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Abstra
t. In this survey we review re
ent developments 
on
erning the

eÆ
ient iterative regularization of image re
onstru
tion problems in at-

mospheri
 imaging. We present a number of pre
onditioners for the min-

imization of the 
orresponding Tikhonov fun
tional, and dis
uss the al-

ternative of terminating the iteration early, rather than adding a stabi-

lizing term in the Tikhonov fun
tional. The methods are exampli�ed for

a (syntheti
) model problem.

1 Introdu
tion

Atmospheri
 turbulen
es are the reason for severe problems in ground based

astronomi
al imaging. On the passage through the atmosphere, light waves are

s
attered be
ause of temperature 
u
tuations both in spa
e and time, whi
h

lead to strong aberrations of astronomi
al images taken by a teles
ope on the

surfa
e of the Earth.

In prin
iple, if a sophisti
ated model of the s
attering pro
ess is available,

the true image 
an be re
onstru
ted from the photo by solving the asso
iated

inverse problem. Su
h models, however, are very diÆ
ult to derive, be
ause at-

mospheri
 turbulen
es are hard to predi
t and 
an 
urrently only be a

essed

via sto
hasti
al pro
esses.

In this survey we shall fo
us on the inverse problem using a very simple

model a

ording to whi
h the observed image, y, is a linear 
onvolution of the

true image (a nonnegative fun
tion x of two variables) with a 
ertain 
onvolution

kernel k,

y(�; �) =

Z

k(� � �

0

; � � �

0

)x(�

0

; �

0

) d(�

0

; �

0

) : (1)

The fun
tion k is known as point spread fun
tion: it is nonnegative and its L

1

-

norm equals one; this refers to 
onservation of energy in the imaging pro
ess. The

model (1) is quite appropriate for a long-time exposure of in
oherent light waves.

It is based on the assumption that the way a point sour
e in the sky is mapped

onto its image point and the neighbouring points on the photo is spa
e-invariant.

More sophisti
ated models also take spa
e dependen
y into a

ount. Long-time

exposures usually lead to rather wide-spread point spread fun
tions and thus to a

signi�
ant loss of high-frequent and small detail information. As a 
onsequen
e,

imaging models for 
oherent light waves are 
urrently under development in



order to deal with short-time exposures, 
f., Roggeman and Welsh [21℄. We shall

not 
onsider these models in the present survey.

Part of the modeling pro
ess is the sele
tion of a realisti
 point spread fun
-

tion k to be used in (1). Based on sto
hasti
 reasoning, simple Gaussian kernels

were a 
ommon 
hoi
e for k in the early days of ground-based astronomi
al

imaging, 
f., e.g., Lagendijk and Biemond [17℄. More re
ently, a method known

as guide star imaging has be
ome popular: This refers to a photo of a bright

light sour
e, whi
h 
an be a known star or a so-
alled arti�
ial bea
on, i.e., the

ba
ks
atter from a laser beam. A

ording to the spa
e-invarian
e of the imag-

ing pro
ess a guide star image is essentially the 
onvolution of k with a delta

distribution, and therefore provides an approximation of the values of k. Su
h a

(simulated) guide star image is shown in Fig. 1.
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Fig. 1. Point spread fun
tion

Another option, whi
h is 
urrently under investigation, 
onsists in re
on-

stru
ting the point spread fun
tion and the original image simultaneously. This

problem is known as blind de
onvolution and is formally strongly underdeter-

mined; to improve the setting a series of images 
an be taken within a short

time interval, or additional physi
s and known a priori 
onstraints 
an be in
or-

porated to make the problem better determined.

2 Tikhonov Regularization

In the hardware (gray-s
ale) photos are en
oded as two-dimensional arrays of

pixel values, i.e., integers between 0 and 255 des
ribing the darkness of the 
or-

responding pixel. For numeri
al 
omputations the integer assumption is usually

dropped, and pixel values are allowed to take any real value, preferrably nonneg-

ative reals. We denote by x and y the ve
tor of all pixel values (in a row-wise



ordering) 
orresponding to the fun
tions x and y of the 
ontinuous model (1);

given N �N pixels for ea
h image, the ve
tors x and y have dimension N

2

.

Using the midpoint rule for the dis
retization of the 
onvolution (1) we then

end up with a �nite dimensional linear system of equations,

Tx = y : (2)

The matrix T is an N �N blo
k matrix, with ea
h blo
k being itself an N �N

matrix 
orresponding to one pair of pixel rows of the two images en
oded in x

and y, respe
tively. A 
areful inspe
tion of the quadrature pro
ess reveals that

the matrix T has additional stru
ture in that, �rst of all, ea
h of its N

2

blo
ks is

a Toeplitz matrix, i.e., its entries do not 
hange along ea
h individual diagonal,

and se
ond, the blo
ks on ea
h blo
k-diagonal of the entire matrix are all the

same. We therefore 
all T a blo
k Toeplitz matrix with Toeplitz blo
ks (bttb).

