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Abstract. In this survey we review recent developments concerning the
efficient iterative regularization of image reconstruction problems in at-
mospheric imaging. We present a number of preconditioners for the min-
imization of the corresponding Tikhonov functional, and discuss the al-
ternative of terminating the iteration early, rather than adding a stabi-
lizing term in the Tikhonov functional. The methods are examplified for
a (synthetic) model problem.

1 Introduction

Atmospheric turbulences are the reason for severe problems in ground based
astronomical imaging. On the passage through the atmosphere, light waves are
scattered because of temperature fluctuations both in space and time, which
lead to strong aberrations of astronomical images taken by a telescope on the
surface of the Earth.

In principle, if a sophisticated model of the scattering process is available,
the true image can be reconstructed from the photo by solving the associated
inverse problem. Such models, however, are very difficult to derive, because at-
mospheric turbulences are hard to predict and can currently only be accessed
via stochastical processes.

In this survey we shall focus on the inverse problem using a very simple
model according to which the observed image, y, is a linear convolution of the
true image (a nonnegative function x of two variables) with a certain convolution
kernel k,

y(E,m) = / K(E— € n— (€ ) dE ). 1)

The function k is known as point spread function: it is nonnegative and its £!-
norm equals one; this refers to conservation of energy in the imaging process. The
model (1) is quite appropriate for a long-time exposure of incoherent light waves.
It is based on the assumption that the way a point source in the sky is mapped
onto its image point and the neighbouring points on the photo is space-invariant.
More sophisticated models also take space dependency into account. Long-time
exposures usually lead to rather wide-spread point spread functions and thus to a
significant loss of high-frequent and small detail information. As a consequence,
imaging models for coherent light waves are currently under development in



order to deal with short-time exposures, cf., Roggeman and Welsh [21]. We shall
not consider these models in the present survey.

Part of the modeling process is the selection of a realistic point spread func-
tion k to be used in (1). Based on stochastic reasoning, simple Gaussian kernels
were a common choice for k in the early days of ground-based astronomical
imaging, cf., e.g., Lagendijk and Biemond [17]. More recently, a method known
as guide star imaging has become popular: This refers to a photo of a bright
light source, which can be a known star or a so-called artificial beacon, i.e., the
backscatter from a laser beam. According to the space-invariance of the imag-
ing process a guide star image is essentially the convolution of £ with a delta
distribution, and therefore provides an approximation of the values of k. Such a
(simulated) guide star image is shown in Fig. 1.
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Fig. 1. Point spread function

Another option, which is currently under investigation, consists in recon-
structing the point spread function and the original image simultaneously. This
problem is known as blind deconvolution and is formally strongly underdeter-
mined; to improve the setting a series of images can be taken within a short
time interval, or additional physics and known a priori constraints can be incor-
porated to make the problem better determined.

2 Tikhonov Regularization

In the hardware (gray-scale) photos are encoded as two-dimensional arrays of
pixel values, i.e., integers between 0 and 255 describing the darkness of the cor-
responding pixel. For numerical computations the integer assumption is usually
dropped, and pixel values are allowed to take any real value, preferrably nonneg-
ative reals. We denote by & and y the vector of all pixel values (in a row-wise



ordering) corresponding to the functions z and y of the continuous model (1);
given N x N pixels for each image, the vectors  and y have dimension N2.

Using the midpoint rule for the discretization of the convolution (1) we then
end up with a finite dimensional linear system of equations,

Tx=y. (2)

The matrix T is an N x N block matrix, with each block being itself an N x IV
matrix corresponding to one pair of pixel rows of the two images encoded in
and y, respectively. A careful inspection of the quadrature process reveals that
the matrix T has additional structure in that, first of all, each of its N2 blocks is
a Toeplitz matrix, i.e., its entries do not change along each individual diagonal,
and second, the blocks on each block-diagonal of the entire matrix are all the
same. We therefore call T' a block Toeplitz matrix with Toeplitz blocks (BTTB).
We mention that for current images N ranges from 256, say, up to 1024 and
more; already for N = 256 this yields a dimension of 65536 x 65536 for matrix
T. This is also the size of our numerical test problem which is used as example
throughout this survey: This is a test problem from the Phillips Laboratory at
Kirtland US Air Force Base, New Mexico (see [21]). The corresponding point
spread function k is the one from Fig. 1; the test image and its blurred photo
are plotted in Fig. 2.

