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Abstrat. Eletrial impedane tomography is applied to reover inlusions

within a body from eletrostati measurements on the surfae of the body. Here,

an inlusion is de�ned to be a region where the eletrial ondutivity di�ers

signi�antly from the bakground. Reently, theoretial foundations have been

developed for new tehniques to loalize inlusions from impedane tomography

data. In this paper it is shown that these theoretial results lead quite naturally

to non-iterative numerial reonstrution algorithms. The algorithms are applied

to a number of test ases to ompare their performane.
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1. Introdution

Computerized tomography (t) is by now a standard tool in medial diagnostis and

nondestrutive testing of materials. Beyond well-established methods like x-ray t

or mri the last deade has seen inreasing interest in and substantial progress of new

imaging tehniques suh as, for instane, eletrial impedane tomography (eit).

In eit the eletrial ondutivity distribution of an objet is determined from

measurements of urrents and voltages on the surfae of the objet. Calder�on [7℄ oined

the phrase inverse boundary value problem for this tehnique, sine the ondutivity

appears as di�usion oeÆient in an ellipti di�erential equation. In fat, the known

urrents and the voltages on the surfae of the objet represent the Neumann and

Dirihlet boundary values, respetively, of the solution of the di�erential equation.

Originating with the pioneering work of Calder�on and an early numerial

algorithm by Barber and Brown [2℄ there have sine been numerous papers in

the mathematial and engineering literature addressing suh diverse topis as

identi�ability and stability of the ondutivity, the design of measuring devies,

mathematial eletrode modelling, and numerial reonstrution methods.

This inverse problem is nonlinear and ill-posed, and in fat these are the main

diÆulties any numerial reonstrution method has to ope with. Many of the

published algorithms only deal with a linearized problem, whih itself is often solved

only approximately. Unfortunately, linearization yields a numerial solution of limited
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quality, in partiular, if the ondutivity is far from homogeneous. Other authors

therefore improve the reonstrution by suessively repeating the linearization proess

whih orresponds to a Newton type method for an output least squares formulation

of the inverse problem. However, these variants require a substantial amount of

additional omputational work. Still, this type of method represents the urrent state

of the art for solving the inverse problem in eit.

It is widely aepted that when solving inverse problems one should inorporate

as muh as possible a-priori strutural information on the ondutivity, and extrat

at the same time only as little information as is really neessary. Our approah is of

similar spirit: We restrit ourselves to the situation where one is only interested in

deviations from a onstant referene ondutivity, and where it is known that these

deviations our in the form of disontinuities.

This paper is partly based on reent work of the �rst author [4, 5℄ where a new

method (related to an approah of Kirsh [20℄ for inverse sattering problems) has been

developed for eit whih is able to reonstrut the support of suh inlusions but not the

preise value of the ondutivity within them. The latter may seem as a shortoming

but we stress that even those reonstrution algorithms, whih are urrently in use for

imaging quantitative features of the ondutivity distribution usually fail in resolving

ondutivity values to suÆient auray.

In this work we fous on a numerial implementation of the aforementioned

sheme, the main problem being a robust numerial onvergene riterion of some

in�nite series the terms of whih are subjet to noise. As it turns out, almost the same

tehniques an be used to implement another reent method for �nding disontinuities

of the ondutivity in eit due to Ikehata [17℄.

In the literature few numerial methods have been proposed whih are partiularly

designed for the ase of disontinuous ondutivities; we mention the approahes

in [3, 6, 9, 10, 15, 16, 19℄. In ontrast to these works the algorithms investigated

in this paper are diret, i.e. non-iterative, and do not invoke any kind of linearization.

Moreover, they only require the value of the ondutivity near the boundary and no

a-priori information on the shape of the inlusions. Even the number of inlusions

need not be known beforehand. We hasten to add that, independently, H�ahner [14℄

adopted the tehniques of Kirsh to a related inverse ondutivity problem. However,

his algorithm is limited to grounded perfet ondutors, and hene, does not apply to

the inverse problem in eit. On the other hand, his paper ontains three dimensional

numerial omputations, whereas we on�ne ourselves to two dimensions.

The outline of our paper is as follows. Notations and basi properties of the

inverse problem are summarized in Setion 2. Then we turn to the two methods in

Setions 3 and 4, respetively, where we onentrate primarily on algorithmi aspets.

In Setion 5 we �nally ompare the numerial performane and the robustness of the

two methods.

