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Abstract. We investigate the performance of a MUSIC-type algorithm for
low frequent time-harmonic electromagnetic imaging of the subsurface. This
algorithm is based on an asymptotic analysis and an associated asymptotic
factorization of electromagnetic near field data in the presence of very small
scatterers in the ground. Our numerical results illustrate the potential of
this imaging method, and we provide theoretical evidence for what has been
observed numerically. In particular, we address the issue of superresolution
which, in this context, means that it is possible to use this method to recon-
struct objects of centimeters in size, and separated by only few multiples of
their diameters, despite the fact that the given time-harmonic electromagnetic
waves may have wavelengths that are several kilometers long.

1. Introduction

Since the seminal paper by Devaney [13] there has been an increasing interest
in imaging techniques for inverse obstacle problems along the lines of the celebrated
MUSIC algorithm. We refer to Cheney [8] for a brief survey of this algorithm and its
relation to inverse problems and imaging. A rigorous foundation of these MUSIC-
type methods can be given along the lines developed in [7], which amounts to an
asymptotic analysis of the given input data for the corresponding inverse problem,
as the size of the obstacles converges to zero. Typically, these measurements can
be interpreted in the limit as the data corresponding to an inverse source problem,
with the infinitesimal obstacles acting as (fictitious) point sources. A good survey
about the corresponding state of the art can be found in the books by Ammari and
Kang [2, 3].

In the present paper we address a particular instance of these methods related
to low-frequent subsurface electromagnetic imaging, intended to combine off-the-
shelf metal detectors for taking multistatic data for time-harmonic electromagnetic
induction tomography of the soil. This problem had originially been raised and
funded by the German Federal Ministery of Education and Research (BMBF) to
improve the performance of commercial metal detectors for humanitarian demining,
cf. [18].
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While the asymptotic analysis from [16, 17] provides all relevant information
about the multistatic response data matrix that occurs in this context, the adapta-
tion of the MUSIC idea to utilize this information is the major focus of this present
work; we mention, though, that the imaging aspect has already been addressed in
[17] briefly, but a considerable amount of insight gained in [16] is still waiting to be
published.

During the preparation of the thesis [16], Iakovleva and Lesselier with varying
coauthors [1, 19, 20] have utilized similar ideas for the same problem, essentially.
Our findings nicely support and complement their results. In particular, we illu-
minate from various viewpoints the important issue of resolution limit that can be
achieved with this imaging technique. We know of no other treatment of this topic
of comparable depth.

The outline of our paper is as follows. In Section 2 we describe the basic
modeling of our setting and summarize the results of the asymptotic analysis from
[17]. The results are subsequently illustrated numerically in Section 3. In particular,
we address some peculiarities that arise for the low frequencies that are typical
for commercial metal detectors. For example, while the numerical rank of the
limiting multistatic response matrix is a multiple of six in general, the low frequent
fictitious electric sources in the scattering obstacles turn out to be almost negligible
as compared to the corresponding magnetic sources. As a result the numerical (or
essential) rank of the limiting matrix is a multiple of three, only, for low frequencies.

In Section 4 we turn to the inverse problem and describe the MUSIC-type
algorithm that we are going to use to image the subsurface and the obstacles in
there. We provide three numerical examples that illustrate the performance of
this algorithm and indicate its ultimate limitations. As it turns out, the noise
level, in combination with the ill-posedness of the problem, is the most important
obstruction that needs to be dealt with. While this may not come as a surprise,
we will go on and show in great detail in Secion 5 that, again, noise is also the
only limitation in getting perfect resolution, far below the Nyquist barrier. We thus
examplify that the method may be a worthwhile alternative for the electromagnetic
imaging of small scatters in the ground.

2. The direct scattering problem for small scatterers

We start with a mathematical description of our setting. We fix Σ0 := {x ∈
R3 | x3 = 0} as the surface of ground, and decompose the entire space in the
two halfspaces R3

+ and R3
− above and below Σ0 to correspond to air and ground,

respectively. Both halfspaces are assumed to be filled with homogeneous materials.
More precisely, the electric permittivity ε and the magnetic permeability µ are given
by

ε(x ) :=

{

ε+, x ∈ R3
+,

ε−, x ∈ R3
−,

µ(x ) :=

{

µ+, x ∈ R3
+,

µ−, x ∈ R3
−,

where ε+ as well as µ± are positive numbers, whereas ε− may be complex with
positive real and nonnegative imaginary part to allow for conductive soils. By
ω > 0 we denote the angular velocity, and k := ω

√
εµ (with nonnegative imaginary

part) is the associated (discontinuous) wave number.