We mention that for 
urrent images N ranges from 256, say, up to 1024 and

more; already for N = 256 this yields a dimension of 65536� 65536 for matrix

T . This is also the size of our numeri
al test problem whi
h is used as example

throughout this survey: This is a test problem from the Phillips Laboratory at

Kirtland US Air For
e Base, New Mexi
o (see [21℄). The 
orresponding point

spread fun
tion k is the one from Fig. 1; the test image and its blurred photo

are plotted in Fig. 2.

(a) original image (b) blurred image

Fig. 2. Model problem.

In many 
ases of interest, in parti
ular for the aforementioned model problem

the matrix T is symmetri
 or 
lose to a symmetri
 matrix. A symmetri
 matrix

would 
orrespond to a 
onvolution kernel whi
h is symmetri
 with respe
t to the

origin, i.e.,

k(s; t) = k(�s;�t) ;

an assumption whi
h is likely to hold (at least approximately) if the light waves

propagate in a normal dire
tion to the surfa
e of the Earth. Whenever appropri-



ate we will limitate our dis
ussion to this symmetri
 
ase for simpli
ity, although

similar 
onsiderations apply to the general 
ase.

A symmetri
 bttb matrix is 
ompletely determined by its �rst 
olumn (just

as a self adjoint 
onvolution operator (1) is determined by the values of the

kernel fun
tion k(�; �) for all nonnegative arguments � and �). We denote the

entries of T by t

�;�

where the �rst index 
ounts the blo
k and the se
ond one the

index relative to the �rst entry of this blo
k; it is 
onvenient to start 
ounting

by zero so that 0 � �; � < N . In this 
ase it follows for the midpoint quadrature

rule that the (�N +�; �

0

N +�

0

) index of the symmetri
 bttb matrix T is given

by

t

j���

0

j;j���

0

j

= �k

�

(� � �

0

)�; (�� �

0

)�

�

;

where � is the mesh width.

To analyze the spe
trum of T the fun
tions

f

N

(�; �) =

N�1

X

1�N

t

�;�

e

i(��+��)

; �� � �; � � � ; (3)

play a prominent role. In general, f

N

is a smooth real-valued fun
tion whi
h is

essentially zero ex
ept for a neighborhood of the origin. Moreover, the distribu-

tion of the eigenvalues of T is related to the distribution of the values of f

N

,

whi
h implies that the spe
trum of T usually 
lusters at the origin. The fun
tion

f

N


orresponding to the point spread fun
tion of Fig. 1 is shown as a logarithmi


gray s
ale image in Fig. 3; it is obvious that f

N

is essentially zero for all angles

� and � with j�j; j�j > �=3.
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Fig. 3. A logarithmi
 plot of f

N

.

As we have seen, the eigenvalues of T 
luster at the origin so that T has a re-

ally large 
ondition number in general. As a matter of fa
t, the solution x of the



linear system (2) is very sensitive to measurement errors in the right-hand side y

resulting from the imaging pro
ess. To over
ome this ill-
onditioning regulariza-

tion te
hniques have to be employed, among whi
h Tikhonov regularization has

outstanding popularity, 
f. Groets
h [9℄. In Tikhonov regularization, the goal is

to minimize ky� Txk

2

subje
t to a 
onstraint on the size or the smoothness of

x, i.e., a bound for the norm kLxk

2

for some given matrix L. This leads to the

minimization problem

ky � Txk

2

2

+ � kLxk

2

2

�! min : (4)

Here � is some positive parameter, the regularization parameter, and the matrix

L is often 
hosen to be the identity matrix, either for simpli
ity, or for the la
k

of more sophisti
ated alternatives. In image restoration, penalty terms kLxk

2

2

approximating a total variation fun
tional of x have also re
eived in
reasing in-

terest re
ently, 
f., e.g., Vogel and Oman [24℄. The regularization parameter �


an be viewed as an a posteriori tuning parameter: theoreti
ally, de
reasing �

should give higher resolution, but in pra
ti
e rather leads to in
reasingly strong

artefa
ts be
ause of the in
uen
e of high-frequent noise in the data; with in
reas-

ing � su
h artefa
ts 
an be redu
ed but then the details of the re
onstru
tions

get smeared. The optimal balan
e between the two extremes is a very deli
ate

issue, and the 
osts for tuning the parameter are so high (usually, the 
ode is

restarted for every new value �) that in pra
ti
e � is 
hosen a priori, on the

basis of preliminary experiments and experien
e.

