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Abstract

A convergence rate is established for nonstationary iterated Tik-

honov regularization, applied to ill-posed problems involving closed,

densely de�ned linear operators, under general conditions on the iter-

ation parameters. It is also shown that an order-optimal accuracy is

attained when a certain a posteriori stopping rule is used to determine

the iteration number.

1 Introduction

Many inverse problems in the physical sciences may be posed in the form

Tx = y (1)

where T is a linear operator on a Hilbert space having an unbounded (gen-

eralized) inverse, y is a given \data" vector, and x is a desired solution (e.g.,

[9], [6], [13]). Because the generalized inverse is discontinuous, problem (1)

is ill-posed, that is, the solution x depends in an unstable way on the data y.
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A natural way to alleviate this instability is to replace (1) with an approxi-

mating well-posed problem. The best known way of accomplishing this is by

Tikhonov regularization, that is, instead of (1) one solves

(T

�

T + �I)x

�

= T

�

y (2)

where � is a positive \regularization" parameter and T

�

is the adjoint of T .

It is easy to show that as � ! 0 the unique solution x

�

of (2) converges

to the minimal norm least squares solution of (1) whenever it exists. There

is a well-developed convergence theory for (2) (e.g., [5], [13]), an important

ingredient of which is a strategy for relating the regularization parameter to

perturbed data in such a way that as the error level diminishes to zero the

approximations converge to the desired solution. In this respect the method

(2) is de�cient { the rate of convergence of (2), with respect to the error

level � in the data, cannot in general exceed a certain \saturation level" of

O

�

�

2=3

�

[5]. It is well known that this rate may be improved in an iterated

version of (2) given by

(T

�

T + �I)x

n

= �x

n�1

+ T

�

y (3)

(see, e.g., [11], [10], [4]). Brill and Schock [2] have investigated a nonstation-

ary version of (3), namely

(T

�

T + �

n

I)x

n

= �

n

x

n�1

+ T

�

y (4)

for the case of a compact operator T (see also [16]). A special case of (3),

namely � = 1, has been analyzed by Lardy [12] for the case of a closed
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densely de�ned unbounded operator T . In ordinary Tikhonov regularization

a number of authors (e.g. [9, p. 96]), [17, p. 92]) have advocated a successive

geometric choice of the regularization parameter, which in turn suggests the

choice �

n

= �q

n�1

(0 < q < 1) in the nonstationary iterative Tikhonov

method. For a certain adaptive choice of �

n

Brakhage [1] has established a

linear convergence rate.

The convergence rate for (4) derived in [2] assumes a condition on the

parameters f�

n

g that is not satis�ed for the stationary method (3) (and in

particular for Lardy's method) nor for the geometric choice of parameters.

One of our purposes in this paper is to establish the Brill/Schock convergence

rate for the nonstationary method under conditions that are exible enough

to cover a wide range of iteration parameters. We also establish a convergence

rate for the nonstationary method with perturbed data when the iteration

number is selected by a discrepancy principle, and we illustrate our results

for the geometric choice of regularization parameters mentioned above.

2 Convergence Rates: Linear Operators

Suppose T is a closed linear operator de�ned on a dense domain D(T ) in a

Hilbert space H and that y 2 R(T ), the range of T . Let x

y

be the normal

solution of (1), that is, x

y

is the unique vector satisfying

x

y

2 D(T ) \ N(T )

?

and Tx

y

= y;
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where N(T )

?

is the orthogonal complement of the nullspace of T . For a

given sequence of positive numbers f�

n

g, take (for simplicity) x

0

= 0 and

de�ne x

n

by

x

n

= �

n

(T

�

T + �

n

I)

�1

x

n�1

+ T

�

(TT

�

+ �

n

I)

�1

y: (5)

We note that both of the operators (T

�

T +�

n

I)

�1

and T

�

(TT

�

+�

n

I)

�1

are

everywhere de�ned and bounded [15, p. 307] (with k(T

�

T +�

n

I)

�1

k � �

�1

n

),

hence for each �xed n, x

n

2 D(T ) is stable with respect to perturbations in

y.

For bounded operators Brill and Schock [2] have proved that the method

(5) converges to x

y

if and only if

P

�

�1

n

=1 and they established a conver-

gence rate under the additional assumption that

P

�

�2

n

<1. Our �rst goal

is to establish this rate under a strictly weaker assumption on f�

n

g that in-

cludes as special cases Lardy's method and iterated Tikhonov regularization

with geometric parameter scheme.

