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Abstract This work extends the algorithm for computing the convexsesupport

in the framework of the Poisson equation to a bounded thiestsional domain.

The convex source support is, in essence, the smallest g convex set that
supports a source that produces the measured (nontrigialjoth the boundary of the
object. In particular, it belongs to the convex hull of th@gart of any source that
is compatible with the measurements. The original algorifar reconstructing the
convex source support is inherently two-dimensional asilizes Mobius transfor-

mations. However, replacing the Mobius transformatiopgiersions with respect
to suitable spheres and introducing the correspondingiiKétansforms, the basic
ideas of the algorithm carry over to three spatial dimersidhe performance of the
resulting numerical algorithm is analyzed both for the nseesource problem and for
electrical impedance tomography with a single pair of b@updurrent and potential
as the measurement data.
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1 Introduction

We consider the inverse source problem for the Laplaciamimsulated, bounded
domainD c R3. More precisely, our goal is to introduce a noniterative etioal
algorithm for extracting information about the mean-fre@npactly supported (dis-
tributional) sourcéd- in the Poisson equation

Au=F inD, @:O onadD, / uds=0 (1.2)
ov aD
from the value of the potentiai on the boundargD. Source problems of this kind
are encountered, e.g., @ectroencephalograpf$£EG) and geophysics; see [L3}, 19]
and the references therein.

It is easy to see that there exists an infinite number of ssutw produce the
same boundary potential @D (cf., e.g., [8.1B]). This issue of nonuniqueness is of-
ten circumvented by assuming some specific form for the aibdssources, e.g.,
Dirac deltas, dipoles, or characteristic functions; §68J80[19,20, 21, 30]. Il 122],
Kusiak and Sylvester introduced an alternative approatieframework of inverse
scattering by introducing theonvex scattering supporivhich they defined as the
intersection of the convex hulls of the supports of all sesithat are compatible with
a given far field pattern of a scattered wave. The convexesiradt support has many
useful properties: It is, in essence, the smallest convigthaecarries a source that is
compatible with the measured data, it is nonempty for neiairmeasurements and,
remarkably, it can be defined in a constructive manner thables numerical im-
plementation. Generalizations of the convex scatteripgastt formalism have since
been studied in several articles: for inverse scatterirdythe Helmholtz equation
in [411[23[25,.217,28] and for electrostatics aldctrical impedance tomography
(EIT) in [L2/15[16, 11, 18], where the teroonvex source suppof€SS) is used in-
stead of convex scattering support.

Although the background theory for the CSS is independetite$patial dimen-
sion, the corresponding algorithm, introducedinl [16] niserently two-dimensional
as it utilizes tools of complex analysis — most notably, Misttransformations. The
purpose of this work is to demonstrate that the CSS recartgintechnique can, in
fact, be carried over to three dimensions by replacing tlieMdébius transformations
by Kelvin transforms corresponding to inversions with exgpto suitable spheres;
take note that some of the related analysis was presentsatiglin [26]. Since the
interplay between Kelvin transforms and the homogeneousrié&n boundary con-
dition of (T.1) is nontrivial, the resulting numerical atigbm is slightly more com-
plicated than its counterpart in two dimensions. Be thattasay, our numerical
experiments show that the three-dimensional version ti/ides information on
the location and the size of the target source without anyr fanowledge about its
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physical properties. Moreover, we also demonstrate thatitgorithm can localize
inhomogeneities using a single relative boundary poteoti&IT as the input data;
for more details about EIT, we refer to the review articleé §[29].

This text is organized as follows. In Sectibh 2, we recall die€inition and the
basic properties of the CSS. Sectldn 3 describes a corigtrweay of defining the
CSS in three spatial dimensions; in particular, the needest$ions and Kelvin trans-
forms are defined there. The numerical algorithm is intreduio Sectiod4 and its
functionality is tested with simulated data in Sectidn Safy, Sectior[b lists the
concluding remarks.

2 Convex source support

In this section, we recall the definition and properties ef@ES; for a more complete
review of the results needed in the subsequent sectionsfertoe[16, Section 2].
Assume thaD ¢ R? is a bounded, simply connected domain with a smooth enough
boundary. As noted irl.]15], the problef{l.1) has a well definmique solution

U € UnezH™(D) for any distributional sourcE in

£(D) = {ve £'(D) | {v.1) =0},

where(-,-) : 8'(D) x & (D) — C denotes the dual evaluation between compactly sup-
ported distributions and smooth functionddn(To be precise[[15,16] consider only
the two-dimensional case, but the spatial dimension playsote in the considera-
tions of this section.) Moreover, the potentiais smooth in some neighborhood of
the boundaryD, and thus the linear operator

L:F—ulpp.  &(D)—LE(9D)

is well defined. Herel,2(dD) denotes the space of square integrable mean-free func-
tions ondD.

