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Abstract

We propose a new method to calibrate the local volatility function of

an asset from observed option prices of the underlying. Our method is ini-

tialized with a preprocessing step in which the given data are smoothened

using cubic splines before they are differentiated numerically. In a second

step the Dupire equation is rewritten as a linear equation for a rational ex-

pression of the local volatility. This equation is solved with Tikhonov reg-

ularization, using some discrete gradient approximation as penalty term.

We show that this procedure yields local volatilities which appear to be

qualitatively correct.

1 Introduction

We study the inverse problem of option pricing which is concerned with the
approximation of the so-called volatility function σ of an underlying asset with
price S = S(t), given by the (lognormal) stochastic process

dS/S = µdt + σ dW , t > t0 , S(t0) = S0 , (1.1)

with drift µ and normalized Brownian motion W . Here, the volatility may
depend on time and on the underlying asset price, i.e., σ = σ(t, S).

A European call option on the underlying with maturity date T and strike
X gives the right to buy one unit of the asset at time T and price X. Assuming
that (1.1) holds true, the celebrated Black-Scholes model determines the fair
price u = u(t, x;T,X) of this option at time t given an asset price x at this
time, from the solution of the parabolic differential equation

−ut =
1

2
σ2(t, x)x2uxx + rxux − ru , t < T , x > 0 ,

u(T, x;T,X) = max{x − X, 0} , x ≥ 0 ,
(1.2)
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with boundary values

u(t, 0;T,X) = 0 , lim
x→∞

u(t, x;T,X)

x
= 1 , t < T . (1.3)

If the volatility σ is known, this boundary value problem is well-posed and
allows the stable computation of the option price. However, in practice the
volatility is not known explicitly, hence the importance of the aforementioned
inverse problem, where one tries to estimate or reconstruct the volatility function
from observed market prices u(t0, S0;T,X) at a fixed time t0 given the fixed price

S0 = S(t0) of the underlying.
Inverse problems in diffusion processes have a certain tradition in the math-

ematical community, cf., e.g., the conference proceedings [4], albeit in those
problems data are typically given for one particular solution with fixed bound-
ary and initial data. In contrast, we are given here data from different solutions
of (1.2) corresponding to different initial conditions (1.3) using different strikes
and maturity dates. Nevertheless, these inverse problems have in common that
the vast majority of them is ill-posed, and some kind of regularization is required
for a stable solution.

We refer to Crépey [1] for an up-to-date survey of methods to solve the in-
verse problem of option pricing. Most of them use some output least squares

approach and minimize a (nonlinear) least squares functional with a Tikhonov-
type penalty term for regularization. However, as first observed by Dupire [2],
there is an alternative and more direct way to obtain the volatility function, and
which is based on the Fokker-Planck equation associated with the diffusion pro-
cess (1.1). According to that we can consider the option price u = u(t0, S0;T,X)
as a function of T and X which satisfies the differential equation

uT =
1

2
σ2(T,X)X2uXX − rXuX , T > t0 , X > 0 ,

u(t0, S0; t0, X) = max{S0 − X, 0} , X ≥ 0 ,
(1.4)

with boundary values

u(t0, S0;T, 0) = S0 , lim
X→∞

u(t0, S0;T,X) = 0 . (1.5)

Note that we can solve (1.4) for the volatility

σ(T,X) =
(2(uT + rXuX)

X2uXX

)1/2

, (1.6)

where all derivatives of u on the right-hand side of (1.6) are to be evaluated at
(t0, S0;T,X), and therefore can, in principle, be computed from the given data.

Despite its simplicity, this approach has severe practical shortcomings which
reflect the ill-posedness of the problem. First, financial markets typically allow
only few and prefixed maturity dates, and just a discrete sample of strikes are on
sell, too; therefore some sort of numerical differentiation is required to evaluate
the fraction in (1.6). Second, the geometric Brownian motion (1.1) and the
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Black-Scholes equation (1.2) are just models of real market dynamics, so that
(1.6) is at best an approximate identity.

