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Abstract

Deconvolution problems with a finite observation window require appropriate
models of the unknown signal in order to guarantee uniqueness of the solution.
For this purpose it has recently been suggested to impose some kind of antire-
flectivity of the signal. With this constraint, the deconvolution problem can
be solved with an appropriate modification of the fast sine transform, provided
that the convolution kernel is symmetric. The corresponding transformation
is called the antireflective transform. In this work we determine the condition
number of the antireflective transform to first order, and use this to show that
the so-called reblurring variant of Tikhonov regularization for deconvolution
problems is a regularization method. Moreover, we establish upper bounds for
the regularization error of the reblurring strategy that hold uniformly with re-
spect to the size n of the algebraic system, even though the condition number
of the antireflective transform grows with n. We briefly sketch how our results
extend to higher space dimensions.
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1. Introduction

We consider the one-dimensional space invariant deconvolution problem,
where the signal g : I → R, I ⊂ R, is formed by

g(x) =

∫

R

k(x − x′)f(x′) dx′. (1)

Without loss of generality we fix I = [0, π] for our convenience. We assume that
the source f is continuous over R, and that the kernel k is a continuous and
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symmetric (even) function. While the latter is certainly a restriction, there are
prominent examples where the kernel is indeed symmetric, or close to symmetric
at least.

Using the collocation method with the rectangular quadrature rule over
equidistant grids, the integral equation (1) is reduced to an algebraic system
of equations with finitely many equations for infinitely many unknowns, i.e.,
sampled values of f . To reduce the number of unknowns to the number of given
equations, one can use appropriate models, or boundary conditions, for f , to
obtain a square linear system

Kf = g, (2)

where f , g ∈ R
n contain values of f and g at the individual grid points, and the

entries of K ∈ R
n×n depend on the convolution kernel k and the corresponding

boundary conditions.
For several of these models the discrete problem can be solved very effi-

ciently in only O(n log n) operations. For example, imposing periodic boundary
conditions, the matrix K can be diagonalized with the discrete Fourier trans-
form; with reflective boundary conditions and a symmetric kernel k, K can be
diagonalized by the discrete cosine transform, cf. Ng, Chan, and Tang [7]. For
symmetric kernels Serra-Capizzano suggested in [8] as an alternative the use of
an antireflective boundary condition, meaning that

f(x) + f(−x) = c0 and f(x) + f(π − x) = cπ

are both constants. For antireflective boundary conditions the structure of K
is quite more involved, see Section 3, but still we can resort to a fast inver-
sion algorithm with O(n log n) operations on the grounds of the discrete sine
transform, and which yields the so-called antireflective transform [1].

While the discrete Fourier and cosine transforms are unitary, and therefore
have condition number equal to one (with respect to the Euclidean norm), the
antireflective transform is a rank two modification of a unitary transform, and
its condition number grows to infinity as the number of grid points goes to
infinity, which may affect the stability of the antireflective transform. In this
paper we determine the leading order term of the asymptotic growth of this
condition number, which is shown to be

√
2n, when n is the dimension of the

vectors, i.e., the number of grid points.
The convolution problem (1) is known to be ill-posed, unless the convolution

kernel has singularities. As a consequence the linear system (2) can be very ill-
conditioned, and some kind of regularization is needed to stabilize the problem.
The best known method of this sort may be Tikhonov regularization, which
amounts to solving

(KT K + αI)f̃α = KTg (3)

for a useful approximation f̃α of f . This approach is fairly well understood, and
error bounds for ‖f̃α − f‖ are readily available, cf., e.g., Groetsch [6]. However,
it is known at least since Varah’s paper [10] that Tikhonov regularization may
result in erratic boundary effects, and this, in fact, appears to be the general
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case for our deconvolution problem with antireflective boundary conditions, as
illustrated in [2, 4].

Two different remedies have been suggested in [2, 4] to deal with these bound-
ary effects. In [2] the original problem has been transformed to a problem where
f and g have homogeneous boundary values, and Tikhonov regularization has
been applied to solve this new problem, using the (unitary) fast sine transform.
In [4], on the other hand, the authors have developed the so-called reblurring
strategy by replacing KT in (3) by K, i.e., they suggest to take

fα = (K2 + αI)−1Kg (4)

as approximation of f . We note that KT = K for a symmetric kernel and
periodic or reflective boundary conditions, but KT 6= K in the antireflective
case, as the corresponding transform is not a unitary one; thus (4) may be seen
as one reasonable extension of Tikhonov regularization to the deconvolution
problem for antireflective boundary conditions.

