of this section.) Moreover, the potentialu is smooth in some neighborhood of
the boundary∂D, and thus the linear operator

L : F 7→ u|∂D, E
′
⋄(D) → L2

⋄(∂D)

is well defined. Here,L2
⋄(∂D) denotes the space of square integrable mean-free func-

tions on∂D.
It is easy to see thatL is not injective and not even the support ofF is uniquely

determined by the boundary measurementg = LF (cf. [15,22]). What is more, the
intersection of the supports of the sources compatible withg is in general empty
(cf. [22]), and this may hold even if the holes in the supportsare included before
the intersection [15]. However, intersecting the convex hulls of the supports of the
compatible sources does provide information on the original source as explained in
the following (cf. [15,16]).

Theconvex supportsuppcF of F ∈ E ′
⋄(D) is the convex hull of the support suppF

of F . Furthermore, theconvex source supportC g is given by

C g =
⋂

LF=g

suppcF (2.1)

if g∈ R(L), andC g is defined to be the convex hull chD otherwise. It can be shown
thatC g is essentially the smallest convex set that carries a sourcethat is compatible
with g; the following theorem is a restatement of [16, Theorem 2.1]. Here and in the
following, Nε (Ω) denotes the openε-neighborhood of a setΩ ⊂ R3.
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Theorem 2.1 Let g∈ R(L). Then, given anyε > 0, there exists a source Fε ∈ E ′
⋄(D)

such that LFε = g and
C g⊂ suppcFε ⊂ Nε (C g).

Moreover,C g = /0 if and only if g= 0.

2.1 Extension to a ball

In the following sections we describe our detection algorithm for the case where
the domain of interest is a ball. To motivate this choice, letus consider how the
knowledge of the measurementg on ∂D, corresponding to a source contained inD,
enables a stable way of constructing the measurement corresponding to the same
source and an origin-centered ballBρ ⊃ D of large enough radiusρ > 0. At the same
time, we will explain how the convex source support is affected by such an extension
process.

Let us consider the transmission problem

∆w = 0 in Bρ \ ∂D,
∂w
∂ν

= 0 on∂Bρ ,

∫

∂Bρ
wds= 0,

∂w
∂ν

+

−
∂w
∂ν

−

= 0, w+ −w− = g on ∂D,

(2.2)

whereg = u|∂D for the solution of (1.1) and the superscripts+ and− denote traces
taken from withinBρ \D andD, respectively. The problem (2.2) has a unique solution
wρ ∈ H1(D)⊕H1(Bρ \D), which can be presented, e.g., in the form of a double
layer potential. We denote the zero continuation ofu to the whole ofBρ by u0 and set
uρ = u0 + wρ . According to [16, Lemma 2.2], thisuρ ∈ ∪m∈ZHm(Bρ) is the unique
solution of the Poisson problem

∆u = F in Bρ ,
∂u
∂ν

= 0 on∂Bρ ,

∫

∂Bρ
uds= 0. (2.3)

Hence, given the boundary potentialg∈ L2
⋄(∂D) corresponding to (1.1) with a source

F ∈ E ′
⋄(D)⊂ E ′

⋄(Bρ), solving (2.2) provides a stable way to compute the ‘propagated’
datagρ ∈ L2

⋄(∂Bρ) corresponding to (2.3) and the very same source.
Let Lρ be the operator that maps a sourceF ∈ E ′

⋄(Bρ) onto the Dirichlet boundary
value of the solution to (2.3) on∂Bρ . The convex source support ofgρ ∈ L2

⋄(∂Bρ) is
defined in accordance with (2.1), i.e.,

Cρgρ =
⋂

Lρ F=gρ
suppcF (2.4)

if gρ ∈ R(Lρ), andCρgρ = Bρ otherwise. The following theorem, which relatesC g
andCρgρ , is a simplified version of [16, Theorem 2.3].

Theorem 2.2 If g = LF and gρ = LρF for some F∈ E ′
⋄(D) ⊂ E ′

⋄(Bρ), thenCρ gρ ⊆
C g, where equality holds if D is convex.
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Notice that in general the setsC g andCρgρ of Theorem 2.2 do not coincide ifD
is nonconvex [16, Example 1]. To sum up, ifD is convex, the convex source support is
not affected by extending the source problem to a ball containing the original domain
D. If D is nonconvex, this procedure can make the convex source support smaller.
However, in any case the new convex source support is a nonempty subset of the
convex hull of the unknown source generating the original (nontrivial) measurement.

If we confine ourselves to looking for the convex source support corresponding to
the original source generating the data and any convex domain enclosing the original
domain, up to solving (2.2), we may assume that our domain of interest is a ball.
After appropriate scaling, this ball can be considered to bethe unit ball. This is the
convention we will adopt for the rest of this work.

