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Abstrat. In this survey we review reent developments onerning the

eÆient iterative regularization of image reonstrution problems in at-

mospheri imaging. We present a number of preonditioners for the min-

imization of the orresponding Tikhonov funtional, and disuss the al-

ternative of terminating the iteration early, rather than adding a stabi-

lizing term in the Tikhonov funtional. The methods are exampli�ed for

a (syntheti) model problem.

1 Introdution

Atmospheri turbulenes are the reason for severe problems in ground based

astronomial imaging. On the passage through the atmosphere, light waves are

sattered beause of temperature utuations both in spae and time, whih

lead to strong aberrations of astronomial images taken by a telesope on the

surfae of the Earth.

In priniple, if a sophistiated model of the sattering proess is available,

the true image an be reonstruted from the photo by solving the assoiated

inverse problem. Suh models, however, are very diÆult to derive, beause at-

mospheri turbulenes are hard to predit and an urrently only be aessed

via stohastial proesses.

In this survey we shall fous on the inverse problem using a very simple

model aording to whih the observed image, y, is a linear onvolution of the

true image (a nonnegative funtion x of two variables) with a ertain onvolution

kernel k,
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The funtion k is known as point spread funtion: it is nonnegative and its L

1

-

norm equals one; this refers to onservation of energy in the imaging proess. The

model (1) is quite appropriate for a long-time exposure of inoherent light waves.

It is based on the assumption that the way a point soure in the sky is mapped

onto its image point and the neighbouring points on the photo is spae-invariant.

More sophistiated models also take spae dependeny into aount. Long-time

exposures usually lead to rather wide-spread point spread funtions and thus to a

signi�ant loss of high-frequent and small detail information. As a onsequene,

imaging models for oherent light waves are urrently under development in



order to deal with short-time exposures, f., Roggeman and Welsh [21℄. We shall

not onsider these models in the present survey.

Part of the modeling proess is the seletion of a realisti point spread fun-

tion k to be used in (1). Based on stohasti reasoning, simple Gaussian kernels

were a ommon hoie for k in the early days of ground-based astronomial

imaging, f., e.g., Lagendijk and Biemond [17℄. More reently, a method known

as guide star imaging has beome popular: This refers to a photo of a bright

light soure, whih an be a known star or a so-alled arti�ial beaon, i.e., the

baksatter from a laser beam. Aording to the spae-invariane of the imag-

ing proess a guide star image is essentially the onvolution of k with a delta

distribution, and therefore provides an approximation of the values of k. Suh a

(simulated) guide star image is shown in Fig. 1.
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Fig. 1. Point spread funtion

Another option, whih is urrently under investigation, onsists in reon-

struting the point spread funtion and the original image simultaneously. This

problem is known as blind deonvolution and is formally strongly underdeter-

mined; to improve the setting a series of images an be taken within a short

time interval, or additional physis and known a priori onstraints an be inor-

porated to make the problem better determined.

2 Tikhonov Regularization

In the hardware (gray-sale) photos are enoded as two-dimensional arrays of

pixel values, i.e., integers between 0 and 255 desribing the darkness of the or-

responding pixel. For numerial omputations the integer assumption is usually

dropped, and pixel values are allowed to take any real value, preferrably nonneg-

ative reals. We denote by x and y the vetor of all pixel values (in a row-wise



ordering) orresponding to the funtions x and y of the ontinuous model (1);

given N �N pixels for eah image, the vetors x and y have dimension N

2

.

Using the midpoint rule for the disretization of the onvolution (1) we then

end up with a �nite dimensional linear system of equations,

Tx = y : (2)

The matrix T is an N �N blok matrix, with eah blok being itself an N �N

matrix orresponding to one pair of pixel rows of the two images enoded in x

and y, respetively. A areful inspetion of the quadrature proess reveals that

the matrix T has additional struture in that, �rst of all, eah of its N

2

bloks is

a Toeplitz matrix, i.e., its entries do not hange along eah individual diagonal,

and seond, the bloks on eah blok-diagonal of the entire matrix are all the

same. We therefore all T a blok Toeplitz matrix with Toeplitz bloks (bttb).