Unfortunately, as K2 is not symmetric, the standard regularization theory
from [5, 6] does not apply to the reblurring strategy, but we can use the results
of this paper to derive estimates which are similar to the usual results from
[5, 6]. In particular, we establish that the reblurring strategy is a regularization
method.

The outline of this paper is as follows. In Section 2 we describe in more
detail the setting of our problem, and recast the usual way of deriving error
bounds for Tikhonov regularization for this context. Then, in Sections 3 and 4
we focus on the antireflective transform and determine the dominating term of
its condition number. Finally, in Section 5, we apply these results to determine
useful bounds for the regularizing properties of the reblurring strategy. The
paper ends with a brief discussion of the extension of our results to higher space
dimensions.

2. Problem setting

Throughout this paper, we use bold faced letters like z for the n-dimensional
vector with the samples of the function z : I = [0, π] → R on the equidistant
grid

∆h = {(j − 1)h : j = 1, . . . , n} ⊂ I
with mesh size h = π/(n− 1). To achieve error bounds that are independent of
the grid size n we also introduce the rescaled Euclidean norm

|||z||| =
1√
n
‖z‖2 . (5)

Note that this norm approximates the L2-norm of z, i.e.,

|||z|||2 ≈ 1

π

∫

I
|z(x)|2 dx .
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The analysis of regularization methods needs to take noise into account. To
this end we employ the following noise model: We assume that the data are
perturbed by some bounded function e : I → R with

ε = sup
x∈I

|e(x)| . (6)

With these assumptions the equidistant sample gε of the function g perturbed
by noise satisfies

gε = g + e with |||e||| ≤ ‖e‖∞ ≤ ε .

A family of approximations {fα : α > 0} is called a regularization method
if, for every α > 0, fα depends continuously on the data, and

lim
ε→0

|||fε
α(ε) − f ||| = 0

for a particular choice of α = α(ε); see, for example, [5]. Throughout, we denote
by fε

α the corresponding approximations for the perturbed data gε. Here, we
investigate the family {fα : α > 0} obtained from (4), which coincides with
Tikhonov regularization for the periodic and reflective boundary conditions, and
which defines the reblurring strategy for antireflective boundary conditions.

To investigate whether these schemes are regularization methods we intro-
duce the spectral decomposition

K = XΛX−1 (7)

of the matrix K, where Λ is the diagonal matrix of the eigenvalues of K, and
X can be identified with the discrete Fourier transform in the periodic case,
the discrete cosine transform in the reflective case, and with the antireflective
transform in the antireflective case, respectively. In particular, X is a unitary
matrix in the first two cases, but fails to be unitary in the antireflective case.
Throughout, we assume that K is invertible, i.e., that all eigenvalues of K are
nonzero.

Now we proceed as follows. On the grounds of the triangle inequality

|||fε
α − f ||| ≤ |||fε

α − fα||| + |||fα − f ||| , (8)

we can estimate the two terms on the right-hand side of (8) separately. We
start with the first term, the propagated data error, which can be rewritten as

fε
α − fα = (K2 + αI)−1K(gε − g) = X(Λ2 + αI)−1ΛX−1e . (9)

The diagonal entries of the diagonal matrix (Λ2 +αI)−1Λ are given by λi/(λ2
i +

α), where λi are the eigenvalues of K, and hence,

‖(Λ2 + αI)−1Λ‖2 ≤ sup
λ∈R

∣

∣

∣

∣

λ

λ2 + α

∣

∣

∣

∣

≤ 1

2
√

α
.
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From this we obtain

|||fε
α − fα||| ≤ ‖X‖2 ‖(Λ2 + αI)−1Λ‖2 ‖X−1‖2 |||e|||

≤ 1

2
√

α
µ(X)|||e|||,

(10)

where µ(X) = ‖X‖2‖X−1‖2 is the condition number of X . In particular, in the
periodic and the reflective case we conclude that

|||fε
α − fα||| ≤

ε

2
√

α
, (11)

as µ(X) = 1 for a unitary matrix.
The second term in (8) concerns the approximation error that is independent

of noise:

f − fα = f − (K2 + αI)−1Kg = f − (K2 + αI)−1K2f

= α(K2 + αI)−1f = Xα(Λ2 + αI)−1X−1f .