Sin
e the above Tikhonov fun
tional is quadrati
, the minimization pro
ess

is equivalent to solving a linear system, namely

(T

�

T + �L

�

L)x = T

�

y : (5)

Be
ause of the tremendous size of matrix T this system 
annot be solved by dire
t

methods. In the engineering literature it is therefore 
ommonly re
ommended

to repla
e the doubly Toeplitz matrix T by a doubly 
ir
ulant one, i.e., a blo
k


ir
ulant matrix S with 
ir
ulant blo
ks (b

b), whi
h 
oin
ides with T in all


entral blo
k diagonals and the 
entral diagonals of all blo
ks. In the important


ase L = I the resulting linear system

(S

�

S + �I)~x = S

�

y (6)

has again a b

b 
oeÆ
ient matrix and 
an expli
itly be solved with only two

2d-ffts. Moreover, if the original image x is only nonzero in its inner quarter

and the point spread fun
tion is suÆ
iently narrow, then the re
onstru
tions x

and ~x 
oin
ide. This assumption is essentially satis�ed for the satellite image

in Fig. 2 (a) be
ause there is a zero boundary layer of roughly 64 pixels width

around the satellite. As a 
onsequen
e, the re
onstru
tion ~x obtained from (6)

is pretty good for this parti
ular model problem. We refer to Figs. 8 (b) and (
)

for the two re
onstru
tions obtained from (5) and (6)

?

.

?

The re
onstru
tion for (5) 
orresponds to the 
ase L = I. The optimal regularization

parameters have been determined to be � = 2:3 � 10

�4

and � = 2:2 � 10

�4

for

problems (5) and (6), respe
tively.



The approximation T � S 
an also be interpreted in terms of the fun
tion

f

N

of (3). In fa
t, the eigenvalues of a b

b matrix are given by a 2d-fft of its

�rst 
olumn, and the eigenve
tors are the two-dimensional Fourier ve
tors. By


onstru
tion of S the eigenvalues �

�;�

of S 
orresponding to the trigonometri


monomials

p

�;�

(�; �) = e

i(��+��)

; �N=2 < �; � � N=2 ;

are the values of f

N=2

at equidistant mesh points,

�

�;�

= f

N=2

(2��=N; 2��=N) ; �N=2 < �; � � N=2 :

In parti
ular, high frequent monomials 
orrespond to eigenvalues 
lose to

f

N=2

(��;��) and are therefore 
lose to zero, 
f. Fig. 3.

3 Iterative Minimization of the Tikhonov Fun
tional

3.1 The Conjugate Gradient Iteration

Aside of using the b

b approximation S instead of T , one 
an use iterative

methods rather than dire
t methods to minimize (4), most notably by apply-

ing the well-known 
onjugate gradient method (
g) to (5). The 
g-method is


ertainly one of the most eÆ
ient methods to solve large-s
ale linear systems

of equations with a positive de�nite 
oeÆ
ient matrix (
f.,e.g., Golub and Van

Loan [7℄). What is important to mention is that although bttb matri
es 
annot

be inverted by use of ffts, a matrix-ve
tor multipli
ation with T 
an be imple-

mented using ffts by imbedding T into a b

b matrix of four times the size of

T . This well-known fa
t leads to an operation 
ount of roughly 16 2d-ffts (of

length N �N) per iteration of the 
onjugate gradient method.

It follows that the 
g iteration for solving (5) will be a 
ompetitive algorithm

provided that the number of required iterations is small. Unfortunately, the rate

of 
onvergen
e of the 
g iteration depends signi�
antly on the 
ondition number

of the linear system (5), whi
h is still pretty large despite the regularizing term:

To illustrate this fa
t we �x without loss of generality kTk

2

= 1 and kxk

2

= 1,

in whi
h 
ase it is also reasonable to expe
t kyk

2

� 1; given a small norm

Æ � 1 for the data error in y we quote from [5℄ that a reasonable regularization

parameter � will typi
ally be of the order of Æ

2

but not less { although it might

be as large as O(Æ

2=3

) in very spe
ial 
ir
umstan
es. From this we 
on
lude the

bound


ond(T

�

T + �I) �

1 + �

�

= O(Æ

�2

) ;

whi
h turns out pretty sharp in pra
ti
e. Sin
e the spe
trum of T

�

T is fairly

densely distributed in the interval [0; 1℄ there are no or little additional spe
tral

properties that the 
g-method 
an use with advantage. As a 
onsequen
e the


g iteration will only be moderately fast in general, requiring about a hundred



iterations or so to 
onverge

??

. This is illustrated in Fig. 4 whi
h shows the itera-

tion history of 
g applied to (5) with L = I and with the optimal regularization

parameter � = 2:3 � 10

�4

: the left-hand plot (a) shows the norm of the relative

residual of (5) versus the iteration 
ount; the solid line in the right-hand side

plot (b) 
orresponds to the relative errors of the re
onstru
tions as 
ompared to

the true image; the dashed and dash-dotted lines in plot (b) will be referred to

in Se
t. 4.
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Fig. 4. Convergen
e history: 
g applied to problem (5) (solod lines).