3 Constructive approximation of the CSS in 3D

Henceforth, we will assume thatD is the unit ball. In this section, we will build a
criterion for deciding if the convex source supportC g lies in the intersection ofD
and a given closed ballB⊂ R3. Since the closed balls enclosing a closed, convex set
define that set uniquely, this provides a tool for reconstructing C g.

Let F ∈ E ′
⋄(D) ⊂ E ′

⋄(Bρ), ρ ≥ 1, be a fixed but unknown source and interpretg =
LF andgρ = LρF as functions of the polarθ ∈ [0,π ] and the azimuthalφ ∈ (−π ,π ]

angles. We denote the spherical harmonic coefficients ofg andgρ by {g jk} and{gρ
jk},

respectively, i.e.,

g jk =

∫ π

−π

∫ π

0
gY jk sinθ dθ dφ , gρ

jk =

∫ π

−π

∫ π

0
gρ Y jk sinθ dθ dφ ,

wherej ∈N0,− j ≤ k≤ j, and{Yjk} are the (orthonormalized)complex spherical har-
monics (cf. [1]) withY jk denoting the complex conjugate ofYjk. This same subindex
notation is used for the spherical harmonic coefficients of other functions as well.
The following lemma provides a simple relation between the above sets of spherical
harmonic coefficients; see [16, Lemma 3.1] for the related result in two dimensions.
(Note thatg00 = gρ

00 = 0 due to the zero mean conditions of (1.1) and (2.3); this holds
also for most of the other functions and distributions considered below.)

Lemma 3.1 The spherical harmonic coefficients of g and gρ are related through

gρ
jk =

g jk

ρ j+1 , j ∈ N, − j ≤ k≤ j. (3.1)

Proof In our concentric framework the solution of (2.2) can be given in spherical
coordinates as

wρ (r,θ ,φ) =















∑
j ,k

g jk
j+1

2 j+1

(

ρ−2 j−1−1
)

r j Yjk(θ ,φ), r ∈ (0,1),

∑
j ,k

g jk

(

j+1
2 j+1ρ−2 j−1r j + j

2 j+1r− j−1
)

Yjk(θ ,φ), r ∈ (1,ρ).
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In particular, according to the above considerations, we have

gρ(θ ,φ) = wρ(ρ ,θ ,φ) =
∞

∑
j=1

j

∑
k=− j

g jk

ρ j+1 Yjk(θ ,φ), (3.2)

which completes the proof.

3.1 Concentric case

The first step in building our algorithm for reconstructingC g is introducing a test
for deciding whetherC g is enclosed by a closed ball of radius 0< R< 1 about the
origin.

Theorem 3.1 The function g∈ L2
⋄(∂D) can be written as g= LF for some F∈ E ′

⋄(D)
supported inBR ⊂ D if and only if

∞

∑
j=1

jm

R2 j

j

∑
k=− j

|g jk|
2 < ∞, (3.3)

for some m∈ Z.

Proof The claim follows from a similar argumentation as in [15, Lemma 5.1], which
is the corresponding result in two dimensions. Therefore, we present here only the
general line of reasoning and skip some of the details.

Assume that there existsF ∈ E ′
⋄(D) with suppF ⊂BR such thatg= u|∂D, whereu

solves the source problem (1.1). As the potentialu belongs toH l (D) for somel ∈ Z,
it follows from [24, Chapter 2, Theorems 6.5 and 7.3] thatψ := (u|D\BR

)|∂BR
is well

defined and belongs toH l−1/2(∂BR). We denote the spherical harmonic coefficients
of ψ by

ψ jk =
∫ π

−π

∫ π

0
u(R,θ ,φ)Y jk(θ ,φ)sinθ dθ dφ , j ∈ N0, − j ≤ k≤ j,

where the integral should be understood in the sense of dual evaluation between dis-
tributions and smooth functions. By using the unique solvability of the boundary
value problem (cf. [24, Chapter 2, Remark 7.2])

∆w = 0 in D\BR,
∂w
∂ν

= 0 on∂D, w = ψ on ∂BR (3.4)

in H l (D\BR), it is easy to see that we have the representation

u(r,θ ,φ) = ∑
j ,k

ψ jk

( j +1)Rj + jR− j−1

(

( j +1)r j + jr− j−1)Yjk(θ ,φ), (3.5)

for R< r ≤ 1. In particular, we deduce that

|g jk| =
(2 j +1)|ψ jk|

( j +1)Rj + jR− j−1 ≤CRj+1|ψ jk|, j ∈ N, − j ≤ k≤ j.
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As a consequence,

∞

∑
j=1

j2l−1

R2 j

j

∑
k=− j

|g jk|
2 ≤CR2

∞

∑
j=1

j2l−1
j

∑
k=− j

|ψ jk|
2 ≤C‖ψ‖2

H l−1/2(∂BR)
< ∞,

where the second to last inequality follows, e.g., from [24,Chapter 1, Remark 7.6]
andC > 0 is a generic constant. This proves the ‘only if’ part of the claim.