2. Forward and inverse problem

Let B � R

n

, n � 2, be a simply onneted domain with C

2

-smooth boundary T = �B.

When a urrent density f with

H

T

f ds = 0 is indued on T , this gives rise to an

eletrial potential u in B, whih solves the Neumann boundary value problem

r � �ru = 0 in B; �

�u

��

= f on T; (2.1)
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Figure 1. Homogeneous medium with p inlusions.

where �(x) is the ondutivity distribution inside of B. The potential is unique up to

an additive onstant and we shall use throughout the normalization

H

T

u ds = 0.

In this work we onentrate on ondutivities � whih are onstant outside a �nite

union of simply onneted Lipshitz domains 


i

� B, i = 1; : : : ; p, as in Figure 1 (we

shall assume that the losures of the subdomains 


i

are mutual disjoint), with

�(x) =

(

�(x) in 
 = 


1

[ : : : [ 


p

,

1 in B n 
,

(2.2)

where

0 < � � �(x) � � < 1 for all x 2 
: (2.3)

One an think of B as the objet under onsideration, whih is known to be

foremost homogeneous exept for the inlusions whih di�er signi�antly from the

bakground in ondutivity. For example, B ould be the ross setion of the human

body, the inlusions being organs, bones, et., see e.g. [2℄ for harateristi values of

� in this ase.

Sine the ondutivity (2.2) is not smooth we have to interpret (2.1) in the usual

weak sense, aording to whih the solution u of (2.1) belongs to H

1

�

(B) = fu 2

H

1

(B) :

H

T

u ds = 0g and satis�es

Z

B

�ru �rv dx =

I

T

fv ds for all v 2 H

1

�

(B): (2.4)

In impedane tomography a sequel of boundary urrents f

k

, k = 1; : : : ;m, is

sent through the surfae of the body B. For eah urrent f

k

we denote by eu

k

the

orresponding solution of (2.4). Aordingly, we refer to the potential u

k

as the

solution of (2.4) with same input urrent f

k

but with homogeneous ondutivity

�

1

� 1 in B. The observed data are the reorded potentials on the surfae T ,

i.e. the Dirihlet values eg

k

= eu

k

j

T

. These boundary potentials belong to the spae

L

2

�

(T ) = f� 2 L

2

(T ) :

H

T

� ds = 0g, and the map f

k

7! eg

k

is known as the Neumann-

Dirihlet operator �

�

: L

2

�

(T )! L

2

�

(T ) assoiated with �. When � = �

1

we write �

1

for �

�

and g

k

= �

1

f

k

instead of eg

k

.

The inverse problem onsists of reonstruting � from (partial) knowledge of

�

�

. It is known that the Neumann-Dirihlet operator �

�

arries enough information

to identify the ondutivity � provided it has the form (2.2) with � 2 C

2

(
), see
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Figure 2. Equipotentials of a dipole in point z with axis d.

Isakov [18, Thm. 5.7.1℄. However, the reonstrution problem is nonlinear and severely

ill-posed.

In the following two setions we resume two reent theoretial haraterizations

of the inlusion 
 and its onvex hull, respetively, when given the full Neumann-

Dirihlet operator as data. In ontrast to the method of proof employed in [18℄ and in

earlier works, these two haraterizations are onstrutive and lead quite naturally to

numerial reonstrution proedures. On the other hand, Isakov's uniqueness result

remains true without the assumption (2.3) that �(x) be stritly smaller than the

bakground ondutivity in 
. It only requires that � is disontinuous at eah point of

the boundary of 
; it is only for the two aforementioned onstrutive haraterizations,

that we have imposed the stronger ondition (2.3).

3. Charaterization of the inlusion set

We �rst desribe a method developed in [5, 4℄.

3.1. Theoretial foundation

Let

D

z;d

(x) =

1

2�

(z � x) � d

jz � xj

n

; x 6= z; (3.1)

be the dipole potential loated in z with axis d 2 R

n

, jdj = 1, f. Figure 2, and G

z;d

solve (in a distributional sense) the di�erential equation

�G

z;d

= �D

z;d

in B;

�

��

G

z;d

= 0 on T;

I

T

G

z;d

ds = 0: (3.2)

In [5℄ (see also [4℄) it has been shown that the inlusion set 
 an be haraterized

in the following simple way:

Theorem A A point z 2 B belongs to 
, if and only if g

z;d

= G

z;d

�

�

T

2 R

�

(�

�

�

�

1

)

1=2

�

.

