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As input our method requires an enlosing interval of the spetrum of the inde�nite

operator, based on some a priori knowledge. In partiular, for positive operators

the shemes are mathematially equivalent to the so-alled �-methods of Brakhage.

In a way, they an therefore be seen as appropriate extensions of the �-methods

to the inde�nite ase. This extension is ahieved by substituting the orthogonal

polynomials employed by Brakhage in the de�nition of the �-methods by appropriate

kernel polynomials. We determine the rate of onvergene of the new methods and

establish their regularizing properties.
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1. Introdution

This paper is onerned with the approximate solution of linear operator

equations

Tx = y ; (1.1)

where T : X ! X is a selfadjoint and inde�nite operator in a Hilbert spae X .

We presume that T is injetive, i.e., solutions x of (1.1) are unique; however,

we shall expliitly fous on the ase that the range R(T ) of T is only a dense

subspae of X . In this ase the operator T is not ontinuously invertible beause

T

�1

is unbounded by the Open Mapping Theorem.

�
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When T

�1

is unbounded, equation (1.1) is usually referred to as being ill-

posed beause the solution x of (1.1) does not depend ontinuously on the given

right-hand side y. Even worse, in general (1.1) will not have a solution.

Ill-posed problems often appear in the ontext of so-alled inverse problems.

The prototype is an integral equation of the �rst kind with a smooth kernel

funtion, e.g.,
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0

) = y(�; �); �; � 2 R ; (1.2)

whih may serve as a simple mathematial model for imaging through atmo-

spheri turbulene; the assoiated integral operator is selfadjoint and positive.

Today astronomers use more elaborate kernel funtions whih often ressemble

the Gaussian kernel in (1.2), f., e.g., Bertero and Boai [3℄. While the orre-

sponding integral operator may still be selfadjoint, it typially is no longer positive

but rather inde�nite, although the dominating part of the spetrum belongs to

the positive axis (see [17℄ for an example).

Ill-posed problems need some sort of regularization to enompass the loss of

stability due to the unboundedness of T

�1

. One an, for instane, use Tikhonov

regularization to approximate the solution x. Another option that we employ in

this paper is the use of iterative shemes for solving (1.1): here, regularization is

inorporated via an early termination of the iteration whih prevents unbounded

data error propagation.

Most iterative methods for ill-posed problems are based on the normal

equation T

�

Tx = T

�

y for (1.1). When T is selfadjoint, however, we annot

bene�t from the symmetry in this way. Calvetti, Reihel and Zhang [5℄ have

reently suggested an iterative sheme whih diretly works with (1.1) when T

is selfadjoint and inde�nite. The purpose of this paper is to provide alternative

algorithms whih redue to established shemes (the so-alled �-methods [4℄) in

the ase when T is semide�nite. Like the method of Calvetti, Reihel and Zhang

our new shemes belong to the lass of semiiterative methods whih are generated

by appropriate sequenes of polynomials; in our ase these are kernel polynomials

for ertain generalized Jaobi polynomials. As a onsequene, our iterates an be

omputed with short reurrenes.

The outline of this paper is as follows. In Setion 2 we review the basi

fats about semiiterative methods for selfadjoint linear equations with partiular

emphasis on the spei� subtleties for ill-posed problems. Then, in Setion 3, we

provide well-known results on kernel polynomials, whih are subsequently used

to de�ne the new method in Setion 4. We go on and prove rate of onvergene

estimates in Setion 5 before we turn in Setion 6 to the regularizing properties

of our algorithm. Finally, in Setion 7, we present some numerial results to

illustrate our �ndings.
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2. Semiiterative methods

Semiiterative methods were introdued in full generality by R.S. Varga in

his book [24℄, although the terminology has been oined for a spei� example

somewhat earlier in [13℄. In [24℄ semiiterative methods refer to hybrid shemes,

whih in eah iteration arry out one step of residual orretion (or Rihardson

iteration)

x

n+1

= x

n

+ (y � Tx

n

) ; (2.1)

followed by a linear ombination of some or all previous iterates. Typially the

iteration is initialized with x

0

= 0 .