(a) original image (b) blurred image

Fig. 2. Model problem.

In many cases of interest, in particular for the aforementioned model problem
the matrix 7" is symmetric or close to a symmetric matrix. A symmetric matrix
would correspond to a convolution kernel which is symmetric with respect to the
origin, i.e.,

k‘(S, t) = k(—S, _t) )

an assumption which is likely to hold (at least approximately) if the light waves
propagate in a normal direction to the surface of the Earth. Whenever appropri-



ate we will limitate our discussion to this symmetric case for simplicity, although
similar considerations apply to the general case.

A symmetric BTTB matrix is completely determined by its first column (just
as a self adjoint convolution operator (1) is determined by the values of the
kernel function k(§,n) for all nonnegative arguments £ and 7). We denote the
entries of T' by t,,, where the first index counts the block and the second one the
index relative to the first entry of this block; it is convenient to start counting
by zero so that 0 < v, u < N. In this case it follows for the midpoint quadrature
rule that the (VN + p, V' N + ') index of the symmetric BTTB matrix 7' is given
by

t|1/71/’\,m7p’\ =A k((lj - V’)Aa (#’ - N‘I)A) )

where A is the mesh width.
To analyze the spectrum of 7" the functions

N-1

fN(d): 0) = Z tu7“ei(u¢+u0) , -7 < ¢:0 <, (3)
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=

play a prominent role. In general, fn is a smooth real-valued function which is
essentially zero except for a neighborhood of the origin. Moreover, the distribu-
tion of the eigenvalues of T is related to the distribution of the values of fy,
which implies that the spectrum of 7" usually clusters at the origin. The function
fn corresponding to the point spread function of Fig. 1 is shown as a logarithmic
gray scale image in Fig. 3; it is obvious that fx is essentially zero for all angles
¢ and 0 with |¢|, 0| > /3.
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Fig. 3. A logarithmic plot of fw.

As we have seen, the eigenvalues of T cluster at the origin so that 7" has a re-
ally large condition number in general. As a matter of fact, the solution & of the



linear system (2) is very sensitive to measurement errors in the right-hand side y
resulting from the imaging process. To overcome this ill-conditioning regulariza-
tion techniques have to be employed, among which Tikhonov regularization has
outstanding popularity, cf. Groetsch [9]. In Tikhonov regularization, the goal is
to minimize ||y — T'x||2 subject to a constraint on the size or the smoothness of
z, i.e., a bound for the norm ||Lz||» for some given matrix L. This leads to the
minimization problem

ly — Tz||3 + o||Lzf|; — min. (4)

Here « is some positive parameter, the reqularization parameter, and the matrix
L is often chosen to be the identity matrix, either for simplicity, or for the lack
of more sophisticated alternatives. In image restoration, penalty terms ||Lz||3
approximating a total variation functional of z have also received increasing in-
terest recently, cf., e.g., Vogel and Oman [24]. The regularization parameter «
can be viewed as an a posteriori tuning parameter: theoretically, decreasing «
should give higher resolution, but in practice rather leads to increasingly strong
artefacts because of the influence of high-frequent noise in the data; with increas-
ing a such artefacts can be reduced but then the details of the reconstructions
get smeared. The optimal balance between the two extremes is a very delicate
issue, and the costs for tuning the parameter are so high (usually, the code is
restarted for every new value «) that in practice « is chosen a priori, on the
basis of preliminary experiments and experience.