Suppose next that (3.3) holds for somem∈ Z. Without loss of generality, we may
assume thatm= −2l −1 for somel ∈ N0. Let us consider the distribution

u(r,θ ,φ) =
∞

∑
j=1

j

∑
k=− j

g jk

2 j +1

(

( j +1)r j + jr− j−1)Yjk(θ ,φ), r ∈ (R,1).

It is easy to see thatu has the Cauchy data(g,0) on ∂D. Moreover, it follows from
(3.3) thatu is well defined and harmonic inD\BR and that the trace ofu on ∂BR,

u(R,θ ,φ) =
∞

∑
j=1

j

∑
k=− j

g jk

2 j +1

(

( j +1)Rj + jR− j−1)Yjk(θ ,φ),

belongs toH−l−1/2(∂BR). Due to the well posedness of the boundary value problem
(3.4), we thus deduce thatu∈ H−l (D\BR). By continuingu as zero toBR and setting
F = ∆u ∈ H−l−2(D)∩ E ′

⋄(D), we have constructed a source that is supported on
∂BR ⊂ BR and satisfiesLF = g. This completes the proof.

The test of Theorem 3.1 carries easily over to the case of the propagated datagρ

and the extended domainBρ .

Corollary 3.1 The function gρ ∈ L2
⋄(∂Bρ) can be written as gρ = LρF for some

F ∈ E ′
⋄(Bρ) supported inBR ⊂ Bρ if and only if

∞

∑
j=1

jm

(R/ρ)2 j

j

∑
k=− j

|gρ
jk|

2 < ∞, (3.6)

for some m∈ Z.

Proof The claim follows from a simple scaling argument.

In the following subsection, we will employ Kelvin transforms to deal with the
case when the test ball is not centered at the origin. Although Kelvin transforms do
preserve harmonicity, they differ from the conformal mappings of a two-dimensional
space in the sense that Kelvin transforms do not retain homogeneous Neumann bound-
ary conditions. Hence, we must consider the case of nonhomogeneous Neumann data
before moving forward.
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Corollary 3.2 Let (g∗, f ∗) ∈ L2
⋄(∂Bρ)× L2

⋄(∂Bρ) be a given pair of Cauchy data
on ∂Bρ . There exists a source F∗ ∈ E ′

⋄(Bρ) supported inBR ⊂ Bρ and a potential
u∗ ∈ ∪m∈ZHm(Bρ) such that

∆u∗ = F∗ in Bρ , u∗ = g∗ on ∂Bρ ,
∂u∗

∂ν
= f ∗ on ∂Bρ (3.7)

if and only if
∞

∑
j=1

jm

(R/ρ)2 j

j

∑
k=− j

| jg∗
jk −ρ f ∗jk|

2 < ∞,

for some m∈ Z.

Proof Let us introduce the auxiliary potential

v(r,θ ,φ) = ρ
∞

∑
j=1

(r/ρ) j

j

j

∑
k=− j

f ∗jk Yjk(θ ,φ), (3.8)

which represents the unique solution of the Neumann boundary value problem

∆v = 0 in Bρ ,
∂v
∂ν

= f ∗ on ∂Bρ ,
∫

∂Bρ
vds= 0 (3.9)

in H1(Bρ). Due to the linearity of the considered partial differential equations, there
exists a solutionu∗ ∈ ∪m∈ZHm(D) of (3.7) if and only ifLρF∗ = g∗−v|∂Bρ . In con-
sequence, the claim follows from Corollary 3.1 and the representation (3.8).

3.2 Nonconcentric case

Let B ⊂ R
3 be an arbitrary closed ball of radiusR> 0, and choose a large enough

radiusρ ≥ 1 so thatBρ containsB. Without loss of generality, we may assume that
the center ofB lies on the positivex1-axis and denote it by(c,0,0); if this was not the
case, we could rotate the coordinate system. Let us introduce the mapping

I = IB,ρ : R
3∪∞ → R

3∪∞, x 7→ m+
b2

|x−m|2
(x−m),

where we choose

m= (a,0,0), b =
√

a2−ρ2,

and

a =
ρ2 +c2−R2

2c
+

√

(

ρ2 +c2−R2

2c

)2

−ρ2 .

Notice thata > ρ becauseR< ρ − c by assumption. This means, in particular, that
b > 0 is well-defined andm /∈ Bρ .
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The mapI is an inversionwith respect to the sphere of radiusb centered at
m∈ R3 [2, Definition 1.6.2], i.e.,I (x) lies on the line passing throughx andm, and

|x−m||I (x)−m|= b2, x 6= m. (3.10)

In particular,I is its own inverse and its Jacobian determinant is given by

detI ′(x) = −
b6

|x−m|6
, x 6= m. (3.11)

Moreover, somewhat tedious but straightforward calculations show that

I (Bρ) = Bρ and I (B) = BR∗ ,

where

R∗ =

√

a(ρ2−ac)
a−c

.