It is easy to see thdt is not injective and not even the supportfois uniquely
determined by the boundary measurenget LF (cf. [15/22]). What is more, the
intersection of the supports of the sources compatible with in general empty
(cf. [22]), and this may hold even if the holes in the suppares included before
the intersection[15]. However, intersecting the conveltshof the supports of the
compatible sources does provide information on the originarce as explained in
the following (cf. [15[16]).

Theconvex supporsuppF of F € £&(D) is the convex hull of the support supp
of F. Furthermore, theonvex source suppoég is given by

¢g= (") SUpRF (2.1)
LF=g

if ge Z(L), and€gis defined to be the convex hull Bhotherwise. It can be shown
that#g is essentially the smallest convex set that carries a sdatés compatible
with g; the following theorem is a restatement [0f[16, Theorem.Hg&}e and in the
following, N¢(Q) denotes the opesrneighborhood of a se®  R3.
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Theorem 2.1 Let ge Z(L). Then, given anyg > 0, there exists a source:f€ &, (D)
such that Lk =g and

€9 C suppFe C Ng(€Q).
Moreover, g = 0 if and only if g= 0.

2.1 Extension to a ball

In the following sections we describe our detection aldwnitfor the case where
the domain of interest is a ball. To motivate this choice,ustconsider how the
knowledge of the measuremembn 0D, corresponding to a source containedin
enables a stable way of constructing the measurement porrdig to the same
source and an origin-centered b}l © D of large enough radiys > 0. At the same
time, we will explain how the convex source support is affeldty such an extension
process.
Let us consider the transmission problem

Aw=0 inBy\dD, d_vv:0 ondBy, . wds =0,
av JoB
a + a — P (22)
w w o
5 v =0, wr—w~ =g ondD,

whereg = u|,p for the solution of [T11) and the superscrigisand — denote traces
taken from withinB,, \ D andD, respectively. The probleri{2.2) has a unique solution
w, € HY(D) @ H(B, \ D), which can be presented, e.g., in the form of a double
layer potential. We denote the zero continuation td the whole 0B, by up and set

Up = Up+ W,. According to [16, Lemma 2.2], this, € UnezH™(Bp) is the unique
solution of the Poisson problem

AU=F inB,, %:o ondB,, / uds=0. (2.3)
9B,

Hence, given the boundary potentigd L2(9D) corresponding td {11 1) with a source
F € &/(D) C &/(By), solving [Z2) provides a stable way to compute the ‘propedja
datag® € L2(9B,) corresponding td{213) and the very same source.

LetL, be the operator that maps a souffce & (B, ) onto the Dirichlet boundary
value of the solution td{213) o#B,. The convex source supportgf ¢ Lg(aBp) is
defined in accordance with{2.1), i.e.,

%0° = [ SUprF (2.4)
LpoF=gP

if 9° € Z(Lp), and%,gP = B, otherwise. The following theorem, which relatéy
and¢,9P, is a simplified version of[16, Theorem 2.3].

Theorem 2.2 I1f g = LF and = L,F for some Fe &/(D) C &/(B,), then%,g° C
€9, where equality holds if D is convex.
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Notice that in general the setsy and%,g° of TheorenZZP do not coincide [
is nonconvexX[16, Example 1]. To sum upDifis convex, the convex source supportis
not affected by extending the source problem to a ball coirtgithe original domain
D. If D is nonconvex, this procedure can make the convex sourceogugpaller.
However, in any case the new convex source support is a ndgesupset of the
convex hull of the unknown source generating the originah{rivial) measurement.

If we confine ourselves to looking for the convex source suppmresponding to
the original source generating the data and any convex doemaiosing the original
domain, up to solving[{212), we may assume that our domaimtefést is a ball.
After appropriate scaling, this ball can be considered tthieeunit ball. This is the
convention we will adopt for the rest of this work.

3 Constructive approximation of the CSS in 3D

Henceforth, we will assume thét is the unit ball. In this section, we will build a
criterion for deciding if the convex source supp®@f lies in the intersection ob
and a given closed ball  R®. Since the closed balls enclosing a closed, convex set
define that set uniquely, this provides a tool for reconsiingcs’g.

LetF € &/(D) C &.(Bp), p > 1, be a fixed but unknown source and intergyet
LF andgP = LyF as functions of the pole# € [0, 1 and the azimuthap € (—, 1]
angles. We denote the spherical harmonic coefficiergsaofig® by {gj«} and{gfk},
respectively, i.e.,

noen non
gjk:/ / gY jksin@do dg, gfk:/ / 9°Yiksin6dade,
—tJo —mJ0

wherej € No, —j <k < j, and{Yc} are the (orthonormalized) complex spherical har-
monics (cf. [1]) withY jc denoting the complex conjugategk. This same subindex
notation is used for the spherical harmonic coefficientstbéofunctions as well.
The following lemma provides a simple relation between theva sets of spherical
harmonic coefficients; se2 [[16, Lemma 3.1] for the relatsdltén two dimensions.
(Note thatggg = ggo = 0 due to the zero mean conditions[of{1.1) dndl(2.3); thishold
also for most of the other functions and distributions cdeséd below.)

