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On rational approximation methods for inverse source problems1

Martin Hanke2 and William Rundell3

Abstract: The basis of most imaging methods is to detect hidden obstacles or
inclusions within a body when one can only make measurements on an exterior
surface. Such is the ubiquity of these problems, the underlying model can lead
to a partial differential equation of any of the major types, but here we focus on
the case of steady-state electrostatic or thermal imaging and consider boundary
value problems for Laplace’s equation. Our inclusions are interior forces with
compact support and our data consists of a single measurement of (say) volt-
age/current or temperature/heat flux on the external boundary. We propose
an algorithm that under certain assumptions allows for the determination of
the support set of these forces by solving a simpler “equivalent point source”
problem, and which uses a Newton scheme to improve the corresponding initial
approximation.

1. Introduction

One of the most basic of inverse problems is to detect hidden objects within a body
when one can only make measurements on an exterior surface. The type of problem
obtained depends strongly on how the included object interacts with the quantities
being measured. The mathematical modeling of electrostatic or thermal imaging
methods in non-destructive testing and evaluation leads to inverse boundary value
problems for Laplace’s equation and this will be the setting for this paper. Even
here there is considerable variation and a vast literature both on questions of unique-
ness (how much data is required to make a determination of the object from both
geometrical and material considerations) and effective reconstruction algorithms.
Even if precise uniqueness results are known, one might be unable to measure the
required amount of data. Alternatively, for reasons of expediency one might want
a fast algorithm that gives only the salient features of the inclusions such as ap-
proximate location and volume rather than a determination of the entire physical
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situation. All these problems share a common fact; quite substantial changes in
the obstacle can result in extremely small changes in the measured data. In other
words, these are severely ill-posed problems. Mathematically this is expressed by
the fact that in any of the usual function spaces we would use, the mapping from
the unknown object to the measured data is compact and its inversion cannot be
bounded. Regularization is therefore a necessity for any workable scheme.

The type of internal object can vary widely - from an inclusion with known
boundary condition (for example: Dirichlet, Neumann or impedance type); one
where the conductivity varies from the background material (the impedance to-
mography problem); or an unknown source within the body. This paper will be
concerned with the latter situation and our goal will be to examine two problems:
the first when we have point sources, the second when the source function has
compact support within a finite number of subdomains. From a uniqueness and
computational standpoint the case of point sources is relatively well understood
and fast reconstruction algorithms are available. The analysis of the second case is
much more difficult and if there are multiple included sources, the reconstruction
issues are decidedly nontrivial. Our goal in this paper is to show how the solution of
the relatively easier first problem can shed light on the more difficult second. The
contrasting difficulties between these two problems are to be expected; it is much
easier to recover solutions dominated by functions with a localized singularity than
the relatively smooth solutions that result from a piecewise continuous right hand
side term in Poisson’s equation.

Our primary model is therefore the Poisson equation

△u = F in D (1.1)

with Cauchy data prescribed on ∂D

u = fd
∂u

∂ν
= g on ∂D (1.2)

where D is a simply connected domain with smooth boundary ∂D and ν denotes
the exterior unit normal of ∂D . We assume that F ∈ L2(D) is compactly supported
within D : that is suppF consists of m connected components such that

suppF ⊂ Ω =
m
⋃

j=1

Ωj (1.3)

for appropriate simply connected sub-domains Ωj , j = 1, . . . , m , with smooth
boundaries, the closures of which are pairwise disjoint. An important subcase is
when F is piecewise constant within each Ωj and this will be the focus of our
reconstructions in a later section.

Two remarks should be made. First, the compact support assumption is essential
because no matter what type of boundary data is measured, one cannot hope to
recover a general function F . One simply has to note that if φ is any smooth
function with support contained in D , then if F is an admissible source then so
also is F +△φ and since the boundary values of φ are identically zero it has no effect
on the Cauchy data. Second, if we let w be the harmonic function in D with w = fd

on ∂D then by considering instead the function u − w we can reduce to the case
u = 0 on ∂D . Thus in contrast to the impedance tomography case, for Poisson’s
equation one cannot obtain further information by imposing further Cauchy data
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(say by changing the input current patterns) as these all condense down to one
single data pair due to the linear dependence of the equation on the function F .
Thus we are forced to consider the situation of a single Cauchy measurement and
we can take the function or values of u on ∂D to be homogeneous. (We refer to
Remark 2.1 for a means to avoid an explicit transformation to homogeneous data,
in case the given Dirichlet data fail to be homogeneous.)

For problem (1.1), (1.2) and (1.3) there are both uniqueness and non-uniqueness
results known. If, for example, F = χ(Ω) where Ω is a star-like subset of D then
Ω is uniquely determined by the single Cauchy data pair {fd, g} , [13, 14]. On
the other hand if F = kχ(Ω) for k a constant and we integrate (1.1) over D , we
obtain k

∫

Ω dx =
∫

∂D g ds and if Ω is a disk of radius R then it is impossible to
obtain both the strength k and size of Ω. From the above argument this cannot
be resolved by giving further Cauchy data and so all that is possible here is to give
some information about the total effective size of Ω. See also [12].

Another special and frequently studied case is when each Ωj reduces to a single
point or when the total integral of the source is order unity and has small source
support over a region that we can take to be effectively a disc of diameter ǫ . We now
seek to determine both the strengths and locations of a finite number of approximate
point sources from the Cauchy data (1.2). These point sources can be modeled as
monopoles or dipoles (or indeed poles of arbitrary order):

△v = FM =

M
∑

k=1

λkδzk
+ pk · ∇δzk

+ . . . in D (1.4)

where {zk} are the locations of the source points, λk are the monopole strengths
and pk are the two dimensional dipole moments. We can view the inverse problem
for (1.4) as seeking to determine the location, order and strength of the poles of
the function v from Cauchy data information on ∂D . In the two-dimensional case,
by considering v as the real part of a meromorphic function from which we have
known values on a curve in the complex plane, there is clearly uniqueness for this
problem. It is equally clear that we must expect severe ill-conditioning due to the
analytic continuation aspect.

