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Abstract. Electrical impedance tomography is applied to recover inclusions
within a body from electrostatic measurements on the surface of the body. Here,
an inclusion is defined to be a region where the electrical conductivity differs
significantly from the background. Recently, theoretical foundations have been
developed for new techniques to localize inclusions from impedance tomography
data. In this paper it is shown that these theoretical results lead quite naturally
to non-iterative numerical reconstruction algorithms. The algorithms are applied
to a number of test cases to compare their performance.
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1. Introduction

Computerized tomography (CT) is by now a standard tool in medical diagnostics and
nondestructive testing of materials. Beyond well-established methods like X-ray CT
or MRI the last decade has seen increasing interest in and substantial progress of new
imaging techniques such as, for instance, electrical impedance tomography (EIT).

In EIT the electrical conductivity distribution of an object is determined from
measurements of currents and voltages on the surface of the object. Calderén [7] coined
the phrase inverse boundary value problem for this technique, since the conductivity
appears as diffusion coefficient in an elliptic differential equation. In fact, the known
currents and the voltages on the surface of the object represent the Neumann and
Dirichlet boundary values, respectively, of the solution of the differential equation.

Originating with the pioneering work of Calderén and an early numerical
algorithm by Barber and Brown [2] there have since been numerous papers in
the mathematical and engineering literature addressing such diverse topics as
identifiability and stability of the conductivity, the design of measuring devices,
mathematical electrode modelling, and numerical reconstruction methods.

This inverse problem is nonlinear and ill-posed, and in fact these are the main
difficulties any numerical reconstruction method has to cope with. Many of the
published algorithms only deal with a linearized problem, which itself is often solved
only approximately. Unfortunately, linearization yields a numerical solution of limited
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quality, in particular, if the conductivity is far from homogeneous. Other authors
therefore improve the reconstruction by successively repeating the linearization process
which corresponds to a Newton type method for an output least squares formulation
of the inverse problem. However, these variants require a substantial amount of
additional computational work. Still, this type of method represents the current state
of the art for solving the inverse problem in EIT.

It is widely accepted that when solving inverse problems one should incorporate
as much as possible a-priori structural information on the conductivity, and extract
at the same time only as little information as is really necessary. Our approach is of
similar spirit: We restrict ourselves to the situation where one is only interested in
deviations from a constant reference conductivity, and where it is known that these
deviations occur in the form of discontinuities.

This paper is partly based on recent work of the first author [4, 5] where a new
method (related to an approach of Kirsch [20] for inverse scattering problems) has been
developed for EIT which is able to reconstruct the support of such inclusions but not the
precise value of the conductivity within them. The latter may seem as a shortcoming
but we stress that even those reconstruction algorithms, which are currently in use for
imaging quantitative features of the conductivity distribution usually fail in resolving
conductivity values to sufficient accuracy.

In this work we focus on a numerical implementation of the aforementioned
scheme, the main problem being a robust numerical convergence criterion of some
infinite series the terms of which are subject to noise. As it turns out, almost the same
techniques can be used to implement another recent method for finding discontinuities
of the conductivity in EIT due to Ikehata [17].

In the literature few numerical methods have been proposed which are particularly
designed for the case of discontinuous conductivities; we mention the approaches
in 3, 6, 9, 10, 15, 16, 19]. In contrast to these works the algorithms investigated
in this paper are direct, i.e. non-iterative, and do not invoke any kind of linearization.
Moreover, they only require the value of the conductivity near the boundary and no
a-priori information on the shape of the inclusions. Even the number of inclusions
need not be known beforehand. We hasten to add that, independently, Hahner [14]
adopted the techniques of Kirsch to a related inverse conductivity problem. However,
his algorithm is limited to grounded perfect conductors, and hence, does not apply to
the inverse problem in EIT. On the other hand, his paper contains three dimensional
numerical computations, whereas we confine ourselves to two dimensions.