We define the (distributional)Kelvin transformH = HB,ρ : D ′(Bρ) → D ′(Bρ)
via

〈H v,ϕ〉 =

〈

v,
b5

| ·−m|5
ϕ ◦I

〉

, ϕ ∈ D(Bρ). (3.12)

A straightforward calculation shows thatH is its own inverse. Away from the singu-
lar support ofv, i.e., wherev can be represented by a smooth function, the above dual
evaluation can be interpreted as an integral. Consequently, the change of variables
y = I (x) results in (cf. (3.10) and (3.11))

H v(x) =
b

|x−m|
v(I (x)), I (x) /∈ singsuppv, (3.13)

which coincides with the traditional Kelvin transform ofv (cf. [2, Section 1.6]). No-
tice also that

(∆(H v))(x) =
b5

|x−m|5
(∆v)◦I (x), x∈ Bρ , (3.14)

for anyv∈C2(Bρ) (cf., e.g., [2, Theorem 1.6.3]).

Theorem 3.2 The function gρ ∈ L2
⋄(∂Bρ ) can be written as gρ = LρF for some F∈

E ′
⋄(Bρ) supported in B if and only if there exists a source F∗ ∈ E ′

⋄(Bρ) supported in
BR∗ and a potential u∗ ∈ ∪m∈ZHm(Bρ) satisfying

∆u∗ = F∗ in Bρ , u∗ = g∗ on∂Bρ ,
∂u∗

∂ν
= f ∗ on ∂Bρ (3.15)

for

g∗(x) = H gρ(x) and f ∗(x) = −
1
ρ

x · (x−m)

|x−m|2
H gρ(x), (3.16)

whereH gρ(x) = HB,ρgρ(x), x∈ ∂Bρ , is defined by formula (3.13).
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Proof We begin by assuming that there existsF ∈ E ′
⋄(Bρ) with suppF ⊂ B such

that gρ = u|∂Bρ , whereu is the solution of the source problem (2.3). Let us con-
sider the modified potentialu∗ = H u, whereH = HB,ρ is defined by (3.12). Since
u is smooth near the boundary∂Bρ due to the regularity theory of elliptic partial
differential equations [24],u∗ can be represented by the formula (3.13) in some (inte-
rior) neighborhood of∂Bρ . Thus, a straightforward calculation utilizing the identity
I (∂Bρ) = ∂Bρ shows thatu∗ satisfies the boundary conditions of (3.15). Moreover,
distributional differentiation and (3.14) give

〈∆u∗,ϕ〉 = 〈u∗,∆ϕ〉 =

〈

u,
b5

| ·−m|5
(∆ϕ)◦I (·)

〉

= 〈u,∆(H ϕ)〉 = 〈F,H ϕ〉

for all ϕ ∈D(Bρ). Since suppH ϕ = I (suppϕ) and suppF ⊂B, the dual evaluation
〈∆u∗,ϕ〉 vanishes if suppϕ ⊂ Bρ \BR∗ , which means that the sourceF∗ = ∆u∗ ∈
E ′(Bρ) is supported inBR∗ . Finally, using the harmonicity of

(H 1)(x) =
b

|x−m|
, x∈ Bρ ,

we deduce that
〈F∗,1〉 = 〈u,∆(H 1)〉 = 0,

which shows thatF∗ ∈ E ′
⋄(Bρ).

Assume next that there existsF∗ ∈ E ′
⋄(Bρ), with suppF∗ ⊂ BR∗ , and a potential

u∗ ∈ ∪m∈ZHm(Bρ) that satisfies (3.15)–(3.16). Let us consider the distribution u =
H u∗. We can use the smoothness ofu∗ near the boundary∂Bρ and (3.13) to deduce
that

u = gρ on ∂Bρ and
∂u
∂ν

= 0 on∂Bρ .

Moreover, in exactly the same way as above it follows that

〈∆u,ϕ〉 = 〈F∗,H ϕ〉

for all ϕ ∈ D(Bρ). Hence, the sourceF = ∆u∈ E ′(Bρ) is supported inI(suppF∗) ⊂
B. BecauseF is mean-free due to the homogeneous Neumann boundary condition
of u on ∂Bρ , it follows from the corresponding Dirichlet boundary condition that
LρF = gρ , which completes the proof.

The following corollary is the main building block of the reconstruction algorithm
to be introduced in Section 4 below.