Semiiterative methods an alternatively be desribed by two sequenes fr

n

g

and fg

n

g of polynomials where g

n

belongs to the set �

n�1

of polynomials of

degree n� 1 or less and r

n

2 �

n

with

r

n

(�) = 1� �g

n

(�) : (2.2)

The polynomial g

n

de�nes the n

th

iterate via

x

n

= g

n

(T )y ; (2.3)

hene the error equals

x� x

n

= x� g

n

(T )Tx = r

n

(T )x : (2.4)

For the basi iteration (2.1), for example, we have

g

n

(�) =

n�1

X

j=0

(1� �)

j

and r

n

(�) = (1 � �)

n

:

In the ontext of ill-posed problems, the iteration (2.1) is attributed to Frid-

man [11℄; it onverges whenever T is selfadjoint and positive with kTk < 2 , in

the sequel we �x throughout

kTk = 1 :

In view of (2.4), jr

n

(�)j should be as small as possible for elements � from

the spetrum �(T ) of T in order to have a small error x�x

n

. On the other hand,

(2.2) implies the onstraint

r

n

(0) = 1 (2.5)

whih has to be satis�ed. For ill-posed problems this onstraint is ruial beause

� = 0 is an aumulation point of the spetrum of T , and hene, the best one

an hope for is that, as n!1,

r

n

(�) �! 0 ; pointwise on �(T ) n f0g : (2.6)
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If, in addition, the polynomial sequene

fr

n

g is uniformly bounded on �(T ) (2.7)

then we have onvergene x

n

! x as n!1 by the Banah-Steinhaus Theorem,

ompare Theorem 4.1 in [6℄.

We note that for the Fridman iteration (2.1), for example, (2.6) and (2.7)

are satis�ed when T is selfadjoint and positive. Nevertheless, the shortoming of

the Fridman iteration is its slow onvergene. For ill-posed problems the rate of

onvergene of x

n

! x as n ! 1 annot be measured in general terms: Sine

r

n

(0) = 1 and the spetrum of T lusters at the origin, it follows from (2.4) and

(2.5) that the error kx � x

n

k an be arbitrarily lose to kxk. To obtain error

bounds it is neessary to have a priori information onerning x like, e.g.,

x 2 R(jT j

�

) for some � > 0 : (2.8)

Here, jT j denotes the square root of the positive operator T

2

; for � 2 N ; R(jT j

�

)

an be replaed by the more familiar R(T

�

) : Sine T of (1.2) is a smoothing

operator and sine � > 0, (2.8) an be onsidered to be a generalized smoothness

assumption. Inserting (2.8) into (2.4), i.e., setting x = jT j

�

w for some w 2 X we

obtain from the Spetral Mapping Theorem

kx� x

n

k = kr

n

(T )jT j

�

wk � kr

n

(T )jT j

�

k kwk � sup

�2�(T )

j�j

�

jr

n

(�)j kwk : (2.9)

Estimating j�j

�

jr

n

(�)j therefore provides a general error bound. The supre-

mum of j�j

�

jr

n

(�)j over �(T ) or the enlosing interval [0,1℄ is hene referred to

as modulus of onvergene. For Fridman's iteration the upper bound in (2.9)

beomes

sup

�2�(T )

j�j

�

jr

n

(�)j � sup

�2[0;1℄

�

�

(1� �)

n

=

�

�

n

n

(n+ �)

n+�

� �

�

n

��

:

For example, when x 2 R(T ) then this implies a rate of onvergene of x

n

! x

of the order O(n

�1

) as n!1 .

Faster shemes have been developed in the 1980's by Shok, Nemirovskii

and Polyak, and Brakhage (see [14℄ for a survey and additional referenes). In

partiular, the so-alled �-methods by Brakhage [4℄ | a family of semiiterative

methods parameterized by the real number � > 0 assoiated with (2.8) | have

modulus of onvergene

sup

�2[0;1℄

j�j

�

jr

n

(�)j = O(n

�2�

) ; n!1 ; (2.10)

under the ondition (2.8) .