The numerical reconstruction of such poles have been considered by others.
For example, El Badia and Ha Doung [8] present an algorithm to recover either

monopole sources or dipole sources. The approach is elegant and fast as it effec-
tively decouples the locations and strengths. More recently, Chung and Chung [7]
have shown how to combine this approach to reconstruct a mixture of monopole
and dipole sources. See also [15].

For the electrical impedance tomography problem, there has been a considerable
recent work in seeking algorithms that determine location and perhaps the convex
support of inclusions. Some of these have involved attempts to turn poles (locations)
into inclusions (shape). In particular, the idea of “equivalent dipole sources” plays
a role, and one seeks information about an inclusion from a single Cauchy pair as
distinct from the usual data set for such problems consisting of the full Dirichlet to
Neumann map – or a complete family of Cauchy pairs, [11, 12, 16]. Meromorphic
approximation has also played a role in the determination of cracks [5], and small
inclusions, [4, 6].

In this paper we will show that the recovery of general multipole sources can be
efficiently achieved from general principles. Indeed, for the case of two dimensions
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this reduces down to the classic problem of Padé approximation.

As noted, an important subcase of (1.3) is when we know the strength of F
within its support and we take this to be of unit value,

Fχ = χ
(

m
⋃

j=1

Ωj

)

.

In particular, we ask the question: if given the Cauchy data pair (1.2) on ∂D for
this problem, and if we use this to reconstruct an approximation v solving (1.4)
with nearby Cauchy data, what information do the locations and residues of the
poles obtained this way provide about the function Fχ and hence about the sets
Ωj ? Even if we only obtain a rough approximation, and we will see that we can in
fact do much better than this, then it may be used as the starting guess for another
method such as a Newton scheme. On the other hand such an approximation may
suffice – we want to know if something is there and, possibly, with some estimate
of location and size.

2. The inverse source problem for the Poisson equation

From this stage on we restrict our discussion to the case that D is the (two-
dimensional) unit disk. On the one hand, this is not really a loss of generality,
as the general two-dimensional case can always be transformed to the unit disk by
means of a conformal transformation. On the other hand the unit disk offers much
more powerful computational tools to deal with, as we will see below.

Let u be the solution of the source problem

∆u = F in D , u = 0 on ∂D , (2.1)

and denote by

g =
∂u

∂ν
on ∂D (2.2)

the Neumann boundary data of u on ∂D . We assume throughout that F ∈ L2(D)
has compact support.

In the sequel we identify complex numbers with real vectors from R
2 , using

the corresponding letters from the greek and latin alphabets, respectively, i.e., we
identify ζ ∈ C with z = (Re ζ, Im ζ) ∈ R2 , and so on. With this convention we
define a function f ′ – for the moment the prime is just part of the notation – of
the complex variable ζ ∈ D \ Ω by

f ′ = ∂1u − i∂2u , (2.3)

where ∂1 and ∂2 denote the partial derivatives with respect to the real and imag-
inary components of ζ , respectively. The function f ′ is holomorphic in D \ Ω; in
fact, we cannot resist in quoting Ahlfors [1, p. 163] who wrote:

This, it should be remembered, is the most natural way of

passing from harmonic to analytic functions.

From (2.3), (2.1), and (2.2) it follows that

(

ζf ′(ζ)
)
∣

∣

∣

∂D
=

∂u

∂ν
− i

∂u

∂τ
= g , (2.4)
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i.e., that our given Neumann data g are the (real) boundary values of the function
ζf ′(ζ), and hence, the latter can be extended by reflection to a function that is
holomorphic in the neighborhood of ∂D .

Accordingly, ζf ′(ζ) admits a Laurent expansion

ζf ′(ζ) =
1

2π

∞
∑

n=−∞

αnζn , r < |ζ| < 1/r , (2.5)

for some r < 1, where

αn =

∫ 2π

0

g(eit)e−int dt = α−n , n = 0, 1, 2, . . . . (2.6)

In particular,

α0 =

∫ 2π

0

g(eit) dt =

∫

D

F (x) dx

by means of Green’s identity.

From (2.5) follows that f ′ has a (multivalued) antiderivative f given by

f(ζ) =
α0

2π
log ζ +

1

2π

∞
∑

n=−∞
n 6=0

αn

n
ζn , r < |ζ| < 1/r , (2.7)

and u coincides with the (well-defined) real part

ũ(x) =
α0

2π
log ρ +

1

2π

∞
∑

n=−∞
n 6=0

(an

n
ρn cosnt − bn

n
ρn sin nt

)

,

of f , where x = (ρ cos t, ρ sin t), r < ρ < 1/r , and αn = an + ibn , an, bn ∈ R . In
fact, this is easy to see, as (2.6) implies that ũ(x) is vanishing for ρ = |x| = 1, and
that

∂ũ

∂ν
(x) =

α0

2π
+

1

2π

∞
∑

n=1

(

2an cosnt − 2bn sinnt
)

=
1

2π

∞
∑

n=−∞

αneint

for x = (cos t, sin t) ∈ ∂D , which coincides with g(x) by virtue of (2.6); accordingly,
ũ and u share the same Cauchy data on ∂D and are harmonic in D \Ω, hence are
the same on D \ Ω.

We conclude that the Neumann data of u extend to an analytic complex valued
function in D \ Ω, and even beyond the boundary of D by reflection, namely to
ζf ′(ζ), and that the real part of the corresponding multivalued function f coincides
with u in this very domain.