We mention that for urrent images N ranges from 256, say, up to 1024 and

more; already for N = 256 this yields a dimension of 65536� 65536 for matrix

T . This is also the size of our numerial test problem whih is used as example

throughout this survey: This is a test problem from the Phillips Laboratory at

Kirtland US Air Fore Base, New Mexio (see [21℄). The orresponding point

spread funtion k is the one from Fig. 1; the test image and its blurred photo

are plotted in Fig. 2.

(a) original image (b) blurred image

Fig. 2. Model problem.

In many ases of interest, in partiular for the aforementioned model problem

the matrix T is symmetri or lose to a symmetri matrix. A symmetri matrix

would orrespond to a onvolution kernel whih is symmetri with respet to the

origin, i.e.,

k(s; t) = k(�s;�t) ;

an assumption whih is likely to hold (at least approximately) if the light waves

propagate in a normal diretion to the surfae of the Earth. Whenever appropri-



ate we will limitate our disussion to this symmetri ase for simpliity, although

similar onsiderations apply to the general ase.

A symmetri bttb matrix is ompletely determined by its �rst olumn (just

as a self adjoint onvolution operator (1) is determined by the values of the

kernel funtion k(�; �) for all nonnegative arguments � and �). We denote the

entries of T by t

�;�

where the �rst index ounts the blok and the seond one the

index relative to the �rst entry of this blok; it is onvenient to start ounting

by zero so that 0 � �; � < N . In this ase it follows for the midpoint quadrature

rule that the (�N +�; �

0

N +�

0

) index of the symmetri bttb matrix T is given

by

t
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where � is the mesh width.

To analyze the spetrum of T the funtions

f

N

(�; �) =

N�1

X

1�N

t
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e

i(��+��)

; �� � �; � � � ; (3)

play a prominent role. In general, f

N

is a smooth real-valued funtion whih is

essentially zero exept for a neighborhood of the origin. Moreover, the distribu-

tion of the eigenvalues of T is related to the distribution of the values of f

N

,

whih implies that the spetrum of T usually lusters at the origin. The funtion

f

N

orresponding to the point spread funtion of Fig. 1 is shown as a logarithmi

gray sale image in Fig. 3; it is obvious that f

N

is essentially zero for all angles

� and � with j�j; j�j > �=3.
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Fig. 3. A logarithmi plot of f

N

.

As we have seen, the eigenvalues of T luster at the origin so that T has a re-

ally large ondition number in general. As a matter of fat, the solution x of the



linear system (2) is very sensitive to measurement errors in the right-hand side y

resulting from the imaging proess. To overome this ill-onditioning regulariza-

tion tehniques have to be employed, among whih Tikhonov regularization has

outstanding popularity, f. Groetsh [9℄. In Tikhonov regularization, the goal is

to minimize ky� Txk

2

subjet to a onstraint on the size or the smoothness of

x, i.e., a bound for the norm kLxk

2

for some given matrix L. This leads to the

minimization problem

ky � Txk

2

2

+ � kLxk

2

2

�! min : (4)

Here � is some positive parameter, the regularization parameter, and the matrix

L is often hosen to be the identity matrix, either for simpliity, or for the lak

of more sophistiated alternatives. In image restoration, penalty terms kLxk

2

2

approximating a total variation funtional of x have also reeived inreasing in-

terest reently, f., e.g., Vogel and Oman [24℄. The regularization parameter �

an be viewed as an a posteriori tuning parameter: theoretially, dereasing �

should give higher resolution, but in pratie rather leads to inreasingly strong

artefats beause of the inuene of high-frequent noise in the data; with inreas-

ing � suh artefats an be redued but then the details of the reonstrutions

get smeared. The optimal balane between the two extremes is a very deliate

issue, and the osts for tuning the parameter are so high (usually, the ode is

restarted for every new value �) that in pratie � is hosen a priori, on the

basis of preliminary experiments and experiene.

Sine the above Tikhonov funtional is quadrati, the minimization proess

is equivalent to solving a linear system, namely

(T

�

T + �L

�

L)x = T

�

y : (5)

Beause of the tremendous size of matrix T this system annot be solved by diret

methods. In the engineering literature it is therefore ommonly reommended

to replae the doubly Toeplitz matrix T by a doubly irulant one, i.e., a blok

irulant matrix S with irulant bloks (bb), whih oinides with T in all

entral blok diagonals and the entral diagonals of all bloks. In the important

ase L = I the resulting linear system

(S

�

S + �I)~x = S

�

y (6)

has again a bb oeÆient matrix and an expliitly be solved with only two

2d-ffts. Moreover, if the original image x is only nonzero in its inner quarter

and the point spread funtion is suÆiently narrow, then the reonstrutions x

and ~x oinide. This assumption is essentially satis�ed for the satellite image

in Fig. 2 (a) beause there is a zero boundary layer of roughly 64 pixels width

around the satellite. As a onsequene, the reonstrution ~x obtained from (6)

is pretty good for this partiular model problem. We refer to Figs. 8 (b) and ()

for the two reonstrutions obtained from (5) and (6)

?