Since the above Tikhonov functional is quadratic, the minimization process
is equivalent to solving a linear system, namely

(T*T+aLl*L)x = T"y. (5)

Because of the tremendous size of matrix 7" this system cannot be solved by direct
methods. In the engineering literature it is therefore commonly recommended
to replace the doubly Toeplitz matrix 7' by a doubly circulant one, i.e., a block
circulant matrix S with circulant blocks (BcCB), which coincides with T in all
central block diagonals and the central diagonals of all blocks. In the important
case L = I the resulting linear system

(S*S +al)E = S*y (6)

has again a BCCB coefficient matrix and can explicitly be solved with only two
2D-FFTs. Moreover, if the original image = is only nonzero in its inner quarter
and the point spread function is sufficiently narrow, then the reconstructions x
and & coincide. This assumption is essentially satisfied for the satellite image
in Fig. 2 (a) because there is a zero boundary layer of roughly 64 pixels width
around the satellite. As a consequence, the reconstruction Z obtained from (6)
is pretty good for this particular model problem. We refer to Figs. 8 (b) and (c)
for the two reconstructions obtained from (5) and (6)*.

* The reconstruction for (5) corresponds to the case L = I. The optimal regularization
parameters have been determined to be a = 2.3 -10"* and o = 2.2-10"* for
problems (5) and (6), respectively.



The approximation 7" = S can also be interpreted in terms of the function
fn of (3). In fact, the eigenvalues of a BCCB matrix are given by a 2D-FFT of its
first column, and the eigenvectors are the two-dimensional Fourier vectors. By
construction of S the eigenvalues A, , of S corresponding to the trigonometric
monomials

Puu(9,0) = eilvotut) —N/2<v,u<N/2,
are the values of fy/» at equidistant mesh points,
Ao = Iny2(2un/N,2um/N), —N/2<v,u <N/2.

In particular, high frequent monomials correspond to eigenvalues close to
fny2(£m, £7) and are therefore close to zero, cf. Fig. 3.

3 Iterative Minimization of the Tikhonov Functional

3.1 The Conjugate Gradient Iteration

Aside of using the BCCB approximation S instead of T, one can use iterative
methods rather than direct methods to minimize (4), most notably by apply-
ing the well-known conjugate gradient method (cG) to (5). The CcG-method is
certainly one of the most efficient methods to solve large-scale linear systems
of equations with a positive definite coefficient matrix (cf.,e.g., Golub and Van
Loan [7]). What is important to mention is that although BTTB matrices cannot
be inverted by use of FFTs, a matrix-vector multiplication with T" can be imple-
mented using FFTs by imbedding T into a BCCB matrix of four times the size of
T. This well-known fact leads to an operation count of roughly 16 2D-FrTs (of
length N x N) per iteration of the conjugate gradient method.

It follows that the CG iteration for solving (5) will be a competitive algorithm
provided that the number of required iterations is small. Unfortunately, the rate
of convergence of the CG iteration depends significantly on the condition number
of the linear system (5), which is still pretty large despite the regularizing term:
To illustrate this fact we fix without loss of generality ||T||2 =1 and ||z||2 = 1,
in which case it is also reasonable to expect ||y||2 = 1; given a small norm
0 < 1 for the data error in y we quote from [5] that a reasonable regularization
parameter o will typically be of the order of 6 but not less — although it might
be as large as O(6%/3) in very special circumstances. From this we conclude the

bound
1+«

cond(T*T + al) < =07,

which turns out pretty sharp in practice. Since the spectrum of T*T is fairly
densely distributed in the interval [0, 1] there are no or little additional spectral
properties that the cG-method can use with advantage. As a consequence the
CG iteration will only be moderately fast in general, requiring about a hundred



iterations or so to converge**. This is illustrated in Fig. 4 which shows the itera-
tion history of cG applied to (5) with L = I and with the optimal regularization
parameter a = 2.3 - 10~*: the left-hand plot (a) shows the norm of the relative
residual of (5) versus the iteration count; the solid line in the right-hand side
plot (b) corresponds to the relative errors of the reconstructions as compared to
the true image; the dashed and dash-dotted lines in plot (b) will be referred to
in Sect. 4.
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Fig. 4. Convergence history: ¢G applied to problem (5) (solod lines).

