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We introduce a new family of semiiterative schemes for the solution of ill-posed
linear equations with selfadjoint and indefinite operators. These schemes avoid the
normal equation system and thus benefit directly from the structure of the problem.
As input our method requires an enclosing interval of the spectrum of the indefinite
operator, based on some a priori knowledge. In particular, for positive operators
the schemes are mathematically equivalent to the so-called v-methods of Brakhage.
In a way, they can therefore be seen as appropriate extensions of the v-methods
to the indefinite case. This extension is achieved by substituting the orthogonal
polynomials employed by Brakhage in the definition of the v-methods by appropriate
kernel polynomials. We determine the rate of convergence of the new methods and
establish their regularizing properties.
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1. Introduction

This paper is concerned with the approximate solution of linear operator
equations

Tz =y, (L.1)

where T : X — X is a selfadjoint and indefinite operator in a Hilbert space X.
We presume that 7' is injective, i.e., solutions z of (1.1) are unique; however,
we shall explicitly focus on the case that the range R(T') of T is only a dense
subspace of X'. In this case the operator 1" is not continuously invertible because
T~ is unbounded by the Open Mapping Theorem.

* Corresponding author.
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When T~ ! is unbounded, equation (1.1) is usually referred to as being ill-
posed because the solution z of (1.1) does not depend continuously on the given
right-hand side y. Even worse, in general (1.1) will not have a solution.

Ill-posed problems often appear in the context of so-called inverse problems.
The prototype is an integral equation of the first kind with a smooth kernel
function, e.g.,

/]Rz e~ WEEP =10 (¢! Y a(e',n') = y(&, ), &neER, (1.2)

which may serve as a simple mathematical model for imaging through atmo-
spheric turbulence; the associated integral operator is selfadjoint and positive.
Today astronomers use more elaborate kernel functions which often ressemble
the Gaussian kernel in (1.2), cf., e.g., Bertero and Boccacci [3]. While the corre-
sponding integral operator may still be selfadjoint, it typically is no longer positive
but rather indefinite, although the dominating part of the spectrum belongs to
the positive axis (see [17] for an example).

Tll-posed problems need some sort of regularization to encompass the loss of
stability due to the unboundedness of 7~!. One can, for instance, use Tikhonov
regularization to approximate the solution z. Another option that we employ in
this paper is the use of iterative schemes for solving (1.1): here, regularization is
incorporated via an early termination of the iteration which prevents unbounded
data error propagation.

Most iterative methods for ill-posed problems are based on the normal
equation T*Txz = T*y for (1.1). When T is selfadjoint, however, we cannot
benefit from the symmetry in this way. Calvetti, Reichel and Zhang [5] have
recently suggested an iterative scheme which directly works with (1.1) when 7'
is selfadjoint and indefinite. The purpose of this paper is to provide alternative
algorithms which reduce to established schemes (the so-called v-methods [4]) in
the case when 7' is semidefinite. Like the method of Calvetti, Reichel and Zhang
our new schemes belong to the class of semiiterative methods which are generated
by appropriate sequences of polynomials; in our case these are kernel polynomials
for certain generalized Jacobi polynomials. As a consequence, our iterates can be
computed with short recurrences.

The outline of this paper is as follows. In Section 2 we review the basic
facts about semiiterative methods for selfadjoint linear equations with particular
emphasis on the specific subtleties for ill-posed problems. Then, in Section 3, we
provide well-known results on kernel polynomials, which are subsequently used
to define the new method in Section 4. We go on and prove rate of convergence
estimates in Section 5 before we turn in Section 6 to the regularizing properties
of our algorithm. Finally, in Section 7, we present some numerical results to
illustrate our findings.
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2. Semiiterative methods

Semiiterative methods were introduced in full generality by R.S. Varga in
his book [24], although the terminology has been coined for a specific example
somewhat earlier in [13]. In [24] semiiterative methods refer to hybrid schemes,
which in each iteration carry out one step of residual correction (or Richardson
iteration)

Tpt1 = Tp + (y — Ty), (2.1)

followed by a linear combination of some or all previous iterates. Typically the
iteration is initialized with xy = 0.