El-Badia and Ha-Duong [8] approximate the principal part of the Laurent series
of f ′ by a Padé approximation

∞
∑

n=0

α−nζ−n−1 ≈
M
∑

k=1

λk

ζ − ζk
=: r(ζ) , (2.8)

where r is a (complex) rational function with denominator degree M and numerator
degree M − 1, and the ≈ sign is used to signify that the two functions on either
side are designed to have the same 2M leading terms when developed as power
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series in ζ−1 . (For a general treatment of Padé approximants we refer to the book
of Baker and Graves-Morris [3].) Note that one can conclude from (2.8) by letting
ζ → ∞ that

α0 =

M
∑

k=1

λk . (2.9)

It follows from (2.5), (2.6), and (2.8) that

2πζf ′(ζ) =

∞
∑

n=0

αnζn − α0 +

∞
∑

n=0

α−nζ−n

=
1

ζ

∞
∑

n=0

αnζn+1 − α0 + ζ

∞
∑

n=0

α−nζ−n−1

=
1

ζ

∞
∑

n=0

α−nζn+1 − α0 + ζ
∞
∑

n=0

α−nζ−n−1

≈ ζr(ζ) + ζ∗r(ζ∗) − α0 ,

where ζ∗ = 1/ζ = ζ/|ζ|2 is the reflection of ζ at the unit circle. Using (2.9) it is
straightforward to see that this yields the (M, M)-Laurent-Padé approximation

ζf ′(ζ) ≈ 1

2π

M
∑

k=1

λkζ

ζ − ζk
+

1

2π

M
∑

k=1

λkζkζ

1 − ζkζ
(2.10)

of ζf ′(ζ) introduced by Gragg and Johnson [10]; as a consequence, when |ζ| = 1,
the right-hand side of (2.10) is the (M, M)-Fourier-Padé approximation

gM ≈ g (2.11)

of the Neumann data g , which means that gM is designed to have the same leading
(i.e., low-frequent) 2 × (2M) + 1 Fourier modes as g .

From (2.10) we conclude that

f ′(ζ) ≈ R(ζ) :=
1

2π

M
∑

k=1

λk

ζ − ζk
+

1

2π

M
∑

k=1

λkζk

1 − ζkζ
, (2.12)

and hence, its antiderivative is approximated by

f(ζ) ≈
M
∑

k=1

λk

2π
log(ζ − ζk) −

M
∑

k=1

λk

2π
log(1 − ζkζ). (2.13)

Assuming that |ζk| < 1 for every k = 1, . . . , M , it is easy to see that the second
sum on the right-hand side of (2.13) is a well-defined holomorphic function of the
complex variable ζ ∈ D , whereas the first sum on the right is multivalued for ζ ∈ D ,
in general. Rewriting

λk = ρk + iµk , ρk, µk ∈ R , (2.14)

and recalling that u is the real part of f , it follows that

u(ζ) ≈
M
∑

k=1

ρk

2π
log |ζ − ζk| −

M
∑

k=1

µk

2π
arg(ζ − ζk) + w(ζ) , (2.15)
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where w is harmonic in D . As
M
∑

k=1

µk = Im

M
∑

k=1

λk = Im α0 = 0

by virtue of (2.9), the second term on the right-hand side of (2.15) is harmonic for
|ζ| > max |ζk| .

Remark 2.1: Note that our approach of approximating u via (2.15) only re-
quires the Fourier coefficients of g . Here we show how to get those when the given
Dirichlet data (1.2) are inhomogeneous by using the so-called reciprocity gap func-

tional , which has been popularized by Andrieux and Ben Abda [2]. Let û be any
solution of the source problem ∆û = F in D . Then the reciprocity gap functional
is defined to be

R(w, û) =

∫

∂D

w
∂û

∂ν
ds −

∫

∂D

û
∂w

∂ν
ds , (2.16)

where w is any harmonic function in H1(D). In particular, choosing wn(ζ) =
ζn/(2π) we obtain

R(wn, û) =
1

2π

∫ 2π

0

eint ∂û

∂ν
(cos t, sin t) dt − n

1

2π

∫ 2π

0

eintû(cos t, sin t) dt = αn .

To see this, recall that û and u of (2.1) differ by a harmonic function in D , and
that R of (2.16) is a linear functional of the second argument, which happens to be
zero, when both arguments are harmonic in D . Accordingly,

R(wn, û) = R(wn, u) =
1

2π

∫ 2π

0

eint ∂u

∂ν
(cos t, sin t) dt = α−n = αn ,

as was to be shown. This is the version of the method that has been utilized in [8].

Instead of Padé approximations one can alternatively resort to other means of
rational approximations. For example, one can think of computing the best ap-
proximation of ζf ′(ζ) on the unit circle by rational functions with denominator
and numerator degrees at most M , either with respect to the maximum norm,
or the L2 -norm. Existence and uniqueness of such rational functions can be es-
tablished, cf. [5], however, those best approximations are difficult to compute. A
numerically feasible alternative are so-called near best rational approximations that
can be determined from the Adamjan-Arov-Krein theory, cf., e.g., [4].

3. The case of small source supports

Our particular interest is in problems where the source F ∈ L2(D) is supported
in m individual simply connected components Ωj as in (1.3), and the individual
components are small as compared to D . We will show that in this case the solution
u of (2.1) can be approximated by multipole potential series, with their poles being
located within the individual components Ωj of the source support.