3.2 Circulant Preconditioners

On the other hand there are good news in that several preconditioners are mean-
while available for our problem. In fact, whereas the solution of the BCCB sys-
tem (6) may often not be an acceptable reconstruction in itself, the matrix S
provides a useful approximation of T which can be used for preconditioning the
system (5). It has been shown by R. Chan and others (see [2] for a survey of
these results) that a variety of BCCB matrices C as well as some other structured
matrices approximate 7" in that

C-T=R+E, (7)

where R is a matrix of small rank and E is a matrix of small norm (depending
on the rank of R). From this follows, cf. Chan, Nagy, and Plemmons [3], that
the preconditioned matrix

(C*C + o) "N (T*T + o) (8)

** It must be mentioned, though, that high accuracy of the solution of (5) is typically
not an important requirement because the optimal regularization parameter « is not
exactly known anyway.



contains relatively few eigenvalues which do not cluster around A = 1. This is a
situation which is ideally suited for the conjugate gradient method, and which
often reduces the number of CG iterations by one order of magnitude.

For our test problem we have used as C in (8) the BCCB matrix which is
closest to T in the Frobenius norm (called Level-2 preconditioner in [3]), i.e

IC-T||p — min. ;

BCCB C
the results (see the dashed line in Fig. 5) are somewhat better than using C' =
S in (8). We observe, cf. Fig. 5 (b), that the preconditioning deteriorates the
iteration in the first few steps before (a much more rapid) convergence to the
Tikhonov solution sets in; in fact, the error almost doubles in the first iteration
before it drops down to the limit at iteration twenty. With preconditioning the
relative residual norm reaches the level of 1075 after roughly fourty iterations
which corresponds to slightly less than about half the iterations as compared to
the unpreconditioned scheme. It should be mentioned that the implementation
of this preconditioner requires only two 2D-FFTs, i.e., less than 15% extrawork

per iteration, so that the preconditioned CG iteration is really significantly faster
than the preconditioned one.
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Fig. 5. Convergence history of ¢G for (5) with various preconditioners.

3.3 Multilevel Preconditioners

Another preconditioner has recently been suggested in [23]. It is based on certain
multigrid ideas first proposed by Hackbusch [10] for general integral equations
of the second kind. For this preconditioner we introduce a second (coarse) grid
of 16 x 16 pixels with each pixel representing itself 16 x 16 pixels from the
original fine grid; we denote by h and H = 16h the mesh-widths of the fine and
coarse grid, respectively. We require the usual intergrid transfer operations, i.e.,



orthogonal restriction (I}!) and associated prolongation operators (I}, = IF1*)
such that I%IH is the orthogonal projector onto the coarse grid functions. The
corresponding projector onto the orthogonal complement is denoted by @ =
I —INIH. We use the coarse grid piecewise constant basis functions and the
Haar tensor-wavelet basis for the orthogonal complement on the fine grid to
represent A = T*T + al as a two by two block matrix

An A
A ~
[Am A22] ’

where, for example, A;; = IZ AT, is a representation for the restriction Ay of
A to the coarse grid (more details are provided in [23]).

After approximating Az = al the preconditioner is defined as the
symmetric Gauf3-Seidel preconditioner with respect to this block representa-
tion/approximation of A. With M = —a~'/2A}' A;5 the preconditioned matrix
W A has the block representation

ARP AR o [ ],

WA ~
[ 0 o Y2r M* o '2I] | Az Az

After some further manipulations we obtain a representation W of the precon-
ditioner in the original fine grid basis, namely

1
W = Al + - (ALT*T —1)Q (T*T A}, — 1.

Here, AL is defined to be the generalized inverse of the coarse grid blurring
matrix, i.e.,

_ " -1
Ay = IgAL L = Iy (LN (0T + D)~ 1 9)

Even for the 16 x 16 dimensional coarse grid the (exact) construction of
Ay € RV*Y g prohibitive because this would require the amount of work of
approximately N = 256 iterations of the unpreconditioned CG iteration. Instead,
Riley and Vogel [20] approximate A;; by a BTTB matrix By of size 256 x 256
(the blocks have size 16 x 16) with a kernel function obtained from a restriction
of the original kernel k£ to the coarse grid. The Cholesky factor of By; can be
computed with approximately 2/3 N3 operations prior to the iteration so that
matrix vector multiplications with