ASYMPTOTIC FACTORIZATION IN INVERSE SCATTERING 3

We assume that electromagnetic fields are generated by magnetic dipole distri-

butions with a dipole density ϕ on a two-dimensional device

M ⊂ Σd := {x ∈ R
3
+ | x3 = d}, d > 0,

in the upper halfspace. To be more specific, we introduce the magnetic dyadic

Green’s function Gm and the electric dyadic Green’s function Ge as the (distribu-
tional) solutions of

curlx
1

ε(x )
curlx G

m(x ,y) − ω2µ(x )Gm(x ,y) =
1

ε(x )
δ(x − y)I3, x ,y ∈ R

3,

and

curlx
1

µ(x )
curlx G

e(x ,y) − ω2ε(x )Ge(x ,y) =
1

µ(x )
δ(x − y)I3, x ,y ∈ R

3,

where I3 denotes the 3×3 identity matrix, together with the Silver-Müller radiation
conditions
∫

∂BR(0)

∣

∣

∣

x

R
× G

m/e(x ,y) +
i

k(x )
curlxG

m/e(x ,y)
∣

∣

∣

2

ds(x ) = o(1) as R → ∞,

∫

∂BR(0)

∣

∣

∣

x

R
× curlxG

m/e(x ,y) + i k(x )Gm/e(x ,y)
∣

∣

∣

2

ds(x ) = o(1) as R → ∞.

Then, for a magnetic dipole density ϕ ∈ L2(M; C3) the incident field (E i,H i) is
given by

(2.1) H i := k2
+

∫

M

G
m(·,y)ϕ(y) ds(y), E i := − 1

iωε
curlH i in R

3 \M.

Note that (E i,H i) is a radiating solution of the time-harmonic Maxwell equations

(2.2) curlH i + i ωεE i = 0, curlE i − i ωµH i = 0

in R3 \M. By this we mean that E i,H i ∈ Hloc(curl, R3 \M) is a weak solution
of (2.2) which fulfills the integral radiation condition

∫

∂BR(0)

∣

∣

∣

∣

x

R
×H i(x ) +

( ε(x )

µ(x )

)1/2

E i(x )

∣

∣

∣

∣

2

ds(x ) = o(1) as R → ∞,

cf., e.g., Cutzach and Hazard [10], or Monk [23].
Next, we assume that R3

− contains a finite collection of well separated small
perfectly conducting scatterers, each of the form Dδ,l := zl + δBl, 1 ≤ l ≤ m, where
Bl ⊂ R3 is a smooth bounded open set containing the origin that consists of finitely
many subdomains such that every subdomain is simply connected and its boundary
is connected. The points zl ∈ R3

−, 1 ≤ l ≤ m, are called the positions of the

scatterers and the value of 0 < δ ≤ 1 determines the common order of the size of the

scatterers. So, the total collection of scatterers takes the form Dδ :=
⋃m

l=1(zl+δBl).
Throughout, we denote by ν the unit outward normal to ∂Dδ,l and ∂Bl relative to
Dδ,l and Bl, 1 ≤ l ≤ m, respectively. In presence of these scatterers, the incident
field (E i,H i) induces a scattered field (Es,H s), which is a radiating solution of
Maxwell’s equations (2.2) in R3 \ Dδ subject to the boundary condition

ν ×Es = −ν × E i on ∂Dδ.

Existence and uniqueness of solutions to this direct problem can be treated as, e.g.,
in [10, 12, 23].
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Figure 1. Sketch of the geometrical setup.

We shall assume that the measurement device not only imposes the incident
fields, but also measures the corresponding scattered magnetic fields H s on M,
cf. Figure 1. The mapping of the imposed dipole density ϕ onto the scattered field
H s|M defines the near field measurement operator

Gδ : L2(M; C3) → L2(M; C3), Gδϕ := H s|M.

We study the behavior of Gδ as δ tends to zero, i.e., as the scatterers Dδ,l shrink
to the points zl, l = 1, . . . , m. More precisely, as the scattered field H s|M tends
to zero as δ → 0, we are concerned with the leading order term of H s|M, which
has been determined in [17] analytically. Before we state this result in Theorem 2.2
below we recall the definition and two basic properties of the magnetic and elec-
tric polarizability tensors; cf., e.g., Ammari and Kang [3], or Dassios and Klein-
man [11]. For this purpose, we need the transpose of the double layer operator

K0
Bl

⊤
: H−1/2(∂Bl; C) → H−1/2(∂Bl; C),

(

K0
Bl

⊤
φ
)

(x ) :=

∫

∂Bl

∂Φ0(x − y)

∂ν(x )
φ(y) ds(y), x ∈ ∂Bl,

l = 1, . . . , m, where Φ0 is the fundamental solution of the Laplace equation.

Definition 2.1. For Bl, l = 1, . . . , m, the magnetic polarizability tensor M0
Bl

∈
R3×3 is given by

M
0
Bl

:= −
∫

∂Bl

y

(

(

−1

2
I + K0

Bl

⊤
)−1

ν

)⊤

(y) ds(y)

and the electric polarizability tensor M∞
Bl

∈ R3×3 is given by

M
∞
Bl

:=

∫

∂Bl

y

(

(1

2
I + K0

Bl

⊤
)−1

ν

)⊤

(y) ds(y).

The matrices M0
Bl

and M∞
Bl

, l = 1, . . . , m, are known to be symmetric and
positive definite (cf. Friedman and Vogelius [14], or [3, pp. 91–93]).

