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Abstra
t. Ele
tri
al impedan
e tomography is applied to re
over in
lusions

within a body from ele
trostati
 measurements on the surfa
e of the body. Here,

an in
lusion is de�ned to be a region where the ele
tri
al 
ondu
tivity di�ers

signi�
antly from the ba
kground. Re
ently, theoreti
al foundations have been

developed for new te
hniques to lo
alize in
lusions from impedan
e tomography

data. In this paper it is shown that these theoreti
al results lead quite naturally

to non-iterative numeri
al re
onstru
tion algorithms. The algorithms are applied

to a number of test 
ases to 
ompare their performan
e.
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1. Introdu
tion

Computerized tomography (
t) is by now a standard tool in medi
al diagnosti
s and

nondestru
tive testing of materials. Beyond well-established methods like x-ray 
t

or mri the last de
ade has seen in
reasing interest in and substantial progress of new

imaging te
hniques su
h as, for instan
e, ele
tri
al impedan
e tomography (eit).

In eit the ele
tri
al 
ondu
tivity distribution of an obje
t is determined from

measurements of 
urrents and voltages on the surfa
e of the obje
t. Calder�on [7℄ 
oined

the phrase inverse boundary value problem for this te
hnique, sin
e the 
ondu
tivity

appears as di�usion 
oeÆ
ient in an ellipti
 di�erential equation. In fa
t, the known


urrents and the voltages on the surfa
e of the obje
t represent the Neumann and

Diri
hlet boundary values, respe
tively, of the solution of the di�erential equation.

Originating with the pioneering work of Calder�on and an early numeri
al

algorithm by Barber and Brown [2℄ there have sin
e been numerous papers in

the mathemati
al and engineering literature addressing su
h diverse topi
s as

identi�ability and stability of the 
ondu
tivity, the design of measuring devi
es,

mathemati
al ele
trode modelling, and numeri
al re
onstru
tion methods.

This inverse problem is nonlinear and ill-posed, and in fa
t these are the main

diÆ
ulties any numeri
al re
onstru
tion method has to 
ope with. Many of the

published algorithms only deal with a linearized problem, whi
h itself is often solved

only approximately. Unfortunately, linearization yields a numeri
al solution of limited
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quality, in parti
ular, if the 
ondu
tivity is far from homogeneous. Other authors

therefore improve the re
onstru
tion by su

essively repeating the linearization pro
ess

whi
h 
orresponds to a Newton type method for an output least squares formulation

of the inverse problem. However, these variants require a substantial amount of

additional 
omputational work. Still, this type of method represents the 
urrent state

of the art for solving the inverse problem in eit.

It is widely a

epted that when solving inverse problems one should in
orporate

as mu
h as possible a-priori stru
tural information on the 
ondu
tivity, and extra
t

at the same time only as little information as is really ne
essary. Our approa
h is of

similar spirit: We restri
t ourselves to the situation where one is only interested in

deviations from a 
onstant referen
e 
ondu
tivity, and where it is known that these

deviations o

ur in the form of dis
ontinuities.

This paper is partly based on re
ent work of the �rst author [4, 5℄ where a new

method (related to an approa
h of Kirs
h [20℄ for inverse s
attering problems) has been

developed for eit whi
h is able to re
onstru
t the support of su
h in
lusions but not the

pre
ise value of the 
ondu
tivity within them. The latter may seem as a short
oming

but we stress that even those re
onstru
tion algorithms, whi
h are 
urrently in use for

imaging quantitative features of the 
ondu
tivity distribution usually fail in resolving


ondu
tivity values to suÆ
ient a

ura
y.

In this work we fo
us on a numeri
al implementation of the aforementioned

s
heme, the main problem being a robust numeri
al 
onvergen
e 
riterion of some

in�nite series the terms of whi
h are subje
t to noise. As it turns out, almost the same

te
hniques 
an be used to implement another re
ent method for �nding dis
ontinuities

of the 
ondu
tivity in eit due to Ikehata [17℄.

In the literature few numeri
al methods have been proposed whi
h are parti
ularly

designed for the 
ase of dis
ontinuous 
ondu
tivities; we mention the approa
hes

in [3, 6, 9, 10, 15, 16, 19℄. In 
ontrast to these works the algorithms investigated

in this paper are dire
t, i.e. non-iterative, and do not invoke any kind of linearization.