Note that �

�

� �

1

: L

2

�

(T ) ! L

2

�

(T ) is ompat, selfadjoint, and positive by virtue

of (2.2), (2.3), f. Gisser, Isaason, and Newell [12℄. For this reason �

�

��

1

admits a

positive square root with a dense range in L

2

�

(T ). As for any ompat operator this



Numerial implementation of two non-iterative methods for loating inlusions 5

PSfrag replaements

z

O

P

T

B

PSfrag replaements

OO P

Figure 3. Point z 2 B (left) and orresponding funtion g

z;d

vs. arlength

(right).

range an be haraterized by means of the Piard riterion (see for instane [11℄),

whih we here formulate in terms of the eigenfuntions v

k

and eigenvalues �

k

of �

�

��

1

(i.e. the squares of the singular values of (�

�

� �

1

)

1=2

):

g

z;d

2 R

�

(�

�

� �

1

)

1=2

�

; if and only if

1

X

k=1

hg

z;d

; v

k

i

2

�

k

<1; (3.3)

where h � ; � i denotes the inner produt in L

2

(T ).

We inlude a brief interpretation of Theorem A; for details we refer to [5℄. Taking

the di�erential equation (2.1) into aount, an element ' from the range of �

�

� �

1

is easily seen to be the trae on T of a funtion w harmoni in B n 
, with vanishing

Neumann boundary values �w=�� = 0 on T . As suh, w is in general a smooth

funtion, the smoothness an only deteriorate in the neighborhood of �. Exploiting

the smoothness of elements from the range of �

�

��

1

should therefore make it possible

to loate where, and how lose, � approahes T . The funtions G

z;d

are the lue for

this, beause they are harmoni in B n fzg and their Neumann boundary values also

vanish on T ; �nally, their trae g

z;d

exhibits a hump near those points on T whih are

losest to z, f. Figure 3. Consequently, if z 2 
 then g

z;d

an be better approximated

by funtions from the range of �

�

� �

1

than in the ase z =2 
, and this is the key

interpretation of property (3.3).

For an eÆient omputation of these probe funtions g

z;d

it is important to note

that it is not required to solve the di�erential equation (3.2) numerially, for the

boundary values of the solution G

z;d

an be omputed diretly with the following

trik: sine G

z;d

�D

z;d

is harmoni in B with Neumann boundary data �

�

��

D

z;d

on

T , we have

(G

z;d

�D

z;d

)

�

�

T

+  = ��

1

�

��

D

z;d

;

i.e.,

g

z;d

= D

z;d

�

�

T

� �

1

�

��

D

z;d

� ; (3.4)

where the onstant  is suh that

H

T

g

z;d

ds = 0.

3.2. Algorithmi implementation

For the implementation it is neessary to ompute one and for all �

1

by numerial

simulations, whih amounts to solving Neumann boundary value problems for the
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Laplaian in B. For this we use the same input urrent patterns ff

k

g

m

k=1

, for whih

we have measured data eg

k

= �

�

f

k

, and obtain g

k

= �

1

f

k

. In the sequel we assume

that the urrent patterns form an orthonormal set.

To test the onvergene of the series in Equation (3.3) we need the eigenvalues

and eigenvetors of �

�

� �

1

. In view of our disrete setting it appears natural

to approximate the individual terms of this series by replaing for �

k

and v

k

the

assoiated eigenvalues and eigenvetors of the Galerkin projetion P

�

(�

�

� �

1

)P ;

here P is the orthogonal projetor onto the span of ff

k

g. This Galerkin projetion

is represented by the m � m matrix A ontaining in the k{th olumn the potential

di�erene eg

k

�g

k

expanded in the basis ff

k

g. Sinem is a small number the eigenvalues

of A are fairly heap to obtain.

For reonstruting 
 we over B with an equidistant grid with a total of, say

M , grid points, ompute g

z;d

from (3.4) for eah grid point z, and then test the

onvergene of the series in (3.3). This test is a deliate issue and a ruial point of

the numerial algorithm, and we postpone its disussion to Setion 5.1 beause the

same tehnique applies to the other method to follow in Setion 4.