Theorem 2.2. ([16, 17]) Suppose that ϕ ∈ L2(M; C3) and H i is the corre-

sponding incident field from (2.1). Furthermore, denote by M0
B1

, . . . , M0
Bm

and

M
∞
B1

, . . . , M∞
Bm

the magnetic and electric polarizability tensors corresponding to
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B1, . . . , Bm, respectively. Then,

(2.3) Gδϕ = δ3
m
∑

l=1

(

−k2
−G

m(·, zl)M
0
Bl

H i(zl)

+
µ−

µ+
curlxG

e(·, zl)M
∞
Bl

curlH i(zl)
)

+ O(δ4)

in L2(M; C3) as δ → 0. The last term on the right-hand side is bounded by

Cδ4‖ϕ‖L2(M;C3), where the constant C > 0 is independent of δ and ϕ.

By (2.3), the scattered magnetic field due to finitely many well separated small
perfectly conducting scatterers consists essentially of two terms for each scatterer:
The first term −k2

−G
m(·, zl)M

0
Bl

H i(zl), called magnetic part below, is the magnetic
field of a magnetic dipole at the position of the scatterer zl. The polarization of this
dipole is given by the magnetic polarizability tensor times the incident magnetic
field at zl. The second term µ

−

µ+
curlxGe(·, zl)M

∞
Bl

curlH i(zl), called electric part

below, is the magnetic field of an electric dipole at zl. Its polarization is given by the
electric polarizability tensor times the incident electric field at zl. In other words,
the dominating term of the expansion (2.3) may be interpreted as the magnetic
field on M due to fictitious magnetic and electric sources at the positions z = zl,
l = 1, . . . , m.

Following [17] we rewrite (2.3) in operator form as

(2.4) Gδ = δ3T + O(δ4),

and note that the leading order term T is an operator of rank 6m, the range
of which is spanned by the columns of G

m(·, zl) and curlxG
e(·, zl), 1 ≤ l ≤ m.

Accordingly, if (σl,ul, vl)l=1,...,6m denote the singular values and singular vectors
of T and (σδ

l ,uδ
l , vδ

l )l∈N the singular values and singular vectors of Gδ (with the
singular values in nonincreasing order counting multiplicities), then if follows from
classical perturbation theory for linear operators that

(2.5) (σδ
l )2 = δ6σ2

l + O(δ7), l ∈ N,

where we have set σl = 0 for l > 6m. Due to (2.5) we can say that the left singular
vectors of the dominating 6m singular values of Gδ span the essential range of Gδ.

3. Numerical illustration

In the sequel we illustrate Theorem 2.2 numerically. Our computations cor-
respond to an experimental setup where the measurement device operates on a
square M of size 50 × 50 cm2 parallel to the surface of ground, with its center
d = 10 cm above the origin. The incident fields have a frequency of 20 kHz, corre-
sponding to an angular velocity of ω = 1.26 · 105 s−1, which is roughly the operating
frequency of certain off-the-shelf hand-held metal detectors. Concerning the back-
ground medium we will distinguish between vacuum in all of R

3, i.e.,

ε+ = ε− = ε0 = 8.85 · 10−12 Fm−1, µ+ = µ− = µ0 = 1.26 · 10−6 Hm−1,

corresponding to k+ = k− = 4.22 · 10−4 m−1 and a wave length of λ+ = λ− =
14.9km, and a two-layered medium as a more realistic test case for subsurface
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Figure 2. Singular values of the measurement operators Gδ from
Example 3.1 for δ = 1, δ = 10−1, and δ = 10−2 (from left to right).

exploration, where ε+ = ε0 and µ+ = µ0 as above, and

ε− = ε0

(

εr + i
σ

ωε0

)

= (0.867 + i 59.5) · 10−10 Fm−1,

µ− = (1 + χ)µ0 = 1.26 · 10−6 Hm−1,

modelling air and soil, respectively. The particular electromagnetic soil parameters
σ = 7.5 · 10−4 Sm−1, χ = 1.9 · 10−5, and εr = 9.8 refer to a poor clay sand, cf. Igel
and Preetz [21]. The wave number for the soil is k− = (7.77 + i 7.66) · 10−3 m−1,
corresponding to a wave length of λ− = 0.81 km.

In either case the wave length we experience is larger by many orders of mag-
nitude than the scattering obstacles that we are looking for.

In practice we only have a finite amount of incident fields and a discrete set of
measurements of the corresponding scattered fields. We assume that measurements
of the scattered fields H s are available for all points of a regular square n× n grid
Mh ⊂ M with mesh width h, and that every mesh point y ∈ Mh and each of the
three Cartesian coordinate directions ej , j = 1, 2, 3, is used to generate an incident
field H i = k2

+Gm(·,y)ej of a magnetic dipole in y with polarization ej . In our
examples, we use n = 6 and, accordingly, h = 10 cm. An appropriate ordering of
these data in a 108× 108 matrix Gδ,h is known as the multistatic response matrix,
cf., e.g., [13].