Still, all these methods share the disadvantage that they require T to be

semide�nite in order to take advantage of the symmetry of T . Reently, Calvetti,

Reihel and Zhang [5℄ suggested a semiiterative method for selfadjoint problems
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with inde�nite T . While mathematially appealing, their method may be some-

what ompliated to implement and does not lead to a sequene onverging to x

as n!1 but rather to some regularized approximation of x.

In ontrast, the methods to be presented below, onverge to x in exat

arithmeti with exatly given right-hand side y; in the presene of data errors

regularized approximations of x an be obtained by terminating the iteration

before instabilities beome notable. Furthermore, these methods an be viewed

as an extension of the �-methods to the ase when T is selfadjoint and inde�nite.

3. Kernel polynomials

The key idea in [4℄ (see also [14℄) for reduing the number of iterations

in the Fridman iteration (2.1) without raising the osts of eah individual step

(one multipliation with T and a few linear ombinations of elements in X ) was

to hoose orthogonal polynomials fr

n

g with respet to some weight funtion

supported on [0; 1℄. The eÆieny of suh a sheme is a onsequene of the three-

term reurrene relation of the orthogonal polynomials. The weight funtion

orresponding to the �-method (� > 0) is

w(t) = t

2�

=

q

t(1� t) ; 0 < t < 1 : (3.1)

The polynomials r

n

are therefore translated Jaobi polynomials with a multiplia-

tive saling to ahieve the normalization (2.5); suh a normalization is possible

beause all roots of r

n

belong to the open interval (0; 1), whih garantees that

r

n

(0) is nonzero.

Given an inde�nite operator T with spetrum

�(T ) � [a; 1℄ ; �1 < a < 0 ;

and a weight funtion w supported on [a; 1℄, a normalization (2.5) for the orre-

sponding orthogonal polynomials might no longer be possible beause the origin

is an interior point of [a; 1℄; and hene, an be a root of some member of the or-

thogonal family, f. Figure 4.1. Motivated by some work of Fisher and Prestin [9℄

onerning polynomial wavelets we were therefore led to the use of kernel poly-

nomials rather than orthogonal polynomials for the de�nition of our new semi-

iterative sheme. In this we also follow Stiefel [22℄ who, bak in 1955, already

reommended the use of kernel polynomials for some appliations in numerial

linear algebra; see also Fisher [7℄.

Let fp

n

g be the sequene of orthonormal polynomials for a given weight

funtion w over [a; 1℄: Then we require the assoiated kernel polynomials

K

n

(t; �) =

n

X

k=0

p

k

(t)p

k

(�) ; t; � 2 R ;
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and the Christo�el funtions

�

n+1

(�) = 1=K

n

(�; �) ; � 2 R ;

the latter being positive over R beauseK

n

(�; �) � jp

0

(�)j

2

> 0 : Using the kernel

polynomials we an de�ne

r

n

(t) = K

n

(t; 0)=K

n

(0; 0) = �

n+1

(0)K

n

(t; 0) : (3.2)

Obviously, r

n

is a polynomial of degree n whih satis�es the normalization

onstraint (2.5).

Remark 3.1. We emphasize that Brakhage's �-methods for the semide�nite ase

an be introdued in muh the same way. The reason is that the n

th

orthogonal

polynomial for the weight funtion w of (3.1) is | up to a multipliative onstant

| the kernel polynomial K

n

( � ; 0) for the weight funtion

~w(t) = w(t)=t = t

2(��1=2)

=

q

t(1� t) ; 0 < t < 1 ; (3.1

0

)

of ourse, the latter de�nes a weight funtion only for � > 1=4 :

To demonstrate the eÆieny of eah individual step of a semiiterative

method generated by (3.2) we make use of the Christo�el-Darboux identity whih

states that

K

n

(t; �) =

1

a

n

p

n+1

(t)p

n

(�)� p

n

(t)p

n+1

(�)

t� �

; (3.3)

where a

n

is given by the three-term reurrene relation for the sequene fp

n

g:

p

n+1

(t) = (a

n

t+ b

n

)p

n

(t)� 

n

p

n�1

(t) ; n 2 N

0

; (3.4)

with p

�1

� 0 , p

0

� (

R

1

a

w(t) dt)