Lemma 3.1 The spherical harmonic coefficients of g arftlage related through

Ok

=g JEN —j<k<. (3.1)

Proof In our concentric framework the solution ¢f{P.2) can be give spherical
coordinates as

gjk%(pizjil*l)erjk(ea(p% re (051)5

Wy (r,0,0) =4 © . L . .
P Zng (ijtllpizjilrj + 2j1+1r7]71) ij(ea(p)a re (1ap)
N
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In particular, according to the above considerations, we ha

[

j
P(6.0)=w(p.0.0)=5 5 ey,
J 7

which completes the proof.

3.1 Concentric case

The first step in building our algorithm for reconstructi# is introducing a test
for deciding whethefr’g is enclosed by a closed ball of radius<R < 1 about the
origin.

Theorem 3.1 The function g= L2(dD) can be written as g- LF for some Fe &/(D)
supported irBg C D if and only if
jm

o j
PN=193 |9jkl? < o, 3.3)

ERNE
for some ne Z.

Proof The claim follows from a similar argumentation aslinl[15, lram5.1], which
is the corresponding result in two dimensions. Therefore present here only the
general line of reasoning and skip some of the details.

Assume that there exisise &/(D) with suppF C Bgr such thag = u|sp, Whereu
solves the source problefi{ll.1). As the potentiaglongs taH' (D) for somel € Z,
it follows from [24, Chapter 2, Theorems 6.5 and 7.3] tpat= (ulp\g,)|o8, is Well

defined and belongs td'~/?(Bg). We denote the spherical harmonic coefficients
of Y by

T, _
vic= [ [ uR.0)(0.9)sin0d0dp. | No, —j k<],
Al
where the integral should be understood in the sense of dakiation between dis-

tributions and smooth functions. By using the unique sdlitatof the boundary
value problem (cf.[[24, Chapter 2, Remark 7.2])

Aw=0 inD\Bg, ‘;—‘\'j":o ondD, w=1 ondBr (3.4)
in H'(D\ Br), it is easy to see that we have the representation

Yik

L6 9 =3 TR+ R I ((+Dr+jr ) Y(6,9),  (35)
I

for R<r < 1. In particular, we deduce that

i+ 1)l

j+1 . ick<i
(J+1)RJ+JR11—CR |Wikl, jeEN, —j<k<j

9| =
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As a consequence,

o 2I 1 j
Z RZJ Z |ng|2<CRZZ 12| ! Z |LIJJ|(|2<CHI,UHH| 1/2 (0BR) < @,

k== =1 K=

where the second to last inequality follows, e.g., from [2hapter 1, Remark 7.6]
andC > 0 is a generic constant. This proves the ‘only if’ part of thegro.

Suppose next thdi(3.3) holds for some Z. Without loss of generality, we may
assume than= —2| — 1 for somd < Ny. Let us consider the distribution

o ]

u(r,8,p) = Z z

J=1k=—]j

Ojk
2j+1

(G+Dr+jr 71 Y(6, 9), re(R1).

It is easy to see that has the Cauchy dai@,0) on dD. Moreover, it follows from
B3) thatu is well defined and harmonic i@ \ B and that the trace af on dBg,

@ ] .
Jjk . i io—j—1
U(Rvea(p) = : (J +1)RJ+JR : Y'k(ea(p)a
jZlk:Zj21+1( ) )

belongs td—|*'*1/2(dBR). Due to the well posedness of the boundary value problem
(@3), we thus deduce thate H'(D\ Bgr). By continuingu as zero t@Bg and setting

F = Auc H'2(D)n&.(D), we have constructed a source that is supported on
0Bg C Br and satisfie F = g. This completes the proof.

The test of Theoreln 3.1 carries easily over to the case ofrthygagated datg?
and the extended domald).

Corollary 3.1 The function § € L2(9B,) can be written as &= L,F for some
F € &/(Bp) supported irBg C By, if and only if

Zl R/p 2J z |ng|2 (36)

for some e Z.
Proof The claim follows from a simple scaling argument.