Semiiterative methods can alternatively be described by two sequences {r, }
and {g,} of polynomials where g, belongs to the set II, ; of polynomials of
degree n — 1 or less and r, € 1I,, with

ra(X) = 1= Aga(V). (2.2
The polynomial g, defines the n'* iterate via
zn = gn(T)y, (2.3)
hence the error equals
x—ap, =2 —go(T)Tx =1, (T)x. (2.4)
For the basic iteration (2.1), for example, we have

n—1

g(N)=>_(1=X7 and  r(A) =(1-N)".
j=0

In the context of ill-posed problems, the iteration (2.1) is attributed to Frid-
man [11]; it converges whenever T is selfadjoint and positive with ||| < 2, in
the sequel we fix throughout

1Tl =1.

In view of (2.4), |r,(A)| should be as small as possible for elements A from
the spectrum o(7T') of T" in order to have a small error  —x,,. On the other hand,
(2.2) implies the constraint

which has to be satisfied. For ill-posed problems this constraint is crucial because
A = 0 is an accumulation point of the spectrum of 7', and hence, the best one
can hope for is that, as n — oo,

rn(A) — 0, pointwise on o(7) \ {0}. (2.6)
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If, in addition, the polynomial sequence
{rn} is uniformly bounded on o(T) (2.7)

then we have convergence z,, — = as n — oo by the Banach-Steinhaus Theorem,
compare Theorem 4.1 in [6].

We note that for the Fridman iteration (2.1), for example, (2.6) and (2.7)
are satisfied when 7T is selfadjoint and positive. Nevertheless, the shortcoming of
the Fridman iteration is its slow convergence. For ill-posed problems the rate of
convergence of z,, — = as n — oo cannot be measured in general terms: Since
mn(0) = 1 and the spectrum of T' clusters at the origin, it follows from (2.4) and
(2.5) that the error ||z — z,|| can be arbitrarily close to ||z|l. To obtain error
bounds it is necessary to have a priori information concerning z like, e.g.,

z € R(|T|") for some v > 0. (2.8)

Here, |T'| denotes the square root of the positive operator T2; for v € N, R(|T|")
can be replaced by the more familiar R(7"). Since T of (1.2) is a smoothing
operator and since v > 0, (2.8) can be considered to be a generalized smoothness
assumption. Inserting (2.8) into (2.4), i.e., setting z = |T'|*w for some w € X we
obtain from the Spectral Mapping Theorem

[ = znll = lrn (DT w]| < [lra (DT lw]| < sup A (M) Hlwll . (2.9)
a

Estimating |[A|Y|ry, ()\)| therefore provides a general error bound. The supre-
mum of |A]Y|rp(A\)] over o(T") or the enclosing interval [0,1] is hence referred to
as modulus of convergence. For Fridman’s iteration the upper bound in (2.9)
becomes

sup IV < sup X1 - A" = 2
Aeg(%’) " N Ae%?l] (n+wv)ntv = S
For example, when x € R(T') then this implies a rate of convergence of z, — =
of the order O(n!) as n — 0.

Faster schemes have been developed in the 1980’s by Schock, Nemirovskii
and Polyak, and Brakhage (see [14] for a survey and additional references). In
particular, the so-called v-methods by Brakhage [4] — a family of semiiterative
methods parameterized by the real number v > 0 associated with (2.8) — have
modulus of convergence

sup |AY|r, (M) = O(n?), n— oo, (2.10)
A€[0,1]
under the condition (2.8) .
Still, all these methods share the disadvantage that they require 7' to be

semidefinite in order to take advantage of the symmetry of T'. Recently, Calvetti,
Reichel and Zhang [5] suggested a semiiterative method for selfadjoint problems
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with indefinite 7. While mathematically appealing, their method may be some-
what complicated to implement and does not lead to a sequence converging to z
as n — oo but rather to some regularized approximation of x.

In contrast, the methods to be presented below, converge to x in exact
arithmetic with exactly given right-hand side y; in the presence of data errors
regularized approximations of z can be obtained by terminating the iteration
before instabilities become notable. Furthermore, these methods can be viewed
as an extension of the v-methods to the case when T is selfadjoint and indefinite.