The outline of our paper is as follows. Notations and basic properties of the
inverse problem are summarized in Section 2. Then we turn to the two methods in
Sections 3 and 4, respectively, where we concentrate primarily on algorithmic aspects.
In Section 5 we finally compare the numerical performance and the robustness of the
two methods.

2. Forward and inverse problem

Let B C R", n > 2, be a simply connected domain with C2-smooth boundary 7' = dB.
When a current density f with fT fds = 0 is induced on T, this gives rise to an
electrical potential  in B, which solves the Neumann boundary value problem

V:oVu=0 in B, c—=f onT, (2.1)
ov
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Figure 1. Homogeneous medium with p inclusions.

where o(z) is the conductivity distribution inside of B. The potential is unique up to
an additive constant and we shall use throughout the normalization fT uds = 0.

In this work we concentrate on conductivities o which are constant outside a finite
union of simply connected Lipschitz domains Q; C B, i =1,...,p, as in Figure 1 (we
shall assume that the closures of the subdomains §2; are mutual disjoint), with

nQ=0,U...UQ,
o(z) = () - ' P (2.2)
1 in B\ Q,
where
0<kr<k(z)<E<1 for all z € Q. (2.3)

One can think of B as the object under consideration, which is known to be
foremost homogeneous except for the inclusions which differ significantly from the
background in conductivity. For example, B could be the cross section of the human
body, the inclusions being organs, bones, etc., see e.g. [2] for characteristic values of
o in this case.

Since the conductivity (2.2) is not smooth we have to interpret (2.1) in the usual
weak sense, according to which the solution u of (2.1) belongs to H!(B) = {u €
H'(B) : §,uds = 0} and satisfies

/ oVu-Vuvdr = ?{ fvds for all v € H!(B). (2.4)
B T

In impedance tomography a sequel of boundary currents fx, kK = 1,...,m, is
sent through the surface of the body B. For each current f; we denote by u; the
corresponding solution of (2.4). Accordingly, we refer to the potential uy as the
solution of (2.4) with same input current f; but with homogeneous conductivity
01 = 1 in B. The observed data are the recorded potentials on the surface T,
i.e. the Dirichlet values g = ux|r. These boundary potentials belong to the space
L(T) ={¢ € L*(T) : §, ¢ds =0}, and the map fi — gi is known as the Neumann-
Dirichlet operator A, : L2(T) — L2(T) associated with 0. When o = oy we write Ay
for A, and gy = Ay fi instead of gy.

The inverse problem consists of reconstructing o from (partial) knowledge of
A,. Tt is known that the Neumann-Dirichlet operator A, carries enough information
to identify the conductivity o provided it has the form (2.2) with x € C?(), see
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Figure 2. Equipotentials of a dipole in point z with axis d.

Isakov [18, Thm. 5.7.1]. However, the reconstruction problem is nonlinear and severely
ill-posed.

In the following two sections we resume two recent theoretical characterizations
of the inclusion @ and its convex hull, respectively, when given the full Neumann-
Dirichlet operator as data. In contrast to the method of proof employed in [18] and in
earlier works, these two characterizations are constructive and lead quite naturally to
numerical reconstruction procedures. On the other hand, Isakov’s uniqueness result
remains true without the assumption (2.3) that x(z) be strictly smaller than the
background conductivity in 2. It only requires that o is discontinuous at each point of
the boundary of £2; it is only for the two aforementioned constructive characterizations,
that we have imposed the stronger condition (2.3).

3. Characterization of the inclusion set

We first describe a method developed in [5, 4].

3.1. Theoretical foundation

Let
1 (z—2)-d
D, a(z) = ( )

=\ = = 3.1
s ORI (3.1)
be the dipole potential located in z with axis d € R", |d| = 1, cf. Figure 2, and G, 4

solve (in a distributional sense) the differential equation

AGz,d = ADz,d in B, ng,d =0 on T, % Gz,d ds =0. (32)
v T

In [5] (see also [4]) it has been shown that the inclusion set  can be characterized
in the following simple way:

Theorem A A point z € B belongs to §2, if and only if 9.4 = szd‘T € R((Ag —
AL)2).