�1=2

, and a

n

> 0 for all n 2 N : Inserting (3.3) and

(3.4) into (3.2) we eventually obtain Algorithm 3.1 for the reursive omputation

of the iterates x

n

of (2.3) and their residuals

d

n

= y � Tx

n

= r

n

(T )y ;

where r

n

is given by (3.2). The details of this derivation are left to the reader; we

merely note that the intermediate quantities �

n

2 R and z

n

2 X in Algorithm 3.1

satisfy

�

n

(

R

1

a

w(t) dt)

1=2

= p

n

(0) and

z

n

(

R

1

a

w(t) dt)

1=2

= q

n+1

(T )y

with

q

n+1

(�) =

p

n+1

(�)� p

n+1

(0)

�

2 �

n

:
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On Input: fa

n

; b

n

; 

n

: n = 0; 1; 2; : : :g, i.e., the reursion oeÆients in (3.4)

of the orthonormal polynomials p

n

On Output: x

n

= g

n

(T )y , d

n

= y � Tx

n

, n = 0; 1; 2; : : :

z

�1

= z

0

= 0

�

�1

= 0 ; �

0

= 1

�

0

= �

2

0

x

0

= 0 ; d

0

= y

for n = 0; 1; 2; : : : do

z

n+1

= a

n

(Tz

n

+ �

n

y) + b

n

z

n

� 

n

z

n�1

�

n+1

= b

n

�

n

� 

n

�

n�1

�

n+1

= �

n

+ �

2

n+1

x

n+1

=

�

n

�

n+1

x

n

�

�

n+1

�

n+1

z

n+1

d

n+1

=

�

n

�

n+1

d

n

+

�

n+1

�

n+1

(Tz

n+1

+ �

n+1

y)

end for

Algorithm 3.1: Computation of the semiiterative method based on (3.2)

4. Generalized Jaobi polynomials

In (3.1) and (3.1

0

) the order of the zeros of w and ~w at t = 0 is ruial to

establish the improved rate of onvergene (2.10). We are therefore led to study

the one parameter family (with parameter � � 1)

w

�

(t) = jtj

2(��1)

=

q

(1� t)(t� a) ; a < t < 1 ; (4.1)

whih is obtained from the (translated and resaled) Chebyshev weight by adding

a multiple root at the origin; note that, in general, t = 0 is an interior point of

the interval [a; 1℄. For � = 1 we obtain the familiar Chebyshev weight funtion

on the interval [a; 1℄.

The weight funtions (4.1) belong to the lass of so-alled generalized Jaobi

weights, f., e.g., Nevai [20, p. 169℄. Those weight funtions have raised onsider-

able interest, and a number of remarkable results have been proven. We require

two of these, whih take the following form for our spei� weight funtions:

Theorem A (Nevai [20, p. 120℄). The Christo�el funtions �

n

(w

�

; t) orre-

sponding to (4.1) satisfy

�

n

(w

�

; t) �

1

n

�

jtj +

1

n

�

2(��1)

; n!1 ;

uniformly for a � t � 1 :
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0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

Figure 4.1. Orthonormal polynomial p

39

(a = �0:1; � = 1:5) :

Theorem B (Badkov [1,2℄, see also [20, p. 170℄). The orthonormal polynomials

p

n

(w

�

; t), n 2 N

0

, orresponding to (4.1) satisfy

�

jtj +

1

n

�

2(��1)

jp

n

(w

�

; t)j

2

= O(1) ; n!1 ;

uniformly for a � t � 1 :

Here, the notation '

n

�  

n

is used to refer to the fat that the quotients

'

n

= 

n

and  

n

='

n

are bounded as n!1. We shall make use of these two results

to estimate the modulus of onvergene and divergene of our new methods in

Setions 5 and 6.

We refer to Figure 4.1 for a typial orthonormal polynomial p

n

orresponding

to (4.1). The small irle in this plot indiates that p

n

(0) may be lose or even

equal to zero, whih is the reason why those polynomials should not be used for

r

n

in (2.4). Figure 4.2 ontains the orresponding resaled kernel polynomial r

n

of (3.2). The dashed lines in these two �gures show appropriate multiples of the

asymptoti envelope funtions � 7! �j�j

�(��1)

and � 7! �j�j

��

, respetively.