Example 3.1. To illustrate Theorem 2.2 we generate data for a perfectly con-
ducting small ellipsoidal scatterer Dδ = z + δB, 0 < δ ≤ 1, in vacuum, sitting
20 cm below the origin. The semi axes of B are aligned with the coordinate axes
and are 9, 7, and 5 cm long, respectively.

Figure 2 shows the corresponding 20 largest singular values of the resulting
multistatic response matrices, using three values of δ ranging from δ = 1 over
δ = 10−1 down to δ = 10−2. According to (2.5), we expect to see 6 singular values
of order O(δ3), while the remaining singular values should be of order O(δ4). In
fact, the six dominating singular values, which are of the order 10−5 down to 10−8

for δ = 1 are, roughly, reduced by six orders of magnitude for δ = 10−2, which is
exactly as predicted by the theory. Beginning with the seventh singular value (of
the order 10−8 for δ = 1) the reduction is significantly stronger, namely nine and
more orders of magnitude. For δ = 10−2 the gap between the dominating six and
the remaining singular values is very distinct.
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We mention that the results are much alike for the two-layered medium, al-
though the separation of the dominating six singular values is less pronounced in
that case. We refer to [16, pp. 91–93] for details and visualizations. �

As a general rule we have found in all our numerical experiments that the
dominating 6 singular values come in two close triples that are well separated from
each other: In Figure 2, for example, the two triples are separated by about two
orders of magnitude, essentially independent of the value of δ. This separation is
due to the fact that our wave length is much larger than the distance between the
scatterer and the measurement device. To understand this somewhat better we
provide an analytical example.

Example 3.2. Denote by B the unit sphere and assume that a perfectly
conducting sphere shaped scatterer Dδ = z + δB is buried at position z in a
homogeneous background medium. The incident field is generated by a single
magnetic dipole with polarization p at the origin, i.e., H i = k2

G(·,0)p and
E i = i ωµcurlxG(·,0)p , where G denotes the dyadic Green’s function for Maxwell’s
equations in the homogeneous background medium. (For homogeneous media the
magnetic and electric dyadic Green’s function coincide.) The magnetic and the
electric polarizability tensors for the unit sphere B are given by M0

B = 2πI3 and
M∞

B = 4πI3, respectively (cf. [3]). According to (2.3) the scattered field in the
origin is given by

H s(0) = −δ3
(

2πk4
G(z ,0)G(z ,0)p + 4πk2curlxG(z ,0)curlxG(z ,0)p

)

+ O(δ4).

To estimate the magnetic and the electric part of the leading order term in this
asymptotic expansion, we recall the explicit form of the dyadic Green’s function for
the homogeneous medium,

(3.1) G(z ,0) = Φk(z )I3 +
1

k2
∇x divx(Φk(z )I3), z 6= 0,

where Φk(z ) = ei k|z |/(4π|z |) denotes the fundamental solution of the Helmholtz
equation (cf., e.g., [23]). A short calculation shows that

G(z ,0) = Φk(z )I3 − Φk(z )
1

|z |2





z1z1 z1z2 z1z3

z1z2 z2z2 z2z3

z1z3 z2z3 z3z3





+
1

k2

(

i k − 1

|z |
)

Φk(z )
1

|z |3





−2z2
1 + z2

2 + z2
3 −3z1z2 −3z1z3

−3z1z2 z2
1 − 2z2

2 + z2
3 −3z2z3

−3z1z3 −3z2z3 z2
1 + z2

2 − 2z2
3





and

curlxG(z ,0) =
(

i k − 1

|z |
)

Φk(z )
1

|z |





0 −z3 z2

z3 0 −z1

−z2 z1 0



 .
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Assuming that k|z | ≪ 1, we expand 1
kΦk(z ), 1

kG(z ,0), and 1
k2 curlxG(z ,0) in

terms of k and obtain that

1

k
Φk(z ) =

1

4πk|z | +
i

4π
− k|z |

8π
+ O

(

(k|z |)2
)

,

1

k
G(z ,0) = − 1

4π(k|z |)3
1

|z |2





−2z2
1 + z2

2 + z2
3 −3z1z2 −3z1z3

−3z1z2 z2
1 − 2z2

2 + z2
3 −3z2z3

−3z1z3 −3z2z3 z2
1 + z2

2 − 2z2
3





+ O
(

1

k|z |

)

,

and

1

k2
curlxG(z ,0) = − 1

4π(k|z |)2
1

|z |





0 −z3 z2

z3 0 −z1

−z2 z1 0



+ O(1).

Thus, the magnetic part of the scattered magnetic field satisfies

−2πk4
G(z ,0)G(z ,0)p

= − k6

(

1

8π(k|z |)6
1

|z |4





−2z2
1 + z2

2 + z2
3 −3z1z2 −3z1z3

−3z1z2 z2
1 − 2z2

2 + z2
3 −3z2z3

−3z1z3 −3z2z3 z2
1 + z2

2 − 2z2
3





2

p

+ O
(

1

(k|z |)4
)

)

,

and the electric part of the scattered magnetic field fulfills

− 4πk2curlxG(z ,0)curlxG(z ,0)

= −k6

(

1

4π(k|z |)4
1

|z |2





0 −z3 z2

z3 0 −z1

−z2 z1 0





2

p + O
(

1

(k|z |)2
)

)

.