To derive this approximation we analyze this situation by selecting points zj

and reference domains Oj such that every Oj contains the origin, and the sets
Ωj = zj + Oj , j = 1, . . . , m , satisfy the requirements of the previous section.
Moreover, we choose a reference source F ∈ L2(D) such that

suppF ⊂ Ω =

m
⋃

j=1

(

zj + Oj

)

. (3.1)
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Next we introduce a parameter ε ∈ (0, 1), and define the family of sources

Fε(x) =

{

F
(

zj +
x−zj

ε

)

, if x ∈ zj + εOj ,
0 , else ,

and associated solutions uε of (2.1) with F replaced by Fε . Note that, as ε → 0,
the support of Fε shrinks to the discrete set {z1, . . . , zm} . It follows that the
individual means of Fε over the m components of

Ωε =
m
⋃

j=1

zj + εOj

scale by ε2 , i.e.,

λj,ε =

∫

zj+εOj

Fε(x) dx = ε2

∫

Oj

Fε(zj + εy) dy

= ε2

∫

Oj

F (zj + y) dy = ε2λj ,

(3.2)

where λj ∈ R is the individual mean of the reference source F over zj + Oj . Now
we recall the Green’s function G : D×D → R for the Laplace equation in the unit
disk, i.e.,

G(z, x) =

{

1
2π

(

log |z − x| − log
∣

∣

∣

z
|z| − |z|x

∣

∣

∣

)

− 1
2π log |x| , x 6= 0 ,

1
2π log |z| , x = 0 .

(3.3)

Then we can rewrite uε as

uε(z) =

∫

D

G(z, x)Fε(x) dx

=

m
∑

j=1

λj,εG(z, zj) +

m
∑

j=1

∫

zj+εOj

(

G(z, x) − G(z, zj)
)

Fε(x) dx

= ε2
m

∑

j=1

λjG(z, zj) + ε2
m

∑

j=1

∫

Oj

(

G(z, zj + εy) − G(z, zj)
)

F (zj + y) dy

= ε2
m

∑

j=1

λjG(z, zj) + ε3
m

∑

j=1

∫

Oj

(

∇xG(z, zj) · y
)

F (zj + y) dy + O(ε4) ,

i.e.,

uε(z) = ε2
m

∑

j=1

λjG(z, zj) + ε3
m

∑

j=1

∇xG(z, zj) · pj + O(ε4) , (3.4)

with

pj =

∫

Oj

yF (zj + y) dy ∈ R
2 . (3.5)

Here, z is taken from D \Ωε , and the constant in the O( · ) -term is independent of
z in any compact subset of this set. Also note that the higher order terms in (3.4)
contain potentials corresponding to quadrupel and higher order electrostatic poles.
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It is easy to deduce in much the same way from (2.12) that the function f ′
ε(ζ)

which is connected to the holomorphic extension of the Neumann boundary values
gε of uε via (2.4) has a similar asymptotic expansion,

f ′
ε(ζ) = ε2

m
∑

j=1

λj

2π

1

ζ − ζj
+ ε3

m
∑

j=1

βj

2π

1

(ζ − ζj)2
+ O(ε4) + h′

ε(ζ) , (3.6)

where ζj ∈ C are, again, to be identified with zj ∈ R2 , βj ∈ C are appropriate
coefficients, and for every 0 < ε < 1, h′

ε is some holomorphic function in all of D .
In fact, from (3.3) follows that h′

ε has a similar expansion in terms of powers of
ε , with poles sitting at the reflected positions ζ∗j in the exterior of the unit disk.
In other words, for small source supports the function f is – to a high order of
accuracy – a meromorphic function with poles in the points ζj ∈ Ω and ζ∗j ∈ C\D ,
j = 1, . . . , m .

Remark 3.1: In the particular case when F = χ(Ω) then λj is the area of Oj ,
and pj/λj is the difference between the barycenter of Oj and the origin (or, up to
scaling, between the barycenter of Ωj and the point zj ). More specifically, if the
barycenter is itself part of this component, and if we choose zj as this barycenter,
then we obtain pj = 0, and likewise βj = 0, and the third order components in the
expansions of uε and fε vanish.

We can now summarize our findings so far as follows: We have seen in Section 2
that the given Neumann data g of the solution of (2.1) extend to a complex valued
function ζf ′(ζ), which is analytic in D \ Ω, and, for the unit disk also extends
analytically to an exterior neighborhood of D by reflection. Moreover, when the
diameter ε of the source supports is small then the leading order term of the
Neumann data is a rational function with denominator degree m , whose poles
indicate the locations of the different components of the source support of (2.1).

In this case the Laurent-Padé approximation (2.12) with M = m of f ′ should
not only deliver reasonable approximations of the locations ζj , j = 1, . . . , m , but
also of the numerators in (3.6) when looking at its partial fraction expansion. This
information provides the individual means λj , j = 1, . . . , m . When F = χ(Ω)
those numbers approximate the volume of the individual inclusions.

If those numerators fail to be positive, however, then this indicates that the
asymptotic regime analyzed in this section is not yet valid, and that nearby poles ζj

whose residues λj have cancelling imaginary parts should be gathered to a “cluster
of poles” which approximates one connected source component. Note that this
argument is supported by the fact that the corresponding rational approximation
of u is harmonic in every simply connected neighborhood of such a cluster of poles.

4. A numerical algorithm for the case △u = χ(Ω)

In this section we consider the numerical reconstruction of the domains {Ωj} from
the flux values g on the outer boundary ∂D given by

△u = Fχ = χ
(

Ω
)

= χ
(

∪m
j=1Ωj

)

in D

u = 0,
∂u

∂ν
= g on ∂D.