Corollary 3.3 Let g∈ R(L). Then, we haveC g = Cρ gρ ⊂ B∩D if and only if

∞

∑
j=1

ρ2 j

(R∗ + ε)2 j

j

∑
k=− j

| jg∗
jk −ρ f ∗jk|

2 < ∞, (3.17)

for everyε > 0. Here, g∗ and f∗ are defined as in Theorem 3.2.

Proof The assertion follows by combining the line of reasoning leading to [15, Corol-
lary 5.4] with Theorem 2.2, Corollary 3.2 and Theorem 3.2.
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Fig. 4.1 Logarithms of the expression (4.1) as functions of the indexj for a fixed boundary potential
g and ρ = 1.4. Three different Kelvin transforms were used to obtain three sets of spherical harmonic
coefficients.

4 Algorithmic implementation

In order to employ the convergence test (3.17) in practice for someg= LF , a compu-
tational algorithm must be devised. A suitable method for a two-dimensional setting
was proposed in [16], where a test involving Fourier coefficients of boundary data
was handled as a geometric series obtained through logarithmic regression. A sim-
ilar approximation is a viable option also in our three-dimensional framework: The
logarithms of

1
2 j +1

j

∑
k=− j

∣

∣g∗jk −
ρ
j

f ∗jk
∣

∣

2
(4.1)

typically exhibit a linear behavior as a function ofj; see Figure 4.1. As a motivation
of this observation, notice that iff ∗ = 0, the sum (4.1) simplifies to the mean of the
spherical harmonic coefficients ofg∗ corresponding to the spatial frequencyj, which
is analogous to the basic idea of the two-dimensional algorithm in [16]; see also [5]
from which such a linear regression idea stems. Thus, substituting the approximation

1
2

log
1

2 j +1

j

∑
k=− j

∣

∣g∗jk −
ρ
j

f ∗jk
∣

∣

2
≈ a j +b, j ∈ N, (4.2)

in (3.17) yields the series

∞

∑
j=1

j2(2 j +1)
ρ2 je2(a j+b)

(R∗ + ε)2 j , (4.3)

which converges for allε > 0 if and only ifR∗ ≥ ρea. Because numerical inaccuracies
render the high-frequency components unreliable (cf. Figure 4.1), it is imperative to
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choose a cut-off level beyond which the coefficients are discarded. In practice, the
used indices are chosen on a case-specific manner through visual inspection.

Although the above procedure was derived to test if a given ball B containsC g, it
effectively applies the convergence test simultaneously to an infinite family of nested
closed balls,

{IB,ρ(Br) ⊂ R
3 | 0≤ r < ρ}. (4.4)

Indeed, the same inversion, i.e.,IB,ρ = I
−1
B,ρ , maps each ball in this family onto a

closed concentric ball insideBρ , and thus the convergence test analogous to (4.3)
for the ballIB,ρ(Br) is obtained by replacingR∗ in the denominator of (4.3) byr.
In consequence,C g⊂ IB,ρ(Br) if and only if r ≥ ρea — under the courtesy of the
assumption that (4.2) is exact. Obviously, this same reasoning remains valid in the
degenerate case when the closed ballB parameterizing the used inversion is just a
single point lying insideBρ , i.e., if we consider the inversion that mapsBρ onto itself
and some given pointz∈ Bρ to the origin. Such a mapping is obtained by setting
R = 0 in the formulae of Section 3.2; by slight abuse of notation,we denote it by
Iz,ρ , and the corresponding cut-off radius byR0 = R0(z,ρ) = ρea, where the decay
ratea∈ R is obtained from (4.2) forI = Iz,ρ (cf. (3.14) and (3.16)). To decrease
the number of free parameters, we only use inversions of thisform in the following.

In our numerical algorithm, we fixρ > 1, choose a discrete set of test points
Z ⊂ Bρ , and approximate the convex source support by

C g≈
⋂

z∈Z

Iz,ρ(BR0(z,ρ)). (4.5)

Theoretically, it would be advantageous to include inZ points that lie far away from
the origin: Then, larger balls would enter the intersectionon the right-hand side of
(4.5), and we would, in principle, obtain a better approximation of the convex set
C g. However, to make this possible, the parameterρ would have to be large, which
would make the algorithm more susceptible to (even numerical) noise since the high-
frequency information in the original datag is strongly diluted when extended onto
∂Bρ due to the ellipticity of the forward problem, cf. Lemma 3.1.According to our
experience, choosingρ = 1.4 and lettingZ be an evenly distributed set of points
on a sphere of radius 0.8 is a good compromise between theoretical accuracy and
stability of the algorithm; in all numerical studies presented below,Z is composed
of the vertices of a regular icosahedron, that is, 12 points.Take note that there is no
reason for including points close to the origin inZ: The balls centered far away from
the origin are — at least in theory — able to capture all features of the convex setC g.

5 Numerical studies

For any given boundary potentialg= LF , we employ two data sets of varying quality:
they are calledidealandrealistic, as explained in the following.