Since we have assumed k|z | ≪ 1, it follows that

1

(k|z |)4 ≪ 1

(k|z |)6 ,

and hence, the magnetic part of the scattered magnetic field is significantly larger
than the electric part (for low frequencies and in the near field). �

As we have thus seen, for our very small frequencies the magnetic part of the
scattered field can be expected to dominate the electric part of the field. Since the
essential range of Gδ is close to the range of T , which is spanned by the columns
of G

m(·, z ) and curlxG
e(·, z ), respectively, this suggests that the three dominating

singular values correspond to the magnetic part, i.e. that the corresponding left
singular vectors span the columns of Gm(·, z ).

In fact, this can be verified numerically. To this end we compute the left singular
vectors for the three dominating singular values of the multistatic response matrix
of Example 3.1 with parameter δ = 0.01 (corresponding to the right-most plot in
Figure 2). As a result we see that the angle between the span of the columns of the
magnetic dyadic Green’s function Gm(·, z ) and any of these three singular vectors
is below 0.016.
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Although it is tempting to believe that the second triple of singular values now
corresponds to the electric part of the scattered field, the latter is not entirely true.
In fact, if this were correct then the analysis of Example 3.2 would indicate that
the two triples are separated by, roughly, O((k|z |)2), which corresponds to 10−6,
approximately, and not to 10−2 as in Figure 2. Note that the singular vectors cor-
responding to the second triple can only belong to the electric part of the scattered
field if the electric part is orthogonal to the magnetic part. This, however, is not
true in general, as has been demonstrated analytically in [1,19] for a homogeneous
as well as a two-layered background medium, and in greatest detail in [20] for the
homogeneous case. Accordingly, the singular vectors do not split exactly in mag-
netic and electric ones, and as a consequence, the gap between the two triples in
Figure 2 is not as large as one might expect from the estimate in Example 3.2.

4. A MUSIC-type reconstruction method for the inverse problem

Similar to [7], the asymptotic formula (2.3) can be used to justify a MUSIC-
type reconstruction method suggested independently by Iakovleva, Lesselier, et al.
in [1, 19].

To this end we recall that T of (2.4) is an operator of rank 6m whose range
is spanned by the columns of Gm(·, zl) and curlxGe(·, zl), 1 ≤ l ≤ m. Vice versa,
using the unique continuation and reflection principles one can show that the dipole
function

(4.1) gy,d :=
(

G
m(·,y)d1 + curlxG

e(·,y)d2

)∣

∣

M
.

with y ∈ R3
− and d = (d1,d2) ∈ C3 × C3 \ (0, 0) belongs to the range R(T ) of T ,

if and only if y ∈ {z1, . . . , zm}, cf. [17, Prop. 9.3].
If P denotes the orthogonal projector on R(T ) and β(y) the angle between gy,d

and R(T ) then

cotβ(y) =
‖Pgy,d‖L2(M;C3)

‖(I − P )gy,d‖L2(M;C3)
,

and this cotangent gets large, if the angle between gy,d and the range of T is small.
In particular, we have

(4.2) y ∈ {zl | l = 1, . . . , m} ⇐⇒ β(y) = 0 ⇐⇒ cotβ(y) = ∞.

In view of (2.4) the projector P on R(T ) is essentially the same for small values of
δ as the projector

P δ
6m : L2(M; C3) → spanC{uδ

1 , . . . ,uδ
6m}

on the essential range of Gδ. With the given data we may therefore replace P by
P δ

6m, and approximate

(4.3) cotβ(y) ≈ ‖P δ
6mgy,d‖L2(M;C3)

‖(I − P δ
6m)gy,d‖L2(M;C3)

=: cotβδ
6m(y).

In view of (4.2) we therefore expect to see large values of cotβδ
6m(y) for test points

y ∈ R3
− which are close to the points zl, l = 1, . . . , m.

It remains to determine the parameter m ∈ N, i.e., the unknown number of
scatterers. According to (2.5) this amounts to estimate the dimension of the essen-
tial range of Gδ, i.e., to search for a reasonable gap in its singular values. Whether
this works in practice, strongly depends on the amount of noise in the data and on
the particular configuration of the scatterers.
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Figure 3. “Two-layered” reconstruction from Example 4.1 (left)
vs. “homogeneous” reconstruction from Example 4.2 (right).

Alternatively, one can visualize color coded plots of the cotangent cotβδ
l of (4.3)

for a sequence of increasing subspace dimensions l = 6, 12, 18, . . . . Note that the
fraction in the middle of (4.3) is monotonically increasing with l, and typically, the
number of reconstructed scatterers is also increasing with l until all the scatterers
have been found. This strategy from [7] has worked well in all our numerical
examples.