(4.1)

We make the assumption that each Ωj is starlike with respect to one of its in-
terior points but need only mild assumptions on the boundaries ∂Ωj ; piecewise
differentiability will suffice.
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There have been many papers devoted to the solution of (4.1) especially in the
case of having a single component (m = 1). Let F denote the map from the
included region Ω to the values ∂u

∂ν = g on ∂D . Newton methods based on a lin-
earization of F have been a mainstay, but of course require an initial approximation
that may be difficult to determine with sufficient accuracy. It was shown in [13] that
at each iteration step the Newton scheme preferentially updates the high frequency
modes of the basis representation of Ω and so, if adequate information about the
suspected low frequency components of Ω is missing due to a poor initial guess,
then the scheme will likely fail to converge. However, when it does, convergence
is usually quite rapid. A scheme based on Landweber-Fridman iteration does the
opposite; at each iteration step it modifies the low frequency modes much more
than the high frequency ones. The result is that it does not require as accurate an
initial approximation, but the rate of convergence can be exceedingly slow. This is
typical of such schemes. However, in an ill-posed problem this slow convergence can
be an advantage as it can provide a regularization based on a stopping condition
which is often easier to implement than the direct regularization of the derivative
map F , [9]. This is one reason for the popularity of level set methods for inverse
inclusion problems. Of course, one can combine these schemes to advantage and
with Newton’s method there is the option of a step control, albeit at an often con-
siderable increase in the number of iterations. Regardless of the method used, the
case of (4.1), especially with m > 1, is a nontrivial reconstruction problem and the
existing methods require an initial assumption about the locations – either for the
scheme to converge or to avoid a large number of iterations (each of which require
a direct solve of the partial differential equation).

We therefore approach this problem by first determining the point source prob-
lem (1.4) with slightly different Cauchy data, namely

△v = FM :=

M
∑

k=1

λkδzk
in D

v = 0,
∂v

∂ν
= gM on ∂D,

(4.2)

where gM is the (M, M)-Fourier-Padé approximation (2.11) of g , and zk , λk ,
k = 1, . . . , M , are the corresponding poles and residues occurring in (2.10) and (2.8).
In a second stage, we then use FM as an initial guess to reconstruct information
about the function Fχ and thus the domains {Ωj} in (4.1). We will see that the
resulting distribution of poles and their strengths yield further information that, in
fact, goes well beyond simply providing a crude initial approximation.

Returning to (4.2), the first question to be resolved is how to compute the values
of {zk} , or the associated complex numbers {ζk} , and {λk} . As described in (2.5),
(2.6), the Laurent coefficients of the holomorphic function f ′ are related to the
Fourier coefficients of the Neumann data g , and the Laurent-Padé table method
allows a determination of the rational function R of (2.12). We can then solve
for the ζk as the poles of R and λk as the corresponding residues. In using this
approach one has to be careful in determining an upper bound M to the allowed
number of poles, and we will return to this issue below. A convenient way to
implement this Padé algorithm, when we are assuming only first order poles for the
rational appoximation (2.12) to f ′ , is to use a variation on the El Badia–Ha-Doung
approach, [8].
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Suppose we have computed {α−n}2M−1
n=0 from (2.6). Then it follows from (2.8)

that

α−n =

M
∑

k=1

λkζn
k , n = 0, 1, 2 . . . (4.3)

Define the diagonal matrix Z = diag{ζ1, . . . , ζM} and the vector Λ = [λ1, . . . , λM ]T .
We now form the M ×M matrices Aν , 0 ≤ ν ≤ M − 1, and the Hankel matrix B
to be

Aν =











ζν

1 ζν

2 . . . ζν

M

ζν+1

1 ζν+1

2 . . . ζν+1

M

...
...

...

ζM+ν−1

1 ζM+ν−1

2 . . . ζM+ν−1

M











, B =









α0 α
−1 . . . α1−M

α
−1 α

−2 . . . α
−M

...
...

...
α1−M α

−M . . . α2−2M









. (4.4)

Thus Aν+1 = AνZ = A0Z
ν+1 , and A0 is a Vandermonde matrix which, since we

assume that the locations of the poles {ζk} are distinct, is invertible. We now
use the singular value decomposition to ensure that B is invertible – that is, we
select M as the greatest integer such that all singular values of B stay above some
threshold σ > 0. This sets the number of poles sought, and can be thought of as a
regularization step in the procedure.

If we denote the columns of B by the vectors bν (counting from zero to M −1),
then from (4.3) it follows that bν = AνΛ, ν = 0, . . . , M − 1. A matrix T is then
uniquely defined by

TB =









α
−1 α

−2 . . . α
−M

α
−2 α

−3 . . . α
−M−1

...
...

...
α
−M α

−M−1 . . . α1−2M









(4.5)

and so T bν = bν+1 for 0 ≤ ν ≤ M − 1 where bM = [α−M , . . . α1−2M ]T , showing
that T is a companion matrix with ones on the super-diagonal and with last row
the vector γ = [γ1, . . . , γM ]T where BT γ = bM . Now

bν+1 = Aν+1Λ = A0 Zν+1Λ = A0Z A−1
0 A0 ZνΛ = A0ZA−1

0 AνΛ = A0ZA−1
0 bν

showing that T is also characterized by T = A0ZA−1
0 and hence has the {ζk} as

eigenvalues. Computation of these and hence {ζk} is straightforward.

Once the points ζk have been determined then the residues are easily computed
by inverting the Vandermonde matrix A0 with right hand side b0 , Λ = A−1

0 b0 .