Bl = Iji By If!

using this Cholesky factorization are negligible extrawork. We denote the corre-
sponding preconditioner by

1
W, = Bl, + - (BL, T*T —1)Q (T*TB}, - I). (10)

As shown in [20] the preconditioner W; outperforms the BCCB precondition-
ers for image restoration problems in terms of iteration counts. However, the



preconditioner W; as it stands requires two further multiplications with 7T*T
in each iteration, so that the total amount of work per iteration is tripled as
compared to the unpreconditioned or the circulant preconditioned iteration. We
therefore proceed with a second level of approximation in that we replace T in
(10) once again by its optimal BCCB approximation C; by this we finally end up
with the preconditioner

Wy = Bl + é(BLC*C’ - 1)Q(C*CBl, —1). (11)
The implementation of Wy takes four 2D-FFTs and four triangular solves with
the Cholesky factors of Byj. It is therefore only marginally more expensive than
the implementation of a circulant preconditioner.

The solid and dotted lines in Fig. 5 illustrate the performance of the two
multilevel preconditioners W7 and W5 for our model problem. In agreement with
[20] we observe that W is most effective in speeding up the asymptotic rate of
convergence; on the other hand, the relatively high costs per iteration almost
compensate for this advantage. The approximation Wo of (11) is inferior as far
as the asymptotic rate of convergence is concerned, but the initial error history
is almost the same with W; and W5 as preconditioner. Because of its low cost,
W, therefore seems to be the most efficient preconditioner for this particular
problem.

In summary, there are quite a few alternative preconditioners for the
Tikhonov regularized problem (5). With any of these it should be possible to
minimize the Tikhonov functional in a fairly small number of iterations, i.e.,
in only O(N?log N) operations. But still, even under the assumption that it is
possible to solve the regularized problem in only O(N?log N) operations, the
aforementioned open problem of choosing an appropriate regularization param-
eter @ remains a crucial issue to deal with. Some attempts to solve this problem
can be found in the literature (cf., e.g., [1,6,8,15,18]) but more research is still
necessary.

4 Regularization by Iteration

As an alternative we advocate the possibility of regularizing by iteration. His-
torically, this technique originated with the Landweber iteration, which can be
viewed as a variant of the steepest-descent method applied to the least-squares
functional ||y — T'z||3. An intuitive understanding of its performance can be
summarized as follows: As long as the current approximation xy is not too close
to the true solution, the residual y — Tz, of the linear system is quite large
and the data error in the right-hand side is negligible as compared to the size
of the residual. It follows that the negative gradient of the least squares func-
tional, i.e., T*(y — T'xy), essentially points to the right descent direction. As the
residual shrinks, the data error component becomes increasingly important be-
fore it eventually dominates the objective function. This is the turning point at
which the iterates start to lose orientation and eventually diverge, a phenomenon
entitled semiconvergence in the literature.



It should be clear from this introduction that the regularization parameter
(the tuning parameter) of the Landweber iteration is the iteration index, which
should be chosen in such a way that the the residual and the errors in the data
are essentially of the same size; a very nice proof of this conclusion was given
by Defrise and de Mol [4]. The choice of an optimal regularization parameter
therefore amounts to choosing an appropriate stopping rule, and the stopping
rule that we have outlined above is the so-called discrepancy principle: Find the
smallest nonnegative integer k for which

ly — Tl ~ 6. (12)

Instead of the Landweber iteration one can again apply the CcG-method to
the normal equation system
T*"Te=T"y. (13)

When T is symmetric (not necessarily positive definite) then it is also possible
to apply a variant of the ¢G method to the minimization of ||y — T'z||» without
forming the normal equation system. This latter scheme, called MR-1T in [11], has
been applied successfully in [12] to our atmospheric imaging model problem after
a suitable approximation of the point spread function in Fig. 1 by a symmetric
one.

Although much more difficult to establish rigorously, the results for the
Landweber iteration extend to these much faster iteration schemes, cf. [5,11]:
It turns out that one can “naively” apply the CG or MR-II iteration, i.e., with-
out any prior regularization as in (5), provided that the iteration is ultimately
stopped as soon as the residual first satisfies the discrepancy principle (12).