Note that A, — Ay : L2(T) — L2(T) is compact, selfadjoint, and positive by virtue

o

of (2.2), (2.3), cf. Gisser, Isaacson, and Newell [12]. For this reason A, — Aj admits a
positive square root with a dense range in L2(T). As for any compact operator this
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Figure 3. Point z € B (left) and corresponding function g, 4 vs. arclength
(right).

range can be characterized by means of the Picard criterion (see for instance [11]),
which we here formulate in terms of the eigenfunctions v and eigenvalues A of A, — Ay
(i.e. the squares of the singular values of (A, — Ap)'/?):

o 2
9za € R((Ay — Ay)Y/?), if and only if (9zar k)" 00, (3.3)
e
where (-, -) denotes the inner product in L*(T).

We include a brief interpretation of Theorem A; for details we refer to [5]. Taking
the differential equation (2.1) into account, an element ¢ from the range of A, — A;
is easily seen to be the trace on T of a function w harmonic in B\ Q, with vanishing
Neumann boundary values dw/dv = 0 on T. As such, w is in general a smooth
function, the smoothness can only deteriorate in the neighborhood of I'. Exploiting
the smoothness of elements from the range of A, — A1 should therefore make it possible
to locate where, and how close, I' approaches T'. The functions G 4 are the clue for
this, because they are harmonic in B\ {2} and their Neumann boundary values also
vanish on T’ finally, their trace g, 4 exhibits a hump near those points on 7" which are
closest to z, cf. Figure 3. Consequently, if z € €2 then g, 4 can be better approximated
by functions from the range of A, — A; than in the case z ¢ 2, and this is the key
interpretation of property (3.3).

For an efficient computation of these probe functions g, 4 it is important to note
that it is not required to solve the differential equation (3.2) numerically, for the
boundary values of the solution G 4 can be computed directly with the following
trick: since G, 4 — D, 4 is harmonic in B with Neumann boundary data —%Dz,d on
T, we have

(Gz,d - Dz,d)|T +c= _A]l %Dz,da
ie.,

9z,d = Dz,d

p—MED.4—c (3.4)

where the constant ¢ is such that §,g. 4ds = 0.

3.2. Algorithmic implementation

For the implementation it is necessary to compute once and for all A; by numerical
simulations, which amounts to solving Neumann boundary value problems for the
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Laplacian in B. For this we use the same input current patterns {fz};-,, for which
we have measured data g = A, fx, and obtain gy = Aj fr. In the sequel we assume
that the current patterns form an orthonormal set.

To test the convergence of the series in Equation (3.3) we need the eigenvalues
and eigenvectors of A, — Ay. In view of our discrete setting it appears natural
to approximate the individual terms of this series by replacing for A; and v, the
associated eigenvalues and eigenvectors of the Galerkin projection P*(A, — Ay)P;
here P is the orthogonal projector onto the span of {fx}. This Galerkin projection
is represented by the m x m matrix A containing in the k—th column the potential
difference gy —gi expanded in the basis { fi. }. Since m is a small number the eigenvalues
of A are fairly cheap to obtain.

For reconstructing 2 we cover B with an equidistant grid with a total of, say
M, grid points, compute g, 4 from (3.4) for each grid point z, and then test the
convergence of the series in (3.3). This test is a delicate issue and a crucial point of
the numerical algorithm, and we postpone its discussion to Section 5.1 because the
same technique applies to the other method to follow in Section 4.

At this point we briefly comment on the amount of work required for each grid
point z: The computation of g, 4 and its expansion into the basis {fi} takes on the
order of O(mgq + m?) operations, where ¢ is the number of points for discretizing the
boundary T. The convergence test itself can be realized in only O(m?) operations. In
practice ¢ will be much bigger than m, so that we have a total of O(mgM) operations
to perform the whole algorithm. This figure, however, does not take into account
the computation of Aj and the eigenvalues of A, which is done only once at the very
beginning of the algorithm. While the eigenvalue computation is negligible extra work
with only O(m?) operations, the amount of work for the evaluation of A; strongly
depends on the space dimension n, and the method which is employed for simulating
the forward problem (such as finite difference or finite element schemes, boundary
element methods, or analytic representations for the solution of the Laplace equation,
etc.).