Concerning the discrete setting with a finite grid and corresponding multistatic
response matrix, it has been shown by Kirsch [22, Thm. 2.1] (see also [1, Prop. 6.3])
that for a fixed number m of scatterers the range characterization (4.2) carries over
to this discrete setting, provided that the number n2 of grid points is sufficiently
large. Our numerical experience suggests that in practice fairly small numbers n
already suffice for this purpose, e.g., n2 = 9 in case of m = 2 scatterers. As a
consequence, the singular value decomposition of the mulistatic response matrix is
usually cheap to compute.

Due to the reciprocity principle the multistatic response matrix should be com-
plex symmetric with respect to the proper discrete inner product. However, due to
noise in the data the given matrix fails to do so in general. On the other hand, the
size of this failure can be used to estimate the noise in the data and the reliability
of the computed singular values, compare [15, Sect. 7]. Only those singular values
that stick out of this noise level can be considered reliable.

At this point we emphasize that the singular values of G decay superlinearly to
zero and therefore, in the presence of noise the given data contain only very limited
information about the scatterers: the inverse obstacle problem is ill-posed, cf., e.g.,
Colton and Kress [9]. The a priori information we use, though, i.e., the smallness
of the scatterers, stabilizes the problem because most of the information that is
required to restore the positions zl, l = 1, . . . , m, is encoded in the dominating 6m
singular values, only.

Example 4.1. A first numerical example of the MUSIC-type implementation
described above has already been presented in [17], where a reconstruction has
been shown of two small perfectly conducting ellipsoidal obstacles, with semi axes
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of length (0.1, 0.2, 0.3) cm and (2, 3, 1) cm, respectively, buried in the lower halfs-
pace (the soil) of the two-layered background medium described in Section 3, see
also the left-hand plot of Figure 3. The centers of the two ellipsoids are at the
positions (−15, 15,−10)cm and (15,−15,−40)cm, respectively. The forward data
for this example contain an estimated numerical error of 4%, and some additional
(uniformly distributed) random noise of about 3%. Our MUSIC-type reconstruc-
tion is based on the test function (4.1) with polarization vector d = (e3, e3) and
recovers the position of both scatterers, it even indicates the orientation of the ellip-
soidal objects. Note that the plot in Figure 3 not only visualizes the reconstructed
positions of the two scatterers but also their projections onto the boundaries of the
box to enhance the three dimensional perspective.

Figure 3 differs from the one in [17], as different isosurfaces are shown in dif-
ferent areas of the region of interest: The component of the isosurface showing
the upper obstacle corresponds to cotβδ

12(y) = 25, whereas the other one uses the
value cotβδ

12(y) = 125. This is one of the major advantages of these MUSIC-type
methods, that the choice of the test points y as well as their density can be steered
adaptively, which can be utilized to zoom in on relevant parts of the region of
interest. �

For the two-layered medium the time consuming part of the inversion process
consists in the evaluation of the test functions gy,d on the grid Mh for each sam-
pling point y in the region of interest. According to (4.1) these test functions are
superpositions of magnetic dyadic Green’s functions and the curls of electric dyadic
Green’s functions for the two-layered medium, which are not known in closed form,
but only via Hankel transforms. So, the computation of gy,d requires the evaluation
of these Hankel transforms, for which we have used an implementation which goes
back to Anderson [5], and which has been made available on the web by Borchers [6].
On the other hand, the dyadic Green’s function for the homogeneous background
medium is known explicitly, cf. (3.1), and can be implemented efficiently.

Our numerical experiments indicate (see Schneider [24] for an analytical jus-
tification) that in the low frequency regime which is considered here, the Green’s
functions for the air/soil layered medium do not differ very much from the Green’s
functions for air alone. Thus, we can use the test function

(4.4) ghom
y,d :=

(

G(·,y)d1 + curlxG(·,y)d2

)∣

∣

M

instead of (4.1) for an implementation of the MUSIC-type inversion.

Example 4.2. For a numerical illustration we pick the same example as be-
fore, but now use the homogeneous test function (4.4) (with the same polarization
vector d = (e3, e3) as above) for the reconstruction. The right-hand side plot of
Figure 3 shows the corresponding reconstruction and allows a comparison with the
reconstruction obtained with the correct test function (4.1). (The isosurface values
are somewhat smaller here, namely 20 and 85 instead of the values 25 and 125 that
have been used above.) Both variants of the algorithm detect the two scatterers at
about the correct location, but for this simplified algorithm here, the orientation
that is shown in the plot is not the real one. This can also be seen from the color
coded plots of horizontal cross sections of cotβδ

12 in Figure 4. For these plots the
cotangents have been evaluated for all sampling points on an equidistant grid with
mesh width 0.5 cm only. While the two plots in the top row correspond to the
original version with the two-layered test function (4.1), the bottom row shows the
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Figure 4. Cross-sectional plots of cotβδ
12(y) for the “homoge-

neous” reconstruction from Example 4.2 (top row) vs. the “two-
layered” reconstruction from Example 4.1 (bottom row) at y3 =
−10 cm (left) and y3 = −40 cm (right).

corresponding plots for the homogeneous test function (4.4) that has been used in
the present example. In both rows the left-hand plot refers to the horizontal cross
section at y3 = −10 cm, whereas the right-hand plot shows the cross section for
y3 = −40 cm. For ease of comparison we have used the same color codes in all four
plots; we remark, however, that with the two-layered test function (4.1) the peak
of cotβδ

12 at the lower cross section y3 = −40 cm is much more significant than for
the homogeneous test function.