.

?

The reonstrution for (5) orresponds to the ase L = I. The optimal regularization

parameters have been determined to be � = 2:3 � 10

�4

and � = 2:2 � 10

�4

for

problems (5) and (6), respetively.



The approximation T � S an also be interpreted in terms of the funtion

f

N

of (3). In fat, the eigenvalues of a bb matrix are given by a 2d-fft of its

�rst olumn, and the eigenvetors are the two-dimensional Fourier vetors. By

onstrution of S the eigenvalues �

�;�

of S orresponding to the trigonometri

monomials

p

�;�

(�; �) = e

i(��+��)

; �N=2 < �; � � N=2 ;

are the values of f

N=2

at equidistant mesh points,

�

�;�

= f

N=2

(2��=N; 2��=N) ; �N=2 < �; � � N=2 :

In partiular, high frequent monomials orrespond to eigenvalues lose to

f

N=2

(��;��) and are therefore lose to zero, f. Fig. 3.

3 Iterative Minimization of the Tikhonov Funtional

3.1 The Conjugate Gradient Iteration

Aside of using the bb approximation S instead of T , one an use iterative

methods rather than diret methods to minimize (4), most notably by apply-

ing the well-known onjugate gradient method (g) to (5). The g-method is

ertainly one of the most eÆient methods to solve large-sale linear systems

of equations with a positive de�nite oeÆient matrix (f.,e.g., Golub and Van

Loan [7℄). What is important to mention is that although bttb matries annot

be inverted by use of ffts, a matrix-vetor multipliation with T an be imple-

mented using ffts by imbedding T into a bb matrix of four times the size of

T . This well-known fat leads to an operation ount of roughly 16 2d-ffts (of

length N �N) per iteration of the onjugate gradient method.

It follows that the g iteration for solving (5) will be a ompetitive algorithm

provided that the number of required iterations is small. Unfortunately, the rate

of onvergene of the g iteration depends signi�antly on the ondition number

of the linear system (5), whih is still pretty large despite the regularizing term:

To illustrate this fat we �x without loss of generality kTk

2

= 1 and kxk

2

= 1,

in whih ase it is also reasonable to expet kyk

2

� 1; given a small norm

Æ � 1 for the data error in y we quote from [5℄ that a reasonable regularization

parameter � will typially be of the order of Æ

2

but not less { although it might

be as large as O(Æ

2=3

) in very speial irumstanes. From this we onlude the

bound

ond(T

�

T + �I) �

1 + �

�

= O(Æ

�2

) ;

whih turns out pretty sharp in pratie. Sine the spetrum of T

�

T is fairly

densely distributed in the interval [0; 1℄ there are no or little additional spetral

properties that the g-method an use with advantage. As a onsequene the

g iteration will only be moderately fast in general, requiring about a hundred



iterations or so to onverge

??

. This is illustrated in Fig. 4 whih shows the itera-

tion history of g applied to (5) with L = I and with the optimal regularization

parameter � = 2:3 � 10

�4

: the left-hand plot (a) shows the norm of the relative

residual of (5) versus the iteration ount; the solid line in the right-hand side

plot (b) orresponds to the relative errors of the reonstrutions as ompared to

the true image; the dashed and dash-dotted lines in plot (b) will be referred to

in Set. 4.
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Fig. 4. Convergene history: g applied to problem (5) (solod lines).

3.2 Cirulant Preonditioners

On the other hand there are good news in that several preonditioners are mean-

while available for our problem. In fat, whereas the solution of the bb sys-

tem (6) may often not be an aeptable reonstrution in itself, the matrix S

provides a useful approximation of T whih an be used for preonditioning the

system (5). It has been shown by R. Chan and others (see [2℄ for a survey of

these results) that a variety of bb matries C as well as some other strutured

matries approximate T in that

C � T = R+E ; (7)

where R is a matrix of small rank and E is a matrix of small norm (depending

on the rank of R). From this follows, f. Chan, Nagy, and Plemmons [3℄, that

the preonditioned matrix

(C

�

C + �I)

�1

(T

�

T + �I) (8)

??