If Ω is a disk of radius ρ then the corresponding “equivalent pole”, in the sense
that the same flux value g is obtained, is ζ being equal to the center of Ω and
a real-valued residue λ with

√

λ/π = ρ . This follows directly from the Green’s
function for the Laplacian applied to both terms. However, we cannot conclude
the converse that real-valued residues must correspond to circular regions. The
effect of overlapping regions must be taken into account, and there are certainly
counterexamples to the converse. What we can use to advantage is the fact that
the strength of a residue does correspond to an area of an equivalent unit source, and
so these values can be used as an aid in the next step of the reconstruction process:
developing a clustering algorithm that will allow identification of the number and
approximate locations of connected components of Ω.
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There are many possible clustering algorithms and we will resort to a fairly
standard, general purpose one modified for our particular task. We use the cor-
respondence between the pole coefficients (ζk, λk) and a disk with center ζk and
radius

√

λk/π . We say that the points ζk1
and ζk2

(with residues λk1
and λk2

)
are connected if

√
π|ζk1

− ζk2
| < |λk1

|1/2 + |λk2
|1/2 , that is if the “equivalent disks”

overlap. More generally, a set of points {ζk} , k ∈ K , is connected if for every
k1 ∈ K there is a k2 ∈ K such that

√
π|ζk1

− ζk2
| < |λk1

|1/2 + |λk2
|1/2 . The infor-

mation in the imaginary part of the residues λk assists in this clustering process.
Because of the linearity in the form of F we can compute the data g on ∂D for
any possible cluster set of poles. Since this has to be a real quantity it follows that
the sum of the imaginary parts of the residues of all points ζk within a cluster K
must be zero. We can check to see if this holds for our suspected cluster index set
K . In practice we cannot expect this condition to hold exactly, since measurement
error in the data and in the numerical approximation of the pole/residue finding
algorithm will play a role. On the other hand, M , the total number of detected
poles, will not be large unless we have extremely accurate data and so this feature
is in fact a viable check.

The final step will consist of synthesizing the information contained in the loca-
tions and residues of the poles in the jth subcluster into a geometrical representation
of Ωj . There are several possible ways of doing this but we will only describe one
approach that gave good results over a wide range of inclusion geometries. The idea
is based on the method of [13] where it was assumed that Ω consists of a single
star-like inclusion. First, we compute an approximation for the centroid ωj of the
jth cluster of points coming from running the Pade approximation algorithm. We
do not need the value of ωj precisely and so make the following approximation,

ωj =

∑

k∈Kj
|λk|ζk

∑

k∈Kj
|λk|

where both sums are over all indices from Kj that are assumed to correspond to
the jth cluster for the component Ωj .

We note from Remark 3.1 that if this centroid ωj lies in Ωj (as we should
expect since we are assuming Ωj is star-like) then by choosing this point as a pole
we would lose the associated third order component. This means that we should
indeed expect the monopole representation to be a very good approximation.

At this stage we are going to make the assumption, that not only gM of (4.2)
approximates g of (4.1), but also that the solution vj of

△vj =
∑

k∈Kj

λkδzk
in D, vj = 0 on ∂D, (4.6)

corresponding to the source points in cluster Kj , and the solution uj of

△uj = χ(Ωj) in D, uj = 0 on ∂D, (4.7)

have similar Neumann data as well, and this for every j = 1, . . . , m . Such an
assumption makes sense according to the linearity of the source problem and the
asymptotic analysis carried out in Section 3.

Using uj and vj of (4.6) and (4.7) we obtain, for any harmonic function h in
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D ,
∫

Ωj

h dx =

∫

D

(h△uj − uj△h) dx =

∫

∂D

h
∂

∂ν
uj ds

≈
∫

∂D

h
∂

∂ν
vj ds =

∫

D

(h△vj − vj△h) dx

=
∑

k∈Kj

λkh(ζk) .

(4.8)

If we now choose (in complex variables)

h(ζ) = (ζ − ωj)
n , n = 0, 1, 2, . . . ,

and if we parameterize the boundary of Ωj as ωj + qj(τ)eiτ with qj a real-valued
function of 0 ≤ τ < 2π , then we obtain from (4.8) that

1

n + 2

∫ 2π

0

qn+2
j (τ)einτdτ =

∑

k∈Kj

λk(ζk − ωj)
n =: dj,n , n = 0, 1, 2, . . . (4.9)

The right hand side dj,n of (4.9) is known in terms of computed point source
information, but the equation is, of course, nonlinear in qj . As in [13] we will solve
this by Newton iteration. One iteration step then consists in solving

∫ 2π

0

qn+1
j (τ)einτ δqj dτ = dj,n − 1

n + 2

∫ 2π

0

qn+2
j (τ)einτ dτ, n = 0, 1, 2, . . . ,

(4.10)
for δqj , and subsequently updating qj → qj+δqj . We can use as a starting guess the
constant function qj = |

∑

k∈Kj
λk/π|1/2 , which corresponds to Ωj being a disk with

center ωj and corresponding radius. This is exact in the case that the jth cluster
contains only a single point, and even in more complex situations this means that
we are taking as an initial approximation a region with the approximately correct
centroid and area.

We need not take many Newton iterations – there is little to be gained by taking
this larger than the number of points in the cluster. We can also use a “frozen”
Newton scheme by keeping the value of qj on the left-hand side of (4.10) fixed at
the initial constant; in this version (4.10) gives a formula for the Fourier coefficients
of δq . In either scheme effective convergence is achieved within a few iterations.

We also point out that after a few iterations we can, if necessary, update the
value of ωj by computing a better approximation of the barycenter of Ωj directly
from the currently computed boundary curve qj obtained using (4.10). We never
found the need to take this step.