As we have indiated before the reursion oeÆients for the orthogonal

polynomials orresponding to (4.1) enter into the reursive omputation of the

kernel polynomials in Algorithm 3.1. Exept for a few exeptional values of a � 0

those oeÆients are not expliitly known, but they an always be omputed

reursively.



H. Frankenberger, M. Hanke / Solution of inde�nite and ill-posed problems 9

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.2. Resaled kernel polynomial r

39

(a = �0:1; � = 1:5) :

One option for their omputation is the well-knownmodi�ed Chebyshev algo-

rithm, f., e.g., Gautshi [12℄ or Fisher and Golub [8℄; for a detailed investigation

of this method with partiular emphasis on the above weight funtion, we refer to

[10℄. One disadvantage with this sheme is its inreasing omplexity when � =2 N.

Even for � 2 N it is somewhat heaper to use an alternative reursion sug-

gested reently by Magnus [19℄ for this and a number of related weight funtions.

We state this sheme for our partiular ase in Algorithm 4.1 and refer to [19℄

and [10℄ for further details. As is shown there the quantities �

n

in this algorithm

are positive for all n 2 N; furthermore, we have

a

n

�!

4

1 + jaj

; b

n

�! �2

1 + a

1 + jaj

; 

n

�! 1 ; as n!1 ; (4.2)

f. Szeg�o [23, Set. 12.7℄.

Algorithm 4.1 takes just a few multipliations and one square root per it-

eration. In our implementation we have used the ten point Gau�-Chebyshev

quadrature rule for the approximation of the two integrals in the de�nition of �

1

.

5. Appliations to ill-posed problems

As outlined in Set. 3 we shall use the kernel polynomials orresponding to

the weight funtion (4.1) (for some �xed � � 1) to de�ne via (3.2) the polynomials

r

n

of our semiiterative method for the regularization of ill-posed and inde�nite

problems (1.1).
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On Input: left end a 2 [�1; 0℄ of interval [a; 1℄ � �(T ); index � of w

�

On Output: the reursion oeÆients fa

n

; b

n

; 

n

g in (3.4) of p

n

(w

�

; � )

�

2

= a=(a� 1)



�1

= 0

�

0

= �

�1

= 0

�

1

=

Z

1

�1

t

2

jt

2

� �

2

j

2(��1)

p

1� t

2

dt

�

Z

1

�1

jt

2

� �

2

j

2(��1)

p

1� t

2

dt

� = � = 0

for n = 0; 1; 2; : : : do

m = 2n + 1

� = m(�

2

+ 1) + 2(�� 1) + 1=2 � 2� � (m+ 2�)�

m�1

� = � + �

m�1

� = � + �

2

m�1

+ 2�

m�2

�

m�1

� = m�

2

=2� (�

2

+ 1)� +�

�

m+1

= (�� �=�

m

)=(m+ 2(� � 1) + 1)� �

m



n

= 2

p

�

m

�

m+1

a

n

= 2=((1� a)

n

)

b

n

= �a

n

(a+ (1� a)(�

m�1

+ �

m

))



n

= 

n�1

=

n

% +++++ insert here the main loop of Algorithm 3.1 +++++

% +++++ to obtain the new semiiterative method +++++

m = 2n + 2

� = m(�

2

+ 1) + 2(�� 1) + 1=2 � 2� � (m+ 2�)�

m�1

� = � + �

m�1

� = � + �

2

m�1

+ 2�

m�2

�

m�1

� = m�

2

=2� (�

2

+ 1)� +�

�

m+1

= (�� �=�

m

)=(m+ 2(� � 1) + 1)� �

m

end for

Algorithm 4.1: Computation of the reursion oeÆients

We emphasize that for a = 0 the weight funtion (4.1) beomes

w

�

(t) = t

2(��1)

=

q

t(1� t) ; 0 < t < 1 :

In view of Remark 3.1 our new sheme therefore extends Brakhage's �-methods

(with � = �� 1=2 � 1=2) to the inde�nite ase.