The same estimate as before thus yields

|||fα − f ||| ≤ µ(X)ω(α) sup
x∈I

|f(x)| with ω(α) = sup
λ∈R

α

λ2 + α
,

but unfortunately, the quantity ω(α) is only bounded by one and cannot be
shown to be o(1), independently of λ (and thus n). Convergent bounds can be
obtained with the usual remedy from the theory of ill-posed problems, which
consists in so-called smoothness assumptions, the most simple one being as
follows.

Assumption 1. Let f be itself a blurred version of a continuous signal w, i.e.,

f(x) =

∫

R

k(x − x′)w(x′) dx′ , x ∈ R , (12)

where w satisfies the same boundary conditions as f (i.e., periodic, reflective,
or antireflective ones).

Remark 2. We mention that it is easy to see that if w of (12) satisfies one of
these three boundary conditions, then so does f as well. Vice versa, if f satisfies
one of these boundary conditions and (12) holds true then w must satisfy the
same boundary condition, unless the integral equation (1) has multiple solutions.

On the grounds of Assumption 1 we may therefore assume that

f = Kw for some w ∈ R
n (13)

with a moderate bound
|||w||| ≤ ‖w‖∞ ≤ ̺ . (14)
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For instance, ̺ could be the maximum of w over I. Inserting (13) into the
representation of the approximation error then we get

f − fα = α(K2 + αI)−1Kw = Xα(Λ2 + αI)−1ΛX−1w , (15)

and we can improve the previous estimate to obtain

|||fα − f ||| ≤ µ(X)

√
α

2
|||w||| . (16)

Combining (8), (11), (14), and (16) we conclude that the error of the ap-
proximation (4) is bounded by

|||fε
α − f ||| = O

( ε√
α

+
√

α̺
)

= O(
√

ε ̺) , (17)

if the regularization parameter is chosen to be α = α(ε) = ε/̺. Hidden in
the O( · ) notation, however, is the condition number of X . Therefore, the
bound (17) is independent of the dimension of the problem for the periodic and
reflective boundary conditions only, whereas it grows to infinity with n in the
antireflective case, as will be shown in Section 4.

Once we have estimated the growth rate of this condition number, however,
we can use this result to improve on the above estimate for the reblurring
strategy, cf. Section 5.

Finally, we like to mention that the analysis extends to the algorithm used
in [2], again with a unitary matrix X . Therefore this is also a regularization
method.

3. The antireflective transform

We assume that the convolution kernel k is symmetric, and denote by kj =
hk(jh) the values of k at the grid points. Then, as shown in [8], the matrix K
for the antireflective model has the form

K =





s0 0 0
s K0 Js

0 0 s0



 , (18)

where

K0 =























k0 k1 · · · · · · kn−4 kn−3

k1 k0 k1 kn−4
... k1 k0

. . .
...

...
. . .

. . .
. . . k2

kn−4
. . . k0 k1

kn−3 kn−4 · · · k2 k1 k0























−























k2 k3 · · · kn−3 0 0

k3 . .
.

0 0 0
... . .

.
. .

.
. .

.
0 kn−3

kn−3 0 . .
.

. .
.

. .
. ...

0 0 0 . .
.

k3

0 0 kn−3 · · · k3 k2























,
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si = ki + 2

n−3
∑

j=i+1

kj , i = 0, . . . , n − 3, s =











s1

...
sn−3

0











,

and J is the antidiagonal unit matrix

J =





1
. .

.

1



 ∈ R
(n−2)×(n−2) .

Associated with the entries of K is the so-called symbol

κ(t) = k0 + 2
n−3
∑

j=1

kj cos(jt) .

In particular, we have s0 = κ(0) ≈
∫ π

−π k(x) dx.
As shown in [1] the eigenvectors of K are given by homogeneous sine vectors

and first order polynomials. More precisely, let Q = [qij ] be the sine transform
matrix of order n − 2 with entries

qij =

√

2

n − 1
sin

(

ijπ

n − 1

)

, i, j = 1, . . . , n − 2.