In the above analysis and description we have ignored the possibility of noise
in the data except for the regularization step of choosing M poles by selecting a
threshold paramater σ . The first observation is that with data noise the point
sources obtained from any pole/residue finder may no longer lie within the region
D – there is no continuity argument possible that says: if the data error is small
enough then the poles {ζj} belong to D . As we mentioned before, however, the
latter is essential for the algorithm to work. In fact if we try to maximize the
information extracted from the data by using low values of σ in order to obtain
a larger number of poles, then some of these can lie outside of D . To see this we
merely have to take any point within R

2 , or C , and assign a source there with
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residue λǫ. This single source will contribute a value gǫ to the flux on ∂D and
by choosing λǫ small enough, we can ensure that |gǫ| is within our assumed data
error in g . This situation is easily resolved by assuming a minimum area δA for
sources. For a given estimate of the level of noise in g , establish a threshold value
for λǫ = δA and simply delete all reported poles whose residues are less than λǫ

in absolute value. Reducing the dimension M of the system (4.4) according to the
two thresholds σ and λǫ , and re-running the code with the reduced number M , the
pole-finder algorithm will automatically account for the contribution of the spurious
poles. In the reconstructions shown in Figure 2 and Figure 3 we took δA = 10−4 .

We will now illustrate these steps by turning to an actual numerical example.
The example chosen shows behaviour typical to many that were tried with a small
number of components and similar geometries. It is essential to keep in mind that
the more complex a shape that a subregion possesses, the more source points will
be needed to represent it and, clearly, the number of required source points will be
directly correlated to the number of subregions. Our upper bound of M = 10 sets
limits here, but in reality the accuracy of the data required to be able to compute
even this many points, is far greater than we actually chose (and would be unlikely
to be achievable in most practical situations).

Figure 1 shows an inclusion Ω containing three subcomponents; a disk, an el-
lipsoid, and an apple-shaped region. We have chosen these in part to illustrate
certain features of the algorithm. We obtained data by numerically solving the
homogeneous Dirichlet problem (2.1) to obtain the corresponding Neumann val-
ues ∂u

∂ν = g . This was accomplished by a
quadrature process that was refined until
the difference obtained in g was less than
10−4 giving a relative error of less than
0.1%. We will view this as “accurate data”.
The values of g were output at 64 equally
spaced points on the unit circle. Our initial
estimate was to allow M = 10 possible sin-
gular sources. Each of these have four asso-
ciated real numbers; two each for the coor-
dinates of the locations ζk and residues λk .
This means that we have 4M unknowns
and need at least this number of data points
in order to solve the resulting linear system.
Thus our data set, at whatever accuracy,
must be considered as relatively “minimal”
for implementing the algorithm.
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Figure 1. Test obstacles Ωj

As already mentioned we now implemented the pole finder algorithm with an
initial estimate of M = 10 poles. Normalizing the singular values of the matrix B
so the largest is unity (so that the condition number for B of dimension ν is the
reciprocal of the νth singular value) gives the following singular values for B

1.0 0.165 0.080 3.32× 10−3 5.53 × 10−4 3.21× 10−5

9.91 × 10−7 1.01 × 10−7 1.31 × 10−9 4.34 × 10−11
(4.11)

Of course, these numbers will depend on the data or, more exactly, on the noise in
the data, but the values, although subject to variation, are informative. It is clear
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that our hope of recovering ten useful poles was extremely optimistic – at least
without obtaining much more accurate data than we are using. On the other hand,
on the grounds of (4.11) we should count on obtaining three sources and, unless the
data has unexpected types of noise, we should also be able to obtain five. Spectral
cut-off equated to maximum level of noise as a choice of regularizing parameter is
notoriously conservative, and in fact we might hope to do a little better.

If we take a threshold value of σ = 10−2 for the singular value decomposition of
the matrix B together with the cut-off of 10−4 for δA then, as expected from (4.11),
this resulted in the number of points being reduced to M = 3. The corresponding
poles were placed at the approximately correct centroids of the three subinclusions,
and the corresponding residuals gave circular approximations with good correlation
to the areas of the inclusions.

For approximately 3.3 × 10−3 > σ > 5.5 × 10−4 we obtained M = 4 source
points. This is as expected, but now the magnitude |λ| for the added point was
less than the cut-off value. Thus we still only had three “usable” point sources. In
fact, for the data set corresponding to (4.11) this fourth pole came with a residual
considerably below the cut-off and, in addition, lay outside of D , showing it was
indeed an artifact of the data noise.

A further decrease in σ produced M = 5 source points and all of these were now
above the cut-off value λǫ . The values of the corresponding ordinates {zk} ⊂ R2

and residues {λk} are shown on the left in Table 1. As expected, the disk contains
only a single pole which has a real residue. Each of the other two regions have
complex-valued residues with the sum of the imaginary parts within each cluster
indeed approximately zero.

When σ was decreased to below the 5th singular value, the sixth pole appearing
had a residue below the cut-off indicating again a phantom. When σ was chosen less
than the next singular value the resulting seven point sources all had magnitudes
above the cut-off. The sub-table on the right in Table 1 shows the locations and
residues in this case.

On further decrease in σ an eighth point source was placed near the apple-shaped
region and had a small, but above cut-off, magnitude. This resulted in a poorer
final reconstruction indicating that we had reached, or in fact, exceeded, the limits
of this data set.

zk λk

(-0.400,-0.300) 0.0400 + 0.0000i

( 0.631,-0.250) 0.0195 - 0.0063i

( 0.468,-0.332) 0.0250 + 0.0068i

( 0.137, 0.362) 0.0378 - 0.0138i

( 0.027, 0.228) 0.0196 + 0.0133i

zk λk

(-0.400,-0.300) 0.0400 - 0.0000i

( 0.663,-0.241) 0.0089 - 0.0036i

( 0.437,-0.359) 0.0117 + 0.0050i

( 0.548,-0.282) 0.0241 - 0.0015i

( 0.120, 0.365) 0.0324 - 0.0339i

( 0.078, 0.312) 0.0172 + 0.0265i

(-0.010, 0.217) 0.0077 + 0.0075i

Table 1. Coordinates and residues with σ = 10−4 and σ = 9× 10−7 .