3. Kernel polynomials

The key idea in [4] (see also [14]) for reducing the number of iterations
in the Fridman iteration (2.1) without raising the costs of each individual step
(one multiplication with 7" and a few linear combinations of elements in X') was
to choose orthogonal polynomials {r,} with respect to some weight function
supported on [0, 1]. The efficiency of such a scheme is a consequence of the three-
term recurrence relation of the orthogonal polynomials. The weight function
corresponding to the v-method (v > 0) is

w(t) =t /\Jt(l—t), 0<t<l. (3.1)

The polynomials r,, are therefore translated Jacobi polynomials with a multiplica-
tive scaling to achieve the normalization (2.5); such a normalization is possible
because all roots of r, belong to the open interval (0,1), which garantees that
r(0) is nonzero.

Given an indefinite operator T with spectrum

o(T) C[a,1], -1<a<0,

and a weight function w supported on [a, 1], a normalization (2.5) for the corre-
sponding orthogonal polynomials might no longer be possible because the origin
is an interior point of [a, 1], and hence, can be a root of some member of the or-
thogonal family, cf. Figure 4.1. Motivated by some work of Fischer and Prestin [9]
concerning polynomial wavelets we were therefore led to the use of kernel poly-
nomials rather than orthogonal polynomials for the definition of our new semi-
iterative scheme. In this we also follow Stiefel [22] who, back in 1955, already
recommended the use of kernel polynomials for some applications in numerical
linear algebra; see also Fischer [7].

Let {p,} be the sequence of orthonormal polynomials for a given weight
function w over [a, 1]. Then we require the associated kernel polynomials

n
Kn(ta T) = Zpk(t)pk(T) ) t,T€R,
k=0
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and the Christoffel functions
An+1(7) = 1/Kp(7,7), T€ER,

the latter being positive over R because K, (7,7) > |po(7)|?> > 0. Using the kernel
polynomials we can define

ra(t) = Kn(t,0)/Kn(0,0) = Ant1(0) Ky (2, 0). (3.2)

Obviously, r, is a polynomial of degree n which satisfies the normalization
constraint (2.5).

Remark 3.1. We emphasize that Brakhage’s v-methods for the semidefinite case
can be introduced in much the same way. The reason is that the n'* orthogonal
polynomial for the weight function w of (3.1) is — up to a multiplicative constant
— the kernel polynomial K, (-,0) for the weight function

B(t) =wt)/t =2Vt —1),  0<t<l; (3.1

of course, the latter defines a weight function only for v > 1/4.

To demonstrate the efficiency of each individual step of a semiiterative
method generated by (3.2) we make use of the Christoffel-Darboux identity which
states that

i Pt 1(8)pn(7) = pu(t)Pnt1(7)

K,(t,7)=
n(t:7) an t—T1

: (3-3)

where a,, is given by the three-term recurrence relation for the sequence {p,}:
pn+1(t) = (ant + bn)pn(t) - Cnpnfl(t) ) n € N, (34)

withp_1 =0,pg = (falw(t) dt)~Y2  and a, > 0 for all n € N . Inserting (3.3) and
(3.4) into (3.2) we eventually obtain Algorithm 3.1 for the recursive computation
of the iterates z,, of (2.3) and their residuals

dy =y —Tx, = Tn(T)ya

where 7, is given by (3.2). The details of this derivation are left to the reader; we
merely note that the intermediate quantities 5, € R and z, € X in Algorithm 3.1
satisfy

B .
(fFw(t) dt)L/2 =pa(0)  and (Tt )iz~ dn+1(T)y
with
g () = 2t POy

A
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On Input: {an,bn,cn:n =0,1,2,...}, ie., the recursion coefficients in (3.4)
of the orthonormal polynomials p,
On Output: zn, = gn(T)y, dn =y —Tzn, n=0,1,2,...