In summary, the reconstruction with the correct two-layered test function is
somewhat better, but the computation of the other reconstruction has been about
85 times faster. �

Naturally, one should also investigate the limitations of the method. For exam-
ple, one may ask: How many obstacles can be determined simultaneously this way?
The answer depends on various parameters, the obvious ones being size, depth, and
noise.

Because of the ill-posedness of the problem, the crucial point here is the noise
level, whereas the actual number of obstacles does not appear to be very important.
As mentioned before, only those singular values that are above the noise level carry
reliable information about the scatterers. On the other hand, the signal sent back
from the scatterers diminishes with their distance to the measuring device, and
thus, falls below the noise level from some distance onwards. At the same time, as
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Figure 5. Cross-sectional plots of cotβδ
12(y) at y3 = −10 cm and

y3 = −40 cm for Example 4.3.
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Figure 6. Singular values of the measurement operators Gδ

(+ without additional noise, ◦ with 3% uniformly distributed
noise) for the configuration from Example 4.1 (left) and the one
from Example 4.3 (right).

is seen from Theorem 2.2, the magnitude of this signal decreases with the diameter
δ of the scatterer, and therefore small scatterers will again be hidden in the noise.

Example 4.3. To illustrate this observation we slightly modify the geo-
metrical setup from Example 4.1 and enlarge the upper scatterer at position
(−15, 15,−10)cm by a factor of ten. The simulated data for this example con-
tain an estimated numerical error of 2%, and additionally we perturb these data by
a uniformly distributed relative error of 3%, as in Example 4.1. For the reconstruc-
tion we also use the same parameters in our implementation as in Example 4.1.
Figure 5 shows the resulting horizontal cross sections of cotβδ

12(y) for y3 = −10 cm
and y3 = −40 cm, which should be compared with the plots in the bottom row of
Figure 4. Note that no improvement of the right-hand side plot of Figure 5 is pos-
sible by using other color codes, and hence, only the position of the upper scatterer
can be estimated from these plots.

To explain this result we conclude from the asymptotic formula (2.3) that the
magnitude of the fictitious source in the upper scatterer is approximately 1000 times
larger here than in Example 4.1, because the diameter of this scatterer has been
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increased by a factor of 10. In fact, the dominating singular values have jumped
up from about 10−8 up to 10−6, as can be seen from the crosses in Figure 6. As
the noise level is relative to the size of the signal, this level has also increased by
slightly more than two orders of magnitude. On the other hand, the intensity of the
fictitious source in the other scatterer remains essentially the same, and therefore
disappears in the noise, cf. the circles in Figure 6: While six singular vectors have
carried information in Example 4.1, only three of them are useful here.

In fact, we may take another step in our interpretation of Figure 6 on the
grounds of Section 3. According to the analysis in Section 3 we may guess that the
six dominating singuar values in the left-hand plot of Figure 6 carry information
about the magnetic parts of the scattered fields from the two scatterers. In the light
of the two plots in the bottom row of Figure 4 the intensity of the fictitious source in
the lower scatterer is stronger than the other one. Therefore the dominating singular
value triple will most likely correspond to the lower scatterer and the second triple
is associated with the upper one: In fact, this second triple has increased by three
orders of magnitude whereas the other triple remained near 10−8, as can be seen
from the crosses in the right-hand side plot of Figure 6. It is also possible to see
that the non-magnetic singular value triple of the upper scatterer has also been
raised by three orders of magnitude, from 10−12 up to 10−9. �

5. Superresolution

Finally, we investigate the spatial resolution of our MUSIC-type reconstruction
algorithm. The usual expectation from the engineering literature concerning the
achievable spatial resolution would be based on the celebrated Nyquist criterion,
which says that this spatial resolution is linked to the frequency, i.e., two scattering
obstacles can be identified as separate objects if their distance is above the wave
length of the signal, which, in our case, amounts to kilometers. It has already been
observed by Devaney [13], who coined the term superresolution for this pheno-
menon, that the resolution of MUSIC-type inversion methods can be better than
that and, as we have seen in Example 4.1, the resolution of our algorithm is even
superior by orders of magnitude.

To pin down the available resolution we study the following benchmark prob-
lem, which uses the same measurement setup as before, although we confine our-
selves to the homogeneous background medium for the ease of simplicity. We con-
sider two perfectly conducting spheres with radius 1 cm that are buried 20 cm un-
derneath the measurement device at positions (−a/2, 0,−10) and (a/2, 0,−10)cm,
respectively, i.e., the two spheres are a centimeters apart. The forward data for this
example contain estimated numerical errors of about 1.3%. For the reconstruction
we again use the test function (4.4) with polarization vector d = (e3, e3), and to
visualize our reconstructions we look at the values of cotβδ

12(y) in the horizontal
cross section y3 = −10 cm which contains the two scatterers.