Moreover, they only require the value of the 
ondu
tivity near the boundary and no

a-priori information on the shape of the in
lusions. Even the number of in
lusions

need not be known beforehand. We hasten to add that, independently, H�ahner [14℄

adopted the te
hniques of Kirs
h to a related inverse 
ondu
tivity problem. However,

his algorithm is limited to grounded perfe
t 
ondu
tors, and hen
e, does not apply to

the inverse problem in eit. On the other hand, his paper 
ontains three dimensional

numeri
al 
omputations, whereas we 
on�ne ourselves to two dimensions.

The outline of our paper is as follows. Notations and basi
 properties of the

inverse problem are summarized in Se
tion 2. Then we turn to the two methods in

Se
tions 3 and 4, respe
tively, where we 
on
entrate primarily on algorithmi
 aspe
ts.

In Se
tion 5 we �nally 
ompare the numeri
al performan
e and the robustness of the

two methods.

2. Forward and inverse problem

Let B � R

n

, n � 2, be a simply 
onne
ted domain with C

2

-smooth boundary T = �B.

When a 
urrent density f with

H

T

f ds = 0 is indu
ed on T , this gives rise to an

ele
tri
al potential u in B, whi
h solves the Neumann boundary value problem

r � �ru = 0 in B; �

�u

��

= f on T; (2.1)
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Figure 1. Homogeneous medium with p in
lusions.

where �(x) is the 
ondu
tivity distribution inside of B. The potential is unique up to

an additive 
onstant and we shall use throughout the normalization

H

T

u ds = 0.

In this work we 
on
entrate on 
ondu
tivities � whi
h are 
onstant outside a �nite

union of simply 
onne
ted Lips
hitz domains 


i

� B, i = 1; : : : ; p, as in Figure 1 (we

shall assume that the 
losures of the subdomains 


i

are mutual disjoint), with

�(x) =

(

�(x) in 
 = 


1

[ : : : [ 


p

,

1 in B n 
,

(2.2)

where

0 < � � �(x) � � < 1 for all x 2 
: (2.3)

One 
an think of B as the obje
t under 
onsideration, whi
h is known to be

foremost homogeneous ex
ept for the in
lusions whi
h di�er signi�
antly from the

ba
kground in 
ondu
tivity. For example, B 
ould be the 
ross se
tion of the human

body, the in
lusions being organs, bones, et
., see e.g. [2℄ for 
hara
teristi
 values of

� in this 
ase.

Sin
e the 
ondu
tivity (2.2) is not smooth we have to interpret (2.1) in the usual

weak sense, a

ording to whi
h the solution u of (2.1) belongs to H

1

�

(B) = fu 2

H

1

(B) :

H

T

u ds = 0g and satis�es

Z

B

�ru �rv dx =

I

T

fv ds for all v 2 H

1

�

(B): (2.4)

In impedan
e tomography a sequel of boundary 
urrents f

k

, k = 1; : : : ;m, is

sent through the surfa
e of the body B. For ea
h 
urrent f

k

we denote by eu

k

the


orresponding solution of (2.4). A

ordingly, we refer to the potential u

k

as the

solution of (2.4) with same input 
urrent f

k

but with homogeneous 
ondu
tivity

�

1

� 1 in B. The observed data are the re
orded potentials on the surfa
e T ,

i.e. the Diri
hlet values eg

k

= eu

k

j

T

. These boundary potentials belong to the spa
e

L

2

�

(T ) = f� 2 L

2

(T ) :

H

T

� ds = 0g, and the map f

k

7! eg

k

is known as the Neumann-

Diri
hlet operator �

�

: L

2

�

(T )! L

2

�

(T ) asso
iated with �. When � = �

1

we write �

1

for �

�

and g

k

= �

1

f

k

instead of eg

k

.

The inverse problem 
onsists of re
onstru
ting � from (partial) knowledge of

�

�

. It is known that the Neumann-Diri
hlet operator �

�


arries enough information

to identify the 
ondu
tivity � provided it has the form (2.2) with � 2 C

2

(
), see
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Figure 2. Equipotentials of a dipole in point z with axis d.