271220:0

B-1=0, Bo=1
a0 = 35
1’020, dozy

forn=20,1,2,... do
Zn+4+1 = an(TZn + ﬂny) +bpzn — CnzZn—1
,8n+1 = bnﬂn - Cn,gn—l

2
Qnt1 = Qn + Bt

_QXn

T — Brnt1

Int1 = an 41 an 41

Zn+1

dn+1 = u dn + M (Tzn+1 +,8n+1y)

QAn+41 QAn+41
end for

Algorithm 3.1: Computation of the semiiterative method based on (3.2)

4. Generalized Jacobi polynomials

In (3.1) and (3.1") the order of the zeros of w and @ at t = 0 is crucial to
establish the improved rate of convergence (2.10). We are therefore led to study
the one parameter family (with parameter p > 1)

wu(t) = tPEYN/ A=)t —a), a<t<l, (4.1)

which is obtained from the (translated and rescaled) Chebyshev weight by adding
a multiple root at the origin; note that, in general, £ = 0 is an interior point of
the interval [a,1]. For y = 1 we obtain the familiar Chebyshev weight function
on the interval [a, 1].

The weight functions (4.1) belong to the class of so-called generalized Jacobi
weights, cf., e.g., Nevai [20, p. 169]. Those weight functions have raised consider-
able interest, and a number of remarkable results have been proven. We require
two of these, which take the following form for our specific weight functions:

Theorem A (Nevai [20, p. 120]). The Christoffel functions A, (w,;t) corre-
sponding to (4.1) satisfy

1 1\2(k-1)
Mn(wst) ~ = (I + )7 7, moo,

uniformly for a <t <1.
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0 0.2 0.4 0.6 0.8 1

Figure 4.1. Orthonormal polynomial p3s (a = —0.1, u = 1.5) .

Theorem B (Badkov [1,2], see also [20, p. 170]). The orthonormal polynomials
Pn(wy;t), n € Ny, corresponding to (4.1) satisfy

1\ 2(u—1)
(It + =) “palws)? = 0(1),  n— oo,
uniformly for a <t <1.

Here, the notation ¢, ~ 1, is used to refer to the fact that the quotients
©n /Yy and ¥y, /p, are bounded as n — oo. We shall make use of these two results
to estimate the modulus of convergence and divergence of our new methods in
Sections 5 and 6.

We refer to Figure 4.1 for a typical orthonormal polynomial p,, corresponding
to (4.1). The small circle in this plot indicates that p,(0) may be close or even
equal to zero, which is the reason why those polynomials should not be used for
rp in (2.4). Figure 4.2 contains the corresponding rescaled kernel polynomial 7,
of (3.2). The dashed lines in these two figures show appropriate multiples of the
asymptotic envelope functions A — |X\|=#=1) and X — £|\|7#, respectively.

As we have indicated before the recursion coefficients for the orthogonal
polynomials corresponding to (4.1) enter into the recursive computation of the
kernel polynomials in Algorithm 3.1. Except for a few exceptional values of a < 0
those coefficients are not explicitly known, but they can always be computed
recursively.
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Figure 4.2. Rescaled kernel polynomial r39 (a = —0.1, 4 = 1.5).

One option for their computation is the well-known modified Chebyshev algo-
rithm, cf., e.g., Gautschi [12] or Fischer and Golub [8]; for a detailed investigation
of this method with particular emphasis on the above weight function, we refer to
[10]. One disadvantage with this scheme is its increasing complexity when p ¢ N.

Even for ;4 € N it is somewhat cheaper to use an alternative recursion sug-
gested recently by Magnus [19] for this and a number of related weight functions.
We state this scheme for our particular case in Algorithm 4.1 and refer to [19]
and [10] for further details. As is shown there the quantities x,, in this algorithm
are positive for all n € IN; furthermore, we have

4 b, — 1ta
1+lal” ™ 1+ lal’

cf. Szego [23, Sect. 12.7].