Interestingly, for the cG method it is not the condition number (which is
huge) but only the noise level that determines the number of iterations to satisfy
this stopping criterion. In fact, as shown by Plato [19] the total number & of cG
iterations to meet (12) is always bounded by

k=007, (14)

and this bound is the sharper the more dense the spectrum of T*T is. For
symmetric and positive definite matrices 7' the MR-II iteration requires at most
O(6~1/?) iterations.

The iteration histories for (plain) ¢G and MR-1I when applied to our model
problem are included in Fig. 4 (b): the dashed line refers to cG, the dash-dotted
line shows the performance of MR-11. Note that one iteration of MR-II is only
half as expensive as one CG iteration because MR-II does not refer to the normal
equation system. From this follows that the sixteen MR-II iterations to find the
optimal reconstruction of & require less than a sixth of the total work for the fifty
or so iterations of the conjugate gradient method applied to (5) to obtain the
same accuracy. Furthermore, the MR-1I iteration requires no a posteriori selection
of a suitable regularization parameter a. As can be seen from Figs. 8 (b) and
(d) the reconstructions with and without prior regularization are very similar.

As compared to (14), there are significantly smaller bounds for the num-
ber of iterations to achieve (12) when the eigenvalues of T*T decay rapidly to



zero. One of these improved bounds is stated in [5, Theorem 7.15] and concerns
the case when the spectrum of the normal equation operator clusters around
A =1 and A\ = 0, except for only a few eigenvalues outside these two clusters.
Then, as shown in [5], it is this number of outlying eigenvalues which essentially
determines the number of CG iterations. This result makes use of two major
assumptions:

— The first assumption relates the size of the eigenvalue cluster at the origin
to the noise level in the data. The less noise there is, the smaller this cluster
should be. In fact, during the early stage of the ¢G iteration this eigenvalue
cluster is pretty much ignored — which is good because the corresponding
eigenvector components of the right-hand side can be considered hidden by
noise. We therefore call this span of eigenvectors the noise subspace. If, for
some reason, this eigenvalue cluster is larger, then the CG iteration needs to
pick up information from the corresponding eigenvectors. This slows down
the convergence in a second stage of the iteration (we call this the transient
phase) before the iteration eventually diverges.

— The other assumption is more significant: it requires that the true image is
essentially a linear combination of the eigenvectors which do not belong to
the noise subspace, i.e., the eigenvectors corresponding to the eigenvalues
near A = 1 and the eigenvalues which do not belong to either cluster. We
call this the signal subspace.

It is instructive to interprete these remarks in the context of the approximat-
ing BCCB system
Cx=y.

To this end, we plot in Fig. 6 (left) the eigenvalues of C' (smooth line) and
the absolute values of the corresponding Fourier coefficients of y versus the
eigenvalue count. The right-hand side plot is a zoom onto the interesting part
above the noise level. Under the assumption that the noise level in the Fourier
coefficients is about the same for all eigenvalues, this plot leads to the dashed line
as a first guess on how to separate signal and noise subspace (more sophisticated
algorithms for a separation of the two subspaces are given in [12]). Since, as we
have seen in the previous section, the very small eigenvalues of C' correspond
to high-frequent basis images it follows that this distinction between signal and
noise agrees well with the intuition that low and high frequencies are associated
with signal and noise, respectively.

5 Preconditioning

We stress that the introduction of signal and noise subspace (and their separa-
tion) is merely a means for understanding the different stages of the caG iteration.
There is no need to explicitly determine appropriate subspaces in order to run
the MR-II iteration. This gets different, though, if one is interested in speeding
up the iteration by means of preconditioning.
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Fig. 6. Eigenvalues of C' and Fourier coefficients of y.

