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We introdu
e a new family of semiiterative s
hemes for the solution of ill-posed

linear equations with selfadjoint and inde�nite operators. These s
hemes avoid the

normal equation system and thus bene�t dire
tly from the stru
ture of the problem.

As input our method requires an en
losing interval of the spe
trum of the inde�nite

operator, based on some a priori knowledge. In parti
ular, for positive operators

the s
hemes are mathemati
ally equivalent to the so-
alled �-methods of Brakhage.

In a way, they 
an therefore be seen as appropriate extensions of the �-methods

to the inde�nite 
ase. This extension is a
hieved by substituting the orthogonal

polynomials employed by Brakhage in the de�nition of the �-methods by appropriate

kernel polynomials. We determine the rate of 
onvergen
e of the new methods and

establish their regularizing properties.
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1. Introdu
tion

This paper is 
on
erned with the approximate solution of linear operator

equations

Tx = y ; (1.1)

where T : X ! X is a selfadjoint and inde�nite operator in a Hilbert spa
e X .

We presume that T is inje
tive, i.e., solutions x of (1.1) are unique; however,

we shall expli
itly fo
us on the 
ase that the range R(T ) of T is only a dense

subspa
e of X . In this 
ase the operator T is not 
ontinuously invertible be
ause

T

�1

is unbounded by the Open Mapping Theorem.

�
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When T

�1

is unbounded, equation (1.1) is usually referred to as being ill-

posed be
ause the solution x of (1.1) does not depend 
ontinuously on the given

right-hand side y. Even worse, in general (1.1) will not have a solution.

Ill-posed problems often appear in the 
ontext of so-
alled inverse problems.

The prototype is an integral equation of the �rst kind with a smooth kernel

fun
tion, e.g.,

Z

R

2

e

�
((���

0

)

2

+(���

0

)

2

)

x(�

0

; �

0

) d(�

0

; �

0

) = y(�; �); �; � 2 R ; (1.2)

whi
h may serve as a simple mathemati
al model for imaging through atmo-

spheri
 turbulen
e; the asso
iated integral operator is selfadjoint and positive.

Today astronomers use more elaborate kernel fun
tions whi
h often ressemble

the Gaussian kernel in (1.2), 
f., e.g., Bertero and Bo

a

i [3℄. While the 
orre-

sponding integral operator may still be selfadjoint, it typi
ally is no longer positive

but rather inde�nite, although the dominating part of the spe
trum belongs to

the positive axis (see [17℄ for an example).

Ill-posed problems need some sort of regularization to en
ompass the loss of

stability due to the unboundedness of T

�1

. One 
an, for instan
e, use Tikhonov

regularization to approximate the solution x. Another option that we employ in

this paper is the use of iterative s
hemes for solving (1.1): here, regularization is

in
orporated via an early termination of the iteration whi
h prevents unbounded

data error propagation.

Most iterative methods for ill-posed problems are based on the normal

equation T

�

Tx = T

�

y for (1.1). When T is selfadjoint, however, we 
annot

bene�t from the symmetry in this way. Calvetti, Rei
hel and Zhang [5℄ have

re
ently suggested an iterative s
heme whi
h dire
tly works with (1.1) when T

is selfadjoint and inde�nite. The purpose of this paper is to provide alternative

algorithms whi
h redu
e to established s
hemes (the so-
alled �-methods [4℄) in

the 
ase when T is semide�nite. Like the method of Calvetti, Rei
hel and Zhang

our new s
hemes belong to the 
lass of semiiterative methods whi
h are generated

by appropriate sequen
es of polynomials; in our 
ase these are kernel polynomials

for 
ertain generalized Ja
obi polynomials. As a 
onsequen
e, our iterates 
an be


omputed with short re
urren
es.

The outline of this paper is as follows. In Se
tion 2 we review the basi


fa
ts about semiiterative methods for selfadjoint linear equations with parti
ular

emphasis on the spe
i�
 subtleties for ill-posed problems. Then, in Se
tion 3, we

provide well-known results on kernel polynomials, whi
h are subsequently used

to de�ne the new method in Se
tion 4. We go on and prove rate of 
onvergen
e

estimates in Se
tion 5 before we turn in Se
tion 6 to the regularizing properties

of our algorithm. Finally, in Se
tion 7, we present some numeri
al results to

illustrate our �ndings.
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2. Semiiterative methods

Semiiterative methods were introdu
ed in full generality by R.S. Varga in

his book [24℄, although the terminology has been 
oined for a spe
i�
 example

somewhat earlier in [13℄. In [24℄ semiiterative methods refer to hybrid s
hemes,

whi
h in ea
h iteration 
arry out one step of residual 
orre
tion (or Ri
hardson

iteration)

x

n+1

= x

n

+ (y � Tx

n

) ; (2.1)

followed by a linear 
ombination of some or all previous iterates. Typi
ally the

iteration is initialized with x

0

= 0 .