In fact, real option prices (for fixed t0 and S0) are typically

• monotonically decreasing and convex in X, and

• monotonically increasing in T ,

and this implies in particular that the denominator of (1.6) is usually positive;
however, positivity of the numerator may not be an obvious property for real
data. Therefore it can easily happen that the computed fractions in (1.6) change
sign, and taking the square root to obtain σ is prohibited. Even if the fraction
remains finite and positive the volatility functions computed from (1.6) exhibit
rough oscillations, if the data have not been preprocessed properly, cf., e.g., the
examples in [1].

It is the purpose of this paper to restore stability for this approach by adopt-
ing a technique from [6] to the present context. Basically, this amounts to
rewrite (1.4) as a linear system of equations for the unknown volatilities, and to
use Tikhonov regularization with a discrete H1 penalty term to obtain a smooth
solution of this system. This approach still requires numerical differentiation
of the discrete data, and we use a smooth cubic spline interpolation for this,
cf. Section 2. This can be interpreted as a data preprocessing step which adds
some more regularization to our implementation. In Section 3 we describe in
detail the modifications of (1.6) that we introduce to obtain a smooth approx-
imate volatility function. To justify our approach we present numerical results
in Section 4, both for synthetic as well as real data sets. The reconstructions of
the volatility functions appear to be qualitatively correct, and at the same time,
the whole algorithm is extremely fast: there is just one linear matrix equation,
but no partial differential equation to be solved.

2 Numerical differentiation of the available data

In practice options are only sold for very few maturities: Typically, only one
preassigned day per month qualifies for a maturity time, and from those matu-
rities only few are actually on sale. We denote them by T1, . . . , Tm. For each Ti

a certain number of strikes is available, and we shall assume for simplicity that
the smallest and largest of these, X∗ and X∗, are the same for each maturity.
For our main example, the bullets in Figure 1 show the given combinations of T
and X for options on the S&P500 index from April 17, 2002 [9], where t0 = 0,
S0 = 1127.9, X∗ = 1025 and X∗ = 1200 (time units are days, option units are
index points).

To evaluate (1.6) we need to differentiate these discrete data twice with
respect to the strike variable X. Following Reinsch [10], see also [7], we compute,
for each maturity Ti, i = 1, . . . ,m, a smoothing natural cubic spline ui such that

∑

X

∣

∣ui(X) − u(t0, S0;Ti, X)
∣

∣

2
+ λ‖u′′

i ‖2
L2 (2.1)
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Figure 1: Available data for the S&P500 index from April 17, 2002
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Figure 2: Smooth interpolation of the S&P500 index data

is minimized. While the boundary values ui(X∗) and ui(X
∗) are prescribed by

the data, the sum in (2.1) runs over all interior strikes X which are available
for the maturity Ti; the L2-norm refers to the interval [X∗, X

∗]. The positive
parameter λ depends on i and is known as Lagrange or regularization parame-
ter. Once the cubic splines ui are determined they can easily be differentiated
analytically to compute approximations of uX and uXX wherever needed. Fig-
ure 2 shows the given option prices (as circles), and the result of the smooth
interpolation (the solid lines).

We emphasize that alternative techniques for the numerical differentiation of
the data exist (cf., e.g., the references in [7]) and can in principle be employed as
well. An advantage of the above approach is the well-known fact that the cubic
spline is differentiable twice, and has small curvature. Another advantage is
that the spline functions can be evaluated at any point in the interval [X∗, X

∗],
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a property that we will use later on.
Of course, the regularization involed in (2.1) is a crucial issue, and we briefly

comment on how to determine an appropriate regularization parameter λ. With
a standard strategy, the so-called discrepancy principle, this parameter is chosen
such that the sum of squares in (2.1) equals the data uncertainty (which can,
for example, be estimated from the bid-ask spread of the market) times the
number of data samples. We refer to [7] for references and an error analysis of
this procedure. In our implementation we have used an alternative approach
for choosing λ based on the so-called L-curve criterion, cf., e.g., [3, Section 4.5].
For this criterion one computes the minimizers ui,λ of (2.1) for a significant
range of regularization parameters, and evaluates the corresponding residual
and solution norms in (2.1):

ρ(λ) =
∑

X

∣

∣ui,λ(X) − u(t0, S0;Ti, X)
∣

∣

2
, ν(λ) = ‖u′′

i,λ‖2
L2 .