3.2 Cir
ulant Pre
onditioners

On the other hand there are good news in that several pre
onditioners are mean-

while available for our problem. In fa
t, whereas the solution of the b

b sys-

tem (6) may often not be an a

eptable re
onstru
tion in itself, the matrix S

provides a useful approximation of T whi
h 
an be used for pre
onditioning the

system (5). It has been shown by R. Chan and others (see [2℄ for a survey of

these results) that a variety of b

b matri
es C as well as some other stru
tured

matri
es approximate T in that

C � T = R+E ; (7)

where R is a matrix of small rank and E is a matrix of small norm (depending

on the rank of R). From this follows, 
f. Chan, Nagy, and Plemmons [3℄, that

the pre
onditioned matrix

(C

�

C + �I)

�1

(T

�

T + �I) (8)

??

It must be mentioned, though, that high a

ura
y of the solution of (5) is typi
ally

not an important requirement be
ause the optimal regularization parameter � is not

exa
tly known anyway.




ontains relatively few eigenvalues whi
h do not 
luster around � = 1. This is a

situation whi
h is ideally suited for the 
onjugate gradient method, and whi
h

often redu
es the number of 
g iterations by one order of magnitude.

For our test problem we have used as C in (8) the b

b matrix whi
h is


losest to T in the Frobenius norm (
alled Level-2 pre
onditioner in [3℄), i.e.,

kC � Tk

F

�! min

b

b C

: ;

the results (see the dashed line in Fig. 5) are somewhat better than using C =

S in (8). We observe, 
f. Fig. 5 (b), that the pre
onditioning deteriorates the

iteration in the �rst few steps before (a mu
h more rapid) 
onvergen
e to the

Tikhonov solution sets in; in fa
t, the error almost doubles in the �rst iteration

before it drops down to the limit at iteration twenty. With pre
onditioning the

relative residual norm rea
hes the level of 10

�5

after roughly fourty iterations

whi
h 
orresponds to slightly less than about half the iterations as 
ompared to

the unpre
onditioned s
heme. It should be mentioned that the implementation

of this pre
onditioner requires only two 2d-ffts, i.e., less than 15% extrawork

per iteration, so that the pre
onditioned 
g iteration is really signi�
antly faster

than the pre
onditioned one.
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Fig. 5. Convergen
e history of 
g for (5) with various pre
onditioners.

3.3 Multilevel Pre
onditioners

Another pre
onditioner has re
ently been suggested in [23℄. It is based on 
ertain

multigrid ideas �rst proposed by Ha
kbus
h [10℄ for general integral equations

of the se
ond kind. For this pre
onditioner we introdu
e a se
ond (
oarse) grid

of 16 � 16 pixels with ea
h pixel representing itself 16 � 16 pixels from the

original �ne grid; we denote by h and H = 16h the mesh-widths of the �ne and


oarse grid, respe
tively. We require the usual intergrid transfer operations, i.e.,



orthogonal restri
tion (I

H

h

) and asso
iated prolongation operators (I

h

H

= I

H

h

�

)

su
h that I

h

H

I

H

h

is the orthogonal proje
tor onto the 
oarse grid fun
tions. The


orresponding proje
tor onto the orthogonal 
omplement is denoted by Q =

I � I

h

H

I

H

h

. We use the 
oarse grid pie
ewise 
onstant basis fun
tions and the

Haar tensor-wavelet basis for the orthogonal 
omplement on the �ne grid to

represent A = T

�

T + �I as a two by two blo
k matrix

A �

�

A

11

A

12

A

21

A

22

�

;

where, for example, A

11

= I

H

h

AI

h

H

is a representation for the restri
tion A

H

of

A to the 
oarse grid (more details are provided in [23℄).

After approximating A

22

� �I the pre
onditioner is de�ned as the

symmetri
 Gau�-Seidel pre
onditioner with respe
t to this blo
k representa-

tion/approximation of A. With M = ��

�1=2

A

�1

11

A

12

the pre
onditioned matrix

WA has the blo
k representation

WA �

�

A

�1=2

11

M

0 �

�1=2

I

��

A

�1=2

11

0

M

�

�

�1=2

I

��

A

11

A

12

A

21

A

22

�

:

After some further manipulations we obtain a representation W of the pre
on-

ditioner in the original �ne grid basis, namely

W = A

y

H

+

1

�

(A

y

H

T

�

T � I)Q (T

�

TA

y

H

� I) :

Here, A

y

H

is de�ned to be the generalized inverse of the 
oarse grid blurring

matrix, i.e.,

A

y

H

= I

h

H

A

�1

11

I

H

h

= I

h

H

�

I

H

h

(T

�

T + �I)I

h

H

�

�1

I

H

h

: (9)