In order to find the limits for the functionality of our algorithm, we introduce
idealdata: The propagated boundary potentialgρ is simulated by directly solving the
extended source problem (2.3). For each test pointz∈ Z, the value ofgρ is evaluated
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at those points that are mapped byIz,ρ onto a fixed Cartesian grid{ρx jk} in spherical
coordinates on∂Bρ , wherex jk = (sinθ j cosφk, sinθ j sinφk, cosθ j ) with θ j = π j/J,
j = 1, . . . ,J, andφk = 2πk/K, k = 1, . . . ,K. Hence, the values ofg∗ and f ∗ are known
on {ρx jk} (cf. (3.14) and (3.16)), which makes the numerical computation of the
spherical harmonic coefficients needed in (4.2) as stable aspossible with the standard
routines, and thus the corresponding reconstructions should be optimal. According to
our experience, increasing the number of grid points further thanJ = 50,K = 99 does
not affect the quality of reconstructions considerably; these values forJ andK were
used in all of the numerical examples.

Naturally, the above described ideal data cannot be obtained in real life: One
cannot have direct access to values of the extended boundarypotentialgρ , but only
to those ofg, and, furthermore, the measured values ofg are in practice corrupted by
noise. Hence, we also considerrealisticdata: First, the point values ofg are evaluated
on the grid{x jk} ⊂ ∂D. Second, a significant amount of noise is added to these point
values, creating the realistic data set

gn(x jk) = g(x jk)+0.1n jk max
ν,µ

|g(xνµ)|, 1≤ j ≤ J, 1≤ k≤ K,

where{n jk} are realizations of a normally distributed random variablewith zero
mean and unit variance. To be able to use the algorithm of Section 4 with such data,
we approximate the spherical harmonic coefficients ofg from the noisy point values
{gn(x jk)}, and subsequently those ofgρ with the help of (3.1). Finally, for each test
pointz∈ Z we evaluateHz,ρgρ on the grid{ρx jk} ⊂ ∂Bρ by approximatinggρ with
its truncated spherical harmonic expansion, which then makes it possible to compute
the spherical harmonic coefficients ofg∗ and f ∗ (cf. (3.16)) needed in (4.2).

5.1 Inverse source problem

Let us first consider the actual inverse source problem for the Laplacian with two
different sources. The first source is a sum of two dipoles

F1 = α ·∇δp + β ·∇δq

wherep= (0.2,0.2,0.2), q= (−0.5,0,0) andδy denotes the delta distribution located
at some pointy ∈ D. The dipole moments are chosen to be of different orders of
magnitude, namelyα = (0,1,0) andβ = 10−2(1,0,0), in order to test how well the
proposed algorithm is able to detect small changes in the source term. With the help
of the Neumann function for the Laplacian in the unit ball [31]

N(x,y) =
1

4π





1
|x−y|

+
1

∣

∣

∣|y|x− y
|y|

∣

∣

∣

+ log





2

1−x ·y+
∣

∣

∣|y|x− y
|y|

∣

∣

∣







 , (5.1)

the solution of (1.1) corresponding toF1 can be written as

u1(x) = −α ·∇xN(x, p)−β ·∇xN(x,q), x∈ D, (5.2)
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Fig. 5.1 Left: The locations of the dipoles composing the sourceF1. Right: The reconstruction of the cor-
responding CSS from ideal data. In these and all the following images, the third coordinatex3 corresponds
to the vertical direction, and thex1 andx2 axes are oriented so that(x1,x2,x3) is a right-handed system.

where the gradients act on the first variable. The corresponding solution of (2.3),
which is needed when simulating ideal data, is obtained by replacingN(·, ·) in (5.2)
with the the Neumann function forBρ , i.e.,

Nρ(x,y) =
1
ρ

N(x/ρ ,y/ρ), x,y∈ Bρ .

The second investigated source is a linear function supported within the rectangular
cuboidE depicted in the left-hand image of Figure 5.2,

F2(x) = x1χE(x),

whereχE is the characteristic function ofE. Notice thatF2 is mean-free becauseE is
symmetric with respect to the(x2,x3) coordinate plane. Simulation of the boundary
data corresponding toF1 is trivial since the associated potentials are known explicitly.
The boundary data corresponding toF = F2 is generated by solving (1.1), or (2.3) if
ideal data is considered, using the finite element method.