In the following subsection, we will employ Kelvin transfos to deal with the
case when the test ball is not centered at the origin. AlthdCgjvin transforms do
preserve harmonicity, they differ from the conformal magysi of a two-dimensional
space in the sense that Kelvin transforms do not retain hemsmus Neumann bound-
ary conditions. Hence, we must consider the case of nonhenemys Neumann data
before moving forward.
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Corollary 3.2 Let (g%, f*) € L2(9B,) x L2(dB,) be a given pair of Cauchy data
on dB,. There exists a source*Fe &/(B,) supported inBg C B, and a potential
U* € UmezH™(Bp) such that

ou*
ov

Au*=F" inBp, u*=g" ondBy, =f* ondBy (3.7)

if and only if

o m j

J sk * 12
Zi(R/p)zj kzl|19jk*Pka| < ®,
j=

==]
for some ne Z.

Proof Let us introduce the auxiliary potential

o |
V(r7 9,(p) =p Z (r/p)J Z fj*kYJ'k(evfp)v (38)

which represents the unique solution of the Neumann boyndéue problem

ov

Av=0 inBp, Em

—* ondB,, / vds=0 (3.9)
98,

in H1(B,). Due to the linearity of the considered partial differehgiquations, there
exists a solution” € UmezH™(D) of @) if and only ifLoF* = g* —v|gg,. In con-
sequence, the claim follows from Corolldry3.1 and the repnéation[(318).

3.2 Nonconcentric case

Let B c R® be an arbitrary closed ball of radii®> 0, and choose a large enough
radiusp > 1 so thatB, containsB. Without loss of generality, we may assume that
the center oB lies on the positive;-axis and denote it bic, 0, 0); if this was not the
case, we could rotate the coordinate system. Let us inteothecmapping
b2
I =Ipp RPUw R, XMt —— (x—m),
x—m2

m:(aaoao)a b= \/ a27p27

2 2 21 2_R2\?2
_ p?+c2-R pP+c2—R\*
a= 2c +\/( 2c ) p

Notice thata > p becausdR < p — ¢ by assumption. This means, in particular, that
b > 0is well-defined anan ¢ B,.

where we choose

and
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The map.# is aninversionwith respect to the sphere of radibscentered at
me R3 [2, Definition 1.6.2], i.e..# (x) lies on the line passing througtandm, and

X—m|[.Z(xX)—m =b%  x#m (3.10)
In particular,.# is its own inverse and its Jacobian determinant is given by
/ b
detﬂ (X) == —m, X;é m. (311)

Moreover, somewhat tedious but straightforward calcotetishow that

where
a(p?—ac)

R =
a—c

We define the (distributionalelvin transformsz” = s, : 2'(Bp) — 2'(Bp)
via o5
<<%0V,¢><V,w¢of>, ¢€.@(Bp) (312)
A straightforward calculation shows tha#’ is its own inverse. Away from the singu-
lar support o, i.e., wherev can be represented by a smooth function, the above dual
evaluation can be interpreted as an integral. Consequémndychange of variables

y=#(x) results in (cf. [3200) and (31 1))
b

(#(¥),  F(x) ¢singsupp, (3.13)
which coincides with the traditional Kelvin transformwf{cf. [2, Section 1.6]). No-
tice also that

b5

(A(HV))(x) = X—mmp

(Av)o 7 (X), X € Bp, (3.14)

for anyv € C?(Bp) (cf., e.g., [2, Theorem 1.6.3]).

Theorem 3.2 The function § € L2(9B,) can be written as§= L,F for some Fe
&!(Bp) supported in B if and only if there exists a sourced &/ (B,) supported in
Br- and a potential ti € UmezH™(B,) satisfying

Au*=F" inBp, u*=g" ondBp, ZL‘J/ =f* ondB, (3.15)
for
. . 1x-(x—m)
gx)=2#9(x) and f*(x)= o —mZ HP(x), (3.16)

wheresZgP (x) = 8 p9° (X), X € 9By, is defined by formuld {3 3).
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Proof We begin by assuming that there exigts= &/(B,) with suppF C B such
thatgP = u|‘;B , Whereu is the solution of the source problefn{2.3). Let us con-
sider the mOdIerd potential* = 7u, where.# = /3, is defined by[(312). Since

u is smooth near the boundadB, due to the regularity theory of elliptic partial
differential equation§24)y* can be represented by the formdla(3.13) in some (inte-
rior) neighborhood 08B,. Thus, a straightforward calculation utilizing the idéyti

7 (0Bp) = 0B, shows thau* satisfies the boundary conditions BI{3.15). Moreover,
distributional differentiation and{3.114) give

b5
(@ 9) = (80} = (0.~ c(80)0 7)) = WALD) = (F.A D)

forall ¢ € 2(Bp). Since supp?’¢ = .7 (suppp) and supff C B, the dual evaluation
(Au*, ¢) vanishes if supp C B, \ Br-, which means that the sourée = Au* €
&"(Bp) is supported iBgr-. Finally, using the harmonicity of

b

(D = e

X € Bp,
we deduce that
(F*,1) = (u,A(s#1)) =0,
which shows thaE* € &/(By).
Assume next that there exists € &(B,), with suppF* C Br, and a potential
u* € UmezH™(Bp) that satisfies[{315)E(3]16). Let us consider the distidout =
Z£u*. We can use the smoothnesaiviear the boundargB, and [3IB) to deduce

that

u=g’ ondB, and %:O onogB,.