At this point we briey omment on the amount of work required for eah grid

point z: The omputation of g

z;d

and its expansion into the basis ff

k

g takes on the

order of O(mq +m

2

) operations, where q is the number of points for disretizing the

boundary T . The onvergene test itself an be realized in only O(m

2

) operations. In

pratie q will be muh bigger than m, so that we have a total of O(mqM) operations

to perform the whole algorithm. This �gure, however, does not take into aount

the omputation of �

1

and the eigenvalues of A, whih is done only one at the very

beginning of the algorithm. While the eigenvalue omputation is negligible extra work

with only O(m

3

) operations, the amount of work for the evaluation of �

1

strongly

depends on the spae dimension n, and the method whih is employed for simulating

the forward problem (suh as �nite di�erene or �nite element shemes, boundary

element methods, or analyti representations for the solution of the Laplae equation,

et.).

We mention that for the unit disk in R

2

the funtion g

z;d

is expliitly known to

be

g

z;d

(x) =

1

�

(z � x) � d

jz � xj

2

:

This an be used to onstrut an alternative probe funtion bg

z;d

via onformal

mappings, whih an be substituted for g

z;d

in Theorem A: Let � be a onformal

map whih takes the general domain B onto the unit disk, then bg

z;d

is given by the

formula

bg

z;d

(x) = g

�(z);d

(�(x))� ;

where the onstant  has again to be hosen suh that

H

T

bg

z;d

ds = 0. This has been

veri�ed and used numerially in [4℄. One the onformal map has been determined,

the omputational amount of work is omparable to the previous approah. Our

experiene with the two approahes is urrently restrited to syntheti data where

both methods seem to perform similarly. The latter approah, however, an only be

used in two spae dimensions whereas the other sheme extends to the three spae

dimensions.
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4. Ikehata's method for loating the onvex hull of the inlusions

It is interesting to ompare the method from the previous setion with results obtained

by Ikehata [17℄.

For some unit vetor d 2 R

n

and any orthogonal diretion d

?

Ikehata onsiders

the Calder�on patterns

f

k;d

(x) =

�

��

exp

�

kx � (d+ id

?

)

�

; x 2 T; (4.1)

where k > 0. Then, under suitable regularity assumptions on 
, Ikehata was able to

prove a result, whih is easily seen to be equivalent to the following:

Theorem B The losure of the inlusion 
 is ontained in the half spae E

d;t

=

fx � d < tg, if and only if

1

X

k=1

hf

k;d

; (�

�

� �

1

)f

k;d

i

e

2kt

<1: (4.2)

Beause half spaes are onvex, 
 an be replaed by its onvex hull, onv(
), in the

assertion of Theorem B. If we set t(d) = supfx � d : x 2 
g (f. Figure 4) then it

follows from Theorem B that t(d) is the in�mum of all t for whih (4.2) holds true.

This enables us to reonstrut the onvex hull of 
, beause

onv(
) =

\

jdj=1

E

d;t(d)

: (4.3)

The proof of Theorem B is surprisingly simple and therefore we sketh its main

ideas here. Starting from a well-known identity �rst utilized by Alessandrini in [1℄,

elementary alulations show that

hf; (�

�

� �

1

)fi �

Z




(�� 1)jru

1

j

2

dx;

valid for any input urrent f and the assoiated potential u

1

for the homogeneous

ondutivity. For f = f

k;d

we have u

1

(x) = exp

�

kx � (d+ id

?

)

�

, and hene

hf

k;d

; (�

�

� �

1

)f

k;d

i � k

2

Z




e

2kx�d

dx: (4.4)



Numerial implementation of two non-iterative methods for loating inlusions 8

From this it is omparatively easy to reason that

hf

k;d

; (�

�

� �

1

)f

k;d

i

1=k

�! e

2t(d)

as k !1, and therefore the root riterion implies onvergene of (4.2) if t(d) < t and

divergene if t(d) > t. This is suÆient to establish the assertion of the theorem.

The diretions d in Theorem B play a similar role as the grid points z in

Theorem A. Aordingly, we hose a number of diretions d, projet the Calder�on

patterns (4.1) onto the span of the injeted urrents ff

k

g and use the same Galerkin

projetion P

�

(�

�

� �

1

)P as in Setion 3.2 to approximate the numerators in (4.2).

In pratie it will be heaper to ompute hf

k;d

;�

1

f

k;d

i analytially using the fat

that �

1

f

k;d

(x) = exp

�

kx � (d+id

?

)

�

; however, sine this is no longer equivalent to the

Galerkin projetion this may ause a loss of stability. The test of onvergene for (4.2)

is the same as for (3.3), f. Setion 5. This results in a total ost of O(mq + m

2

)

operations for eah diretion. Thus, the amount of work for eah single test is of the

same order of magnitude as for the method of Setion 3.