Then the antireflective transform can be defined by the matrix

A =





0

1 Q ℓ

0



 , (19)

where

1 =
1√
n











1
1
...
1











and ℓ =

√
3

√

n(n2 − 1)











1 − n
3 − n

...
n − 1











.

Note that 1 and ℓ differ from the corresponding vectors used both in [1] and [2].
They have been chosen here to form an orthonormal basis of the grid samples
of all linear polynomials.

According to [1] the spectral decomposition of K of (18) can now be written
as

K = AΛA−1, (20)

where the diagonal entries λjj of Λ are given by

λjj =

{

κ( j−1
n−1 π) , 1 ≤ j < n ,

κ(0) , j = n .
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The spectral decomposition (20) is useful to adopt other spectral filtering meth-
ods than Tikhonov regularization to the reblurring strategy, cf. [1]. Moreover,
using (20) it is easy to prove that all antireflective matrices form an algebra.
This algebra is not closed by transposition, though, which may be seen as the
underlying reason for the aforementioned boundary artifacts when using classi-
cal Tikhonov regularization.

4. The condition number of the antireflective transform

To compute the condition number of the antireflective transform and to
investigate the regularizing properties of the reblurring strategy we need to
determine the singular value decomposition of the matrix A. To this end we
determine the spectral decomposition of the matrix AT A. From (19) we obtain

AT A =





1 aT 0
a I b

0 bT 1



 (21)

with
a = Q1′ and b = Qℓ

′ , (22)

where 1′ and ℓ
′ refer to the inner n − 2 components of 1 and ℓ, respectively.

Using trigonometric identities we find that the entries of a and b are given by

ak =







( 2

n(n − 1)

)1/2

cot
( kπ

2(n − 1)

)

, k odd ,

0 , k even ,
(23)

and

bk =







0 , k odd ,

−
( 6

n(n + 1)

)1/2

cot
( kπ

2(n − 1)

)

, k even ,
(24)

k = 1, . . . , n − 2. In particular, we have aT b = 0.

Lemma 3. There holds ‖a‖2 < 1 and ‖b‖2 < 1, and, more precisely,

‖a‖2 = 1 − 1

n
+ O(n−2) and ‖b‖2 = 1 − 3

n
+ O(n−2)

as n → ∞.

Proof. The first assertion readily follows from (22), as Q is an orthogonal matrix
and the boundary values of the two normalized vectors 1 and ℓ are both nonzero.
For the second assertion we assume without loss of generality that n is even.
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From (23) follows that

‖a‖2
2 =

2

n(n − 1)

n/2−1
∑

j=1

cot2
(

(2j − 1)π

2(n − 1)

)

=
2

n(n − 1)





n/2−1
∑

j=1

t−2
j +

n/2−1
∑

j=1

[

cot2(tj) − t−2
j

]



 , tj =
(2j − 1)π

2n− 2
.

Note that, up to the factor h, the last sum is the (second order accurate) com-
pound mid point rule with mesh width h for the integral

∫ π/2−h/2

0

(cot2 t − t−2) dt =
[

t−1 − cot t − t
]π/2−h/2

0
=

2

π
− π

2
+ O(h) .

It therefore follows that

‖a‖2
2 =

2

n





4(n − 1)

π2

n/2−1
∑

j=1

1

(2j − 1)2
+

1

π

( 2

π
− π

2
+ O(n−1)

)



 . (25)

Since

∫ ∞

n/2

(2t − 1)−2 dt ≤
∞
∑

j=n/2

(2j − 1)−2 ≤
∫ ∞

n/2−1

(2t − 1)−2 dt ,

we conclude that

∞
∑

j=n/2

(2j − 1)−2 =
1

2(n − 1)
+ O(n−2)

and

n/2−1
∑

j=1

(2j − 1)−2 =
π2

8
−

∞
∑

j=n/2

(2j − 1)−2 =
π2

8
− 1

2(n − 1)
+ O(n−2) .