Even for the 16 � 16 dimensional 
oarse grid the (exa
t) 
onstru
tion of

A

11

2 IR

N�N

is prohibitive be
ause this would require the amount of work of

approximatelyN = 256 iterations of the unpre
onditioned 
g iteration. Instead,

Riley and Vogel [20℄ approximate A

11

by a bttb matrix B

11

of size 256� 256

(the blo
ks have size 16� 16) with a kernel fun
tion obtained from a restri
tion

of the original kernel k to the 
oarse grid. The Cholesky fa
tor of B

11


an be


omputed with approximately 2=3N

3

operations prior to the iteration so that

matrix ve
tor multipli
ations with

B

y

H

= I

h

H

B

�1

11

I

H

h

using this Cholesky fa
torization are negligible extrawork. We denote the 
orre-

sponding pre
onditioner by

W

1

= B

y

H

+

1

�

(B

y

H

T

�

T � I)Q (T

�

TB

y

H

� I) : (10)

As shown in [20℄ the pre
onditioner W

1

outperforms the b

b pre
ondition-

ers for image restoration problems in terms of iteration 
ounts. However, the



pre
onditioner W

1

as it stands requires two further multipli
ations with T

�

T

in ea
h iteration, so that the total amount of work per iteration is tripled as


ompared to the unpre
onditioned or the 
ir
ulant pre
onditioned iteration. We

therefore pro
eed with a se
ond level of approximation in that we repla
e T in

(10) on
e again by its optimal b

b approximation C; by this we �nally end up

with the pre
onditioner

W

2

= B

y

H

+

1

�

(B

y

H

C

�

C � I)Q (C

�

CB

y

H

� I) : (11)

The implementation of W

2

takes four 2d-ffts and four triangular solves with

the Cholesky fa
tors of B

11

. It is therefore only marginally more expensive than

the implementation of a 
ir
ulant pre
onditioner.

The solid and dotted lines in Fig. 5 illustrate the performan
e of the two

multilevel pre
onditionersW

1

andW

2

for our model problem. In agreement with

[20℄ we observe that W

1

is most e�e
tive in speeding up the asymptoti
 rate of


onvergen
e; on the other hand, the relatively high 
osts per iteration almost


ompensate for this advantage. The approximation W

2

of (11) is inferior as far

as the asymptoti
 rate of 
onvergen
e is 
on
erned, but the initial error history

is almost the same with W

1

and W

2

as pre
onditioner. Be
ause of its low 
ost,

W

2

therefore seems to be the most eÆ
ient pre
onditioner for this parti
ular

problem.

In summary, there are quite a few alternative pre
onditioners for the

Tikhonov regularized problem (5). With any of these it should be possible to

minimize the Tikhonov fun
tional in a fairly small number of iterations, i.e.,

in only O(N

2

logN) operations. But still, even under the assumption that it is

possible to solve the regularized problem in only O(N

2

logN) operations, the

aforementioned open problem of 
hoosing an appropriate regularization param-

eter � remains a 
ru
ial issue to deal with. Some attempts to solve this problem


an be found in the literature (
f., e.g., [1, 6, 8, 15, 18℄) but more resear
h is still

ne
essary.

4 Regularization by Iteration

As an alternative we advo
ate the possibility of regularizing by iteration. His-

tori
ally, this te
hnique originated with the Landweber iteration, whi
h 
an be

viewed as a variant of the steepest-des
ent method applied to the least-squares

fun
tional ky � Txk

2

2

. An intuitive understanding of its performan
e 
an be

summarized as follows: As long as the 
urrent approximation x

k

is not too 
lose

to the true solution, the residual y � Tx

k

of the linear system is quite large

and the data error in the right-hand side is negligible as 
ompared to the size

of the residual. It follows that the negative gradient of the least squares fun
-

tional, i.e., T

�

(y�Tx

k

), essentially points to the right des
ent dire
tion. As the

residual shrinks, the data error 
omponent be
omes in
reasingly important be-

fore it eventually dominates the obje
tive fun
tion. This is the turning point at

whi
h the iterates start to lose orientation and eventually diverge, a phenomenon

entitled semi
onvergen
e in the literature.



It should be 
lear from this introdu
tion that the regularization parameter

(the tuning parameter) of the Landweber iteration is the iteration index, whi
h

should be 
hosen in su
h a way that the the residual and the errors in the data

are essentially of the same size; a very ni
e proof of this 
on
lusion was given

by Defrise and de Mol [4℄. The 
hoi
e of an optimal regularization parameter

therefore amounts to 
hoosing an appropriate stopping rule, and the stopping

rule that we have outlined above is the so-
alled dis
repan
y prin
iple: Find the

smallest nonnegative integer k for whi
h

ky � Tx

k

k

2

� Æ : (12)

Instead of the Landweber iteration one 
an again apply the 
g-method to

the normal equation system

T

�

Tx = T

�

y : (13)

When T is symmetri
 (not ne
essarily positive de�nite) then it is also possible

to apply a variant of the 
g method to the minimization of ky� Txk

2

without

forming the normal equation system. This latter s
heme, 
alled mr-ii in [11℄, has

been applied su

essfully in [12℄ to our atmospheri
 imaging model problem after

a suitable approximation of the point spread fun
tion in Fig. 1 by a symmetri


one.