It must be mentioned, though, that high auray of the solution of (5) is typially

not an important requirement beause the optimal regularization parameter � is not

exatly known anyway.



ontains relatively few eigenvalues whih do not luster around � = 1. This is a

situation whih is ideally suited for the onjugate gradient method, and whih

often redues the number of g iterations by one order of magnitude.

For our test problem we have used as C in (8) the bb matrix whih is

losest to T in the Frobenius norm (alled Level-2 preonditioner in [3℄), i.e.,

kC � Tk

F

�! min

bb C

: ;

the results (see the dashed line in Fig. 5) are somewhat better than using C =

S in (8). We observe, f. Fig. 5 (b), that the preonditioning deteriorates the

iteration in the �rst few steps before (a muh more rapid) onvergene to the

Tikhonov solution sets in; in fat, the error almost doubles in the �rst iteration

before it drops down to the limit at iteration twenty. With preonditioning the

relative residual norm reahes the level of 10

�5

after roughly fourty iterations

whih orresponds to slightly less than about half the iterations as ompared to

the unpreonditioned sheme. It should be mentioned that the implementation

of this preonditioner requires only two 2d-ffts, i.e., less than 15% extrawork

per iteration, so that the preonditioned g iteration is really signi�antly faster

than the preonditioned one.
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Fig. 5. Convergene history of g for (5) with various preonditioners.

3.3 Multilevel Preonditioners

Another preonditioner has reently been suggested in [23℄. It is based on ertain

multigrid ideas �rst proposed by Hakbush [10℄ for general integral equations

of the seond kind. For this preonditioner we introdue a seond (oarse) grid

of 16 � 16 pixels with eah pixel representing itself 16 � 16 pixels from the

original �ne grid; we denote by h and H = 16h the mesh-widths of the �ne and

oarse grid, respetively. We require the usual intergrid transfer operations, i.e.,



orthogonal restrition (I

H

h

) and assoiated prolongation operators (I

h

H

= I

H

h

�

)

suh that I

h

H

I

H

h

is the orthogonal projetor onto the oarse grid funtions. The

orresponding projetor onto the orthogonal omplement is denoted by Q =

I � I

h

H

I

H

h

. We use the oarse grid pieewise onstant basis funtions and the

Haar tensor-wavelet basis for the orthogonal omplement on the �ne grid to

represent A = T

�

T + �I as a two by two blok matrix

A �

�

A

11

A

12

A

21

A

22

�

;

where, for example, A

11

= I

H

h

AI

h

H

is a representation for the restrition A

H

of

A to the oarse grid (more details are provided in [23℄).

After approximating A

22

� �I the preonditioner is de�ned as the

symmetri Gau�-Seidel preonditioner with respet to this blok representa-

tion/approximation of A. With M = ��

�1=2

A

�1

11

A

12

the preonditioned matrix

WA has the blok representation

WA �

�

A

�1=2

11

M

0 �

�1=2

I

��

A

�1=2

11

0

M

�

�

�1=2

I

��

A

11

A

12

A

21

A

22

�

:

After some further manipulations we obtain a representation W of the preon-

ditioner in the original �ne grid basis, namely

W = A

y

H

+

1

�

(A

y

H

T

�

T � I)Q (T

�

TA

y

H

� I) :

Here, A

y

H

is de�ned to be the generalized inverse of the oarse grid blurring

matrix, i.e.,

A

y

H

= I

h

H

A

�1

11

I

H

h

= I

h

H

�

I

H

h

(T

�

T + �I)I

h

H

�

�1

I

H

h

: (9)

Even for the 16 � 16 dimensional oarse grid the (exat) onstrution of

A

11

2 IR

N�N

is prohibitive beause this would require the amount of work of

approximatelyN = 256 iterations of the unpreonditioned g iteration. Instead,

Riley and Vogel [20℄ approximate A

11

by a bttb matrix B

11

of size 256� 256

(the bloks have size 16� 16) with a kernel funtion obtained from a restrition

of the original kernel k to the oarse grid. The Cholesky fator of B

11

an be

omputed with approximately 2=3N

3

operations prior to the iteration so that

matrix vetor multipliations with

B

y

H

= I

h

H

B

�1

11

I

H

h

using this Cholesky fatorization are negligible extrawork. We denote the orre-

sponding preonditioner by

W

1

= B

y

H

+

1

�

(B

y

H

T

�

T � I)Q (T

�

TB

y

H

� I) : (10)