We mention that for the unit disk in R? the function g, 4 is explicitly known to
be
1(z—x)-d
sose) = o
This can be used to construct an alternative probe function g, q via conformal
mappings, which can be substituted for g. 4 in Theorem A: Let ® be a conformal
map which takes the general domain B onto the unit disk, then g, 4 is given by the
formula

Ez,d(m) = g@(z),d(q)(x)) -G

where the constant ¢ has again to be chosen such that fT 9z,ads = 0. This has been
verified and used numerically in [4]. Once the conformal map has been determined,
the computational amount of work is comparable to the previous approach. Our
experience with the two approaches is currently restricted to synthetic data where
both methods seem to perform similarly. The latter approach, however, can only be
used in two space dimensions whereas the other scheme extends to the three space
dimensions.
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Figure 4. Sketch of geometry for Ikehata’s method.

4. Tkehata’s method for locating the convex hull of the inclusions

It is interesting to compare the method from the previous section with results obtained
by Ikehata [17].

For some unit vector d € R™ and any orthogonal direction d* Ikehata considers
the Calderén patterns

Jra(z) = % exp(kz - (d+id")), zeT, (4.1)

where & > 0. Then, under suitable regularity assumptions on 2, Ikehata was able to
prove a result, which is easily seen to be equivalent to the following:

Theorem B The closure of the inclusion Q is contained in the half space Fq; =
{z+d < t}, if and only if

~ (frods (Ao — Ax) fra
Z(f, ( )fk,d)

ert

< 0. (4.2)
k=1

Because half spaces are convex, 2 can be replaced by its convex hull, conv(f2), in the

assertion of Theorem B. If we set t(d) = sup{z -d : z € Q} (cf. Figure 4) then it

follows from Theorem B that ¢(d) is the infimum of all ¢ for which (4.2) holds true.

This enables us to reconstruct the convex hull of 2, because

conv(Q) = (1 Eapa)- (4.3)
|d|=1

The proof of Theorem B is surprisingly simple and therefore we sketch its main
ideas here. Starting from a well-known identity first utilized by Alessandrini in [1],
elementary calculations show that

(F, (Ao — AL)F) ~ /Q (5 — 1)|Vua? de,

valid for any input current f and the associated potential u; for the homogeneous
conductivity. For f = fi 4 we have u;(z) = exp(kz - (d +id™")), and hence

(fras (Ao — A1) fr,a) ~ k° /Q e dg. (4.4)
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From this it is comparatively easy to reason that
(froar (A = A1) fr,a)'/* — (@D

as k — 0o, and therefore the root criterion implies convergence of (4.2) if ¢(d) < ¢t and
divergence if t(d) > ¢. This is sufficient to establish the assertion of the theorem.

The directions d in Theorem B play a similar role as the grid points z in
Theorem A. Accordingly, we chose a number of directions d, project the Calderén
patterns (4.1) onto the span of the injected currents {fi} and use the same Galerkin
projection P*(A, — Ap)P as in Section 3.2 to approximate the numerators in (4.2).
In practice it will be cheaper to compute (f 4, A1 fk,q4) analytically using the fact
that Ay f q(x) = exp(kz - (d+id")); however, since this is no longer equivalent to the
Galerkin projection this may cause a loss of stability. The test of convergence for (4.2)
is the same as for (3.3), cf. Section 5. This results in a total cost of O(mgq + m?)
operations for each direction. Thus, the amount of work for each single test is of the
same order of magnitude as for the method of Section 3.

Whereas in the former method the test points z run through the interior of B,
here the directions d are restricted to the surface of the unit ball. Therefore, we expect
to require O(M ™~ 1/™) different directions to obtain a similar resolution as for the
method of Section 3. This makes Ikehata’s method cheaper, but on the other hand it
only yields the convex hull of the inclusions.