To this end we turn back to the aforementioned theorem ([5, Theorem 7.15])
on the number of iterations of the conjugate gradient iteration. The two as-
sumptions of this theorem are satisfied, for example, for the Gerchberg-Papoulis
algorithm from signal processing, cf. [13]. This is a method to extend a given
band-limited signal from its values in the time interval [-T,T] to all times ¢ € R.
As was shown by Landau, Pollak, and Slepian in a sequel of papers in the early
sixties (cf. [22] for a survey), the operator T' of the underlying linear equation
Tx = y has a spectrum which consists of an eigenvalue cluster at A = 1 cor-
responding to low-frequent eigenfunctions (the signal subspace), and another
cluster at A = 0 with high-frequent eigenfunctions (the noise subspace). In im-
age deblurring problems, on the other hand, such a clustering will hardly occur;
in Fig. 6, for instance, one can see that the signal subspace corresponds to some
hundred eigenvalues which are fairly well distributed in an interval [0.02, 1].

A preconditioning of the original problem may change the situation, though.
Limiting our discussion once again to symmetric problems and the MR-II iteration
only, we refer by preconditioning to a transformation of the linear system Tx = y
into

MYPTMY 22 = MYy, x =M%z, (15)

for some symmetric and positive definite matrix M. While in well-posed prob-
lems, the preconditioner is chosen so as to reduce the condition number of (15),
the aim in ill-posed problems — according to the above discussion — is to cluster
the eigenvalues corresponding to the signal subspace.

In other words, we are searching a matrix M such that M'/2TM'/? has an
eigenvalue cluster at A = 1 (and possibly another cluster at A\ = —1 if T is
indefinite) in the signal subspace, and an eigenvalue cluster at the orgin in the
noise subspace. Because of this we restrict our attention to matrices M with

M =~ |T'|~! on the signal subspace, and
M=~1T on the noise subspace.



Here, |T| = (T*T)"/? is the modulus of T'. Since the Level-2 BCCB approximation
C of T is a useful approximation of T throughout, cf. (7), and since the eigen-
structure of C' is easily available and allows a plausible separation into signal
and noise subspaces of 2D Fourier vectors, cf. Fig. 6, the choice

M = |C|~" on the signal subspace, and

M=1 on the noise subspace (16)

becomes a natural candidate for M. More precisely, if Ps and Py are the orthog-
onal projectors onto the 2D-Fourier vectors corresponding to signal and noise
subspaces, respectively, then we take

M = P5|C|_1PS + Pn.
It was shown in [12] that the approximation property (7) implies that
MY?TMY? —Ps, + Ps_ = E4+ F+R, (17)

where Ps. are the orthoprojectors onto signal vectors corresponding to positive
and negative eigenvalues of C; furthermore, £ and F' are matrices of small norm,
and R is a matrix of small rank. (17) implies that the eigenvalues of M /2T M*'/?
cluster around A = £1 and at the origin, except for a few outliers.

In this approach the distinction between signal and noise subspace can be
based on the magnitude of the eigenvalues A, , of C: the signal subspace consists
of all eigenvectors of C' corresponding to eigenvalues |\, ,| > 7 (low frequencies,
cf. Fig. 3); the noise subspace is the complementary space.

0.9f —— circulant precond.
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Fig. 7. Convergence history of MR-11 with/without preconditioner.

For the performance of this preconditioner (with 7 = 0.0137) we refer to
Fig. 7. Note that the error of the preconditioned MR-II iteration drops rapidly
(in three iterations) down to a level which is only marginally above the best
possible error attained in iteration fivteen. Still, this reconstruction (shown in
Fig. 8 (e)) is slightly worse than what is obtained in sixteen iterations without



preconditioner. The reason is that it is not possible to completely separate noise
and signal in the preconditioning process: Some information in the right-hand
side must have been destroyed by the preconditioner.

Better results might be achieved with a different choice of the tolerance pa-
rameter 7 that is used to separate noise and signal subspace. In this example 7
has been selected with the L-curve criterion as described in detail in [12]. This
can be considered as a black box criterion for constructing the preconditioner
and, as every black box criterion, might not be the most sophisticated.

The above choice for M is not the only possible, although there are certainly
not many strategies for preconditioning 7" such that all aforementioned require-
ments on M are satisfied. For example, in [12] the preconditioner M was chosen
as a modification of the BCCB extension S of T' and not as a modification of
the optimal BCCB approximation C'. Meanwhile, other useful choices for M have
been suggested, cf. [13,16].