Whereas in the former method the test points z run through the interior of B,

here the diretions d are restrited to the surfae of the unit ball. Therefore, we expet

to require O(M

(n�1)=n

) di�erent diretions to obtain a similar resolution as for the

method of Setion 3. This makes Ikehata's method heaper, but on the other hand it

only yields the onvex hull of the inlusions.

Example. In [5℄ the evidene of Theorem A has been veri�ed for a simple two-

dimensional radially symmetri example. We shall inlude here a similar analysis

for Theorem B. Consider the ase that B is the unit disk in R

2

and the inlusion


 = fjxj < �g is the disk of radius �, 0 < � < 1, entered at the origin. The

ondutivity is assumed to attain a onstant value � with 0 � � < 1 in 
. If we hoose

the diretion d = (os#; sin#) and introdue polar oordinates x = (r os �; r sin �),

then we �nd that

f

k;d

(�) = ke

i(��#)

exp(ke

i(��#)

) =

1

X

m=1

k

m

(m� 1)!

e

im(��#)

:

Using the fat that the e

im(��#)

, m 2 N, are eigenfuntions of �

�

��

1

with assoiated

eigenvalues 2��

2m

=(m(1� ��

2m

)), where � = (1� �)=(1 + �) 2 (0; 1℄, f. e.g. [12℄, we

obtain

hf

k;d

; (�

�

� �

1

)f

k;d

i =

1

X

m=1

2��

1� ��

2m

2m

(k�)

2m

(m!)

2

:

Sine

0 < 2�� �

2��

1� ��

2m

�

2��

1� ��

2

we have

hf

k;d

; (�

�

� �

1

)f

k;d

i �

1

X

m=1

2m

(m!)

2

(k�)

2m

= 2k� I

1

(2k�);

where I

1

is the modi�ed Bessel funtion of order one. Hene, f. Gradshteyn and

Ryzhik [13, Eq. 8.451.5℄,

hf

k;d

; (�

�

� �

1

)f

k;d

i �

p

k e

2k�

:

Thus we see that the sum in (4.2) onverges if and only if t > �, and hene t(d) = �

for eah diretion d. This establishes (4.3) in this speial ase.
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Figure 5. Left: averaged eigenvalues (blue) and squared Fourier oeÆients

versus eigenvalue ount. Right: inlusion 
 (dashed line) and two test points.

5. Numerial results

All our omputations in this setion orrespond to the 2D ase. We use syntheti data

from a �nite element simulation of the forward problem and assume that boundary

data are available on the whole boundary. Currently, it is not lear how to adapt the

theoretial results to more realisti eletrode models like those from [8, 21, 22℄.

5.1. The test for onvergene of (3.3)

As has been mentioned before, a robust onvergene test for the series in (3.3),

respetively (4.2), is fundamental for a suessful performane of both algorithms.

The motivation for our numerial onvergene riterion emanates from the example at

the end of Setion 4. In [5℄ it has been shown for the same example that the numerators

and denominators in (3.3) deay more or less exponentially. This is also true for the

numerators and denominators in (4.2) aording to the example in Setion 4. Thus,

from a omparison of the deay rates one an infer onvergene or divergene of the two

series. Our numerial experiments on�rm this behavior for more general situations,

and hene we base our onvergene test on this assumption.

Figure 5 illustrates the algorithm for two test points z

O

(green, O) inside and z

M

(red, M) outside a irular inlusion with ondutivity � = 0:5. The left hand side plot

shows three least squares �tting straight lines: The blue one �ts the eigenvalues of

�

�

��

1

(blue dots), the other two lines �t the squared Fourier oeÆients of the test

points with the respetive olor. Note that the slope of eah straight line measures

the mean exponential deay rate of the �tted quantities. We therefore regard a test

point as an element of the inlusion, if and only if the line through its squared Fourier

oeÆients is steeper than the blue line.