Semiiterative methods 
an alternatively be des
ribed by two sequen
es fr

n

g

and fg

n

g of polynomials where g

n

belongs to the set �

n�1

of polynomials of

degree n� 1 or less and r

n

2 �

n

with

r

n

(�) = 1� �g

n

(�) : (2.2)

The polynomial g

n

de�nes the n

th

iterate via

x

n

= g

n

(T )y ; (2.3)

hen
e the error equals

x� x

n

= x� g

n

(T )Tx = r

n

(T )x : (2.4)

For the basi
 iteration (2.1), for example, we have

g

n

(�) =

n�1

X

j=0

(1� �)

j

and r

n

(�) = (1 � �)

n

:

In the 
ontext of ill-posed problems, the iteration (2.1) is attributed to Frid-

man [11℄; it 
onverges whenever T is selfadjoint and positive with kTk < 2 , in

the sequel we �x throughout

kTk = 1 :

In view of (2.4), jr

n

(�)j should be as small as possible for elements � from

the spe
trum �(T ) of T in order to have a small error x�x

n

. On the other hand,

(2.2) implies the 
onstraint

r

n

(0) = 1 (2.5)

whi
h has to be satis�ed. For ill-posed problems this 
onstraint is 
ru
ial be
ause

� = 0 is an a

umulation point of the spe
trum of T , and hen
e, the best one


an hope for is that, as n!1,

r

n

(�) �! 0 ; pointwise on �(T ) n f0g : (2.6)
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If, in addition, the polynomial sequen
e

fr

n

g is uniformly bounded on �(T ) (2.7)

then we have 
onvergen
e x

n

! x as n!1 by the Bana
h-Steinhaus Theorem,


ompare Theorem 4.1 in [6℄.

We note that for the Fridman iteration (2.1), for example, (2.6) and (2.7)

are satis�ed when T is selfadjoint and positive. Nevertheless, the short
oming of

the Fridman iteration is its slow 
onvergen
e. For ill-posed problems the rate of


onvergen
e of x

n

! x as n ! 1 
annot be measured in general terms: Sin
e

r

n

(0) = 1 and the spe
trum of T 
lusters at the origin, it follows from (2.4) and

(2.5) that the error kx � x

n

k 
an be arbitrarily 
lose to kxk. To obtain error

bounds it is ne
essary to have a priori information 
on
erning x like, e.g.,

x 2 R(jT j

�

) for some � > 0 : (2.8)

Here, jT j denotes the square root of the positive operator T

2

; for � 2 N ; R(jT j

�

)


an be repla
ed by the more familiar R(T

�

) : Sin
e T of (1.2) is a smoothing

operator and sin
e � > 0, (2.8) 
an be 
onsidered to be a generalized smoothness

assumption. Inserting (2.8) into (2.4), i.e., setting x = jT j

�

w for some w 2 X we

obtain from the Spe
tral Mapping Theorem

kx� x

n

k = kr

n

(T )jT j

�

wk � kr

n

(T )jT j

�

k kwk � sup

�2�(T )

j�j

�

jr

n

(�)j kwk : (2.9)

Estimating j�j

�

jr

n

(�)j therefore provides a general error bound. The supre-

mum of j�j

�

jr

n

(�)j over �(T ) or the en
losing interval [0,1℄ is hen
e referred to

as modulus of 
onvergen
e. For Fridman's iteration the upper bound in (2.9)

be
omes

sup

�2�(T )

j�j

�

jr

n

(�)j � sup

�2[0;1℄

�

�

(1� �)

n

=

�

�

n

n

(n+ �)

n+�

� �

�

n

��

:

For example, when x 2 R(T ) then this implies a rate of 
onvergen
e of x

n

! x

of the order O(n

�1

) as n!1 .