Example 5.1. In our first example, we vary the distance a from 5 to 20 cm
and perturb the resulting multistatic response matrices by 1% uniformly distributed
random noise. Figure 7 shows the corresponding reconstructions, in which the two
small circles indicate the true positions and the size of the scatterers. We observe
that for a ≥ 12.5 cm the two scatterers can be perfectly distinguished in these
reconstructions. Beginning with a = 10cm the reconstructions of the two scatterers
start getting smeared out until they merge, eventually: For a = 5 cm and below
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Figure 7. Cross-sectional plots of cotβδ
12 for 1% noise, from a =

20 cm (top left) down to a = 5cm (bottom right).

the reconstructions only show one single object situated in the center of mass of
the two true obstacles. �

For this particular example we thus have observed a resolution between 5 and
10 cm (at 20 cm below the measurement device), which is around 7 orders of magni-
tude smaller than the wave length. We truly see some kind of superresolution. As
in Example 4.3, however, this resolution depends on the quality of the data, i.e., on
the noise level. In the next example we therefore investigate the influence of noise.

Example 5.2. In Figure 8 we show the singular values of the multistatic re-
sponse matrices corresponding to distances a between 5 and 20 cm again, with three
different noise levels in each plot. For a = 20 cm the first 6 singular values which
we expect to correspond to the magnetic parts of the scattered fields from the
two scatterers, are clearly separated from the others. When the distance between
the two scatterers is reduced, the second triple of singular values gets smaller and
smaller. Recalling the results of Example 5.1 we see a coincidence between the loss
of resolution experienced there and the immersion of the second triple of singular
values into the noise level. When only three singular values are beyond this level
then only one object is reconstructed at the center of mass.

Based on this observation we expect to see a spatial resolution of about 5 cm
with 0.3% additive noise, whereas the spatial resolution should increase up to more
than 12.5 cm with 3% noise. This is, in fact, nicely illustrated in Figures 9 and 10
which show the corresponding reconstructions. �

To explain these results somewhat further we first observe that according to
Theorem 2.2 the measured field is, up to first order, the superposition of two ficti-
tious sources in the two obstacles. As each of these scatterers/sources approaches
the same point underneath the origin, the corresponding fields, which depend con-
tinously on the locations of the scatterers, both converge to the field of a fictitious
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Figure 8. Singular values of the measurement operators Gδ

(+ without additional noise, ▽ with 0.3% uniformly distributed
noise, △ with 1% uniformly distributed noise, � with 3% uniformly
distributed noise).
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Figure 9. Cross-sectional plots of cotβδ
12 for 0.3% noise, from

a = 20 cm (top left) down to a = 5 cm (bottom right).
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Figure 10. Cross-sectional plots of cotβδ
12 for 3% noise, from

a = 20 cm (top left) down to a = 5 cm (bottom right).

source underneath the origin. The dimension of the essential range of the multi-
static response matrix will therefore drop down to three as a → 0, corresponding
to the span of the magnetic part of the scattered field due to one fictitious scatterer
underneath the origin. This is what we see from the crosses in Figure 8, and as soon
as the fourth singular value has immerged into the noise level, the MUSIC-type al-
gorithm is fooled because all the remaining significant singular vectors correspond
to this new fictitious obstacle.

To conclude, we briefly address the question whether the available resolution
depends on the distance between the receivers, i.e., the mesh width h of the grid
Mh. As we have mentioned before, the results in [22, Thm. 2.1] (see also [1,
Prop. 6.3]) may be used to argue that the performance of the MUSIC-type algorithm
should be quite independent of the discretization Mh of the measurement device
M, as long as the number of grid points is sufficiently large to obtain enough
singular vectors needed for the reconstruction.

We have confirmed this numerically by varying the mesh width h of the discrete
measurement device. We can report that for an equidistant 21× 21 grid with mesh
width h = 2.5 cm and a 3 × 3 grid with mesh width h = 25 cm the reconstructions
and their resolutions have been essentially the same as above, which shows that the
resolution is pretty independent of the number of grid points and the mesh width
of the measurement device.

We finally mention that we have discussed only one single case study to shed
some light on the resolution of the MUSIC-type algorithm, and this certainly does
not cover all possible situations of interest. Other investigations related to the
resolution limit of MUSIC-type algorithms can be found, e.g., in Ammari et al. [4],
see also [1, p. 706].
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Conclusion

We have shown for a specific problem of subsurface imaging that the multistatic
response matrix corresponding to time-harmonic electromagnetic scattering can be
used to reconstruct tiny obstacles in the ground, as long as the relevant information
is above the inherent noise in the data. We also have examplified that it is this
noise level and not a signal processing type restriction like the Nyquist bound that
ultimately limitates the resolution of our MUSIC-type reconstructions, although
the recovery of such a resolution is a severely ill-posed problem. For the low fre-
quencies in our application we have seen that the magnetic part of the asymptotic
formula (2.3) is dominating the corresponding electric part, and we have discussed
how this affects our numerical results.
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