Ezample. In [5] the evidence of Theorem A has been verified for a simple two-
dimensional radially symmetric example. We shall include here a similar analysis
for Theorem B. Consider the case that B is the unit disk in R? and the inclusion
Q = {|z| < p} is the disk of radius p, 0 < p < 1, centered at the origin. The
conductivity is assumed to attain a constant value x with 0 < x < 1 in . If we choose
the direction d = (cos¥,sin¥) and introduce polar coordinates z = (rcos&,rsin¢),
then we find that

fual€) = ') exp(i ) = 3 helm@—ﬂ).
Using the fact that the (€= m € N, are eigenfunctions of A, —A; with associated
eigenvalues 2up®™ /(m(1 — pp*™)), where p = (1 — k)/(1+ &) € (0,1], cf. e.g. [12], we
obtain
2rp,  (kp)™™

(frd, (Ag — A1) fra) = Z 1= o2 " (2

m=1

Since
2mp 2mp

<
—pp*™ T L — pp?

O<27ru§1

we have

(frd> (Mg = A1) fra) ~ > (fr:;;g(kp)m = 2kp I (2kp),

m=1
where I; is the modified Bessel function of order one. Hence, cf. Gradshteyn and
Ryzhik [13, Eq. 8.451.5],
(frd> (Mg = A1) fra) ~ Ve

Thus we see that the sum in (4.2) converges if and only if ¢ > p, and hence t(d) = p
for each direction d. This establishes (4.3) in this special case.
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Figure 5. Left: averaged eigenvalues (blue) and squared Fourier coefficients
versus eigenvalue count. Right: inclusion  (dashed line) and two test points.

5. Numerical results

All our computations in this section correspond to the 2D case. We use synthetic data
from a finite element simulation of the forward problem and assume that boundary
data are available on the whole boundary. Currently, it is not clear how to adapt the
theoretical results to more realistic electrode models like those from [8, 21, 22].

5.1. The test for convergence of (3.3)

As has been mentioned before, a robust convergence test for the series in (3.3),
respectively (4.2), is fundamental for a successful performance of both algorithms.
The motivation for our numerical convergence criterion emanates from the example at
the end of Section 4. In [5] it has been shown for the same example that the numerators
and denominators in (3.3) decay more or less exponentially. This is also true for the
numerators and denominators in (4.2) according to the example in Section 4. Thus,
from a comparison of the decay rates one can infer convergence or divergence of the two
series. Our numerical experiments confirm this behavior for more general situations,
and hence we base our convergence test on this assumption.

Figure 5 illustrates the algorithm for two test points zy (green, V) inside and z,
(red, A) outside a circular inclusion with conductivity £ = 0.5. The left hand side plot
shows three least squares fitting straight lines: The blue one fits the eigenvalues of
Ay — Ay (blue dots), the other two lines fit the squared Fourier coefficients of the test
points with the respective color. Note that the slope of each straight line measures
the mean exponential decay rate of the fitted quantities. We therefore regard a test
point as an element of the inclusion, if and only if the line through its squared Fourier
coefficients is steeper than the blue line.

In our code we slightly modify this criterion. Rather than fitting all eigenvalues
and all Fourier coefficients, we average them pairwise in the following way: Instead
of Aog_1 and A9 we take their geometric mean (/\gk_l)\gk)l/z as one single number;
instead of (g.,q4, vor—1)% and (g, 4, v2r)? we take their sum (g, 4, vor—1)% + (g2.d, ok )>
as corresponding data. The usage of these averaged quantities is again motivated by
the radially symmetric example, see [4] for a detailed discussion. In short, the reason
is that each frequency comes with a pair of current patterns (a sine and a cosine) and
it appears natural to treat the corresponding quantities as one piece of data. This is
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Figure 6. Left: (fiq4,(Ac — A1)fi,q) versus k for two directions d. Right:
Intersection of the half planes Eg ;(g)-

also the way how Figure 5 has been created: Each marker in the left hand side plot
of this figure represents one of these averages.