Moreover, in exactly the same way as above it follows that
(Au,¢) = (F",29)

forall ¢ € 2(Bp). Hence, the sourde = Au € &'(B,) is supported il (suppF*) C

B. Becausd- is mean-free due to the homogeneous Neumann boundary ioondit
of u on dBy, it follows from the corresponding Dirichlet boundary cdiwh that
LoF = g?, which completes the proof.

The following corollary is the main building block of the @tstruction algorithm
to be introduced in Sectidn 4 below.

Corollary 3.3 Letge Z(L). Then, we hav&'g = ¢,g° C BND if and only if

Z R*+£ R+ €)2] z |Jgjk_pfjk| < oo, (3.17)

for everye > 0. Here, g and f* are defined as in TheordmB.2.

Proof The assertion follows by combining the line of reasoningiegto [15, Corol-
lary 5.4] with Theoreni 212, Corollafy-3.2 and Theorend 3.2.
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Fig. 4.1 Logarithms of the expressiofiL{}#.1) as functions of the ingldar a fixed boundary potential
g andp = 1.4. Three different Kelvin transforms were used to obtaire¢hsets of spherical harmonic
coefficients.

4 Algorithmic implementation

In order to employ the convergence t€si(8.17) in practicedmeg = LF, a compu-
tational algorithm must be devised. A suitable method fav@tlimensional setting
was proposed ir[16], where a test involving Fourier coedfits of boundary data
was handled as a geometric series obtained through logacittegression. A sim-
ilar approximation is a viable option also in our three-dirsienal framework: The
logarithms of
1 & P2

Zj—Hk:Zj‘gjk*Tfjk‘ (4.1)
typically exhibit a linear behavior as a function pfsee Figur€Zl1. As a motivation
of this observation, notice that ff* = 0, the sum[{4]1) simplifies to the mean of the
spherical harmonic coefficients gf corresponding to the spatial frequeri¢yvhich
is analogous to the basic idea of the two-dimensional alyorin [1€]; see alsd |5]
from which such a linear regression idea stems. Thus, sutdstj the approximation

1 1 J " w12 . .
5'092j—+1 Z \gjkf?fjk\ ~aj+b, jeN, 4.2)
k=]
in BI1) yields the series
o 2j2(aj+b)
200 P

which converges for at > 0 if and only ifR* > p€?. Because numerical inaccuracies
render the high-frequency components unreliable (cf. fei@gi), it is imperative to
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choose a cut-off level beyond which the coefficients areadtbed. In practice, the
used indices are chosen on a case-specific manner througth wispection.
Although the above procedure was derived to test if a givéirBeontainsg’g, it
effectively applies the convergence test simultaneowasintinfinite family of nested
closed balls,
{Asp(Br) CR3|0<T < p}. (4.4)

Indeed, the same inversion, i.e/g o = fgﬁ, maps each ball in this family onto a
closed concentric ball insidB,, and thus the convergence test analogou§ig (4.3)
for the ball 75 »(By) is obtained by replacing&* in the denominator of{Z13) by.
In consequencer’g C %o (By) if and only if r > pe* — under the courtesy of the
assumption thaf{4.2) is exact. Obviously, this same réagaemains valid in the
degenerate case when the closed Baflarameterizing the used inversion is just a
single point lying insiddB,, i.e., if we consider the inversion that mafsonto itself
and some given poirt € B, to the origin. Such a mapping is obtained by setting
R = 0 in the formulae of Sectioh3.2; by slight abuse of notatiwa,denote it by
42 p, and the corresponding cut-off radius By = Ry(z p) = pe?, where the decay
ratea € R is obtained from[(412) fory = %, (cf. (213) and[(316)). To decrease
the number of free parameters, we only use inversions ofdhis in the following.

In our numerical algorithm, we fiyo > 1, choose a discrete set of test points
Z C Bp, and approximate the convex source support by

(gg ~ m fz,p (ER{J(ZP)) (45)

zeZ

Theoretically, it would be advantageous to includ&ipoints that lie far away from
the origin: Then, larger balls would enter the intersectianthe right-hand side of
#3), and we would, in principle, obtain a better approxioraof the convex set
¢9. However, to make this possible, the parametevould have to be large, which
would make the algorithm more susceptible to (even numigricése since the high-
frequency information in the original dagpis strongly diluted when extended onto
0By due to the ellipticity of the forward problem, cf. Lemfal3Aktcording to our
experience, choosing = 1.4 and lettingZ be an evenly distributed set of points
on a sphere of radius.® is a good compromise between theoretical accuracy and
stability of the algorithm; in all numerical studies preshbelow,Z is composed
of the vertices of a regular icosahedron, that is, 12 poirgke note that there is no
reason for including points close to the originAnThe balls centered far away from
the origin are — at least in theory — able to capture all fezduf the convex séfg.