Faster s
hemes have been developed in the 1980's by S
ho
k, Nemirovskii

and Polyak, and Brakhage (see [14℄ for a survey and additional referen
es). In

parti
ular, the so-
alled �-methods by Brakhage [4℄ | a family of semiiterative

methods parameterized by the real number � > 0 asso
iated with (2.8) | have

modulus of 
onvergen
e

sup

�2[0;1℄

j�j

�

jr

n

(�)j = O(n

�2�

) ; n!1 ; (2.10)

under the 
ondition (2.8) .

Still, all these methods share the disadvantage that they require T to be

semide�nite in order to take advantage of the symmetry of T . Re
ently, Calvetti,

Rei
hel and Zhang [5℄ suggested a semiiterative method for selfadjoint problems
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with inde�nite T . While mathemati
ally appealing, their method may be some-

what 
ompli
ated to implement and does not lead to a sequen
e 
onverging to x

as n!1 but rather to some regularized approximation of x.

In 
ontrast, the methods to be presented below, 
onverge to x in exa
t

arithmeti
 with exa
tly given right-hand side y; in the presen
e of data errors

regularized approximations of x 
an be obtained by terminating the iteration

before instabilities be
ome notable. Furthermore, these methods 
an be viewed

as an extension of the �-methods to the 
ase when T is selfadjoint and inde�nite.

3. Kernel polynomials

The key idea in [4℄ (see also [14℄) for redu
ing the number of iterations

in the Fridman iteration (2.1) without raising the 
osts of ea
h individual step

(one multipli
ation with T and a few linear 
ombinations of elements in X ) was

to 
hoose orthogonal polynomials fr

n

g with respe
t to some weight fun
tion

supported on [0; 1℄. The eÆ
ien
y of su
h a s
heme is a 
onsequen
e of the three-

term re
urren
e relation of the orthogonal polynomials. The weight fun
tion


orresponding to the �-method (� > 0) is

w(t) = t

2�

=

q

t(1� t) ; 0 < t < 1 : (3.1)

The polynomials r

n

are therefore translated Ja
obi polynomials with a multipli
a-

tive s
aling to a
hieve the normalization (2.5); su
h a normalization is possible

be
ause all roots of r

n

belong to the open interval (0; 1), whi
h garantees that

r

n

(0) is nonzero.

Given an inde�nite operator T with spe
trum

�(T ) � [a; 1℄ ; �1 < a < 0 ;

and a weight fun
tion w supported on [a; 1℄, a normalization (2.5) for the 
orre-

sponding orthogonal polynomials might no longer be possible be
ause the origin

is an interior point of [a; 1℄; and hen
e, 
an be a root of some member of the or-

thogonal family, 
f. Figure 4.1. Motivated by some work of Fis
her and Prestin [9℄


on
erning polynomial wavelets we were therefore led to the use of kernel poly-

nomials rather than orthogonal polynomials for the de�nition of our new semi-

iterative s
heme. In this we also follow Stiefel [22℄ who, ba
k in 1955, already

re
ommended the use of kernel polynomials for some appli
ations in numeri
al

linear algebra; see also Fis
her [7℄.

Let fp

n

g be the sequen
e of orthonormal polynomials for a given weight

fun
tion w over [a; 1℄: Then we require the asso
iated kernel polynomials

K

n

(t; �) =

n

X

k=0

p

k

(t)p

k

(�) ; t; � 2 R ;
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and the Christo�el fun
tions

�

n+1

(�) = 1=K

n

(�; �) ; � 2 R ;

the latter being positive over R be
auseK

n

(�; �) � jp

0

(�)j

2

> 0 : Using the kernel

polynomials we 
an de�ne

r

n

(t) = K

n

(t; 0)=K

n

(0; 0) = �

n+1

(0)K

n

(t; 0) : (3.2)

Obviously, r

n

is a polynomial of degree n whi
h satis�es the normalization


onstraint (2.5).

Remark 3.1. We emphasize that Brakhage's �-methods for the semide�nite 
ase


an be introdu
ed in mu
h the same way. The reason is that the n

th

orthogonal

polynomial for the weight fun
tion w of (3.1) is | up to a multipli
ative 
onstant

| the kernel polynomial K

n

( � ; 0) for the weight fun
tion

~w(t) = w(t)=t = t

2(��1=2)

=

q

t(1� t) ; 0 < t < 1 ; (3.1

0

)

of 
ourse, the latter de�nes a weight fun
tion only for � > 1=4 :