The left-hand image of Figure 5.1 depicts the locations of the two dipoles com-
posing the sourceF1; the image also shows the projections of the dipoles onto the
coordinate planes, which is a convention that is used in all of our figures. The right-
hand image illustrates the corresponding reconstruction from ideal data. Compared
to the actual CSS, which is in this case the line segment between the pointsp and
q (cf. [15, Example 3.1]), the reconstruction is not totally accurate: It covers the
stronger dipole but extends only half way to the direction ofthe weaker one. More-
over, the reconstructed CSS is too roundish. The first of these two flaws could be fixed
by omitting some lowest frequenciesj in the linear regression model (4.2): Accord-
ing to our experience, only the stronger dipole is visible inthe spherical harmonic
coefficients corresponding to low spatial frequencies whereas high-frequency coef-
ficients contain information about both dipoles. On the other hand, the second flaw
could be tackled by increasing the radius of the extended domain Bρ , which would
enable the use of larger balls in (4.5) and allow, in principle, a more accurate recon-
struction. Unfortunately, this would also make the algorithm more sensitive to noise.
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Fig. 5.2 Left: The rectangular cuboidE that is the support of the sourceF2. Right: The reconstruction of
the corresponding CSS from ideal data.

Because we want our reconstruction method to be independentof the properties of
the source in question and to function in the same form for both ideal and realistic
data, we have refrained from making these ‘improvements’ toour algorithm.

The reconstruction corresponding to the second sourceF2 and ideal data is shown
in the right-hand image of Figure 5.2; recall that the left-hand image depicts the
support ofF2, i.e., E. Although the reconstruction is smaller thanE, its location is
accurate.

Figure 5.3 shows the reconstructions provided by our algorithm for realistic data
and the two sourcesF1 andF2 introduced above. In comparison to the ideal case,
the most apparent deterioration is that the reconstructioncorresponding toF1 is no
more affected notably by the dipole with the smaller moment at q. This is not very
surprising as the influence that the weaker dipole has on the boundary measurement
is easily covered in noise. Although neither of the two reconstructions captures any
information on the size or the shape of the corresponding source, one can argue that
the algorithm still provides some information on the approximate location of the tar-
get source in both cases. In fact, it seems that the algorithmis relatively robust with

Fig. 5.3 Reconstructions corresponding to realistic data. Left: The target sourceF1 composed of two
dipoles. Right: The target sourceF2 supported on the rectangular cuboidE.
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respect to measurement noise as the reconstruction corresponding toF2 is not notably
affected by the 10% noise level in the data.

5.2 Electrical impedance tomography

Let us consider the elliptic boundary value problem

∇ · (σ∇v) = 0 in D,
∂v
∂ν

= δy+ − δy− on ∂D,

∫

∂D
vds= 0, (5.3)

wherey+,y− ∈ ∂D, y+ 6= y− are fixed current source locations and the distribu-
tions δy± are Dirac deltas on∂D. In the numerical experiments below, we pick
y+ = (1,0,0) andy− = (−1,0,0). The conductivityσ ∈ L∞(D), σ ≥ c > 0, is as-
sumed to be such thatΩ := supp(σ −1) is a compact subset ofD, i.e.,σ = 1 in some
interior neighborhood of the boundary∂D. Take note that the third condition of (5.3)
should, in fact, be understood as dual evaluation between the tracev|∂D and the unit
function on∂D (cf. [24, Chapter 2, Section 7]). Sinceδy± ∈ H−1−ε(∂D), ε > 0, it
follows from the the material in [17, Appendix] that (5.3) has a unique solution in
H1/2−ε(D)∩H1

loc(D); see also [24, Chapter 2, Remark 7.2]. The EIT problem con-
sidered in this work is to deduce information on the inhomogeneityΩ from the value
of the electromagnetic potentialv measured on∂D.

Letv0 be the reference potential, i.e., the solution of (5.3) corresponding toσ ≡ 1.
For example, the same reasoning as in [18, Proof of Theorem A.2] shows thatv0 can
be written explicitly as

v0(x) = N(x,y+)−N(x,y−), x∈ D,

whereN(·, ·) is the Neumann function for the Laplacian in the unit ball given by (5.1).
It follows trivially that the relative potentialw = v−v0 is the solution of (1.1) for

F = F(y±,σ) = ∆v∈ E
′
⋄(D)∩H−1(D),

which is supported inΩ . Hence, settingg = w|∂D, we may use the algorithm de-
scribed above to approximate the corresponding convex source supportC g, which is
a nonempty subset of the convex hull of the inhomogeneityΩ (cf. [16]) — assuming
that the measured relative boundary potentialg is nontrivial.

In practice, the datag can be collected with three (infinitely small) electrodes
(cf. [14]): Constant flux of current is maintained between two electrodes at fixed
locationsy+ andy−. Meanwhile, the third electrode, which is moved along∂D and
not used for current injection, measures the boundary potential. Naturally, one needs
also to be able to carry out this same measurement without theinhomogeneityΩ in
D or, alternatively, compute the reference boundary potential v0|∂D numerically.