5 Numerical studies

For any given boundary potentig= LF, we employ two data sets of varying quality:
they are calleddeal andrealistic, as explained in the following.

In order to find the limits for the functionality of our algthrim, we introduce
idealdata: The propagated boundary poterifals simulated by directly solving the
extended source problefi{R.3). For each test poinZ, the value ofyf is evaluated
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at those points that are mapped.By, onto a fixed Cartesian grigox; } in spherical
coordinates o@B,, wherexjx = (sin6; cosg, sing; sing, cosd;) with 8; = mj/J,
i=1,...,J,andg = 2rk/K, k= 1,...,K. Hence, the values gf andf* are known
on {pxjk} (cf. (3I3) and[[316)), which makes the numerical compurtadf the
spherical harmonic coefficients neededinl(4.2) as stalgessible with the standard
routines, and thus the corresponding reconstructiondagiewptimal. According to
our experience, increasing the number of grid points furttenJ = 50,K = 99 does
not affect the quality of reconstructions considerablgstavalues fod andK were
used in all of the numerical examples.

Naturally, the above described ideal data cannot be oldtdmeeal life: One
cannot have direct access to values of the extended boupdtentialg®, but only
to those ofy, and, furthermore, the measured valueg afe in practice corrupted by
noise. Hence, we also considealisticdata: First, the point values gfare evaluated
on the grid{x;«} C dD. Second, a significant amount of noise is added to these point
values, creating the realistic data set

On(Xji) = 9(Xji) +0.InjkMaxg(xvy)l, 1<j<J, 1<k<K,

where {njc} are realizations of a normally distributed random variabith zero
mean and unit variance. To be able to use the algorithm of@ddtwith such data,
we approximate the spherical harmonic coefficientg fsbm the noisy point values
{gn(xjk)}, and subsequently those gff with the help of [31L). Finally, for each test
pointz € Z we evaluate’zz ,g° on the grid{ px;c} C 9B, by approximating® with
its truncated spherical harmonic expansion, which thenes#tlpossible to compute
the spherical harmonic coefficientsgifand f* (cf. (318)) needed if{4.2).

5.1 Inverse source problem

Let us first consider the actual inverse source problem ferLiplacian with two
different sources. The first source is a sum of two dipoles

F=a-08+pB- 08

wherep=(0.2,0.2,0.2), q= (—0.5,0,0) andd, denotes the delta distribution located
at some poiny € D. The dipole moments are chosen to be of different orders of
magnitude, namely = (0,1,0) andf = 10-2(1,0,0), in order to test how well the
proposed algorithm is able to detect small changes in theesdarm. With the help

of the Neumann function for the Laplacian in the unit ball][31

N(x,y)fi 1 + 1 +log 2
’MX* \w

_ SNCEY
4\ =y 1-x-y+ [y |

the solution of [TI) corresponding @ can be written as

ur(X) = —a - OxN(X, p) — B - OxN(x,q), xe D, (5.2)
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Fig. 5.1 Left: The locations of the dipoles composing the solfceRight: The reconstruction of the cor-
responding CSS from ideal data. In these and all the follgunmages, the third coordinatg corresponds
to the vertical direction, and the andx, axes are oriented so th@t, x2,x3) is a right-handed system.

where the gradients act on the first variable. The correspgrsblution of [ZB),
which is needed when simulating ideal data, is obtained placingN(-,-) in (&2)
with the the Neumann function fdg,, i.e.,

1
No(X,y) = EN(X/p,y/p), X,y € Bp.

The second investigated source is a linear function supgarithin the rectangular
cuboidE depicted in the left-hand image of Figlrels.2,

Fa(X) = x1Xe (%),

wherexg is the characteristic function &. Notice that~, is mean-free becau&eis
symmetric with respect to thi, x3) coordinate plane. Simulation of the boundary
data corresponding fg is trivial since the associated potentials are known eitjglic
The boundary data correspondingfte= F, is generated by solving{1.1), &r(P.3) if
ideal data is considered, using the finite element method.