As shown in [20℄ the preonditioner W

1

outperforms the bb preondition-

ers for image restoration problems in terms of iteration ounts. However, the



preonditioner W

1

as it stands requires two further multipliations with T

�

T

in eah iteration, so that the total amount of work per iteration is tripled as

ompared to the unpreonditioned or the irulant preonditioned iteration. We

therefore proeed with a seond level of approximation in that we replae T in

(10) one again by its optimal bb approximation C; by this we �nally end up

with the preonditioner

W

2

= B

y

H

+

1

�

(B

y

H

C

�

C � I)Q (C

�

CB

y

H

� I) : (11)

The implementation of W

2

takes four 2d-ffts and four triangular solves with

the Cholesky fators of B

11

. It is therefore only marginally more expensive than

the implementation of a irulant preonditioner.

The solid and dotted lines in Fig. 5 illustrate the performane of the two

multilevel preonditionersW

1

andW

2

for our model problem. In agreement with

[20℄ we observe that W

1

is most e�etive in speeding up the asymptoti rate of

onvergene; on the other hand, the relatively high osts per iteration almost

ompensate for this advantage. The approximation W

2

of (11) is inferior as far

as the asymptoti rate of onvergene is onerned, but the initial error history

is almost the same with W

1

and W

2

as preonditioner. Beause of its low ost,

W

2

therefore seems to be the most eÆient preonditioner for this partiular

problem.

In summary, there are quite a few alternative preonditioners for the

Tikhonov regularized problem (5). With any of these it should be possible to

minimize the Tikhonov funtional in a fairly small number of iterations, i.e.,

in only O(N

2

logN) operations. But still, even under the assumption that it is

possible to solve the regularized problem in only O(N

2

logN) operations, the

aforementioned open problem of hoosing an appropriate regularization param-

eter � remains a ruial issue to deal with. Some attempts to solve this problem

an be found in the literature (f., e.g., [1, 6, 8, 15, 18℄) but more researh is still

neessary.

4 Regularization by Iteration

As an alternative we advoate the possibility of regularizing by iteration. His-

torially, this tehnique originated with the Landweber iteration, whih an be

viewed as a variant of the steepest-desent method applied to the least-squares

funtional ky � Txk

2

2

. An intuitive understanding of its performane an be

summarized as follows: As long as the urrent approximation x

k

is not too lose

to the true solution, the residual y � Tx

k

of the linear system is quite large

and the data error in the right-hand side is negligible as ompared to the size

of the residual. It follows that the negative gradient of the least squares fun-

tional, i.e., T

�

(y�Tx

k

), essentially points to the right desent diretion. As the

residual shrinks, the data error omponent beomes inreasingly important be-

fore it eventually dominates the objetive funtion. This is the turning point at

whih the iterates start to lose orientation and eventually diverge, a phenomenon

entitled semionvergene in the literature.



It should be lear from this introdution that the regularization parameter

(the tuning parameter) of the Landweber iteration is the iteration index, whih

should be hosen in suh a way that the the residual and the errors in the data

are essentially of the same size; a very nie proof of this onlusion was given

by Defrise and de Mol [4℄. The hoie of an optimal regularization parameter

therefore amounts to hoosing an appropriate stopping rule, and the stopping

rule that we have outlined above is the so-alled disrepany priniple: Find the

smallest nonnegative integer k for whih

ky � Tx

k

k

2

� Æ : (12)

Instead of the Landweber iteration one an again apply the g-method to

the normal equation system

T

�

Tx = T

�

y : (13)

When T is symmetri (not neessarily positive de�nite) then it is also possible

to apply a variant of the g method to the minimization of ky� Txk

2

without

forming the normal equation system. This latter sheme, alled mr-ii in [11℄, has

been applied suessfully in [12℄ to our atmospheri imaging model problem after

a suitable approximation of the point spread funtion in Fig. 1 by a symmetri

one.