Algorithm 4.1 takes just a few multiplications and one square root per it-
eration. In our implementation we have used the ten point Gauf-Chebyshev
quadrature rule for the approximation of the two integrals in the definition of ;.

an — cn — 1, as n — oo, (4.2)

5. Applications to ill-posed problems

As outlined in Sect. 3 we shall use the kernel polynomials corresponding to
the weight function (4.1) (for some fixed ;1 > 1) to define via (3.2) the polynomials
r, of our semiiterative method for the regularization of ill-posed and indefinite
problems (1.1).
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On Input: left end a € [—1,0] of interval [a,1] C o(T); index p of w,
On Output: the recursion coefficients {an,bn,cn} in (3.4) of pn(wy; -)

¢’ =a/(a-1)
Y-1=0

ko =k_1 =0

oy /1 t2 |t2 _ £2|2(u—1) / §2|2(p, 1) it
. V-2 Vi-t

c=Y¥=0
forn=20,1,2,... do

m=2n+1

p=m(+1)+2(u—1)+1/2—20 — (m+ 2p)Knm-1
0=0+Kmn-1

L=S+k2_ | +26m_2Km_1
T=mé/2—-(2+1)0+ X

K1 = (p = 7/km)/(m 4200 = 1) +1) = ki

Yn = 2/EmEm+1

an = 2/((1 —a)ya)

br, = —an(a+ (1 —a)(km=1 + Km))

Cn = ')/n—l/’Yn
% +++++ insert here the main loop of Algorithm 3.1 +Httt
% +++++ to obtain the new semiiterative method e+t
m=2n+ 2

p=m(+1)+2(pu—1)+1/2—20 — (m+ 2p) k-1
O=0+Km-1
=S4k _1 +26m_2Km_1
T=mé/2—(2+ 1)+ 3
fmt1 = (p=7/km)/(m +2(p—1) +1) — fim
end for

Algorithm 4.1: Computation of the recursion coeflicients

We emphasize that for a = 0 the weight function (4.1) becomes

wu(t) = 2Vt -8,  0<t<1.

In view of Remark 3.1 our new scheme therefore extends Brakhage’s r-methods
(with v = u —1/2 > 1/2) to the indefinite case.

On the other hand it has been shown in [10, Satz 6.15] that for ¢ = —1
and every n € Ng both the (2n) and the (2n + 1)*! iterate of our new scheme
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coincide with the n'® iterate of the v-method with v = /2 when applied to the
semidefinite problem T2z = Ty, i.e., to the normal equation of (1.1).

As a consequence, for a between —1 and 0, there is an initial phase of the
iteration where our indefinite scheme mimicks the performance of the r-method
with v = p — 1/2, although the long range asymptotic behaviour of the iteration
corresponds to the v-method with v = p/2 < p — 1/2 applied to the normal
equation; see [10, Sect. 6.4] for some numerical illustration.

Now we turn to a convergence analysis of our scheme to establish the afore-
mentioned asymptotic behaviour.

Theorem 5.1. Let 4 > 1 and —1 < a < 0. Then the sequence {r,} defined as
above is uniformly bounded over [a, 1] and there exists a constant ¢, such that
for allm € N

[t ra()] < cun™,  a<t<1.

Proof.  From (3.2) we have

n

(D) = Ant1(0) [Kn (2, 0)] < Anga (0 Z Pk ()pk (0

Since A, (0) ~ n=2#+1 by Theorem A and |pi(t)| = O(n“_l), for a <t <1 and
0 < k < n by Theorem B, we obtain

n
|rn(t)] < Cn =21 Z ntIpt—l = ¢
k=0

for some C' > 0, and hence, the polynomials r,, n € N, are uniformly bounded.
By the Christoffel-Darboux formula, we have

()] = (8] | Kn (£, 0)] /K (0,0)
= 1 O) o (090 0) = P01 O)].

From Theorem A we conclude that A, (0) ~ n~2#*1 whereas according to Theo-

rem B |pg(0)| = O(n# 1) for k = n and n+1, respectively. Similarly, since pu > 1,
Theorem B implies that

[t ()] = O(1)
for kK =mn and n+ 1, uniformly for a < ¢ < 1. Finally, because of (4.2), the factor
1/ay remains bounded for n € N. From this follows the second assertion. O

As a corollary we obtain

Corollary 5.2. For every v € [0, ] there exists ¢, such that
[t [ra(t)] < cn™,  a<t<1.
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Proof. Using the uniform boundedness of 7, in [a, 1] and the asymptotic estimate
in Theorem 5.1 we obtain, since 0 < v/u <1 |

1 )] = (8 I (O (O < cyfm v ghln,
O

We have thus estimated the modulus of convergence of our new scheme.
Note that it is not as fast as the v-method applied to a semidefinite problem,
cf. (2.10). Rather, the rate of convergence is the same as for the v-method (with
v = p/2) when applied to the normal equation 7%z = Ty. To see this, recall
that

z € R(|T|") = R(T*M?),

and hence, the v-method (with v = u/2) will have a rate of convergence like
O(n=2H2) = O(n=H).