To demonstrate the eÆ
ien
y of ea
h individual step of a semiiterative

method generated by (3.2) we make use of the Christo�el-Darboux identity whi
h

states that

K

n

(t; �) =

1

a

n

p

n+1

(t)p

n

(�)� p

n

(t)p

n+1

(�)

t� �

; (3.3)

where a

n

is given by the three-term re
urren
e relation for the sequen
e fp

n

g:

p

n+1

(t) = (a

n

t+ b

n

)p

n

(t)� 


n

p

n�1

(t) ; n 2 N

0

; (3.4)

with p

�1

� 0 , p

0

� (

R

1

a

w(t) dt)

�1=2

, and a

n

> 0 for all n 2 N : Inserting (3.3) and

(3.4) into (3.2) we eventually obtain Algorithm 3.1 for the re
ursive 
omputation

of the iterates x

n

of (2.3) and their residuals

d

n

= y � Tx

n

= r

n

(T )y ;

where r

n

is given by (3.2). The details of this derivation are left to the reader; we

merely note that the intermediate quantities �

n

2 R and z

n

2 X in Algorithm 3.1

satisfy

�

n

(

R

1

a

w(t) dt)

1=2

= p

n

(0) and

z

n

(

R

1

a

w(t) dt)

1=2

= q

n+1

(T )y

with

q

n+1

(�) =

p

n+1

(�)� p

n+1

(0)

�

2 �

n

:
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On Input: fa

n

; b

n

; 


n

: n = 0; 1; 2; : : :g, i.e., the re
ursion 
oeÆ
ients in (3.4)

of the orthonormal polynomials p

n

On Output: x

n

= g

n

(T )y , d

n

= y � Tx

n

, n = 0; 1; 2; : : :

z

�1

= z

0

= 0

�

�1

= 0 ; �

0

= 1

�

0

= �

2

0

x

0

= 0 ; d

0

= y

for n = 0; 1; 2; : : : do

z

n+1

= a

n

(Tz

n

+ �

n

y) + b

n

z

n

� 


n

z

n�1

�

n+1

= b

n

�

n

� 


n

�

n�1

�

n+1

= �

n

+ �

2

n+1

x

n+1

=

�

n

�

n+1

x

n

�

�

n+1

�

n+1

z

n+1

d

n+1

=

�

n

�

n+1

d

n

+

�

n+1

�

n+1

(Tz

n+1

+ �

n+1

y)

end for

Algorithm 3.1: Computation of the semiiterative method based on (3.2)

4. Generalized Ja
obi polynomials

In (3.1) and (3.1

0

) the order of the zeros of w and ~w at t = 0 is 
ru
ial to

establish the improved rate of 
onvergen
e (2.10). We are therefore led to study

the one parameter family (with parameter � � 1)

w

�

(t) = jtj

2(��1)

=

q

(1� t)(t� a) ; a < t < 1 ; (4.1)

whi
h is obtained from the (translated and res
aled) Chebyshev weight by adding

a multiple root at the origin; note that, in general, t = 0 is an interior point of

the interval [a; 1℄. For � = 1 we obtain the familiar Chebyshev weight fun
tion

on the interval [a; 1℄.

The weight fun
tions (4.1) belong to the 
lass of so-
alled generalized Ja
obi

weights, 
f., e.g., Nevai [20, p. 169℄. Those weight fun
tions have raised 
onsider-

able interest, and a number of remarkable results have been proven. We require

two of these, whi
h take the following form for our spe
i�
 weight fun
tions:

Theorem A (Nevai [20, p. 120℄). The Christo�el fun
tions �

n

(w

�

; t) 
orre-

sponding to (4.1) satisfy

�

n

(w

�

; t) �

1

n

�

jtj +

1

n

�

2(��1)

; n!1 ;

uniformly for a � t � 1 :
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0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

Figure 4.1. Orthonormal polynomial p

39

(a = �0:1; � = 1:5) :

Theorem B (Badkov [1,2℄, see also [20, p. 170℄). The orthonormal polynomials

p

n

(w

�

; t), n 2 N

0

, 
orresponding to (4.1) satisfy

�

jtj +

1

n

�

2(��1)

jp

n

(w

�

; t)j

2

= O(1) ; n!1 ;

uniformly for a � t � 1 :

Here, the notation '

n

�  

n

is used to refer to the fa
t that the quotients

'

n

= 

n

and  

n

='

n

are bounded as n!1. We shall make use of these two results

to estimate the modulus of 
onvergen
e and divergen
e of our new methods in

Se
tions 5 and 6.