Isakov [18, Thm. 5.7.1℄. However, the re
onstru
tion problem is nonlinear and severely

ill-posed.

In the following two se
tions we resume two re
ent theoreti
al 
hara
terizations

of the in
lusion 
 and its 
onvex hull, respe
tively, when given the full Neumann-

Diri
hlet operator as data. In 
ontrast to the method of proof employed in [18℄ and in

earlier works, these two 
hara
terizations are 
onstru
tive and lead quite naturally to

numeri
al re
onstru
tion pro
edures. On the other hand, Isakov's uniqueness result

remains true without the assumption (2.3) that �(x) be stri
tly smaller than the

ba
kground 
ondu
tivity in 
. It only requires that � is dis
ontinuous at ea
h point of

the boundary of 
; it is only for the two aforementioned 
onstru
tive 
hara
terizations,

that we have imposed the stronger 
ondition (2.3).

3. Chara
terization of the in
lusion set

We �rst des
ribe a method developed in [5, 4℄.

3.1. Theoreti
al foundation

Let

D

z;d

(x) =

1

2�

(z � x) � d

jz � xj

n

; x 6= z; (3.1)

be the dipole potential lo
ated in z with axis d 2 R

n

, jdj = 1, 
f. Figure 2, and G

z;d

solve (in a distributional sense) the di�erential equation

�G

z;d

= �D

z;d

in B;

�

��

G

z;d

= 0 on T;

I

T

G

z;d

ds = 0: (3.2)

In [5℄ (see also [4℄) it has been shown that the in
lusion set 
 
an be 
hara
terized

in the following simple way:

Theorem A A point z 2 B belongs to 
, if and only if g

z;d

= G

z;d

�

�

T

2 R

�

(�

�

�

�

1

)

1=2

�

.

Note that �

�

� �

1

: L

2

�

(T ) ! L

2

�

(T ) is 
ompa
t, selfadjoint, and positive by virtue

of (2.2), (2.3), 
f. Gisser, Isaa
son, and Newell [12℄. For this reason �

�

��

1

admits a

positive square root with a dense range in L

2

�

(T ). As for any 
ompa
t operator this
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Figure 3. Point z 2 B (left) and 
orresponding fun
tion g

z;d

vs. ar
length

(right).

range 
an be 
hara
terized by means of the Pi
ard 
riterion (see for instan
e [11℄),

whi
h we here formulate in terms of the eigenfun
tions v

k

and eigenvalues �

k

of �

�

��

1

(i.e. the squares of the singular values of (�

�

� �

1

)

1=2

):

g

z;d

2 R

�

(�

�

� �

1

)

1=2

�

; if and only if

1

X

k=1

hg

z;d

; v

k

i

2

�

k

<1; (3.3)

where h � ; � i denotes the inner produ
t in L

2

(T ).

We in
lude a brief interpretation of Theorem A; for details we refer to [5℄. Taking

the di�erential equation (2.1) into a

ount, an element ' from the range of �

�

� �

1

is easily seen to be the tra
e on T of a fun
tion w harmoni
 in B n 
, with vanishing

Neumann boundary values �w=�� = 0 on T . As su
h, w is in general a smooth

fun
tion, the smoothness 
an only deteriorate in the neighborhood of �. Exploiting

the smoothness of elements from the range of �

�

��

1

should therefore make it possible

to lo
ate where, and how 
lose, � approa
hes T . The fun
tions G

z;d

are the 
lue for

this, be
ause they are harmoni
 in B n fzg and their Neumann boundary values also

vanish on T ; �nally, their tra
e g

z;d

exhibits a hump near those points on T whi
h are


losest to z, 
f. Figure 3. Consequently, if z 2 
 then g

z;d


an be better approximated

by fun
tions from the range of �

�

� �

1

than in the 
ase z =2 
, and this is the key

interpretation of property (3.3).