Although mu
h more diÆ
ult to establish rigorously, the results for the

Landweber iteration extend to these mu
h faster iteration s
hemes, 
f. [5, 11℄:

It turns out that one 
an \naively" apply the 
g or mr-ii iteration, i.e., with-

out any prior regularization as in (5), provided that the iteration is ultimately

stopped as soon as the residual �rst satis�es the dis
repan
y prin
iple (12).

Interestingly, for the 
g method it is not the 
ondition number (whi
h is

huge) but only the noise level that determines the number of iterations to satisfy

this stopping 
riterion. In fa
t, as shown by Plato [19℄ the total number k of 
g

iterations to meet (12) is always bounded by

k = O(Æ

�1

) ; (14)

and this bound is the sharper the more dense the spe
trum of T

�

T is. For

symmetri
 and positive de�nite matri
es T the mr-ii iteration requires at most

O(Æ

�1=2

) iterations.

The iteration histories for (plain) 
g and mr-ii when applied to our model

problem are in
luded in Fig. 4 (b): the dashed line refers to 
g, the dash-dotted

line shows the performan
e of mr-ii. Note that one iteration of mr-ii is only

half as expensive as one 
g iteration be
ause mr-ii does not refer to the normal

equation system. From this follows that the sixteen mr-ii iterations to �nd the

optimal re
onstru
tion of x require less than a sixth of the total work for the �fty

or so iterations of the 
onjugate gradient method applied to (5) to obtain the

same a

ura
y. Furthermore, the mr-ii iteration requires no a posteriori sele
tion

of a suitable regularization parameter �. As 
an be seen from Figs. 8 (b) and

(d) the re
onstru
tions with and without prior regularization are very similar.

As 
ompared to (14), there are signi�
antly smaller bounds for the num-

ber of iterations to a
hieve (12) when the eigenvalues of T

�

T de
ay rapidly to



zero. One of these improved bounds is stated in [5, Theorem 7.15℄ and 
on
erns

the 
ase when the spe
trum of the normal equation operator 
lusters around

� = 1 and � = 0, ex
ept for only a few eigenvalues outside these two 
lusters.

Then, as shown in [5℄, it is this number of outlying eigenvalues whi
h essentially

determines the number of 
g iterations. This result makes use of two major

assumptions:

{ The �rst assumption relates the size of the eigenvalue 
luster at the origin

to the noise level in the data. The less noise there is, the smaller this 
luster

should be. In fa
t, during the early stage of the 
g iteration this eigenvalue


luster is pretty mu
h ignored { whi
h is good be
ause the 
orresponding

eigenve
tor 
omponents of the right-hand side 
an be 
onsidered hidden by

noise. We therefore 
all this span of eigenve
tors the noise subspa
e. If, for

some reason, this eigenvalue 
luster is larger, then the 
g iteration needs to

pi
k up information from the 
orresponding eigenve
tors. This slows down

the 
onvergen
e in a se
ond stage of the iteration (we 
all this the transient

phase) before the iteration eventually diverges.

{ The other assumption is more signi�
ant: it requires that the true image is

essentially a linear 
ombination of the eigenve
tors whi
h do not belong to

the noise subspa
e, i.e., the eigenve
tors 
orresponding to the eigenvalues

near � = 1 and the eigenvalues whi
h do not belong to either 
luster. We


all this the signal subspa
e.

It is instru
tive to interprete these remarks in the 
ontext of the approximat-

ing b

b system

Cx = y :

To this end, we plot in Fig. 6 (left) the eigenvalues of C (smooth line) and

the absolute values of the 
orresponding Fourier 
oeÆ
ients of y versus the

eigenvalue 
ount. The right-hand side plot is a zoom onto the interesting part

above the noise level. Under the assumption that the noise level in the Fourier


oeÆ
ients is about the same for all eigenvalues, this plot leads to the dashed line

as a �rst guess on how to separate signal and noise subspa
e (more sophisti
ated

algorithms for a separation of the two subspa
es are given in [12℄). Sin
e, as we

have seen in the previous se
tion, the very small eigenvalues of C 
orrespond

to high-frequent basis images it follows that this distin
tion between signal and

noise agrees well with the intuition that low and high frequen
ies are asso
iated

with signal and noise, respe
tively.

5 Pre
onditioning

We stress that the introdu
tion of signal and noise subspa
e (and their separa-

tion) is merely a means for understanding the di�erent stages of the 
g iteration.

There is no need to expli
itly determine appropriate subspa
es in order to run

the mr-ii iteration. This gets di�erent, though, if one is interested in speeding

up the iteration by means of pre
onditioning.
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Fig. 6. Eigenvalues of C and Fourier 
oeÆ
ients of y.

To this end we turn ba
k to the aforementioned theorem ([5, Theorem 7.15℄)

on the number of iterations of the 
onjugate gradient iteration. The two as-

sumptions of this theorem are satis�ed, for example, for the Ger
hberg-Papoulis

algorithm from signal pro
essing, 
f. [13℄. This is a method to extend a given

band-limited signal from its values in the time interval [�T; T ℄ to all times t 2 IR.