Inserting this into (25) we obtain

‖a‖2
2 =

2

n

(

n − 1

2
− 2

π2
+

2

π2
− 1

2
+ O(n−1)

)

= 1 − 2

n
+ O(n−2) ,

and hence,

‖a‖2 = 1 − 1

n
+ O(n−2) .
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The estimate for ‖b‖2 can be established along similar lines. From (24) we
get

‖b‖2
2 =

6

n(n + 1)

n/2−1
∑

j=1

cot2
(

jπ

n − 1

)

=
6

n(n + 1)





n/2−1
∑

j=1

(

n − 1

jπ

)2

+

n/2−1
∑

j=1

[

cot2
(

jπ

n − 1

)

−
(

n − 1

jπ

)2
]





=
6

n(n + 1)





(n − 1)2

π2

n/2−1
∑

j=1

j−2 +
n − 1

π

( 2

π
− π

2
+ O(n−1)

)



 , (26)

where we have used that the last sum in the second line is, up to the factor h,
the compound mid point rule with mesh width h for the integral

∫ π/2

h/2

(cot2 t − t−2) dt =
[

t−1 − cot t − t
]π/2

h/2
=

2

π
− π

2
+ O(h) .

From
∫ ∞

n/2

t−2 dt ≤
∞
∑

j=n/2

j−2 ≤
∫ ∞

n/2−1

t−2 dt ,

we conclude that

n/2−1
∑

j=1

j−2 =
π2

6
−

∞
∑

j=n/2

j−2 =
π2

6
− 2

n
+ O(n−2) ,

and inserting this into (26) we obtain

‖b‖2
2 =

6

n(n + 1)

(

(n − 1)2

6
− 2

π2

(n − 1)2

n
+ (n − 1)

( 2

π2
− 1

2

)

+ O(1)

)

= 1 − 6

n
+ O(n−2) .

Taking the square root we finally achieve the desired estimate.

According to (21) the eigenvalues and eigenvectors of AT A satisfy

λ





γ
x

δ



 = AT A





γ
x

δ



 =





γ + aT x

γa + x + δb
bTx + δ



 . (27)

Since AT A is a rank four correction of the identity, the eigenvalue λ = 1 occurs
with multiplicity n − 4 and is associated to eigenvectors with δ = γ = 0 and
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aTx = bTx = 0. For the complementary eigenvectors we can thus use the
ansatz x = ξa + ηb, and then we obtain from (27) that

λ





γ
ξa + ηb

δ



 =





γ + ξ‖a‖2
2

(γ + ξ)a + (δ + η)b
δ + η‖b‖2

2



 .

From this we find two eigenvalues λ1,2 and associated eigenvectors y1,2 by setting
δ = η = 0, namely

λ1,2 = 1 ± ‖a‖2 , y1,2 =
1√

2 ‖a‖2

[±‖a‖2, aT , 0]T . (28)

Similarly, for γ = ξ = 0 we find the remaining two eigenvalues and associated
eigenvectors

λ3,4 = 1 ± ‖b‖2 , y3,4 =
1√

2 ‖b‖2

[0, bT , ±‖b‖2]
T . (29)

Finally, we determine the left singular vectors by multiplying A with its right
singular vectors: Using (28), (29), and (22) we thus obtain

Ay1,2 = λ
1/2
1,2

1

‖a‖2

(1 ± ‖a‖2

2

)1/2









± ‖a‖2

1±‖a‖2

1√
n

1′

± ‖a‖2

1±‖a‖2

1√
n









, (30)

and

Ay3,4 = λ
1/2
3,4

1

‖b‖2

(1 ± ‖b‖2

2

)1/2









± ‖b‖2

1±‖b‖2

l1

ℓ
′

± ‖b‖2

1±‖b‖2

ln









, (31)

where l1 and ln denote the boundary elements of ℓ.
We summarize these results in the following theorem, where we use the

notation y
.
= z if the two vectors y and z depend on n and for each entry yi of

y and the corresponding entry zi of z there holds yi/zi → 1 as n → ∞.