Although muh more diÆult to establish rigorously, the results for the

Landweber iteration extend to these muh faster iteration shemes, f. [5, 11℄:

It turns out that one an \naively" apply the g or mr-ii iteration, i.e., with-

out any prior regularization as in (5), provided that the iteration is ultimately

stopped as soon as the residual �rst satis�es the disrepany priniple (12).

Interestingly, for the g method it is not the ondition number (whih is

huge) but only the noise level that determines the number of iterations to satisfy

this stopping riterion. In fat, as shown by Plato [19℄ the total number k of g

iterations to meet (12) is always bounded by

k = O(Æ

�1

) ; (14)

and this bound is the sharper the more dense the spetrum of T

�

T is. For

symmetri and positive de�nite matries T the mr-ii iteration requires at most

O(Æ

�1=2

) iterations.

The iteration histories for (plain) g and mr-ii when applied to our model

problem are inluded in Fig. 4 (b): the dashed line refers to g, the dash-dotted

line shows the performane of mr-ii. Note that one iteration of mr-ii is only

half as expensive as one g iteration beause mr-ii does not refer to the normal

equation system. From this follows that the sixteen mr-ii iterations to �nd the

optimal reonstrution of x require less than a sixth of the total work for the �fty

or so iterations of the onjugate gradient method applied to (5) to obtain the

same auray. Furthermore, the mr-ii iteration requires no a posteriori seletion

of a suitable regularization parameter �. As an be seen from Figs. 8 (b) and

(d) the reonstrutions with and without prior regularization are very similar.

As ompared to (14), there are signi�antly smaller bounds for the num-

ber of iterations to ahieve (12) when the eigenvalues of T

�

T deay rapidly to



zero. One of these improved bounds is stated in [5, Theorem 7.15℄ and onerns

the ase when the spetrum of the normal equation operator lusters around

� = 1 and � = 0, exept for only a few eigenvalues outside these two lusters.

Then, as shown in [5℄, it is this number of outlying eigenvalues whih essentially

determines the number of g iterations. This result makes use of two major

assumptions:

{ The �rst assumption relates the size of the eigenvalue luster at the origin

to the noise level in the data. The less noise there is, the smaller this luster

should be. In fat, during the early stage of the g iteration this eigenvalue

luster is pretty muh ignored { whih is good beause the orresponding

eigenvetor omponents of the right-hand side an be onsidered hidden by

noise. We therefore all this span of eigenvetors the noise subspae. If, for

some reason, this eigenvalue luster is larger, then the g iteration needs to

pik up information from the orresponding eigenvetors. This slows down

the onvergene in a seond stage of the iteration (we all this the transient

phase) before the iteration eventually diverges.

{ The other assumption is more signi�ant: it requires that the true image is

essentially a linear ombination of the eigenvetors whih do not belong to

the noise subspae, i.e., the eigenvetors orresponding to the eigenvalues

near � = 1 and the eigenvalues whih do not belong to either luster. We

all this the signal subspae.

It is instrutive to interprete these remarks in the ontext of the approximat-

ing bb system

Cx = y :

To this end, we plot in Fig. 6 (left) the eigenvalues of C (smooth line) and

the absolute values of the orresponding Fourier oeÆients of y versus the

eigenvalue ount. The right-hand side plot is a zoom onto the interesting part

above the noise level. Under the assumption that the noise level in the Fourier

oeÆients is about the same for all eigenvalues, this plot leads to the dashed line

as a �rst guess on how to separate signal and noise subspae (more sophistiated

algorithms for a separation of the two subspaes are given in [12℄). Sine, as we

have seen in the previous setion, the very small eigenvalues of C orrespond

to high-frequent basis images it follows that this distintion between signal and

noise agrees well with the intuition that low and high frequenies are assoiated

with signal and noise, respetively.

5 Preonditioning

We stress that the introdution of signal and noise subspae (and their separa-

tion) is merely a means for understanding the di�erent stages of the g iteration.

There is no need to expliitly determine appropriate subspaes in order to run

the mr-ii iteration. This gets di�erent, though, if one is interested in speeding

up the iteration by means of preonditioning.
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Fig. 6. Eigenvalues of C and Fourier oeÆients of y.