As was shown by Landau, Pollak, and Slepian in a sequel of papers in the early

sixties (
f. [22℄ for a survey), the operator T of the underlying linear equation

Tx = y has a spe
trum whi
h 
onsists of an eigenvalue 
luster at � = 1 
or-

responding to low-frequent eigenfun
tions (the signal subspa
e), and another


luster at � = 0 with high-frequent eigenfun
tions (the noise subspa
e). In im-

age deblurring problems, on the other hand, su
h a 
lustering will hardly o

ur;

in Fig. 6, for instan
e, one 
an see that the signal subspa
e 
orresponds to some

hundred eigenvalues whi
h are fairly well distributed in an interval [0:02; 1℄.

A pre
onditioning of the original problem may 
hange the situation, though.

Limiting our dis
ussion on
e again to symmetri
 problems and the mr-ii iteration

only, we refer by pre
onditioning to a transformation of the linear system Tx = y

into

M

1=2

TM

1=2

z =M

1=2

y ; x =M

1=2

z ; (15)

for some symmetri
 and positive de�nite matrix M . While in well-posed prob-

lems, the pre
onditioner is 
hosen so as to redu
e the 
ondition number of (15),

the aim in ill-posed problems { a

ording to the above dis
ussion { is to 
luster

the eigenvalues 
orresponding to the signal subspa
e.

In other words, we are sear
hing a matrix M su
h that M

1=2

TM

1=2

has an

eigenvalue 
luster at � = 1 (and possibly another 
luster at � = �1 if T is

inde�nite) in the signal subspa
e, and an eigenvalue 
luster at the orgin in the

noise subspa
e. Be
ause of this we restri
t our attention to matri
es M with

M � jT j

�1

on the signal subspa
e , and

M � I on the noise subspa
e :



Here, jT j = (T

�

T )

1=2

is the modulus of T . Sin
e the Level-2 b

b approximation

C of T is a useful approximation of T throughout, 
f. (7), and sin
e the eigen-

stru
ture of C is easily available and allows a plausible separation into signal

and noise subspa
es of 2d Fourier ve
tors, 
f. Fig. 6, the 
hoi
e

M = jCj

�1

on the signal subspa
e , and

M = I on the noise subspa
e

(16)

be
omes a natural 
andidate forM . More pre
isely, if P

S

and P

N

are the orthog-

onal proje
tors onto the 2D-Fourier ve
tors 
orresponding to signal and noise

subspa
es, respe
tively, then we take

M = P

S

jCj

�1

P

S

+ P

N

:

It was shown in [12℄ that the approximation property (7) implies that

M

1=2

TM

1=2

� P

S+

+ P

S�

= E + F +R ; (17)

where P

S�

are the orthoproje
tors onto signal ve
tors 
orresponding to positive

and negative eigenvalues of C; furthermore, E and F are matri
es of small norm,

and R is a matrix of small rank. (17) implies that the eigenvalues ofM

1=2

TM

1=2


luster around � = �1 and at the origin, ex
ept for a few outliers.

In this approa
h the distin
tion between signal and noise subspa
e 
an be

based on the magnitude of the eigenvalues �

�;�

of C: the signal subspa
e 
onsists

of all eigenve
tors of C 
orresponding to eigenvalues j�

�;�

j > � (low frequen
ies,


f. Fig. 3); the noise subspa
e is the 
omplementary spa
e.

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1


ir
ulant pre
ond.

no pre
ond.

Fig. 7. Convergen
e history of mr-ii with/without pre
onditioner.

For the performan
e of this pre
onditioner (with � = 0:0137) we refer to

Fig. 7. Note that the error of the pre
onditioned mr-ii iteration drops rapidly

(in three iterations) down to a level whi
h is only marginally above the best

possible error attained in iteration �vteen. Still, this re
onstru
tion (shown in

Fig. 8 (e)) is slightly worse than what is obtained in sixteen iterations without



pre
onditioner. The reason is that it is not possible to 
ompletely separate noise

and signal in the pre
onditioning pro
ess: Some information in the right-hand

side must have been destroyed by the pre
onditioner.

Better results might be a
hieved with a di�erent 
hoi
e of the toleran
e pa-

rameter � that is used to separate noise and signal subspa
e. In this example �

has been sele
ted with the L-
urve 
riterion as des
ribed in detail in [12℄. This


an be 
onsidered as a bla
k box 
riterion for 
onstru
ting the pre
onditioner

and, as every bla
k box 
riterion, might not be the most sophisti
ated.

The above 
hoi
e for M is not the only possible, although there are 
ertainly

not many strategies for pre
onditioning T su
h that all aforementioned require-

ments on M are satis�ed. For example, in [12℄ the pre
onditioner M was 
hosen

as a modi�
ation of the b

b extension S of T and not as a modi�
ation of

the optimal b

b approximation C. Meanwhile, other useful 
hoi
es forM have

been suggested, 
f. [13, 16℄.