Repeating this test for each of M = 65 x 65 points on an equidistant grid covering
B yields the yellow shaded reconstruction of Q2 shown in Figure 5.

5.2. The test for convergence of (4.2)

For Ikehata’s method we use a similar approach to determine for each direction d
the convergence abscissa t(d), i.e. the infimum of all ¢ for which the series in (4.2)
remains finite. This is illustrated in Figure 6 for the same example as before. The
left hand side plot contains the least squares fitted straight lines through the data
(fr.ds (Ao — A1) fr,a), plotted in semi-logarithmic scale as a function of k. For the
upper line (>>) we have used d = (1,0), the other line (A) corresponds to d = (0,1).
From the slope of the line we deduce our estimate for ¢(d).

In the right hand side plot the gray lines indicate the boundaries of the half planes
Eq(q) for M 1/2 = 65 directions d; the two darker lines show the results for the two
directions examplified in the left hand plot. The cyan shaded region is the intersection
of all these half planes and hence the reconstruction of conv(2) according to (4.3).

5.3. Numerical comparison

In the sequel we describe further numerical examples with more complicated phantoms
to compare the performance of the two algorithms. In all figures the inclusion  is
indicated by a dashed line, the yellow shaded reconstruction is the one obtained with
the algorithm of Section 3, the (darker) cyan shaded reconstruction corresponds to
Ikehata’s method.

In our first example (left plot in Figure 7) Q has a sharp corner but is convex.
The phantom in our second test case (right plot in Figure 7) is the celebrated kite
obstacle of the inverse scattering community, cf. e.g. [20]. In both examples we let
% = 0.5 within the inclusion. We recall that the method of Ikehata can at best recover
the convex hull of €2; this can be observed in the reconstruction of the kite phantom.
Even for the convex inclusion, though, the yellow reconstruction is slightly superior
to the cyan one.
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Figure 7. Left: Convex inclusion with sharp corner. Right: Kite phantom.

Figure 8. Two inclusions with k1 = 0.5 and k2 = 0.5, 0.99, 1, respectively (from
left to right).

It is striking that the yellow reconstructions seem to approximate 2 from the
interior, whereas the cyan reconstructions almost always overestimate the inclusions.
This can be explained to some extent with a refined asymptotic analysis of the
individual terms in (3.3), respectively (4.2), at least in the radially symmetric case.

In Figure 8 we present a sequel of reconstructions of two inclusions ; and 29
within a non-circular domain. The conductivity of € has fixed value k = 0.5 for
all three examples, whereas the conductivity of 2o varies in contrast from x = 0.5
(left) through £ = 0.99 (middle) to x = 1 (right). The latter means nothing else than
that there is no second inclusion in the right example, as is clearly detected by both
methods.

When « = 0.5 in Q9 both methods perform fairly well, comparable to the
reconstructions in Figure 7. Of course, as Tkehata’s method approximates the (simply
connected) convex hull of it is not possible to deduce the number of components of
Q from the cyan reconstruction. When £ = 0.99 in Q5 the contrast to the background
is extremely small. With this in mind the two reconstructions in the middle plot are
surprisingly good. Although €25 is almost invisible, both methods can “see” part of
it, and the method of Section 3 is able to distinguish the two inclusions, paying the
price of a smeared approximation of 2.
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Figure 9. Left: exact (+) and perturbed (o) averaged eigenvalues of Ay, — Aj.
Right: exact (triangles) and perturbed (lines) values (f, 4, (Ao — A1) fi,q) for two
directions. In each case § &~ 2.98 - 1074,

5.4. Noisy data

Electrical impedance tomography is an extremely ill-posed inverse problem and every
reconstruction method requires some sort of regularization in the presence of noisy
data. In the sequel we point out how regularization can be incorporated into the
two algorithms. We also investigate the robustness of these methods by adding 0.1%
noise to each measurement g (relative to L?(T')). The noise manifests itself as a
perturbation F of the operator A, — Ay, where the norm é§ = ||E|| is of the order of
the noise level.