6. Regularizing properties

We now turn to an investigation of the self-regularizing properties of our
new algorithm. To this end we introduce its so-called modulus of divergence, i.e.,
the numbers
Gp = arg%xl lgn ()], neN. (6.1)
Note that G, describes the worst-case propagation of data errors in the right-
hand side within the first n iterations, because in view of (2.3) the iterates z,
and Z,, corresponding to right-hand sides y and g satisfy

[0 = Znll = llgn(T)(y = DI < llgn(Dl ly =3l < Gully =7l (6.2)

by the Spectral Mapping Theorem.

Since ¢, (A) = (1 — 7, (A)) /A by (2.2), where 7, converges to zero pointwise
in [a,1] \ {0}, the polynomials g, converge pointwise to the function A — 1/ in
[a,1] \ {0}, and hence, G, of (6.1) will converge to infinity as n — oco. Since this
corresponds to an unlimited growth of the propagated data error as the iteration
proceeds, it is essential to derive sharp estimates for the modulus of divergence.

Theorem 6.1. Let > 1 and —1 < a < 0. Then there exists a constant C),
such that

Gn < Cyn, n € N.



H. Frankenberger, M. Hanke / Solution of indefinite and ill-posed problems 13

Proof. From the representation (2.2) we obtain for |A| > |a|/2 with A € [a, 1]
that
L+ (M) _ 2

< — (1 + max |ry(7)]).

2V <
g2 (M) < A S e

Since the polynomials r;, are uniformly bounded over [a, 1] by Theorem 5.1 we
conclude that the polynomials gy, are also uniformly bounded on [a, 1]\[a/2, |a|/2] .
Next, we consider arguments A € [a/2,|a|/2]. From (2.2) and (2.5) we obtain

T LG

for some ¢ € (a/2,|al/2) by the Mean-Value Theorem. Since the sequence {r,}
is uniformly bounded over [a,|a|], Bernstein’s inequality (cf., e.g., [23, Theo-
rem 1.22.3]) yields the bound

2
W S enf V=N <, A< Jalf2,

for the derivative of r,,, where ¢ > 0 is some appropriate constant independent of
n € N. It follows that

lgn(N)] <

n, a/2 <A <|al/2,
a
and the proof is complete. O

Using the modulus of convergence and the modulus of divergence we obtain
a pretty realistic description of the semiconvergence phenomenon observed for
iterative regularization methods in practice. Let us assume that the exact solution
x = Ty satisfies the smoothness condition z = |T'|*w with some 0 < v < y and
w € X, and assume we are given perturbed data §: Then we can use (2.4) and
(6.2) and rewrite the error of the n'” iterate #, corresponding to the given data
Y as
T—Tp = —Tp+ Ty — Ty = rp(T)T|"w + gu(T)(y — 9) -
Using the triangle inequality and Theorems 5.1 and 6.1 we obtain
[ = @] < [lrn (DT [w]] + G lly = 3l
< cyflwln™ + Cully = glin. (6.3)

Assuming that the data error ||y —g|| is small, the first term in (6.3) dominates in
the beginning of the iteration, and the iteration error seemingly converges to zero
in this initial stage. However, as n gets large, the influence of the propagated
data error becomes notable and the iteration error will subsequently stagnate
before it eventually diverges to infinity (compare Figure 7.2 for an illustration of
this semiconvergence phenomenon).
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Under these assumptions the best possible approximations of x are therefore
obtained when the iteration is terminated at the transition from convergence to
divergence. This is achieved by appropriate stopping rules like, for example, the
discrepancy principle (see [6, Sect. 4.3]). With this stopping rule the iteration is
terminated as soon as the residual norm ||§ — T'Z, || has been reduced to about
the (presumably known) noise level ||y — g||. As follows from the general theory
developed in [6] the discrepancy principle yields what are called order-optimal
error bounds as long as the smoothness assumption (2.8) is satisfied for some
0 < v <pu—1. A somewhat more sophisticated stopping rule, which leads to
order-optimal error bounds for the maximal range 0 < v < i has been developed
in [10] for our new scheme; we refrain, however, from elaborating on this any
further here.