In our ode we slightly modify this riterion. Rather than �tting all eigenvalues

and all Fourier oeÆients, we average them pairwise in the following way: Instead

of �

2k�1

and �

2k

we take their geometri mean (�

2k�1

�

2k

)

1=2

as one single number;

instead of hg

z;d

; v

2k�1

i

2

and hg

z;d

; v

2k

i

2

we take their sum hg

z;d

; v

2k�1

i

2

+ hg

z;d

; v

2k

i

2

as orresponding data. The usage of these averaged quantities is again motivated by

the radially symmetri example, see [4℄ for a detailed disussion. In short, the reason

is that eah frequeny omes with a pair of urrent patterns (a sine and a osine) and

it appears natural to treat the orresponding quantities as one piee of data. This is
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also the way how Figure 5 has been reated: Eah marker in the left hand side plot

of this �gure represents one of these averages.

Repeating this test for eah ofM = 65�65 points on an equidistant grid overing

B yields the yellow shaded reonstrution of 
 shown in Figure 5.

5.2. The test for onvergene of (4.2)

For Ikehata's method we use a similar approah to determine for eah diretion d

the onvergene absissa t(d), i.e. the in�mum of all t for whih the series in (4.2)

remains �nite. This is illustrated in Figure 6 for the same example as before. The

left hand side plot ontains the least squares �tted straight lines through the data

hf

k;d

; (�

�

� �

1

)f

k;d

i, plotted in semi-logarithmi sale as a funtion of k. For the

upper line (B) we have used d = (1; 0), the other line (M) orresponds to d = (0; 1).

From the slope of the line we dedue our estimate for t(d).

In the right hand side plot the gray lines indiate the boundaries of the half planes

E

d;t(d)

for M

1=2

= 65 diretions d; the two darker lines show the results for the two

diretions exampli�ed in the left hand plot. The yan shaded region is the intersetion

of all these half planes and hene the reonstrution of onv(
) aording to (4.3).

5.3. Numerial omparison

In the sequel we desribe further numerial examples with more ompliated phantoms

to ompare the performane of the two algorithms. In all �gures the inlusion 
 is

indiated by a dashed line, the yellow shaded reonstrution is the one obtained with

the algorithm of Setion 3, the (darker) yan shaded reonstrution orresponds to

Ikehata's method.

In our �rst example (left plot in Figure 7) 
 has a sharp orner but is onvex.

The phantom in our seond test ase (right plot in Figure 7) is the elebrated kite

obstale of the inverse sattering ommunity, f. e.g. [20℄. In both examples we let

� = 0:5 within the inlusion. We reall that the method of Ikehata an at best reover

the onvex hull of 
; this an be observed in the reonstrution of the kite phantom.

Even for the onvex inlusion, though, the yellow reonstrution is slightly superior

to the yan one.
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Figure 7. Left: Convex inlusion with sharp orner. Right: Kite phantom.
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2

Figure 8. Two inlusions with �

1

= 0:5 and �

2

= 0:5, 0:99, 1, respetively (from

left to right).

It is striking that the yellow reonstrutions seem to approximate 
 from the

interior, whereas the yan reonstrutions almost always overestimate the inlusions.

This an be explained to some extent with a re�ned asymptoti analysis of the

individual terms in (3.3), respetively (4.2), at least in the radially symmetri ase.

In Figure 8 we present a sequel of reonstrutions of two inlusions 


1

and 


2

within a non-irular domain. The ondutivity of 


1

has �xed value � = 0:5 for

all three examples, whereas the ondutivity of 


2

varies in ontrast from � = 0:5

(left) through � = 0:99 (middle) to � = 1 (right). The latter means nothing else than

that there is no seond inlusion in the right example, as is learly deteted by both

methods.

When � = 0:5 in 


2

both methods perform fairly well, omparable to the

reonstrutions in Figure 7. Of ourse, as Ikehata's method approximates the (simply

onneted) onvex hull of 
 it is not possible to dedue the number of omponents of


 from the yan reonstrution. When � = 0:99 in 


2

the ontrast to the bakground

is extremely small. With this in mind the two reonstrutions in the middle plot are

surprisingly good. Although 


2

is almost invisible, both methods an \see" part of

it, and the method of Setion 3 is able to distinguish the two inlusions, paying the

prie of a smeared approximation of 


1

.
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diretions. In eah ase Æ � 2:98 � 10

�4

.

5.4. Noisy data

Eletrial impedane tomography is an extremely ill-posed inverse problem and every

reonstrution method requires some sort of regularization in the presene of noisy

data. In the sequel we point out how regularization an be inorporated into the

two algorithms. We also investigate the robustness of these methods by adding 0:1%

noise to eah measurement eg

k

(relative to L

2

(T )). The noise manifests itself as a

perturbation E of the operator �

�

� �

1

, where the norm Æ = kEk is of the order of

the noise level.