We begin with our method of Section 3. From perturbation theory we know
that the eigenvalues of A, — Ay + E differ by at most § from the eigenvalues
of the unperturbed operator. This can also be observed in the left hand plot of
Figure 9, which shows the true and perturbed (averaged) eigenvalues for the convex
phantom in Figure 7. Here, § ~ 2.98 - 10~* and the perturbed eigenvalues level
off near A = 2.7 - 1074, This indicates that the reconstruction should be based
only on those terms in the series (3.3) with |Ag| > §; this kind of regularization is
similar to a technique for linear ill-posed problems known as truncated singular value
decomposition, cf. [11]. Although ¢ is hardly known in practice, it is easy to select the
appropriate terms using a plot like Figure 9. In this particular example we can take
four averaged eigenvalues that stick out of the noise level. Note that this selection of
eigenvalues is done only once in the beginning.

The reconstructions for the three phantoms are shown in Figure 10. As one might
expect the quality of the reconstructions deteriorates because of noise as compared
to Figures 7 and 8, but nevertheless gives valuable information about the location of
the inclusions. Only in the last example the algorithm fails to distinguish the two
inclusions (both with conductivity x = 0.5).

In Ikehata’s method the appearance of E causes perturbations in (4.4) up to the
order of

S|\ fuallZe(ry,  where || frallze () = O(keF* @) as k — oo (5.1)

and s(d) = sup{z -d : z € T} > ¢(d). Ignoring the polynomial factors in (4.4)
and (5.1) we expect that the error term will in general dominate (fz 4, (As — A1) fi,a)
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Figure 10. Reconstructions with noisy data (0.1% noise).

for “frequencies” k beyond

|log 4]
2(s(d) — t(d))’
and the computation of ¢(d) as described in Section 5.2 should therefore only use
frequencies k < ks(d). Consequently, the larger s(d) — ¢(d) the less frequencies can be
used for the direction d, and this implies that the reconstruction of those parts of the
boundary of conv(2), which are far from the outer boundary 7" will be very sensitive
to noise. This is confirmed by the numerical results in Figure 10, most strikingly for
the first two examples.

Unfortunately, ks(d) cannot be evaluated in practice, even if § were known,
because t(d) is not. However, as illustrated in Figure 9 (right), the sequence (4.4) still
behaves like e2¥(9) for small frequencies k before the asymptotic behavior (5.1) sets
in, and it is straightforward to find the transient between the two regimes numerically
(see the bullets in Figure 9). This particular plot refers to the reconstruction in the
middle of Figure 10, in which B is the unit circle and § ~ 2.98 - 10~%. For the solid
curve, where d = (1,0) we have s(d) = 1 and ¢(d) = 0.5, hence (5.2) yields k;s(d) ~ 8.1.
In contrast, when d = (—1,0) as for the dashed curve, we have s(d) = 1, t(d) = 0,
which gives ks(d) ~ 4.1 in this case. Hence, the numerical detection of the transient
in Figure 9 actually appears to be more robust than the rule of thumb value (5.2).

ks(d) = (5.2)

5.5. Summary

For comparison we show in Figure 11 the result of a typical iterative output least
squares method for the two phantoms of Figure 8 with k = 0.5 in both inlusions, see
also Figure 10 (right) for the same example with noise. This method uses an inexact
Gauf-Newton scheme with a conjugate gradient inner iteration and sophisticated
choice of the regularization parameters. The two objects are visible, but it is difficult
to locate their precise boundaries. We emphasize that these reconstructions require
far more computing time than the methods presented in this paper.

We conclude that the two methods provide interesting alternatives to iterative
Newton-type methods for the impedance tomography problem. Both methods are
extraordinarily cheap and give reasonable information on inclusions with distinct
jumps in the conductivity within a homogeneous background. Due to the ill-
posed nature of the problem the two methods are very sensitive to noise, although
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Figure 11. Reconstructions using output least squares. Left: no noise. Right:
0.1% noise.

regularization can be incorporated in a very natural way. The numerical experiments
indicate that the method of Section 3 is more robust in this case.
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