We refer to Figure 4.1 for a typi
al orthonormal polynomial p

n


orresponding

to (4.1). The small 
ir
le in this plot indi
ates that p

n

(0) may be 
lose or even

equal to zero, whi
h is the reason why those polynomials should not be used for

r

n

in (2.4). Figure 4.2 
ontains the 
orresponding res
aled kernel polynomial r

n

of (3.2). The dashed lines in these two �gures show appropriate multiples of the

asymptoti
 envelope fun
tions � 7! �j�j

�(��1)

and � 7! �j�j

��

, respe
tively.

As we have indi
ated before the re
ursion 
oeÆ
ients for the orthogonal

polynomials 
orresponding to (4.1) enter into the re
ursive 
omputation of the

kernel polynomials in Algorithm 3.1. Ex
ept for a few ex
eptional values of a � 0

those 
oeÆ
ients are not expli
itly known, but they 
an always be 
omputed

re
ursively.
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0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.2. Res
aled kernel polynomial r

39

(a = �0:1; � = 1:5) :

One option for their 
omputation is the well-knownmodi�ed Chebyshev algo-

rithm, 
f., e.g., Gauts
hi [12℄ or Fis
her and Golub [8℄; for a detailed investigation

of this method with parti
ular emphasis on the above weight fun
tion, we refer to

[10℄. One disadvantage with this s
heme is its in
reasing 
omplexity when � =2 N.

Even for � 2 N it is somewhat 
heaper to use an alternative re
ursion sug-

gested re
ently by Magnus [19℄ for this and a number of related weight fun
tions.

We state this s
heme for our parti
ular 
ase in Algorithm 4.1 and refer to [19℄

and [10℄ for further details. As is shown there the quantities �

n

in this algorithm

are positive for all n 2 N; furthermore, we have

a

n

�!

4

1 + jaj

; b

n

�! �2

1 + a

1 + jaj

; 


n

�! 1 ; as n!1 ; (4.2)


f. Szeg�o [23, Se
t. 12.7℄.

Algorithm 4.1 takes just a few multipli
ations and one square root per it-

eration. In our implementation we have used the ten point Gau�-Chebyshev

quadrature rule for the approximation of the two integrals in the de�nition of �

1

.

5. Appli
ations to ill-posed problems

As outlined in Se
t. 3 we shall use the kernel polynomials 
orresponding to

the weight fun
tion (4.1) (for some �xed � � 1) to de�ne via (3.2) the polynomials

r

n

of our semiiterative method for the regularization of ill-posed and inde�nite

problems (1.1).
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On Input: left end a 2 [�1; 0℄ of interval [a; 1℄ � �(T ); index � of w

�

On Output: the re
ursion 
oeÆ
ients fa

n

; b

n

; 


n

g in (3.4) of p

n

(w

�

; � )

�

2

= a=(a� 1)




�1

= 0

�

0

= �

�1

= 0

�

1

=

Z

1

�1

t

2

jt

2

� �

2

j

2(��1)

p

1� t

2

dt

�

Z

1

�1

jt

2

� �

2

j

2(��1)

p

1� t

2

dt

� = � = 0

for n = 0; 1; 2; : : : do

m = 2n + 1

� = m(�

2

+ 1) + 2(�� 1) + 1=2 � 2� � (m+ 2�)�

m�1

� = � + �

m�1

� = � + �

2

m�1

+ 2�

m�2

�

m�1

� = m�

2

=2� (�

2

+ 1)� +�

�

m+1

= (�� �=�

m

)=(m+ 2(� � 1) + 1)� �

m




n

= 2

p

�

m

�

m+1

a

n

= 2=((1� a)


n

)

b

n

= �a

n

(a+ (1� a)(�

m�1

+ �

m

))




n

= 


n�1

=


n

% +++++ insert here the main loop of Algorithm 3.1 +++++

% +++++ to obtain the new semiiterative method +++++

m = 2n + 2

� = m(�

2

+ 1) + 2(�� 1) + 1=2 � 2� � (m+ 2�)�

m�1

� = � + �

m�1

� = � + �

2

m�1

+ 2�

m�2

�

m�1

� = m�

2

=2� (�

2

+ 1)� +�

�

m+1

= (�� �=�

m

)=(m+ 2(� � 1) + 1)� �

m

end for

Algorithm 4.1: Computation of the re
ursion 
oeÆ
ients

We emphasize that for a = 0 the weight fun
tion (4.1) be
omes

w

�

(t) = t

2(��1)

=

q

t(1� t) ; 0 < t < 1 :

In view of Remark 3.1 our new s
heme therefore extends Brakhage's �-methods

(with � = �� 1=2 � 1=2) to the inde�nite 
ase.