For an eÆ
ient 
omputation of these probe fun
tions g

z;d

it is important to note

that it is not required to solve the di�erential equation (3.2) numeri
ally, for the

boundary values of the solution G

z;d


an be 
omputed dire
tly with the following

tri
k: sin
e G

z;d

�D

z;d

is harmoni
 in B with Neumann boundary data �

�

��

D

z;d

on

T , we have

(G

z;d

�D

z;d

)

�

�

T

+ 
 = ��

1

�

��

D

z;d

;

i.e.,

g

z;d

= D

z;d

�

�

T

� �

1

�

��

D

z;d

� 
; (3.4)

where the 
onstant 
 is su
h that

H

T

g

z;d

ds = 0.

3.2. Algorithmi
 implementation

For the implementation it is ne
essary to 
ompute on
e and for all �

1

by numeri
al

simulations, whi
h amounts to solving Neumann boundary value problems for the
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Lapla
ian in B. For this we use the same input 
urrent patterns ff

k

g

m

k=1

, for whi
h

we have measured data eg

k

= �

�

f

k

, and obtain g

k

= �

1

f

k

. In the sequel we assume

that the 
urrent patterns form an orthonormal set.

To test the 
onvergen
e of the series in Equation (3.3) we need the eigenvalues

and eigenve
tors of �

�

� �

1

. In view of our dis
rete setting it appears natural

to approximate the individual terms of this series by repla
ing for �

k

and v

k

the

asso
iated eigenvalues and eigenve
tors of the Galerkin proje
tion P

�

(�

�

� �

1

)P ;

here P is the orthogonal proje
tor onto the span of ff

k

g. This Galerkin proje
tion

is represented by the m � m matrix A 
ontaining in the k{th 
olumn the potential

di�eren
e eg

k

�g

k

expanded in the basis ff

k

g. Sin
em is a small number the eigenvalues

of A are fairly 
heap to obtain.

For re
onstru
ting 
 we 
over B with an equidistant grid with a total of, say

M , grid points, 
ompute g

z;d

from (3.4) for ea
h grid point z, and then test the


onvergen
e of the series in (3.3). This test is a deli
ate issue and a 
ru
ial point of

the numeri
al algorithm, and we postpone its dis
ussion to Se
tion 5.1 be
ause the

same te
hnique applies to the other method to follow in Se
tion 4.

At this point we brie
y 
omment on the amount of work required for ea
h grid

point z: The 
omputation of g

z;d

and its expansion into the basis ff

k

g takes on the

order of O(mq +m

2

) operations, where q is the number of points for dis
retizing the

boundary T . The 
onvergen
e test itself 
an be realized in only O(m

2

) operations. In

pra
ti
e q will be mu
h bigger than m, so that we have a total of O(mqM) operations

to perform the whole algorithm. This �gure, however, does not take into a

ount

the 
omputation of �

1

and the eigenvalues of A, whi
h is done only on
e at the very

beginning of the algorithm. While the eigenvalue 
omputation is negligible extra work

with only O(m

3

) operations, the amount of work for the evaluation of �

1

strongly

depends on the spa
e dimension n, and the method whi
h is employed for simulating

the forward problem (su
h as �nite di�eren
e or �nite element s
hemes, boundary

element methods, or analyti
 representations for the solution of the Lapla
e equation,

et
.).

We mention that for the unit disk in R

2

the fun
tion g

z;d

is expli
itly known to

be

g

z;d

(x) =

1

�

(z � x) � d

jz � xj

2

:

This 
an be used to 
onstru
t an alternative probe fun
tion bg

z;d

via 
onformal

mappings, whi
h 
an be substituted for g

z;d

in Theorem A: Let � be a 
onformal

map whi
h takes the general domain B onto the unit disk, then bg

z;d

is given by the

formula

bg

z;d

(x) = g

�(z);d

(�(x))� 
;

where the 
onstant 
 has again to be 
hosen su
h that

H

T

bg

z;d

ds = 0. This has been

veri�ed and used numeri
ally in [4℄. On
e the 
onformal map has been determined,

the 
omputational amount of work is 
omparable to the previous approa
h. Our

experien
e with the two approa
hes is 
urrently restri
ted to syntheti
 data where

both methods seem to perform similarly. The latter approa
h, however, 
an only be

used in two spa
e dimensions whereas the other s
heme extends to the three spa
e

dimensions.
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4. Ikehata's method for lo
ating the 
onvex hull of the in
lusions

It is interesting to 
ompare the method from the previous se
tion with results obtained

by Ikehata [17℄.