We begin by noting that, since y = Tx

y

,

T

�

(TT

�

+ �

n

I)

�1

y = T

�

T (T

�

T + �

n

I)

�1

x

y

= x

y

� �

n

(T

�

T + �

n

I)

�1

x

y

and hence by (5):

x

y

� x

n

= r

n

(T

�

T )x

y

; where r

n

(�) =

n

Y

i=1

�

i

� + �

i

:

If, in addition, x

y

= (T

�

T )

�

w for some w 2 D((T

�

T )

�

) and � > 0 then

x

y

� x

n

= f

n;�

(T

�

T )w (6)
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where

f

n;�

(�) := �

�

r

n

(�):

The error analysis will hinge on an investigation of the function

f

n;�

(�) = �

�

n

Y

i=1

�

i

� + �

i

; � 2 [0;1)

where � > 0, �

i

> 0 are given parameters. As we are interested in �xed

� > 0 and n!1, we shall assume that n > � (note that for � � n, f

n;�

(�)

is increasing in �). An easy calculation shows that f

0

(�) = 0 if and only if

g(�) :=

n

X

j=1

1

1 + �

j

�

= � (7)

where � = �

�1

. Since g(0) = n > � > 0 = g(1) and g is strictly decreasing,

equation (7) has a unique positive solution, say � = �

1

. Furthermore, since

f

n;�

(0) = 0 = f

n;�

(1),

max

�2[0;1)

f

n;�

(�) = f

n;�

(�

�1

1

) � �

��

1

: (8)

Also, the negative solutions of (7) are separated by the vertical asymptotes

� = ��

�1

j

, and hence, if we denote these negative solutions by �

2

; �

3

; : : : ; �

n

,

then

�

n

X

j=2

�

j

�

n�1

X

j=1

�

�1

j

= �

n�1

(9)

where we have used the notation

�

m

:=

m

X

j=1

�

�1

j

:
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Lemma 1

n

X

i=1

�

i

=

1� �

�

�

n

Proof: Equation (7) may be written in the equivalent form

�

n

Y

k=1

(1 + �

k

�)�

n

X

j=1

n

Y

k=1

k 6=j

(1 + �

k

�) = 0:

Using the fact that the sum of the roots of a monic polynomial is the negative

of the next-to-highest order coe�cient, we then obtain

n

X

i=1

�

i

= �

n

X

i=1

�

�1

i

+

1

�

Q

n

k=1

�

k

n

X

j=1

n

Y

k=1

k 6=j

�

k

=

1 � �

�

�

n

:2

Lemma 2 If 0 < � < 1, then max

�2[0;1)

f

n;�

(�) �

�

�

1� �

�

�

�

��

n

.

Proof: Because the roots �

2

; : : : ; �

n

are negative, we have by Lemma 1,

�

1

�

n

X

i=1

�

i

=

1 � �

�

�

n

and hence

�

��

1

�

�

1� �

�

�

��

�

��

n

and the result follows from (8). 2

For the case 0 < � � 1, we note that Xi [20] has obtained the stronger

estimate: f

n;�

(�) � �

�

�

��

n

. In order to handle the case � � 1, we will need

to assume an additional condition on the parameters f�

n

g. Speci�cally, we

shall assume that there is a positive constant c such that

1

�

n

� c�

n�1

(10)
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for all n su�ciently large. Note that (10) is strictly weaker (considering the

necessary condition, �

n

!1, for convergence) than the condition

P

�

�2

k

<

1 of [2], and that (10) is satis�ed for the stationary method (in particular,

Lardy's method) and the method with �

n

= �q

n�1

(0 < q < 1), cf. Section 4.

Lemma 3 If 0 < � < n and condition (10) is satis�ed, then

max

�2[0;1)

f

n;�

(�) � c

�

�

��

n

where c

�

= (2�(c+ 1))

�

for 0 < � � 1 and c

�

= (2�(c + 1)

�

)

�

for � > 1.

Proof: For 0 < � � 1=2, we have

�

�

1� �

�

�

� c

�

and the result follows

from Lemma 2. On the other hand, if 1=2 < � � 1, then by Lemma 1 and

(9) we have

�

1

� �

n

X

i=2

�

i

� �

n�1

and, by (10),

�

n

=

1

�

n

+ �

n�1

� (c+ 1)�

n�1

: (11)

It then follows from (8) that

max

�2[0;1)

f

n;�

(�) = f

n;�

(�

�1

1

) � �

��

1

� �

��

n�1

� (c + 1)

�

�

��

n

� c

�

�

��

n

:

The case � > 1 will be handled by an inductive argument. We suppose

that

f

n;�

(�

�1

1

) � c

�

�

��

n

(12)
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holds for all � with 0 < � � �

0

, for some �

0

� 1. Take � 2 (�

0

; �

0

+ 1] and

n > �. We will show that (12) holds for �. By Lemma 1 and (9) we have

�

1

= �

n

X

i=2

�

i

+

1 � �

�

�

n

� �

n�1

+

1� �

�

�

n

=

1

�

�

n�1

�

� � 1

�

1

�

n

:

Consider now two cases. If

1

�

n

�

1

2(��1)

�

n�1

, then

�

1

�

1

�

�

n�1

�

� � 1

�

1

2(� � 1)

�

n�1

=

1

2�

�

n�1

;

and hence by (8) and (11),

f

n;�

(�

�1

1

) � �

��

1

� (2�)

�

�

��

n�1

� (2�(c+ 1))

�

�

��

n

� c

�

�

��

n

:

On the other hand, if

1

�

n

>

1

2(��1)

�

n�1

, that is, if �

n

< 2(� � 1)�

�1

n�1

, then by

(12) and (11), (note that n � 1 > � � 1, by assumption),

f

n;�

(�

�1

1

) = �

��

1

�

n

�

1

1 + �

n

�

1

n�1

Y

i=1

�

i

�

1

1 + �

i

�

1

� �

n

�

�(��1)

1

n�1

Y

i=1

�

i

�

1

1 + �

i

�

1

� �

n

c

��1

�

�(��1)

n�1

� 2(� � 1)(c + 1)

�

c

��1

�

��

n

:

Now, if � > 2, c

��1

= (2(� � 1)(c + 1)

��1

)

��1

� (2�(c + 1)

�

)

��1

and hence

f

n;�

(�

�1

1

) � 2�(c+ 1)

�

c

��1

�

��

n

� c

�

�

��

n

. While if 1 < � � 2, then

f

n;�

(�

�1

1

) � 2�(c + 1)

�

c

��1

�

��

n

� 2�(c + 1)

�

(2�(c+ 1))

��1

�

��

n

� 2�(c + 1)

�

(2�(c+ 1)

�

)

��1

�

��

n

= c

�

�

��

n

:2

The following theorem now follows directly from (6) and Lemma 3.
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Theorem 1 If x

y

= (T

�

T )

�

w for some � > 0 with some w 2 D((T

�

T )

�

),

and if f�

n

g satis�es (10), then kx

n

� x

y

k � c

�

�

��

n

kwk.

We note the crucial role that an estimate of the type

max

�2[0;1)

�

�

r

n

(�) = O(�

��

n

) as n!1 (13)

(Lemmas 2 and 3) played in establishing the convergence rate in Theorem 1.

As (13) was established for � � 1 on the basis of condition (10), the question

of the necessity of this condition naturally arises. The next theorem addresses

this question.

Theorem 2 If � > 1 and f

n;�

(�) = �

�

r

n

(�) � c

�

�

��

n

for some c

�

> 0 and

all n 2 IN, then fa

n

g satis�es condition (10) for some c > 0.

Proof. Since r

n�1

(0) = 1, r

0

n�1

(0) = ��

n�1

, and r

n�1

(�) is convex for

� � 0, we have

r

n�1

(�) � 1� �

n�1

�; for � � 0:

Therefore,

c

�

�

��

n

� �

�

r

n

(�) = �

n

�

�

n

+ �

�

��1

r

n�1

(�)

�

�

n

�

n

+ �

�

�

(1 � �

n�1

�); for � � 0:

In particular, setting � =

1

2

�

�1

n�1

, we �nd that

c

�

�

��

n

�

�

n

�

n�1

1 + 2�

n

�

n�1

�

1

2

�

�

�

��

n�1
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and therefore,

�

n

�

n�1

1 + 2�

n

�

n�1

� 2

�

c

�

�

�

n�1

�

n

�

�

= 2

�

c

�

 

�

n

�

n�1

1 + �

n

�

n�1

!

�

:

It follows that

1

2

<

1 + �

n

�

n�1

1 + 2�

n

�

n�1

� 2

�

c

�

 

�

n

�

n�1

1 + �

n

�

n�1

!

��1

� 2

�

c

�

(�

n

�

n�1

)

��1

and hence

1

�

n

� c

1

��1

�

2

�+1

��1

�

n�1

;

that is, (10) holds. 2

Finally, we remark that the \O" estimate of (13) cannot be improved to

a \o" estimate. Indeed if

max

�2[0;1)

�

�

r

n

(�) = o(�

��

n

); n!1;

then since 1� �

n

� � r

n

(�), we would obtain by setting � = �

�1

n

=2,

0 < 2

���1

� �

�

n

max

�2[0;1)

�

�

r

n

(�) = o(1); n!1;

which is a contradiction.