In the leftmost figure of Figure 2 we plot the coordinates and residues (converted
to an equivalent disk with radius the square root of |λk|/π ) when σ = 10−4 . The
rightmost figure shows the reconstruction using the scheme (4.10) and formula (4.9).
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Figure 2. Equivalent pole coordinates/residues, reconstruction, σ = 10−4 .

Figure 3 shows the corresponding reconstruction using σ = 9 × 10−7 . As noted,
this represents the best reconstruction that we could obtain with this particular
data set.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
......
......
......
......
.......
.......
.......
........

........
........

.........
.........

..........
...........

.............
................

.....................

..................

..............
............
...........
.........
.........
........
........
........
.......
.......
.......
.......
.......
......
......
......
......
......
......
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

.....

.....

.....
......
......
.......
.........

.........................................................................................................................................................................
.........
.......
......
.....
.....
.....
.....
.....
...

.....

.....

.....

.....
.....
......
......
.......
........

..............
............................................................................................................................................................................................
..........
........
.......
.......
......
......
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
......
.......
.........

......................................................................................................................................................................................
...........
.........
.......
.......
......
...

• •
• •

••
•

.

.
.
.
.
..

......
.
.
.
.
.
.
.
.
.
.
. . . . . .

..
.
.
.
.

.
.
.. . .

.
.
.
.
.

....
.
.

.

.
.
. . . .

.
.
.
.
.
..

...
.
.

.

.
.
.
.. . . .

.
.
.
.
.
.
.
.
.

......
.
.
.

.

.
.
.
.

..
.....

.
.
.
.
.
.
.
.
.. . . . .

..
.
.
.
.

.

.
.
..

....
.
.
.
.
.
.
. . . . .

.
.
.

.
.
..

..
.
.
.
.
. . . .

.
.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
......
......
......
......
.......
.......
.......
........

........
........

.........
.........

..........
...........

.............
................

.....................

..................

..............
............
...........
.........
.........
........
........
........
.......
.......
.......
.......
.......
......
......
......
......
......
......
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

.....

.....

.....
......
......
.......
.........

.........................................................................................................................................................................
.........
.......
......
.....
.....
.....
.....
.....
...

.....

.....

.....

.....
.....
......
......
.......
........

..............
............................................................................................................................................................................................
..........
........
.......
.......
......
......
.....
.....
.....
.....
.....
.

.....
.....
.....
.....
.....
.....
.....
......
.......
.........

......................................................................................................................................................................................
...........
.........
.......
.......
......
...

.....

.....

.....
......
......
.......
.........

.........................................................................................................................................................................
.........
.......
......
.....
.....
.....
.....
.....
... .....

.....

.....

.....
......
......
........

..................................................................................................................................................................................
...........
..........
.........
.......
......
......
.....
.....
.....

.....

.....

.....

.....
.....
.....
......
......
.......
.........

..............................................................................................................................................................................................
...........
..........
........
.......
......
......
.....
.....
.....
.....
.....

Figure 3. Equivalent pole coordinates/residues, reconstruction, σ = 9× 10−7 .

One of the questions to be resolved in any reconstruction process is the choice
of the regularization parameter – and the rationalization behind this choice. In
obtaining the above reconstructions we have actually used three parameters. The
first of these is σ and while the “correct value” here must depend on the amount
and type of the error in the data, it is not clear how to directly correlate these. The
number M of poles obtained is certainly a nonlinear function of σ , but as (4.11)
shows, the coupling between M and σ allows for considerable latitude in σ and this
should be viewed as an advantage. The second parameter δA is used to determine
whether a located pole has significant residue or is considered a phantom directly
due to noise in the data. The choice of δA is much more transparent and is based
on the largest circular source that would contribute an amount to the flux data less
than the estimated error in this quantity. Failure to delete such small quantitites
would have only a small effect on the reconstructions of the larger regions and the
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practice described above is to re-run the pole/residue finder with the decreased
value of M to include these small contributions (or possibly artifacts of the data).
For these reasons the choice of δA is not critical: indeed, with our particular data
set, a choice of δA one order of magnitude in either direction of the selected value
would not have changed the number of poles used for σ values corresponding to
M ≤ 7. Finally, there is the regularization in the Newton scheme used in (4.10) and
formula (4.9). This is less of an issue since we have relatively few poles per inclusion
and can only recover a few modes of each qj ; the number of Newton iterations is
never going to be large. We never found regularizing this step to be necessary. An
exception might be if there is a single source inclusion with a complex shape and
accurate enough data, so that we might be able to use the contibutions from a
relatively large number of poles.

What if we had greater noise in the data or were forced to measure at fewer
points on ∂D? In the latter case, as explained earlier, this would limit the number
of admissible poles M . This may still provide sufficient information for a good
reconstruction when Ω consists of only one single component, or when the two or
three components of Ω have nearly circular geometry, but otherwise this would
be a major limitation. If the data noise were to increase we would be forced to
increase σ and this in turn would limit the number of poles obtained as we require
the matrix B of (4.4) to be numerically invertible. We would also be forced to
increase the cut-off value of λ which would decrease the number of useful poles as
well as introduce further errors in both their strengths and locations. For example,
with 1% Gaussian noise with mean zero, we would be on the borderline to being
able to obtain only five usable poles and, therefore, at best would be able to obtain
a reconstruction somewhat poorer than that of Figure 2.

Finally, we have assumed throughout that D ⊂ R2 but this is not an essential
restriction. As was proposed in [8], we can determine sources in three dimensions
by applying the two-dimensional algorithms in each of three projected planes. The
clustering algorithm works much as before and the Newton scheme in (4.10) adapts
directly to higher spatial dimensions.
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