The curve (ρ(λ), ν(λ)) often exhibits an L-shaped corner when plotted in a
doubly logarithmic scale, and regularization parameters corresponding to points
just to the right of that corner have proved useful in various applications. We
refer to Figure 3 for two such L-curves associated with the data smoothing
problem (2.1): from left to right the regularization parameter is increasing in
the two curves. Both of them have distinct L-shaped corners. However, it turns
out that in certain cases we need to impose somewhat more regularization than
suggested by the original L-curve criterion to achieve positivity of ui,λ and its
second derivative. To illustrate this point we have marked with circles those
points on the curves for which these two functions are positive. (In our code we
sample each curve for λ = 10ν/2 with integer ν ∈ {−14, . . . , 2}; the solid lines
in Figure 3 are obtained by subsampling and serve for illustration only.) Out of
these points, the one which is nearest to the corner but still to its right, yields
our parameter of choice; these points are marked with bullets in the figure.

Differentiation with respect to time is less delicate because of the relatively
large time gaps. While this implies that the numerical differentiation cannot
be very accurate, it also means that lack of stability is not really an issue
here. Therefore we can use simple difference schemes to approximate the time
derivatives at the maturity times. More precisely, we use centered differences
at the inner maturities T2, . . . , Tm−1, and one-sided differences at the extremal
maturities T1 and Tm. Note that the maturities are not equispaced, so that the
appropriate central difference quotient is

uT (Xi, Tj) ≈ 1

τj+τj+1

( τj

τj+1
uj+1(Xi) + (

τj+1

τj
− τj

τj+1
)uj(Xi) − τj+1

τj
uj−1(Xi)

)

,

with τj = Tj − Tj−1, j = 2, . . . ,m − 1.

3 Solving for the unknown volatility function

We choose a rectangular grid 4 with equispaced grid points at the abscissa
X∗ = X1 < X2 < . . . < Xn = X∗ in X direction (in our implementation we
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Figure 3: L-curves for two of the second derivative computations

use one grid point per index point, i.e. much more grid points than the number
of strikes we have) and ordinates in time at T0 = t0 and at each maturity Ti,
i = 1, . . . ,m, measured in years. Then we associate unknown values

zij = σ2(Ti, Xj) , i = 0, . . . ,m, j = 1, . . . , n,

of the squared volatility function with all points (Ti, Xj) ∈ 4, as well as cor-
responding values dij and bij for the denominator and the numerator of the
fraction in (1.6), respectively. While the latter can be computed using numer-
ical derivatives as specified in Section 2 when i > 0, we set them to zero for
i = 0. We stack all those values in one-dimensional vectors z, d, and b ∈ R

N ,
N = (m + 1)n, using a standard lexicographical ordering (with all abscissa for
a single maturity in consecutive, increasing, order).

The key idea of our first approach is to consider the expression in (1.6) as a
linear system

Dz ≈ b , (3.1)

where D is the diagonal matrix whose diagonal coincides with d. Note that, by
construction, those equations in (3.1) corresponding to grid points with T0 = t0
are trivially correct, although the corresponding entries of z are not uniquely
determined. But even without these trivial equations the matrix D is singular
because we use natural cubic splines ui for the interpolation, and hence the
denominators of (1.6) vanish when X = X1 or X = Xn. In the vicinity of
these points the entries of d are still tiny so that D happens to be relatively
ill-conditioned in general. Finally, although D is nonnegative by construction
the system (3.1) may not have a nonnegative solution because of possible sign
changes in b.

For these reasons the linear system (3.1) needs to be regularized to obtain
reasonable approximations of z. We use Tikhonov regularization (cf., e.g., [3,
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Chapter 5]) which amounts to minimize

‖Dz − b‖2
2 + α‖Lz‖2

2 (3.2)

over z ∈ R
N for some appropriate regularization parameter α > 0. Here,

‖ · ‖2 denotes the Euclidean norm. Care has to be taken in the choice of L.
For example, the identity matrix L = I will in general not yield nonnegative
solutions z, either, because the minimization of (3.2) is equivalent to solving
the linear system

(D2 + αLT L)z = Db , (3.3)

and with L = I the system matrix in (3.3) is a diagonal matrix with positive
diagonal, but the right-hand side of (3.3) has the same sign changes as b.