3 Perturbed Data: Stopping Criteria

From (5) we see that x

n

may be expressed as

x

n

= T

�

q

n

(TT

�

)y
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where q

n

(�) is generated by:

q

n

(�) = (� + �

n

)

�1

(�

n

q

n�1

(�) + 1); q

0

(�) = 0:

It follows that

1� �q

n

(�) =

�

n

� + �

n

(1 � �q

n�1

(�));

that is, q

n

(�) =

1�r

n

(�)

�

where r

n

(�) =

Q

n

i=1

�

i

�+�

i

. We now �nd that for � � 0,

0 � �q

n

(�) = 1� r

n

(�) � 1; (14)

and, by the convexity of r

n

,

q

n

(�) =

1� r

n

(�)

�

� �r

0

n

(0) = �

n

:

Finally, since q

n

(�)! �

n

as �! 0+, we have

max

�2[0;1)

q

n

(�) = �

n

: (15)

These estimates can now be used to derive a stability estimate for the

approximations x

n

. Suppose y

�

is an approximation to the data y with

ky � y

�

k � �. Let fx

�

n

g be the sequence generated by (5) using the data y

�

,

i.e., x

�

n

= T

�

q

n

(TT

�

)y

�

. Since x

n

; x

�

n

2 D(T ), we have by (14) and (15),

kx

n

� x

�

n

k

2

= (TT

�

q

n

(TT

�

)(y � y

�

); q

n

(TT

�

)(y � y

�

))

� �

2

�

n

and hence

kx

n

� x

�

n

k � ��

1=2

n

: (16)
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A su�cient condition for regularity of the approximations is therefore that

the iteration number be chosen in terms of the error level, say n = n(�), so

that the condition

��

1=2

n(�)

! 0 as � ! 0

is satis�ed (see [2] and [16] for somewhat di�erent formulations of regularity

conditions). From (14) we also obtain the stability result

kTx

n

� Tx

�

n

k = kTT

�

q

n

(TT

�

)(y � y

�

)k � �: (17)

Our goal in this section is to establish a convergence rate for an a poste-

riori stopping criterion for the iteration (5). The criterion is of discrepancy

type and relies on monitoring the residual

y

�

� Tx

�

n

= r

n

(TT

�

)y

�

: (18)

We assume that �

n

! 1 (as is necessary for convergence [2]) and hence

r

n

(�) ! 0 for every � > 0. Therefore, by (18),

lim

n!1

ky

�

� Tx

�

n

k = kPy

�

k = kP (y

�

� y)k � �

where P is the projector onto the orthogonal complement of the range of T .

Finally we assume that the signal-to-noise ratio of the data is bounded above

1, that is, there is a number � > 1 such that ky

�

k > �� . There is then a �rst

value of n, say n = n(�) � 1, for which

ky

�

� Tx

�

n(�)

k � ��: (19)
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Lemma 4 If n(�) is chosen by (19), then

� � 1

� + 1

ky � Tx

n(�)

k � (� � 1)� < ky � Tx

n(�)�1

k:

Proof. Using (18) and the fact that jr

n

(�)j � 1, we have

ky � Tx

n(�)

k = ky

�

� Tx

�

n(�)

+ r

n(�)

(TT

�

)(y � y

�

)k

� (� + 1)�:

On the other hand,

y � Tx

n�1

= y

�

� Tx

�

n�1

� r

n�1

(TT

�

)(y

�

� y)

and therefore

ky � Tx

n(�)�1

k > �� � � = (� � 1)�:2

To prove a convergence rate for the iterative method (5) with stopping cri-

terion (19), we will use a specialized moment inequality ([3], [13]) which is

proved for convenience in the next Lemma.

Lemma 5 If y 2 D((T

�

T )

�+1=2

), for some � � 0, then

k(T

�

T )

�

yk � kyk

1

2�+1





(T

�

T )

�+

1

2

y







2�

2�+1

:

Proof. Let u = (T

�

T )

�

y and let fE

�

g

��0

be a resolution of the identity

generated by T

�

T . Then

Z

1

0

�

�2�

dkE

�

uk

2

=

Z

1

0

dkE

�

yk

2

= kyk

2

<1

13



and

Z

1

0

�dkE

�

uk

2

<1; since u 2 D((T

�

T )

1=2

):

Therefore, by H�older's inequality,

k(T

�

T )

�

yk

2

= kuk

2

=

Z

1

0

(�

�2�

)

1

2�+1

(�)

2�

2�+1

dkE

�

uk

2

�

�

Z

1

0

�

�2�

dkE

�

uk

2

�

1

2�+1

�

Z

1

0

�dkE

�

uk

2

�

2�

2�+1

= kyk

2

2�+1

k(T

�

T )

�+1=2

yk

4�

2�+1

:2

The proof of the next theorem follows that of Vainikko [18] (see also [7]).