Before moving on to the numerical examples, let us consider briefly how the rel-
ative potentialw can be simulated numerically. By applying the differentialoperator
∇ · (σ∇·) onw, it follows that

∇ · (σ∇w) = −∇ · (σ∇v0) in D,
∂w
∂ν

= 0 on∂D,

∫

∂D
wds= 0. (5.4)
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Fig. 5.4 Top left: The semitoroidal inclusion. The other three images show reconstructions from ideal data
corresponding to different conductivity profiles inside the inclusion. Top right:σ ≡ 2 in Ω . Bottom left:
σ(x) = 1+(x3−0.1)/0.6 in Ω . Bottom right:σ(x) = 1+0.5cos(10x1) in Ω .

Sinceσ = 1 in some interior neighborhood of∂D andv0 is smooth in the interior of
D, the source term

−∇ · (σ∇v0) = ∇ · ((1−σ)∇v0)

belongs toE ′
⋄(D)∩H−1(D). Hence, standard variational argumentation (cf., e.g., [7])

shows that (5.4) has a unique solution, i.e., the relative potential w, which is the
unique solution of the problem

∫

D
σ∇w ·∇φ dx =

∫

D
(1−σ)∇v0 ·∇φ dx for all φ ∈ H1(D) (5.5)

among the elements ofH1(D) having zero mean on∂D. The relative boundary poten-
tials needed for the numerical studies below are simulated by solving the variational
equation (5.5) — or in the case of ideal data the one obtained by replacingD with Bρ
everywhere in (5.5) — using the commercial finite element solver Comsol.

Let us first consider the case that the inclusionΩ is the semitorus depicted in the
top left image of Figure 5.4. The other three images of Figure5.4 show the recon-
structions produced by our algorithm for ideal data and three different conductivity
distributions inside the inhomogeneity: In the top right image the conductivity of the
inclusion is identically 2, in the bottom left imageσ(x) = 1+(x3−0.1)/0.6 in Ω ,
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Fig. 5.5 Left: The inhomogeneity composed of a ball and a cube with conductivities 0.5 and 2, respec-
tively. Right: The reconstruction of the corresponding CSSfrom ideal data.

and in the bottom right imageσ(x) = 1+0.5cos(10x1) in Ω . Note that the semitorus
lies between the planesx3 = −0.2 andx3 = 0.4, and thus all of these conductivity
distributions take values in the range[0.5,2]. The algorithm finds the location of the
inhomogeneity accurately in all three cases. However, while the reconstructions cor-
responding to the first and third conductivity profiles are too small, for the second
profile the size of the inclusion is reproduced accurately. According to this test, the
reconstruction method is not sensitive only to the shape of the inclusion but also to
the conductivity distribution inside the inclusion.

Our second inhomogeneity is the disconnected union of a small ball and a cube
shown in the left-hand image of Figure 5.5. The conductivityinside the ball is iden-
tically 0.5 and inside the cube identically 2. The reconstruction of the corresponding
CSS, obtained using ideal data, is presented in the right-hand image of Figure 5.5.
Once again, the algorithm finds the location of the inhomogeneity accurately, but the
reconstruction is slightly too small.

Fig. 5.6 Reconstructions corresponding to realistic data. Left: The semitoroidal inclusion with the con-
ductivity profileσ(x) = 1+(x3−0.1)/0.6. Right: The inhomogeneity composed of a ball and a cube with
conductivities 0.5 and 2, respectively.
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Our final numerical test considers locating the above introduced inclusions, i.e.,
the semitorus and the union of the small ball and cube, from realistic data; for the
semitorus we choose the conductivity profileσ(x) = 1+(x3−0.1)/0.6. The results
are illustrated in Figure 5.6. As for the inverse source problem with realistic data, the
reconstructions in Figure 5.6 point out the approximate locations of the correspond-
ing inhomogeneities but do not reveal any further details. Actually, the information
contents of these reconstructions are, arguably, approximately the same as of the cor-
responding ones for ideal data in Figures 5.4 and 5.5. This isfurther evidence for the
robustness of our algorithm with respect to measurement noise.

Although our algorithm does not reconstruct the conductivity, but only aims at
revealing information about the support of a conductivity inhomogeneity, it should be
noted that our algorithm also uses far less data than most other direct reconstruction
methods for EIT: Here, we work with only one pair of boundary current and potential,
not with the whole Neumann-to-Dirichlet map (cf., e.g., [3,29]).

6 Concluding remarks

We have introduced a numerical technique for reconstructing the convex source sup-
port corresponding to the Poisson equation in bounded three-dimensional domains.
The method is based on replacing the Möbius transformations needed in the cor-
responding two-dimensional algorithm [16] by inversions with respect to suitable
spheres and introducing the associated Kelvin transforms.The functionality of the
algorithm was demonstrated by applying it both to the actualinverse source prob-
lem and to the obstacle problem in EIT with only one relative boundary potential as
measurements.
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