To this end we turn bak to the aforementioned theorem ([5, Theorem 7.15℄)

on the number of iterations of the onjugate gradient iteration. The two as-

sumptions of this theorem are satis�ed, for example, for the Gerhberg-Papoulis

algorithm from signal proessing, f. [13℄. This is a method to extend a given

band-limited signal from its values in the time interval [�T; T ℄ to all times t 2 IR.

As was shown by Landau, Pollak, and Slepian in a sequel of papers in the early

sixties (f. [22℄ for a survey), the operator T of the underlying linear equation

Tx = y has a spetrum whih onsists of an eigenvalue luster at � = 1 or-

responding to low-frequent eigenfuntions (the signal subspae), and another

luster at � = 0 with high-frequent eigenfuntions (the noise subspae). In im-

age deblurring problems, on the other hand, suh a lustering will hardly our;

in Fig. 6, for instane, one an see that the signal subspae orresponds to some

hundred eigenvalues whih are fairly well distributed in an interval [0:02; 1℄.

A preonditioning of the original problem may hange the situation, though.

Limiting our disussion one again to symmetri problems and the mr-ii iteration

only, we refer by preonditioning to a transformation of the linear system Tx = y

into

M

1=2

TM

1=2

z =M

1=2

y ; x =M

1=2

z ; (15)

for some symmetri and positive de�nite matrix M . While in well-posed prob-

lems, the preonditioner is hosen so as to redue the ondition number of (15),

the aim in ill-posed problems { aording to the above disussion { is to luster

the eigenvalues orresponding to the signal subspae.

In other words, we are searhing a matrix M suh that M

1=2

TM

1=2

has an

eigenvalue luster at � = 1 (and possibly another luster at � = �1 if T is

inde�nite) in the signal subspae, and an eigenvalue luster at the orgin in the

noise subspae. Beause of this we restrit our attention to matries M with

M � jT j

�1

on the signal subspae , and

M � I on the noise subspae :



Here, jT j = (T

�

T )

1=2

is the modulus of T . Sine the Level-2 bb approximation

C of T is a useful approximation of T throughout, f. (7), and sine the eigen-

struture of C is easily available and allows a plausible separation into signal

and noise subspaes of 2d Fourier vetors, f. Fig. 6, the hoie

M = jCj

�1

on the signal subspae , and

M = I on the noise subspae

(16)

beomes a natural andidate forM . More preisely, if P

S

and P

N

are the orthog-

onal projetors onto the 2D-Fourier vetors orresponding to signal and noise

subspaes, respetively, then we take

M = P

S

jCj

�1

P

S

+ P

N

:

It was shown in [12℄ that the approximation property (7) implies that

M

1=2

TM

1=2

� P

S+

+ P

S�

= E + F +R ; (17)

where P

S�

are the orthoprojetors onto signal vetors orresponding to positive

and negative eigenvalues of C; furthermore, E and F are matries of small norm,

and R is a matrix of small rank. (17) implies that the eigenvalues ofM

1=2

TM

1=2

luster around � = �1 and at the origin, exept for a few outliers.

In this approah the distintion between signal and noise subspae an be

based on the magnitude of the eigenvalues �

�;�

of C: the signal subspae onsists

of all eigenvetors of C orresponding to eigenvalues j�

�;�

j > � (low frequenies,

f. Fig. 3); the noise subspae is the omplementary spae.
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Fig. 7. Convergene history of mr-ii with/without preonditioner.

For the performane of this preonditioner (with � = 0:0137) we refer to

Fig. 7. Note that the error of the preonditioned mr-ii iteration drops rapidly

(in three iterations) down to a level whih is only marginally above the best

possible error attained in iteration �vteen. Still, this reonstrution (shown in

Fig. 8 (e)) is slightly worse than what is obtained in sixteen iterations without



preonditioner. The reason is that it is not possible to ompletely separate noise

and signal in the preonditioning proess: Some information in the right-hand

side must have been destroyed by the preonditioner.

Better results might be ahieved with a di�erent hoie of the tolerane pa-

rameter � that is used to separate noise and signal subspae. In this example �

has been seleted with the L-urve riterion as desribed in detail in [12℄. This

an be onsidered as a blak box riterion for onstruting the preonditioner

and, as every blak box riterion, might not be the most sophistiated.

The above hoie for M is not the only possible, although there are ertainly

not many strategies for preonditioning T suh that all aforementioned require-

ments on M are satis�ed. For example, in [12℄ the preonditioner M was hosen

as a modi�ation of the bb extension S of T and not as a modi�ation of

the optimal bb approximation C. Meanwhile, other useful hoies forM have

been suggested, f. [13, 16℄.