7. Numerical results

We shall illustrate the performance of our method for the model problem
phillips provided in Hansen’s MATLAB regularization toolbox [18]. This prob-
lem,

/66 b(s — Da(t)dt = y(s), —6<s<6, (7.1)

with

_ [14cos(tn/3), 0< ¢ <3,
o0 = o, 3< ],

and r = ¢ € X = L?(—6,6) has first been suggested in the fundamental paper by
Phillips [21] on Tikhonov-Phillips regularization. The corresponding convolution
integral operator 1" is compact, selfadjoint and indefinite; after discretization and
appropriate normalization (so that the largest eigenvalue becomes A = 1) the
smallest eigenvalue of T" is a &~ —0.0209, so the problem is only mildly indefinite.
Figure 7.1 illustrates the contribution of each individual eigenvector (plotted over
the associated eigenvalue) to the total spectral mass of z. It can be seen that
the negative eigenvalues play a minor but still significant role in the spectral
distribution of x. Note that our discretized problem has dimension 128 and there
is a whole cluster of positive and negative eigenvalues at the origin which cannot
be distinguished in this plot. Still, the operator T is injective.

We now apply the new scheme with y = 1.5 and a = —0.1 to this problem.
This may correspond to a situation with given a priori information that o(7") C
[—0.1,1]. Figure 7.2 shows the errors of the first one hundred iterations given
noisy data g with a noise level of 1%, i.e., ||g — y||/|ly|| = 0.01 (g —y is a random
Gaussian noise vector). For comparison, the results obtained with the v-method
(v = u/2, see the discussion in Section 5) when applied to the normal equation
of this problem are also included in this figure (the dashed line).

(7.2)
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Figure 7.1. Spectral distribution of the exact solution z

Figure 7.2. Relative error history (a = —0.1, u = 1.5) vs. iteration count

It can be seen that the new scheme is converging much faster in the initial
phase of the iteration, but in the end also diverges more rapidly. Nevertheless, to
obtain the best possible approximation of the true solution the new scheme only
requires 18 iterations (see Table 7.1), whereas the ‘classical’ v-method based on



16 H. Frankenberger, M. Hanke / Solution of indefinite and ill-posed problems

indefinite scheme normal equation scheme

best iterate: 18 67
minimal error: 0.0229 0.0216
Table 7.1

Best regularized reconstruction of x

the normal equation requires more than twice as many iterations to achieve its
optimal reconstruction; the quality of the two reconstructions is similar.

We mention that the wiggles in the error history in Figure 7.2 are a typical
phenomenon of the new scheme. These wiggles are caused by erratic data noise
propagation due to oscillations in the sequence {g,(0)} . Our experiments indicate
that this phenomenon is more pronounced when « is very close to the origin; the
wiggles also appear to be the larger, the smaller is p.

Another remark concerns the stability of Algorithm 4.1 for the computa-
tion of the recursion coefficients {a,, by, c,} for the polynomials p,,(w,; -). Our
numerical experiments support the claim in [19] that the computation of these
coefficients is pretty stable. In spite of this, however, there has not yet been
a formal proof of this statement. Finally, the numerical approximation of the
integrals required for the initialization of k1 in Algorithm 4.1 also did not lead
to a notable deterioration of our iterative scheme.

We conclude with a comment on the competition between semiiterative
methods and conjugate gradient type methods. While it is generally acknowl-
edged that conjugate gradient type methods converge faster in terms of iteration
count, semiiterative methods may have an advantage in computation time on
parallel machines, cf., e.g., [16]. We do not want to elaborate further on this
here; we only mention that the conjugate gradient type method MR-1I developed
in [15] obtains for this particular example the same accuracy with fewer iterations:
its best iterate is obtained after seven iterations, the corresponding error equals
0.0200 (compare this with Table 7.1). For a more detailed numerical comparison
we refer to [10].
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