We begin with our method of Setion 3. From perturbation theory we know

that the eigenvalues of �

�

� �

1

+ E di�er by at most Æ from the eigenvalues

of the unperturbed operator. This an also be observed in the left hand plot of

Figure 9, whih shows the true and perturbed (averaged) eigenvalues for the onvex

phantom in Figure 7. Here, Æ � 2:98 � 10

�4

and the perturbed eigenvalues level

o� near � = 2:7 � 10

�4

. This indiates that the reonstrution should be based

only on those terms in the series (3.3) with j�

k

j > Æ; this kind of regularization is

similar to a tehnique for linear ill-posed problems known as trunated singular value

deomposition, f. [11℄. Although Æ is hardly known in pratie, it is easy to selet the

appropriate terms using a plot like Figure 9. In this partiular example we an take

four averaged eigenvalues that stik out of the noise level. Note that this seletion of

eigenvalues is done only one in the beginning.

The reonstrutions for the three phantoms are shown in Figure 10. As one might

expet the quality of the reonstrutions deteriorates beause of noise as ompared

to Figures 7 and 8, but nevertheless gives valuable information about the loation of

the inlusions. Only in the last example the algorithm fails to distinguish the two

inlusions (both with ondutivity � = 0:5).

In Ikehata's method the appearane of E auses perturbations in (4.4) up to the

order of

Ækf

k;d

k

2

L

2

(T )

; where kf

k;d

k

L

2

(T )

= O(ke

ks(d)

) as k !1 (5.1)

and s(d) = supfx � d : x 2 Tg > t(d). Ignoring the polynomial fators in (4.4)

and (5.1) we expet that the error term will in general dominate hf

k;d

; (�

�

��

1

)f

k;d

i
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Figure 10. Reonstrutions with noisy data (0:1% noise).

for \frequenies" k beyond

k

Æ

(d) =

j log Æj

2(s(d)� t(d))

; (5.2)

and the omputation of t(d) as desribed in Setion 5.2 should therefore only use

frequenies k < k

Æ

(d). Consequently, the larger s(d)� t(d) the less frequenies an be

used for the diretion d, and this implies that the reonstrution of those parts of the

boundary of onv(
), whih are far from the outer boundary T will be very sensitive

to noise. This is on�rmed by the numerial results in Figure 10, most strikingly for

the �rst two examples.

Unfortunately, k

Æ

(d) annot be evaluated in pratie, even if Æ were known,

beause t(d) is not. However, as illustrated in Figure 9 (right), the sequene (4.4) still

behaves like e

2kt(d)

for small frequenies k before the asymptoti behavior (5.1) sets

in, and it is straightforward to �nd the transient between the two regimes numerially

(see the bullets in Figure 9). This partiular plot refers to the reonstrution in the

middle of Figure 10, in whih B is the unit irle and Æ � 2:98 � 10

�4

. For the solid

urve, where d = (1; 0) we have s(d) = 1 and t(d) = 0:5, hene (5.2) yields k

Æ

(d) � 8:1.

In ontrast, when d = (�1; 0) as for the dashed urve, we have s(d) = 1, t(d) = 0,

whih gives k

Æ

(d) � 4:1 in this ase. Hene, the numerial detetion of the transient

in Figure 9 atually appears to be more robust than the rule of thumb value (5.2).

5.5. Summary

For omparison we show in Figure 11 the result of a typial iterative output least

squares method for the two phantoms of Figure 8 with � = 0:5 in both inlusions, see

also Figure 10 (right) for the same example with noise. This method uses an inexat

Gau�-Newton sheme with a onjugate gradient inner iteration and sophistiated

hoie of the regularization parameters. The two objets are visible, but it is diÆult

to loate their preise boundaries. We emphasize that these reonstrutions require

far more omputing time than the methods presented in this paper.

We onlude that the two methods provide interesting alternatives to iterative

Newton-type methods for the impedane tomography problem. Both methods are

extraordinarily heap and give reasonable information on inlusions with distint

jumps in the ondutivity within a homogeneous bakground. Due to the ill-

posed nature of the problem the two methods are very sensitive to noise, although
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Figure 11. Reonstrutions using output least squares. Left: no noise. Right:

0:1% noise.

regularization an be inorporated in a very natural way. The numerial experiments

indiate that the method of Setion 3 is more robust in this ase.
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