On the other hand it has been shown in [10, Satz 6.15℄ that for a = �1

and every n 2 N

0

both the (2n)

th

and the (2n + 1)

st

iterate of our new s
heme
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oin
ide with the n

th

iterate of the �-method with � = �=2 when applied to the

semide�nite problem T

2

x = Ty, i.e., to the normal equation of (1.1).

As a 
onsequen
e, for a between �1 and 0, there is an initial phase of the

iteration where our inde�nite s
heme mimi
ks the performan
e of the �-method

with � = �� 1=2, although the long range asymptoti
 behaviour of the iteration


orresponds to the �-method with � = �=2 � � � 1=2 applied to the normal

equation; see [10, Se
t. 6.4℄ for some numeri
al illustration.

Now we turn to a 
onvergen
e analysis of our s
heme to establish the afore-

mentioned asymptoti
 behaviour.

Theorem 5.1. Let � � 1 and �1 � a < 0. Then the sequen
e fr

n

g de�ned as

above is uniformly bounded over [a; 1℄ and there exists a 
onstant 


�

su
h that

for all n 2 N

jtj

�

jr

n

(t)j � 


�

n

��

; a � t � 1 :

Proof. From (3.2) we have

jr

n

(t)j = �

n+1

(0) jK

n

(t; 0)j � �

n+1

(0)

n

X

k=0

jp

k

(t)p

k

(0)j :

Sin
e �

n

(0) � n

�2�+1

by Theorem A and jp

k

(t)j = O(n

��1

), for a � t � 1 and

0 � k � n by Theorem B, we obtain

jr

n

(t)j � Cn

�2�+1

n

X

k=0

n

��1

n

��1

= C

for some C > 0 , and hen
e, the polynomials r

n

, n 2 N, are uniformly bounded.

By the Christo�el-Darboux formula, we have

jtj

�

jr

n

(t)j= jtj

�

jK

n

(t; 0)j =K

n

(0; 0)

=

1

a

n

jtj

��1

�

n+1

(0)

�

�

p

n+1

(t)p

n

(0) � p

n

(t)p

n+1

(0)

�

�

:

From Theorem A we 
on
lude that �

n

(0) � n

�2�+1

, whereas a

ording to Theo-

rem B jp

k

(0)j = O(n

��1

) for k = n and n+1, respe
tively. Similarly, sin
e � � 1,

Theorem B implies that

jtj

��1

jp

k

(t)j = O(1)

for k = n and n+1 , uniformly for a � t � 1. Finally, be
ause of (4.2), the fa
tor

1=a

n

remains bounded for n 2 N. From this follows the se
ond assertion.

As a 
orollary we obtain

Corollary 5.2. For every � 2 [0; �℄ there exists 


�

su
h that

jtj

�

jr

n

(t)j � 


�

n

��

; a � t � 1 :
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Proof. Using the uniform boundedness of r

n

in [a; 1℄ and the asymptoti
 estimate

in Theorem 5.1 we obtain, sin
e 0 � �=� � 1 ,

jtj

�

jr

n

(t)j =

�

jtj

�

jr

n

(t)j

�

�=�

jr

n

(t)j

1��=�

� 


�=�

�

n

��

C

1��=�

:

We have thus estimated the modulus of 
onvergen
e of our new s
heme.

Note that it is not as fast as the �-method applied to a semide�nite problem,


f. (2.10). Rather, the rate of 
onvergen
e is the same as for the �-method (with

� = �=2) when applied to the normal equation T

2

x = Ty . To see this, re
all

that

x 2 R(jT j

�

) = R(jT

2

j

�=2

) ;

and hen
e, the �-method (with � = �=2) will have a rate of 
onvergen
e like

O(n

�2�=2

) = O(n

��

) .

6. Regularizing properties

We now turn to an investigation of the self-regularizing properties of our

new algorithm. To this end we introdu
e its so-
alled modulus of divergen
e, i.e.,

the numbers

G

n

:= max

a�t�1

jg

n

(t)j ; n 2 N : (6.1)

Note that G

n

des
ribes the worst-
ase propagation of data errors in the right-

hand side within the �rst n iterations, be
ause in view of (2.3) the iterates x

n

and ~x

n


orresponding to right-hand sides y and ~y satisfy

kx

n

� ~x

n

k = kg

n

(T )(y � ~y)k � kg

n

(T )k ky � ~yk � G

n

ky � ~yk (6.2)

by the Spe
tral Mapping Theorem.