The left-hand image of Figufe®.1 depicts the locations efttio dipoles com-
posing the sourc&y; the image also shows the projections of the dipoles onto the
coordinate planes, which is a convention that is used infallo figures. The right-
hand image illustrates the corresponding reconstructimm fideal data. Compared
to the actual CSS, which is in this case the line segment legtlee pointg and
g (cf. [15, Example 3.1]), the reconstruction is not totallgcarate: It covers the
stronger dipole but extends only half way to the directiothef weaker one. More-
over, the reconstructed CSS is too roundish. The first ogthes flaws could be fixed
by omitting some lowest frequencigsn the linear regression mod€&L{#.2): Accord-
ing to our experience, only the stronger dipole is visiblehia spherical harmonic
coefficients corresponding to low spatial frequencies wasgtigh-frequency coef-
ficients contain information about both dipoles. On the otiend, the second flaw
could be tackled by increasing the radius of the extendedaitoB), which would
enable the use of larger balls [D_{4.5) and allow, in prirgijgl more accurate recon-
struction. Unfortunately, this would also make the aldoritmore sensitive to noise.
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Fig. 5.2 Left: The rectangular cuboit that is the support of the sour€e. Right: The reconstruction of
the corresponding CSS from ideal data.

Because we want our reconstruction method to be independéme properties of
the source in question and to function in the same form foh lb¢tal and realistic
data, we have refrained from making these ‘improvementsutcalgorithm.

The reconstruction corresponding to the second sdereed ideal data is shown
in the right-hand image of Figule_.2; recall that the leftiti image depicts the
support ofF, i.e., E. Although the reconstruction is smaller th&nits location is
accurate.

Figurel5.B shows the reconstructions provided by our algorior realistic data
and the two sourceB; andF, introduced above. In comparison to the ideal case,
the most apparent deterioration is that the reconstructioresponding td-; is no
more affected notably by the dipole with the smaller momenmt & his is not very
surprising as the influence that the weaker dipole has ondhadary measurement
is easily covered in noise. Although neither of the two restarctions captures any
information on the size or the shape of the correspondingcepone can argue that
the algorithm still provides some information on the apjmmate location of the tar-
get source in both cases. In fact, it seems that the algoigheiatively robust with

1 1
- . | ,
0 ) 0 1
-1 -1 -
-1 - - -1
0 0 0 0
11 11

Fig. 5.3 Reconstructions corresponding to realistic data. Lefte Tdrget sourcé&; composed of two
dipoles. Right: The target sour&e supported on the rectangular cub&d
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respect to measurement noise as the reconstruction condisig toF is not notably
affected by the 10% noise level in the data.

5.2 Electrical impedance tomography

Let us consider the elliptic boundary value problem
0-(0tv=0 inD, Y_g -5 ondD / vds=0, (5.3)
- ) ov 6)’+ 55’— ’ Jap =Y .

wherey,.y_ € dD, y. # y_ are fixed current source locations and the distribu-
tions §,, are Dirac deltas o@D. In the numerical experiments below, we pick
y+ = (1,0,0) andy_ = (—1,0,0). The conductivityo € L*(D), 0 > ¢ > 0, is as-
sumed to be such th& := supd o — 1) is a compact subset &, i.e.,c = 1 in some
interior neighborhood of the bounda®p. Take note that the third condition ¢f(b.3)
should, in fact, be understood as dual evaluation betweetralev|;p and the unit
function ondD (cf. [24, Chapter 2, Section 7]). Sin@®, € H1-¢(dD), € > 0, it
follows from the the material i _[17, Appendix] thdf (b.3)sha unique solution in
HY/2-¢(D)NHL.(D); see also[[24, Chapter 2, Remark 7.2]. The EIT problem con-
sidered in this work is to deduce information on the inhommagty Q from the value
of the electromagnetic potentiameasured odD.

Letvg be the reference potential, i.e., the solutiorofl(5.3)esponding ta = 1.
For example, the same reasoning as in [18, Proof of Theor@jsAows that/y can
be written explicitly as

Vo(X) =N(x,y+) =N(xy-),  x€D,

whereN(-,-) is the Neumann function for the Laplacian in the unit ballbgiby [51).
It follows trivially that the relative potentials = v — g is the solution of[[TI1) for

F=F(ys,0)=Ave &(D)NH D),

which is supported iM2. Hence, settingg = w|sp, we may use the algorithm de-
scribed above to approximate the corresponding convexsauppor%’g, which is

a nonempty subset of the convex hull of the inhomogerneifgf. [16]) — assuming
that the measured relative boundary potertiizl nontrivial.

In practice, the datg can be collected with three (infinitely small) electrodes
(cf. [@4]): Constant flux of current is maintained betweero telectrodes at fixed
locationsy, andy_. Meanwhile, the third electrode, which is moved alaig and
not used for current injection, measures the boundary iateNaturally, one needs
also to be able to carry out this same measurement withoumtivenogeneity in
D or, alternatively, compute the reference boundary patewj;p numerically.