6 Summary

We have outlined a number of iteration methods to regularize 2D 
onvolution

problems. Our presentation is fo
using on a parti
ular model problem arising in

astronomi
al imaging. Those images are a�e
ted by the s
attering of light due

to atmospheri
 turbulen
es on their passage to the surfa
e of the Earth.

The methods that we have presented di�er in the way regularization is in-


orporated into the s
heme. One option is to �rst regularize (e.g., by using

Tikhonov regularization) before starting the 
onjugate gradient method to 
om-

pute the regularized approximation; another option 
onsists in using 
g for the

`plain' original problem, with early termination of the iteration to in
orporate

a di�erent type of regularization. Whereas the former approa
h requires an a

posteriori sele
tion of the regularization parameter (and thus, in prin
iple, mul-

tiple restarts), the latter approa
h appeals be
ause the optimal iterate 
an be

sele
ted intera
tively, e.g., by monitoring the iterates on the s
reen.

Either iterative s
heme 
an be a

elerated by appropriate pre
onditioning,

but this is more subtle in the non-regularized 
ase. A 
ouple of pre
onditioners

and their performan
e on a model problem have been investigated above. For

a 
omparison of the various algorithms we refer to Fig. 8 for the 
orresponding

re
onstru
tions of the satellite image. In these images negative pixel values have

been set to zero, and the gray levels in all images are the same as in the original

image (top left); error numbers refer to the Eu
lidean norm, whi
h { as is well

known { may not to be the optimal measure for a 
omparison of images.

We remark that for the regularized problem (5) the pre
onditioner (if any)

does not a�e
t the �nal re
onstru
tion (Fig. 8 b) but only the 
osts for its


omputation; re
onstru
tion (
) is the 
orresponding solution of problem (6) af-

ter repla
ing the bttb matrix T by its b

b approximation S. For the iterative

s
hemes based on the plain, unregularized equation (2) the situation is somewhat

di�erent in that the quality of the re
onstru
tion does depend on the pre
on-

ditioner. This 
an be seen by 
omparing the re
onstru
tions (e) and (d) ob-



(a) original image (b) Tikhonov re
onstru
tion

error: 0.3575

(
) 
ir
ulant approximation (d) plain mr-ii (16

th

iterate)

error: 0.3549 error: 0.3536

(e) pre
. mr-ii (3

rd

iterate) (f) nonneg. Tikhonov re
onstru
tion

error: 0.3736 error: 0.3340

Fig. 8. Various re
onstru
tions.



tained with mr-ii, with and without pre
onditioner: The pre
onditioner redu
es

the 
omputational 
osts, but the re
onstru
tion is slightly inferior. It should be

emphasized that those two re
onstru
tions use a modi�ed, symmetrized point

spread fun
tion be
ause the original one from Fig. 1 is not symmetri
. Nonethe-

less, the re
onstru
tion obtained after 44 
g iterations using the normal equation

system (13) without pre
onditioner and with the original point spread fun
tion

(
ompare the dashed line in Fig. 4 (b)) is not mu
h di�erent from the image

shown in Fig. 8 (d).

It should be noted that the re
onstru
tions in (b) and (d), and to some

minor extent also re
onstru
tion (e) reveal distin
t artefa
ts near the edges of the

image. Similar artefa
ts are missing for the 
ir
ulant re
onstru
tion (
) be
ause

the true image is zero near its boundary; if this were not the 
ase the 
i
ulant

re
onstru
tion would probably su�er mu
h stronger under arti�
ial boundary

artefa
ts.

We �nally mention that in astronomi
al imaging it is fairly 
ommon to in
or-

porate known a priori 
onstraints on the re
onstru
tion, e.g., nonnegativity. In

the re
onstru
tions (b) through (e) the nonnegativity 
onstraint only enters via

the plot routine where all negative entries are set to zero. A more sophisti
ated

use of this 
onstraint is very diÆ
ult without losing the advantages of the 
g

iteration.

Still, to illustrate its (potential) advantage we also 
omputed the solution of

the nonnegatively 
onstrained Tikhonov minimization problem (4), i.e.,

minimize ky � Txk

2

2

+ � kxk

2

2

subje
t to x � 0 :

The 
orresponding image is shown in Fig. 8 (f); it di�ers distin
tively from the

other re
onstru
tions. While the other re
onstru
tions su�er from spe
kles in

those areas where they should be identi
ally zero, the 
onstrained re
onstru
-

tion (f) does not exhibit su
h artefa
ts. This may also be the reason why the

Eu
lidean error of the 
onstrained re
onstru
tion is somewhat smaller than the

errors of the other re
onstru
tions although it is not ne
essarily better from a

visual point of view: for example, the details of the antenna of the satellite are

more smeared than in the un
onstrained re
onstru
tions.
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