Sin
e g

n

(�) =

�

1� r

n

(�)

�

=� by (2.2), where r

n


onverges to zero pointwise

in [a; 1℄ n f0g, the polynomials g

n


onverge pointwise to the fun
tion � 7! 1=� in

[a; 1℄ n f0g, and hen
e, G

n

of (6.1) will 
onverge to in�nity as n!1. Sin
e this


orresponds to an unlimited growth of the propagated data error as the iteration

pro
eeds, it is essential to derive sharp estimates for the modulus of divergen
e.

Theorem 6.1. Let � � 1 and �1 � a < 0. Then there exists a 
onstant C

�

su
h that

G

n

� C

�

n ; n 2 N :
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Proof. From the representation (2.2) we obtain for j�j > jaj=2 with � 2 [a; 1℄

that

jg

n

(�)j �

1 + jr

n

(�)j

j�j

�

2

jaj

�

1 + max

a���1

jr

n

(�)j

�

:

Sin
e the polynomials r

n

are uniformly bounded over [a; 1℄ by Theorem 5.1 we


on
lude that the polynomials g

n

are also uniformly bounded on [a; 1℄n[a=2; jaj=2℄ .

Next, we 
onsider arguments � 2 [a=2; jaj=2℄. From (2.2) and (2.5) we obtain

g

n

(�) =

1� r

n

(�)

�

=

r

n

(0)� r

n

(�)

�

= �r

0

n

(�)

for some � 2 (a=2; jaj=2) by the Mean-Value Theorem. Sin
e the sequen
e fr

n

g

is uniformly bounded over [a; jaj℄, Bernstein's inequality (
f., e.g., [23, Theo-

rem 1.22.3℄) yields the bound

jr

0

n

(�)j � 
n

Æ

p

a

2

� �

2

�

2


p

3 jaj

n ; j�j � jaj=2 ;

for the derivative of r

n

, where 
 > 0 is some appropriate 
onstant independent of

n 2 N. It follows that

jg

n

(�)j �

2


p

3 jaj

n ; a=2 � � � jaj=2 ;

and the proof is 
omplete.

Using the modulus of 
onvergen
e and the modulus of divergen
e we obtain

a pretty realisti
 des
ription of the semi
onvergen
e phenomenon observed for

iterative regularization methods in pra
ti
e. Let us assume that the exa
t solution

x = T

�1

y satis�es the smoothness 
ondition x = jT j

�

w with some 0 < � � � and

w 2 X , and assume we are given perturbed data ~y: Then we 
an use (2.4) and

(6.2) and rewrite the error of the n

th

iterate ~x

n


orresponding to the given data

~y as

x� ~x

n

= x� x

n

+ x

n

� ~x

n

= r

n

(T )jT j

�

w + g

n

(T )(y � ~y) :

Using the triangle inequality and Theorems 5.1 and 6.1 we obtain

kx� ~x

n

k � kr

n

(T )jT j

�

k kwk + G

n

ky � ~yk

� 


�

kwkn

��

+ C

�

ky � ~ykn : (6.3)

Assuming that the data error ky� ~yk is small, the �rst term in (6.3) dominates in

the beginning of the iteration, and the iteration error seemingly 
onverges to zero

in this initial stage. However, as n gets large, the in
uen
e of the propagated

data error be
omes notable and the iteration error will subsequently stagnate

before it eventually diverges to in�nity (
ompare Figure 7.2 for an illustration of

this semi
onvergen
e phenomenon).
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Under these assumptions the best possible approximations of x are therefore

obtained when the iteration is terminated at the transition from 
onvergen
e to

divergen
e. This is a
hieved by appropriate stopping rules like, for example, the

dis
repan
y prin
iple (see [6, Se
t. 4.3℄). With this stopping rule the iteration is

terminated as soon as the residual norm k~y � T ~x

n

k has been redu
ed to about

the (presumably known) noise level ky � ~yk. As follows from the general theory

developed in [6℄ the dis
repan
y prin
iple yields what are 
alled order-optimal

error bounds as long as the smoothness assumption (2.8) is satis�ed for some

0 < � � � � 1. A somewhat more sophisti
ated stopping rule, whi
h leads to

order-optimal error bounds for the maximal range 0 < � � � has been developed

in [10℄ for our new s
heme; we refrain, however, from elaborating on this any

further here.