On the other hand it has been shown in [10, Satz 6.15℄ that for a = �1

and every n 2 N

0

both the (2n)

th

and the (2n + 1)

st

iterate of our new sheme
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oinide with the n

th

iterate of the �-method with � = �=2 when applied to the

semide�nite problem T

2

x = Ty, i.e., to the normal equation of (1.1).

As a onsequene, for a between �1 and 0, there is an initial phase of the

iteration where our inde�nite sheme mimiks the performane of the �-method

with � = �� 1=2, although the long range asymptoti behaviour of the iteration

orresponds to the �-method with � = �=2 � � � 1=2 applied to the normal

equation; see [10, Set. 6.4℄ for some numerial illustration.

Now we turn to a onvergene analysis of our sheme to establish the afore-

mentioned asymptoti behaviour.

Theorem 5.1. Let � � 1 and �1 � a < 0. Then the sequene fr

n

g de�ned as

above is uniformly bounded over [a; 1℄ and there exists a onstant 

�

suh that

for all n 2 N

jtj

�

jr

n

(t)j � 

�

n

��

; a � t � 1 :

Proof. From (3.2) we have

jr

n

(t)j = �

n+1

(0) jK

n

(t; 0)j � �

n+1

(0)

n

X

k=0

jp

k

(t)p

k

(0)j :

Sine �

n

(0) � n

�2�+1

by Theorem A and jp

k

(t)j = O(n

��1

), for a � t � 1 and

0 � k � n by Theorem B, we obtain

jr

n

(t)j � Cn

�2�+1

n

X

k=0

n

��1

n

��1

= C

for some C > 0 , and hene, the polynomials r

n

, n 2 N, are uniformly bounded.

By the Christo�el-Darboux formula, we have

jtj

�

jr

n

(t)j= jtj

�

jK

n

(t; 0)j =K

n

(0; 0)

=

1

a

n

jtj

��1

�

n+1

(0)

�

�

p

n+1

(t)p

n

(0) � p

n

(t)p

n+1

(0)

�

�

:

From Theorem A we onlude that �

n

(0) � n

�2�+1

, whereas aording to Theo-

rem B jp

k

(0)j = O(n

��1

) for k = n and n+1, respetively. Similarly, sine � � 1,

Theorem B implies that

jtj

��1

jp

k

(t)j = O(1)

for k = n and n+1 , uniformly for a � t � 1. Finally, beause of (4.2), the fator

1=a

n

remains bounded for n 2 N. From this follows the seond assertion.

As a orollary we obtain

Corollary 5.2. For every � 2 [0; �℄ there exists 

�

suh that

jtj

�

jr

n

(t)j � 

�

n

��

; a � t � 1 :
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Proof. Using the uniform boundedness of r

n

in [a; 1℄ and the asymptoti estimate

in Theorem 5.1 we obtain, sine 0 � �=� � 1 ,

jtj

�

jr

n

(t)j =

�

jtj

�

jr

n

(t)j

�

�=�

jr

n

(t)j

1��=�

� 

�=�

�

n

��

C

1��=�

:

We have thus estimated the modulus of onvergene of our new sheme.

Note that it is not as fast as the �-method applied to a semide�nite problem,

f. (2.10). Rather, the rate of onvergene is the same as for the �-method (with

� = �=2) when applied to the normal equation T

2

x = Ty . To see this, reall

that

x 2 R(jT j

�

) = R(jT

2

j

�=2

) ;

and hene, the �-method (with � = �=2) will have a rate of onvergene like

O(n

�2�=2

) = O(n

��

) .

6. Regularizing properties

We now turn to an investigation of the self-regularizing properties of our

new algorithm. To this end we introdue its so-alled modulus of divergene, i.e.,

the numbers

G

n

:= max

a�t�1

jg

n

(t)j ; n 2 N : (6.1)

Note that G

n

desribes the worst-ase propagation of data errors in the right-

hand side within the �rst n iterations, beause in view of (2.3) the iterates x

n

and ~x

n

orresponding to right-hand sides y and ~y satisfy

kx

n

� ~x

n

k = kg

n

(T )(y � ~y)k � kg

n

(T )k ky � ~yk � G

n

ky � ~yk (6.2)

by the Spetral Mapping Theorem.