Theorem 4. The two dominant singular values of A are given by

σ1
.
= σ2

.
=

√
2 ,

where
√

2 is, in fact, a strict upper bound, and the two minimal singular values
are given by

σn−1
.
=

√
3√
n

and σn
.
=

1√
n

,

respectively. The corresponding right singular vectors are

v1
.
=

1√
2





1
a

0



, v2
.
=

1√
2





0
b

1



, vn−1
.
=

1√
2





0
b

−1



 and vn
.
=

1√
2





−1
a

0



,

11



and the left singular vectors are

u1
.
=





1/(2
√

n)
1′

1/(2
√

n)



, u2
.
=





l1/2
ℓ

′

ln/2



,

un−1
.
=

1√
2





1
√

3/n ℓ
′

−1



 and un
.
=

1√
2





−1
1′/

√
n

−1



,

respectively. The remaining singular values are equal to one, and the corre-
sponding left and right singular vectors have homogeneous boundary values.

Proof. The proof follows from (28), (29), (30), and (31), together with Lemma 3.

Now we are in the position to determine the condition number of the antire-
flective transform to first order.

Corollary 5. The condition number of the antireflective transform satisfies

µ(A)
.
=

√
2n , n → ∞ .

Remark 6. It is important to note that the ill-conditioned subspace of A−1 has
dimension two, independent of n, since A has two singular values that decay like
1/

√
n while all others are between one and two. Also, A−1 only amplifies vectors

that fail to be orthogonal to U = span{un−1, un}. According to Theorem 4 the
vectors from U are essentially zero, except for their two boundary values, see
Figure 1 for an illustration.

We finally mention that it is fairly easy to derive upper and lower bounds
for the condition number of A that both grow like a constant multiple of

√
n,

cf. Tablino-Possio [9]. Our intension here has been to determine the precise
leading order term of this condition number.

5. Convergence of the reblurring strategy with antireflective bound-

ary conditions

As we have seen in Corollary 5 the conditioning of the antireflective trans-
form deteriorates as n → ∞. As a consequence, the corresponding upper bounds
(10) and (16) deteriorate with increasing n.

We show now that the estimate that has led us to (10) and (16) can be
improved so as to achieve upper bounds for the regularization error of the re-
blurring strategy that hold uniformly with respect to n. To this end we utilize
the following result.

Lemma 7. Let A be the matrix (19) of the antireflective transform. Then there
is a constant c, independent of n, such that

|||A−1x|||2 ≤ |||x|||2 + c ‖x‖2
∞ for all x ∈ R

n . (32)
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Figure 1: First two and last two right singular vector of A for n = 128.

Proof. Using the singular value decomposition of A from Theorem 4, we have

‖A−1x‖2
2 ≤ ‖x‖2

2 +
1

σ2
n−1

(uT
n−1x)2 +

1

σ2
n

(uT
nx)2 . (33)

According to the particular form of un−1 we can estimate

|uT
n−1x| ≤

1√
2

(|x1| + |xn|) +
( 3

2n

)1/2(n−1
∑

j=2

|ℓj |
)

‖x‖∞ ≤ c1‖x‖∞ ,

where ℓj are the entries of ℓ and c1 is a constant, independent of n. Similarly
we obtain

|uT
nx| ≤ 1√

2

(

|x1| + |xn| +
n − 2

n
‖x‖∞

)

≤ 3√
2
‖x‖∞ .

Inserting these two estimates into (33) and using Theorem 4 to estimate σn−1

and σn the desired inequality follows immediately.

Now we show how to improve the bounds from Section 2. Again, we con-
sider the propagated data error first. Starting from (9) – with the spectral
decomposition (20) instead of (7) – we estimate

|||fε
α − fα||| ≤ ‖A‖2‖(Λ2 + αI)−1Λ‖2|||A−1e||| ≤ 1

2
√

α
‖A‖2|||A−1e||| ,
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and then, using Theorem 4 and Lemma 7 we conclude that

|||fε
α − fα||| ≤

1√
2α

|||A−1e||| ≤ C1
ε√
α

,

where we have used the error model (6) for the last inequality and C1 is a
constant, independent of n.

Concerning the approximation error we proceed in a similar manner from
(15), and estimate

|||f − fα||| ≤ α‖A‖2‖(Λ2 + αI)−1Λ‖2|||A−1w||| ≤
√

α√
2
|||A−1w||| .

On the grounds of Assumption 1 we may again assume that (14) holds true,
and then we conclude from Lemma 7 that

|||f − fα||| ≤
√

1 + c√
2

√
α ̺ .