7. Numeri
al results

We shall illustrate the performan
e of our method for the model problem

phillips provided in Hansen's matlab regularization toolbox [18℄. This prob-

lem,

Z

6

�6

�(s� t)x(t) dt = y(s) ; �6 � s � 6 ; (7.1)

with

�(t) =

�

1 + 
os(t�=3) ; 0 � jtj � 3 ;

0 ; 3 � jtj ;

(7.2)

and x = � 2 X = L

2

(�6; 6) has �rst been suggested in the fundamental paper by

Phillips [21℄ on Tikhonov-Phillips regularization. The 
orresponding 
onvolution

integral operator T is 
ompa
t, selfadjoint and inde�nite; after dis
retization and

appropriate normalization (so that the largest eigenvalue be
omes � = 1) the

smallest eigenvalue of T is a � �0:0209, so the problem is only mildly inde�nite.

Figure 7.1 illustrates the 
ontribution of ea
h individual eigenve
tor (plotted over

the asso
iated eigenvalue) to the total spe
tral mass of x. It 
an be seen that

the negative eigenvalues play a minor but still signi�
ant role in the spe
tral

distribution of x. Note that our dis
retized problem has dimension 128 and there

is a whole 
luster of positive and negative eigenvalues at the origin whi
h 
annot

be distinguished in this plot. Still, the operator T is inje
tive.

We now apply the new s
heme with � = 1:5 and a = �0:1 to this problem.

This may 
orrespond to a situation with given a priori information that �(T ) �

[�0:1; 1℄. Figure 7.2 shows the errors of the �rst one hundred iterations given

noisy data ~y with a noise level of 1%, i.e., k~y� yk=kyk = 0:01 (~y� y is a random

Gaussian noise ve
tor). For 
omparison, the results obtained with the �-method

(� = �=2, see the dis
ussion in Se
tion 5) when applied to the normal equation

of this problem are also in
luded in this �gure (the dashed line).
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Figure 7.1. Spe
tral distribution of the exa
t solution x
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Figure 7.2. Relative error history (a = �0:1; � = 1:5) vs. iteration 
ount

It 
an be seen that the new s
heme is 
onverging mu
h faster in the initial

phase of the iteration, but in the end also diverges more rapidly. Nevertheless, to

obtain the best possible approximation of the true solution the new s
heme only

requires 18 iterations (see Table 7.1), whereas the `
lassi
al' �-method based on
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inde�nite s
heme normal equation s
heme

best iterate: 18 67

minimal error: 0:0229 0:0216

Table 7.1

Best regularized re
onstru
tion of x

the normal equation requires more than twi
e as many iterations to a
hieve its

optimal re
onstru
tion; the quality of the two re
onstru
tions is similar.

We mention that the wiggles in the error history in Figure 7.2 are a typi
al

phenomenon of the new s
heme. These wiggles are 
aused by errati
 data noise

propagation due to os
illations in the sequen
e fg

n

(0)g : Our experiments indi
ate

that this phenomenon is more pronoun
ed when a is very 
lose to the origin; the

wiggles also appear to be the larger, the smaller is �.

Another remark 
on
erns the stability of Algorithm 4.1 for the 
omputa-

tion of the re
ursion 
oeÆ
ients fa

n

; b

n

; 


n

g for the polynomials p

n

(w

�

; � ). Our

numeri
al experiments support the 
laim in [19℄ that the 
omputation of these


oeÆ
ients is pretty stable. In spite of this, however, there has not yet been

a formal proof of this statement. Finally, the numeri
al approximation of the

integrals required for the initialization of �

1

in Algorithm 4.1 also did not lead

to a notable deterioration of our iterative s
heme.

We 
on
lude with a 
omment on the 
ompetition between semiiterative

methods and 
onjugate gradient type methods. While it is generally a
knowl-

edged that 
onjugate gradient type methods 
onverge faster in terms of iteration


ount, semiiterative methods may have an advantage in 
omputation time on

parallel ma
hines, 
f., e.g., [16℄. We do not want to elaborate further on this

here; we only mention that the 
onjugate gradient type method mr-ii developed

in [15℄ obtains for this parti
ular example the same a

ura
y with fewer iterations:

its best iterate is obtained after seven iterations, the 
orresponding error equals

0:0200 (
ompare this with Table 7.1). For a more detailed numeri
al 
omparison

we refer to [10℄.
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