6 Summary

We have outlined a number of iteration methods to regularize 2D onvolution

problems. Our presentation is fousing on a partiular model problem arising in

astronomial imaging. Those images are a�eted by the sattering of light due

to atmospheri turbulenes on their passage to the surfae of the Earth.

The methods that we have presented di�er in the way regularization is in-

orporated into the sheme. One option is to �rst regularize (e.g., by using

Tikhonov regularization) before starting the onjugate gradient method to om-

pute the regularized approximation; another option onsists in using g for the

`plain' original problem, with early termination of the iteration to inorporate

a di�erent type of regularization. Whereas the former approah requires an a

posteriori seletion of the regularization parameter (and thus, in priniple, mul-

tiple restarts), the latter approah appeals beause the optimal iterate an be

seleted interatively, e.g., by monitoring the iterates on the sreen.

Either iterative sheme an be aelerated by appropriate preonditioning,

but this is more subtle in the non-regularized ase. A ouple of preonditioners

and their performane on a model problem have been investigated above. For

a omparison of the various algorithms we refer to Fig. 8 for the orresponding

reonstrutions of the satellite image. In these images negative pixel values have

been set to zero, and the gray levels in all images are the same as in the original

image (top left); error numbers refer to the Eulidean norm, whih { as is well

known { may not to be the optimal measure for a omparison of images.

We remark that for the regularized problem (5) the preonditioner (if any)

does not a�et the �nal reonstrution (Fig. 8 b) but only the osts for its

omputation; reonstrution () is the orresponding solution of problem (6) af-

ter replaing the bttb matrix T by its bb approximation S. For the iterative

shemes based on the plain, unregularized equation (2) the situation is somewhat

di�erent in that the quality of the reonstrution does depend on the preon-

ditioner. This an be seen by omparing the reonstrutions (e) and (d) ob-



(a) original image (b) Tikhonov reonstrution

error: 0.3575

() irulant approximation (d) plain mr-ii (16

th

iterate)

error: 0.3549 error: 0.3536

(e) pre. mr-ii (3

rd

iterate) (f) nonneg. Tikhonov reonstrution

error: 0.3736 error: 0.3340

Fig. 8. Various reonstrutions.



tained with mr-ii, with and without preonditioner: The preonditioner redues

the omputational osts, but the reonstrution is slightly inferior. It should be

emphasized that those two reonstrutions use a modi�ed, symmetrized point

spread funtion beause the original one from Fig. 1 is not symmetri. Nonethe-

less, the reonstrution obtained after 44 g iterations using the normal equation

system (13) without preonditioner and with the original point spread funtion

(ompare the dashed line in Fig. 4 (b)) is not muh di�erent from the image

shown in Fig. 8 (d).

It should be noted that the reonstrutions in (b) and (d), and to some

minor extent also reonstrution (e) reveal distint artefats near the edges of the

image. Similar artefats are missing for the irulant reonstrution () beause

the true image is zero near its boundary; if this were not the ase the iulant

reonstrution would probably su�er muh stronger under arti�ial boundary

artefats.

We �nally mention that in astronomial imaging it is fairly ommon to inor-

porate known a priori onstraints on the reonstrution, e.g., nonnegativity. In

the reonstrutions (b) through (e) the nonnegativity onstraint only enters via

the plot routine where all negative entries are set to zero. A more sophistiated

use of this onstraint is very diÆult without losing the advantages of the g

iteration.

Still, to illustrate its (potential) advantage we also omputed the solution of

the nonnegatively onstrained Tikhonov minimization problem (4), i.e.,

minimize ky � Txk

2

2

+ � kxk

2

2

subjet to x � 0 :

The orresponding image is shown in Fig. 8 (f); it di�ers distintively from the

other reonstrutions. While the other reonstrutions su�er from spekles in

those areas where they should be identially zero, the onstrained reonstru-

tion (f) does not exhibit suh artefats. This may also be the reason why the

Eulidean error of the onstrained reonstrution is somewhat smaller than the

errors of the other reonstrutions although it is not neessarily better from a

visual point of view: for example, the details of the antenna of the satellite are

more smeared than in the unonstrained reonstrutions.
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