Before moving on to the numerical examples, let us considefl{p how the rel-
ative potentialv can be simulated numerically. By applying the differentipérator
O-(o0:) onw, it follows that

ow

0.(o0w) = —0.(60ve) inD, ¥ _0 onaD, /st:O. (5.4)
oav aD
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Fig. 5.4 Top left: The semitoroidal inclusion. The other three imsmgeow reconstructions from ideal data
corresponding to different conductivity profiles inside ihclusion. Top righto = 2 in Q. Bottom left:
o(x) =1+ (x3—0.1)/0.6 in Q. Bottom right:o(x) = 14 0.5c0510x1) in Q.

Sinceo = 1 in some interior neighborhood @D andvp is smooth in the interior of
D, the source term
—0-(o0vp) =0- ((1—0)Ovp)

belongs tas? (D) N"H~%(D). Hence, standard variational argumentation (cf., €., [7
shows that[(5]4) has a unique solution, i.e., the relativierg@l w, which is the
unigue solution of the problem

/UDW-D(pdx:/(l—o)Dvo-D(pdx forall p € Hl(D) (5.5)
D D

among the elements &f'(D) having zero mean odD. The relative boundary poten-
tials needed for the numerical studies below are simulayesblving the variational
equation[[5J6) — or in the case of ideal data the one obtaipeddiacingD with B,
everywhere in[[515) — using the commercial finite elementesoComsol.

Let us first consider the case that the inclusidiis the semitorus depicted in the
top left image of Figur€Xhl4. The other three images of Fiffeshow the recon-
structions produced by our algorithm for ideal data andeldi#erent conductivity
distributions inside the inhomogeneity: In the top rightige the conductivity of the
inclusion is identically 2, in the bottom left image(x) = 1+ (x3 —0.1)/0.6 in Q,
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Fig. 5.5 Left: The inhomogeneity composed of a ball and a cube wittdaotivities 05 and 2, respec-
tively. Right: The reconstruction of the corresponding G&& ideal data.

and in the bottom right image(x) = 1+ 0.5c0410x;) in Q. Note that the semitorus
lies between the planeg = —0.2 andxz = 0.4, and thus all of these conductivity
distributions take values in the ran{fe5, 2]. The algorithm finds the location of the
inhomogeneity accurately in all three cases. However,enthié reconstructions cor-
responding to the first and third conductivity profiles are small, for the second
profile the size of the inclusion is reproduced accuratefcadkding to this test, the
reconstruction method is not sensitive only to the shapéeiriclusion but also to
the conductivity distribution inside the inclusion.

Our second inhomogeneity is the disconnected union of al $rathland a cube
shown in the left-hand image of Figureb.5. The conductiviside the ball is iden-
tically 0.5 and inside the cube identically 2. The reconstruction efabrresponding
CSS, obtained using ideal data, is presented in the righd-iraage of Figur€5l5.
Once again, the algorithm finds the location of the inhomeggmccurately, but the
reconstruction is slightly too small.

Fig. 5.6 Reconstructions corresponding to realistic data. Lefe $amitoroidal inclusion with the con-
ductivity profileo(x) = 1+ (x3 —0.1)/0.6. Right: The inhomogeneity composed of a ball and a cube with
conductivities 6 and 2, respectively.
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Our final numerical test considers locating the above intced inclusions, i.e.,
the semitorus and the union of the small ball and cube, fraafistee data; for the
semitorus we choose the conductivity profitéx) = 1+ (x3 — 0.1)/0.6. The results
are illustrated in Figule3.6. As for the inverse source fEobwith realistic data, the
reconstructions in Figufe3.6 point out the approximatations of the correspond-
ing inhomogeneities but do not reveal any further detaitstually, the information
contents of these reconstructions are, arguably, appaigisnthe same as of the cor-
responding ones for ideal data in Figured 5.4[and 5.5. Thiistiser evidence for the
robustness of our algorithm with respect to measuremesenoi

Although our algorithm does not reconstruct the condustildut only aims at
revealing information about the support of a conductivitydmogeneity, it should be
noted that our algorithm also uses far less data than most difect reconstruction
methods for EIT: Here, we work with only one pair of boundangrent and potential,
not with the whole Neumann-to-Dirichlet map (cf., e.Ql2g]).

6 Concluding remarks

We have introduced a numerical technique for reconstrgtktia convex source sup-
port corresponding to the Poisson equation in bounded-tirmensional domains.
The method is based on replacing the Mobius transformsim@eded in the cor-
responding two-dimensional algorithin_[16] by inversionshwespect to suitable
spheres and introducing the associated Kelvin transfofine.functionality of the
algorithm was demonstrated by applying it both to the adiuwadrse source prob-
lem and to the obstacle problem in EIT with only one relativeitdary potential as
measurements.
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