6 Summary

We have outlined a number of iteration methods to regularize 2D convolution
problems. Our presentation is focusing on a particular model problem arising in
astronomical imaging. Those images are affected by the scattering of light due
to atmospheric turbulences on their passage to the surface of the Earth.

The methods that we have presented differ in the way regularization is in-
corporated into the scheme. One option is to first regularize (e.g., by using
Tikhonov regularization) before starting the conjugate gradient method to com-
pute the regularized approximation; another option consists in using CG for the
‘plain’ original problem, with early termination of the iteration to incorporate
a different type of regularization. Whereas the former approach requires an a
posteriori selection of the regularization parameter (and thus, in principle, mul-
tiple restarts), the latter approach appeals because the optimal iterate can be
selected interactively, e.g., by monitoring the iterates on the screen.

Either iterative scheme can be accelerated by appropriate preconditioning,
but this is more subtle in the non-regularized case. A couple of preconditioners
and their performance on a model problem have been investigated above. For
a comparison of the various algorithms we refer to Fig. 8 for the corresponding
reconstructions of the satellite image. In these images negative pixel values have
been set to zero, and the gray levels in all images are the same as in the original
image (top left); error numbers refer to the Euclidean norm, which — as is well
known — may not to be the optimal measure for a comparison of images.

We remark that for the regularized problem (5) the preconditioner (if any)
does not affect the final reconstruction (Fig. 8 b) but only the costs for its
computation; reconstruction (c) is the corresponding solution of problem (6) af-
ter replacing the BTTB matrix 7' by its BCCB approximation S. For the iterative
schemes based on the plain, unregularized equation (2) the situation is somewhat
different in that the quality of the reconstruction does depend on the precon-
ditioner. This can be seen by comparing the reconstructions (e) and (d) ob-



(a) original image (b) Tikhonov reconstruction
error: 0.3575

(¢c) circulant approzimation (d) plain MR-11 (16" iterate)
error: 0.3549 error: 0.3536

(e) prec. MR-11 (3" iterate) (f) nonneg. Tikhonov reconstruction
error: 0.3736 error: 0.3340

Fig. 8. Various reconstructions.



tained with MR-11, with and without preconditioner: The preconditioner reduces
the computational costs, but the reconstruction is slightly inferior. It should be
emphasized that those two reconstructions use a modified, symmetrized point
spread function because the original one from Fig. 1 is not symmetric. Nonethe-
less, the reconstruction obtained after 44 CG iterations using the normal equation
system (13) without preconditioner and with the original point spread function
(compare the dashed line in Fig. 4 (b)) is not much different from the image
shown in Fig. 8 (d).

It should be noted that the reconstructions in (b) and (d), and to some
minor extent also reconstruction (e) reveal distinct artefacts near the edges of the
image. Similar artefacts are missing for the circulant reconstruction (c) because
the true image is zero near its boundary; if this were not the case the ciculant
reconstruction would probably suffer much stronger under artificial boundary
artefacts.

We finally mention that in astronomical imaging it is fairly common to incor-
porate known a priori constraints on the reconstruction, e.g., nonnegativity. In
the reconstructions (b) through (e) the nonnegativity constraint only enters via
the plot routine where all negative entries are set to zero. A more sophisticated
use of this constraint is very difficult without losing the advantages of the cG
iteration.

Still, to illustrate its (potential) advantage we also computed the solution of
the nonnegatively constrained Tikhonov minimization problem (4), i.e.,

minimize ||y — Tz||3 + « ||z||3 subject to & > 0.

The corresponding image is shown in Fig. 8 (f); it differs distinctively from the
other reconstructions. While the other reconstructions suffer from speckles in
those areas where they should be identically zero, the constrained reconstruc-
tion (f) does not exhibit such artefacts. This may also be the reason why the
Euclidean error of the constrained reconstruction is somewhat smaller than the
errors of the other reconstructions although it is not necessarily better from a
visual point of view: for example, the details of the antenna of the satellite are
more smeared than in the unconstrained reconstructions.
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