Rather, we recommend to use finite difference approximations to define a
discrete gradient operator L. More precisely, we choose

L =

[

Im+1 ⊗ LX

LT ⊗ In

]

, (3.4)

where LX ∈ R
n−1,n and LT ∈ R

m,m+1 are given by

LX =











−1 1
−1 1

. . .
. . .

−1 1











, LT =











−1/τ1 1/τ1

−1/τ2 1/τ2

. . .
. . .

−1/τm 1/τm











,

with τi = Ti − Ti−1 as above, and (m + 1,m + 1) and (n, n) identity matrices
Im+1 and In, respectively. The symbol ⊗ denotes the Kronecker product of two
matrices, i.e., if A = [aij ] ∈ R

k,l and B is any matrix then A ⊗ B is the block
matrix

A ⊗ B =











a11B a12B . . . a1lB
a21B a22B . . . a2lB

...
...

ak1B ak2B . . . aklB











.

Although L of (3.4) has the nontrivial null space of all constant vectors, the
matrix D2 +αLT L in (3.3) is always nonsingular for positive α. One advantage
of using this particular L over the identity matrix consists in a coupling of the
individual values σ2(Ti, Xj) in z obtained this way. In particular, this coupling
also includes the components σ2(t0, Xj) which are otherwise undetermined by
(1.4). Furthermore, it turns out that we obtain positive solutions z of (3.3)
provided that α is sufficiently large: this is the content of the following result.

Theorem 1. Let d and b be as above, and assume that
∑

dijbij > 0. Denote

by 1 the constant vector of all ones in R
N , and let zα be the solution of (3.3).

Then

zα →
∑

dijbij
∑

d2
ij

1 , α → ∞ .
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Proof. We make use of the generalized singular value decomposition of the ma-
trix pair (L,D), cf., e.g., Golub and Van Loan [5], i.e.,

L = UCX−1 , D = V SX−1 , (3.5)

with orthogonal matrices U and V , a nonsingular matrix X ∈ R
N×N , and two

diagonal matrices C and S from R
N×N with nonnegative diagonal entries ci

and si, i = 1, . . . , N , respectively. We denote the columns of V by v1, . . . ,vN

and the columns of X by x1, . . . ,xN , i.e.,

V = [v1, . . . ,vN ] , X = [x1, . . . ,xN ] ;

each of these vectors belongs to R
N . Since the ranks of L and C coincide,

exactly one diagonal entry of C is zero, cN say. Accordingly, the last column of
X can be chosen to be xN = 1. Moreover, we have

d = D1 = DxN = sNvN and v
T
Nb = d

T
b/sN , (3.6)

and since vN has unit length,

s2
N = ‖d‖2

2 . (3.7)

Inserting (3.5) into (3.3) and using the symmetry of D = DT we obtain

zα = (D2 + αLT L)−1Db = X(S2 + αC2)−1XT X−T SV T
b

=

N
∑

i=1

v
T
i b

si

s2
i + αc2

i

xi

because U and V are orthogonal matrices, and hence, UT U and V T V equal the
N × N identity matrix. Letting α go to infinity, only the last term of this sum
remains because ci 6= 0 for i 6= N , so that

lim
α→∞

zα =
v

T
Nb

sN
1 .

Now the assertion of the theorem follows from (3.6) and (3.7).

Remark. Note that the asymptotic value z of zα minimizes the least-squares fit

‖b − zd‖2

corresponding to the fraction (1.6) for a constant volatility σ =
√

z.
Our second approach of solving (1.6) for the volatility is similar to the first,

except that we rewrite (1.6) as a linear system for the vector z
−1 consisting of

the reciprocals of zij . Introducing the diagonal matrix B with the vector b on
its diagonal we have

Bz
−1 ≈ d ,
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and thus can use the same technique as before to reconstruct z
−1. Because of

the sign changes in b the matrix B is also ill-conditioned in general, but again,
positive approximate solutions can be obtained from the regularized problem

(B2 + βLT L)z−1 = Bd (3.8)

with the same matrix L of (3.4) and sufficiently large regularization parameter
β > 0. With this approach, Theorem 1 yields another asymptotic volatility as
β → ∞, which minimizes the corresponding least-squares fit

‖d − 1

z b‖2

over all constant volatilities σ =
√

z.