Theorem 3 Let f�

n

g � IR

+

be a sequence of regularization parameters for

which (10) holds. If x

y

2 R((T

�

T )

�

) \ D((T

�

T )

1=2

) and n(�) is chosen as in

(19), then kx

�

n(�)

�x

y

k = O

�

�

2�

2�+1

�

. Moreover, at the stopping index we have

�

n(�)

= O

�

�

�

2

2�+1

�

.

Proof. Suppose x

y

= (T

�

T )

�

w, where w 2 D((T

�

T )

�+

1

2

). Then

x

n

� x

y

= (T

�

T )

�

r

n

(T

�

T )w:

Using Lemma 5 on y = r

n

(T

�

T )w, we �nd

kx

n

� x

y

k � kr

n

(T

�

T )wk

1

2�+1

k(T

�

T )

�+1=2

r

n

(T

�

T )wk

2�

2�+1

� kwk

1

2�+1

k(T

�

T )

1=2

(x

n

� x

y

)k

2�

2�+1

:

Therefore, by Lemma 4,

kx

n(�)

� x

y

k = O

�

�

2�

2�+1

�

:

14



Now, by (16),

kx

�

n(�)

� x

y

k � ��

1=2

n(�)

+O

�

�

2�

2�+1

�

and it is su�cient to show that �

1=2

n(�)

= O

�

�

�

1

2�+1

�

. By Lemma 4,

(� � 1)� � ky � Tx

n(�)�1

k = kr

n(�)�1

(TT

�

)yk

= kT (T

�

T )

�

r

n(�)�1

(T

�

T )wk:

But, by Lemma 3 and condition (10),

kT (T

�

T )

�

r

n�1

(T

�

T )wk

2

= ((T

�

T )

�+1

r

n�1

(T

�

T )w; (T

�

T )

�

r

n�1

(T

�

T )w)

� c

�

c

�+1

�

�2��1

n�1

kwk

2

= O(�

�2��1

n

):

Therefore, (� � 1)� � const.� �

�

2�+1

2

n(�)

, and hence �

1=2

n(�)

= O

�

�

�

1

2�+1

�

, giving

the result. 2

A method of Vainikko [19] can be adapted to show that the parameter

strategy (19) is a regularizing scheme, i.e., x

�

n(�)

! x

y

as � ! 0, without

additional assumptions on x

y

. However, we note that a general result of

Plato [14, Thm. 2.1] can also be extended to the case considered here to

deduce the regularity of the scheme (19).
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4 Example

We close with the aforementioned example of a geometric sequence of regu-

larization parameters, i.e.,

�

n

= �q

n�1

with �xed � > 0 and 0 < q < 1

1

:

In this case we have

�

n

=

1

�

q

1�n

1� q

n

1� q

�

1

�

q

1�n

= q

1

�

n+1

;

so that (10) holds with c = 1=q. We can therefore apply Theorem 1 and

obtain

kx

n

� x

y

k = O(�

��

n

) = O(q

�n

) ;

i.e., a linear rate of convergence where the root convergence factor q

�

depends

on the \smoothness" of the exact solution x

y

: The larger is �, the faster is

the convergence.

Concerning perturbed data we can employ the discrepancy principle (19)

as a stopping rule, and we have

kx

�

n(�)

� x

y

k = O(�

2�

2�+1

)

according to Theorem 3. Moreover, this theorem shows that at the stopping

index n(�) we have

q

�

q

�n(�)

� �

n(�)

= O(�

�2

2�+1

) ;

1

As Robert Plato kindly pointed out to us, this special case of a geometric sequence of

parameters �

n

can actually be analyzed in a more sophisticated way.

16



which implies that at most

n(�) � O(j log �j)

iterations are necessary to achieve this accuracy.

An e�cient numerical implementation of nonstationary iterated Tikhonov

regularization is not more expensive than using the same sequence of regular-

ization parameters in a successive way for ordinary Tikhonov regularization.

This follows from the fact that the major amount of work stems from the

computation of a bidiagonalization of the discretized operator which has to

be done in either approach; details are given in the survey [8]. However, as il-

lustrated above, while the computational costs are the same, the convergence

properties for the iterated Tikhonov scheme are much better.
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