Sine g

n

(�) =

�

1� r

n

(�)

�

=� by (2.2), where r

n

onverges to zero pointwise

in [a; 1℄ n f0g, the polynomials g

n

onverge pointwise to the funtion � 7! 1=� in

[a; 1℄ n f0g, and hene, G

n

of (6.1) will onverge to in�nity as n!1. Sine this

orresponds to an unlimited growth of the propagated data error as the iteration

proeeds, it is essential to derive sharp estimates for the modulus of divergene.

Theorem 6.1. Let � � 1 and �1 � a < 0. Then there exists a onstant C

�

suh that

G

n

� C

�

n ; n 2 N :



H. Frankenberger, M. Hanke / Solution of inde�nite and ill-posed problems 13

Proof. From the representation (2.2) we obtain for j�j > jaj=2 with � 2 [a; 1℄

that

jg

n

(�)j �

1 + jr

n

(�)j

j�j

�

2

jaj

�

1 + max

a���1

jr

n

(�)j

�

:

Sine the polynomials r

n

are uniformly bounded over [a; 1℄ by Theorem 5.1 we

onlude that the polynomials g

n

are also uniformly bounded on [a; 1℄n[a=2; jaj=2℄ .

Next, we onsider arguments � 2 [a=2; jaj=2℄. From (2.2) and (2.5) we obtain

g

n

(�) =

1� r

n

(�)

�

=

r

n

(0)� r

n

(�)

�

= �r

0

n

(�)

for some � 2 (a=2; jaj=2) by the Mean-Value Theorem. Sine the sequene fr

n

g

is uniformly bounded over [a; jaj℄, Bernstein's inequality (f., e.g., [23, Theo-

rem 1.22.3℄) yields the bound

jr

0

n

(�)j � n

Æ

p

a

2

� �

2

�

2

p

3 jaj

n ; j�j � jaj=2 ;

for the derivative of r

n

, where  > 0 is some appropriate onstant independent of

n 2 N. It follows that

jg

n

(�)j �

2

p

3 jaj

n ; a=2 � � � jaj=2 ;

and the proof is omplete.

Using the modulus of onvergene and the modulus of divergene we obtain

a pretty realisti desription of the semionvergene phenomenon observed for

iterative regularization methods in pratie. Let us assume that the exat solution

x = T

�1

y satis�es the smoothness ondition x = jT j

�

w with some 0 < � � � and

w 2 X , and assume we are given perturbed data ~y: Then we an use (2.4) and

(6.2) and rewrite the error of the n

th

iterate ~x

n

orresponding to the given data

~y as

x� ~x

n

= x� x

n

+ x

n

� ~x

n

= r

n

(T )jT j

�

w + g

n

(T )(y � ~y) :

Using the triangle inequality and Theorems 5.1 and 6.1 we obtain

kx� ~x

n

k � kr

n

(T )jT j

�

k kwk + G

n

ky � ~yk

� 

�

kwkn

��

+ C

�

ky � ~ykn : (6.3)

Assuming that the data error ky� ~yk is small, the �rst term in (6.3) dominates in

the beginning of the iteration, and the iteration error seemingly onverges to zero

in this initial stage. However, as n gets large, the inuene of the propagated

data error beomes notable and the iteration error will subsequently stagnate

before it eventually diverges to in�nity (ompare Figure 7.2 for an illustration of

this semionvergene phenomenon).
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Under these assumptions the best possible approximations of x are therefore

obtained when the iteration is terminated at the transition from onvergene to

divergene. This is ahieved by appropriate stopping rules like, for example, the

disrepany priniple (see [6, Set. 4.3℄). With this stopping rule the iteration is

terminated as soon as the residual norm k~y � T ~x

n

k has been redued to about

the (presumably known) noise level ky � ~yk. As follows from the general theory

developed in [6℄ the disrepany priniple yields what are alled order-optimal

error bounds as long as the smoothness assumption (2.8) is satis�ed for some

0 < � � � � 1. A somewhat more sophistiated stopping rule, whih leads to

order-optimal error bounds for the maximal range 0 < � � � has been developed

in [10℄ for our new sheme; we refrain, however, from elaborating on this any

further here.