Thus we have established the following result:

Theorem 8. Let the exact solution f of (2) satisfy (13) with (14). Then the
total error of the reblurring strategy (4) with antireflective boundary conditions
satisfies

|||fε
α − f ||| = O(

√
ε̺) ,

for α = α(ε) = ε/̺, where the constant in the O( · )-notation is independent of
the dimension n.

Note that the upper bound from Theorem 8 is the same as in (17) for
Tikhonov regularization with reflective or periodic boundary conditions; only
the constant hidden in the O( · )-notation may be somewhat larger for the re-
blurring strategy.

Remark 9. We mention that the comparison of the different boundary condi-
tions is not completely fair, as the assumptions required for the antireflective
boundary condition, namely that ‖e‖∞ and ‖w‖∞ be uniformly bounded inde-
pendent of n, is somewhat stronger than the corresponding requirement for |||e|||
and |||w||| required by the other two boundary conditions. This fact depends on
the term c‖x‖2

∞ in (32) which can only be removed if x ∈ U⊥, where U is the
subspace introduced in Remark 6.

6. Two-dimensional analysis

Our analysis has a natural extension to higher dimensions, as we sketch next.
We restrict our analysis to two space dimensions, though.

As in [1], we define the two-dimensional antireflective transform A(2) ∈
R

n2×n2

as
A(2) = A ⊗ A, (34)

where ⊗ denote the usual tensor product.
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Lemma 10. The condition number of the two-dimensional antireflective trans-
form satisfies

µ(A(2))
.
= 2n , n → ∞ .

Proof. The result follows directly from Theorem 4 and tensor product proper-
ties. Let A = UΣV T be the singular value decomposition of A, then the singular
value decomposition of A(2) is A(2) = U(2)Σ(2)V

T
(2), where U(2) = (U ⊗ U)PT ,

Σ(2) = P (Σ⊗Σ)P , V T
(2) = PT (V T ⊗V T ), and P is the permutation matrix that

arranges the diagonal entries of Σ⊗Σ in a non increasing order. It follows that
the dominant singular value of A(2) is σ1

.
= 2 and the minimal singular value is

σn2

.
= 1/n.

The analysis in Section 5 can be generalized in much the same way, as the
following analog of Lemma 7 holds true.

Lemma 11. Let A(2) be the coefficient matrix (34) of the two-dimensional
antireflective transform. Then there is a constant c, independent of n, such that

|||A−1
(2)x|||2 ≤ |||x|||2 + c ‖x‖2

∞ for all x ∈ R
n2

.

Proof. Every vector x ∈ R
n2

can be rewritten as x = y⊗ z with y, z ∈ R
n. We

point out that |||x||| = |||y||||||z||| and ‖x‖∞ = ‖y‖∞‖z‖∞; note that the rescaling

factor in (5) is 1/
√

n2 = 1/n for the larger vector x. From Lemma 7 follows
that

|||A−1
(2)x|||

2 = |||(A−1 ⊗ A−1)(y ⊗ z)|||2

= |||A−1y|||2|||A−1z|||2

≤ (|||y|||2 + c1 ‖y‖2
∞)(|||z|||2 + c2 ‖z‖2

∞)

≤ |||x|||2 + (c1 + c2 + c1c2) ‖x‖2
∞

and the desired inequality follows with c = c1 + c2 + c1c2.

7. Conclusions

The reblurring strategy has been suggested in [4] to regularize ill-conditioned
deconvolution problems using antireflective boundary conditions. This is a par-
ticularly fast method that requires only O(n log n) operations to solve and reg-
ularize problems of this sort over an equidistant grid with n unknowns. In the
present paper we have come up with an analysis to provide some theoretical jus-
tification of this approach. In particular, in Section 5 we have obtained upper
bounds for the regularization error that hold uniformly with respect to the size
of the algebraic linear system. It has thus been shown that the reblurring strat-
egy is a useful regularization method for ill-posed deconvolution problems with
antireflective boundary conditions. Alternatively, in [3] the reblurring strategy
has been interpreted as a discretization of a regularized continuous problem.
Both arguments can be used to explain the good performance of the method.
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