4 Numerical results

We now present numerical reconstructions of certain volatility functions using
the two approaches (3.3) and (3.8) from the previous section. Our results include
first a set of synthetic data with random errors on top of them, second, the
S&P500 data set from Figure 2, and third, another slightly larger S&P500 data
set.

To begin with we show numerical results for synthetic data which have been
generated by numerically solving the Focker-Planck equation (1.4) with the
volatility phantom shown in Figure 4. The option prices have been sampled on
the same grid as in Figure 1, and random errors have been added on top of them
to achieve a total relative error of 1% in the Euclidean norm. Afterwards these
data have been differentiated numerically with the very scheme of Section 2.
Numerical reconstructions on the basis of (3.3) and (3.8), respectively, are shown
in Figure 5, using optimized regularization parameters of the form 10ν/2 with
integers ν. As can be seen the characteristic features of the reconstructions
match very well with those of the true phantom, although, of course, there are
some differences in the details due to the ill-posedness of the problem.

Next, we turn to the S&P500 data set shown in Figure 2. Corresponding
reconstructions of the volatility can be seen in Figure 6. While these two recon-
structions agree pretty much qualitatively, the solution of (3.8) is consistently
about 0.01 larger than the other one. This is in agreement with the asymp-
totic constant volatilities of Theorem 1 which in this example turn out to be
σ = 0.1531 for (3.3) and σ = 0.1676 for (3.8), respectively.

For this real data set the choice of the regularization parameters is more
subtle than before, because the exact solution is not known. Unfortunately,
standard parameter choice criterions (as suggested for example in [3]) are not
really useful here. In our implementation we solve this problem by determining
the smallest parameter α∗ = 10ν/2 (resp. β∗) with integer ν, which yields a
positive solution vector. Then, enlarging this regularization parameter by an
extra factor of 100 or so appears to give good results, in that the ‘volatility
smile’ looks most reasonable (visually).
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Figure 4: Volatility phantom used to generate synthetic data

Figure 5: Reconstructions of the volatility phantom using (3.3), left, and (3.8),
right
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Figure 6: Reconstructions of an unknown volatility function using (3.3), left,
and (3.8), right

The resulting parameters, α = 1011 and β = 103, are close to those of the
synthetic data set above and appear to be huge. However, they have to be put
in relation to the spectral norms of L, D and B, namely

‖L‖2
2 ≈ 4 , ‖D‖2

2 ≈ 2 · 108 , ‖B‖2
2 ≈ 0.5 .

Taking also the squared condition number of L into account (which is close to
105), the orders of magnitude of the two regularization parameters make sense.

As yet another example we finally have run our code with option prices
for the S&P500 index from June 6, 2001, which is a somewhat larger data
set than the one from our first example. The performance of our algorithm,
however, is very alike: Figure 7 shows the result of the smooth interpolation,
and Figure 8 the corresponding reconstructions of the volatility function. The
same regularization parameters as before turn out to give best results, and again,
the volatility computed from (3.8) is somewhat larger than the other one.

We mention that the amount of work for solving the inverse problem by the
approach described in this paper is dominated by the solution of the regular-
ized linear systems (3.3) and (3.8), respectively, using a sequence of up to 20
regularization parameters, say. These linear systems are sparse with, e.g., 2256
unknowns zij for the second (larger) data set. Using MATLAB [8] the solution
of one such system takes about 0.1 seconds on an Intel Pentium IV processor
with 1.5 GHz. This is much cheaper than solving the diffusion equations (1.2) or
(1.4) for one single volatility, the latter being the basic ingredient of any output
least squares type method.

We finally mention that the number of unknowns that are actually used to set
up the linear systems depends on the range of available strikes and maturities.
If this number is significantly larger than above, iterative methods for solving
the linear systems can provide a worthwhile alternative.
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Figure 7: Smooth interpolation of the S&P500 data from June 6, 2001

Figure 8: Reconstructions of the unknown volatility function corresponding to
the data in Figure 7.
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