7. Numerial results

We shall illustrate the performane of our method for the model problem

phillips provided in Hansen's matlab regularization toolbox [18℄. This prob-

lem,

Z

6

�6

�(s� t)x(t) dt = y(s) ; �6 � s � 6 ; (7.1)

with

�(t) =

�

1 + os(t�=3) ; 0 � jtj � 3 ;

0 ; 3 � jtj ;

(7.2)

and x = � 2 X = L

2

(�6; 6) has �rst been suggested in the fundamental paper by

Phillips [21℄ on Tikhonov-Phillips regularization. The orresponding onvolution

integral operator T is ompat, selfadjoint and inde�nite; after disretization and

appropriate normalization (so that the largest eigenvalue beomes � = 1) the

smallest eigenvalue of T is a � �0:0209, so the problem is only mildly inde�nite.

Figure 7.1 illustrates the ontribution of eah individual eigenvetor (plotted over

the assoiated eigenvalue) to the total spetral mass of x. It an be seen that

the negative eigenvalues play a minor but still signi�ant role in the spetral

distribution of x. Note that our disretized problem has dimension 128 and there

is a whole luster of positive and negative eigenvalues at the origin whih annot

be distinguished in this plot. Still, the operator T is injetive.

We now apply the new sheme with � = 1:5 and a = �0:1 to this problem.

This may orrespond to a situation with given a priori information that �(T ) �

[�0:1; 1℄. Figure 7.2 shows the errors of the �rst one hundred iterations given

noisy data ~y with a noise level of 1%, i.e., k~y� yk=kyk = 0:01 (~y� y is a random

Gaussian noise vetor). For omparison, the results obtained with the �-method

(� = �=2, see the disussion in Setion 5) when applied to the normal equation

of this problem are also inluded in this �gure (the dashed line).
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Figure 7.1. Spetral distribution of the exat solution x
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Figure 7.2. Relative error history (a = �0:1; � = 1:5) vs. iteration ount

It an be seen that the new sheme is onverging muh faster in the initial

phase of the iteration, but in the end also diverges more rapidly. Nevertheless, to

obtain the best possible approximation of the true solution the new sheme only

requires 18 iterations (see Table 7.1), whereas the `lassial' �-method based on
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inde�nite sheme normal equation sheme

best iterate: 18 67

minimal error: 0:0229 0:0216

Table 7.1

Best regularized reonstrution of x

the normal equation requires more than twie as many iterations to ahieve its

optimal reonstrution; the quality of the two reonstrutions is similar.

We mention that the wiggles in the error history in Figure 7.2 are a typial

phenomenon of the new sheme. These wiggles are aused by errati data noise

propagation due to osillations in the sequene fg

n

(0)g : Our experiments indiate

that this phenomenon is more pronouned when a is very lose to the origin; the

wiggles also appear to be the larger, the smaller is �.

Another remark onerns the stability of Algorithm 4.1 for the omputa-

tion of the reursion oeÆients fa

n

; b

n

; 

n

g for the polynomials p

n

(w

�

; � ). Our

numerial experiments support the laim in [19℄ that the omputation of these

oeÆients is pretty stable. In spite of this, however, there has not yet been

a formal proof of this statement. Finally, the numerial approximation of the

integrals required for the initialization of �

1

in Algorithm 4.1 also did not lead

to a notable deterioration of our iterative sheme.

We onlude with a omment on the ompetition between semiiterative

methods and onjugate gradient type methods. While it is generally aknowl-

edged that onjugate gradient type methods onverge faster in terms of iteration

ount, semiiterative methods may have an advantage in omputation time on

parallel mahines, f., e.g., [16℄. We do not want to elaborate further on this

here; we only mention that the onjugate gradient type method mr-ii developed

in [15℄ obtains for this partiular example the same auray with fewer iterations:

its best iterate is obtained after seven iterations, the orresponding error equals

0:0200 (ompare this with Table 7.1). For a more detailed numerial omparison

we refer to [10℄.
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