For some unit ve
tor d 2 R

n

and any orthogonal dire
tion d

?

Ikehata 
onsiders

the Calder�on patterns

f

k;d

(x) =

�

��

exp

�

kx � (d+ id

?

)

�

; x 2 T; (4.1)

where k > 0. Then, under suitable regularity assumptions on 
, Ikehata was able to

prove a result, whi
h is easily seen to be equivalent to the following:

Theorem B The 
losure of the in
lusion 
 is 
ontained in the half spa
e E

d;t

=

fx � d < tg, if and only if

1

X

k=1

hf

k;d

; (�

�

� �

1

)f

k;d

i

e

2kt

<1: (4.2)

Be
ause half spa
es are 
onvex, 
 
an be repla
ed by its 
onvex hull, 
onv(
), in the

assertion of Theorem B. If we set t(d) = supfx � d : x 2 
g (
f. Figure 4) then it

follows from Theorem B that t(d) is the in�mum of all t for whi
h (4.2) holds true.

This enables us to re
onstru
t the 
onvex hull of 
, be
ause


onv(
) =

\

jdj=1

E

d;t(d)

: (4.3)

The proof of Theorem B is surprisingly simple and therefore we sket
h its main

ideas here. Starting from a well-known identity �rst utilized by Alessandrini in [1℄,

elementary 
al
ulations show that

hf; (�

�

� �

1

)fi �

Z




(�� 1)jru

1

j

2

dx;

valid for any input 
urrent f and the asso
iated potential u

1

for the homogeneous


ondu
tivity. For f = f

k;d

we have u

1

(x) = exp

�

kx � (d+ id

?

)

�

, and hen
e

hf

k;d

; (�

�

� �

1

)f

k;d

i � k

2

Z




e

2kx�d

dx: (4.4)
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From this it is 
omparatively easy to reason that

hf

k;d

; (�

�

� �

1

)f

k;d

i

1=k

�! e

2t(d)

as k !1, and therefore the root 
riterion implies 
onvergen
e of (4.2) if t(d) < t and

divergen
e if t(d) > t. This is suÆ
ient to establish the assertion of the theorem.

The dire
tions d in Theorem B play a similar role as the grid points z in

Theorem A. A

ordingly, we 
hose a number of dire
tions d, proje
t the Calder�on

patterns (4.1) onto the span of the inje
ted 
urrents ff

k

g and use the same Galerkin

proje
tion P

�

(�

�

� �

1

)P as in Se
tion 3.2 to approximate the numerators in (4.2).

In pra
ti
e it will be 
heaper to 
ompute hf

k;d

;�

1

f

k;d

i analyti
ally using the fa
t

that �

1

f

k;d

(x) = exp

�

kx � (d+id

?

)

�

; however, sin
e this is no longer equivalent to the

Galerkin proje
tion this may 
ause a loss of stability. The test of 
onvergen
e for (4.2)

is the same as for (3.3), 
f. Se
tion 5. This results in a total 
ost of O(mq + m

2

)

operations for ea
h dire
tion. Thus, the amount of work for ea
h single test is of the

same order of magnitude as for the method of Se
tion 3.

Whereas in the former method the test points z run through the interior of B,

here the dire
tions d are restri
ted to the surfa
e of the unit ball. Therefore, we expe
t

to require O(M

(n�1)=n

) di�erent dire
tions to obtain a similar resolution as for the

method of Se
tion 3. This makes Ikehata's method 
heaper, but on the other hand it

only yields the 
onvex hull of the in
lusions.

Example. In [5℄ the eviden
e of Theorem A has been veri�ed for a simple two-

dimensional radially symmetri
 example. We shall in
lude here a similar analysis

for Theorem B. Consider the 
ase that B is the unit disk in R

2

and the in
lusion


 = fjxj < �g is the disk of radius �, 0 < � < 1, 
entered at the origin. The


ondu
tivity is assumed to attain a 
onstant value � with 0 � � < 1 in 
. If we 
hoose

the dire
tion d = (
os#; sin#) and introdu
e polar 
oordinates x = (r 
os �; r sin �),

then we �nd that

f

k;d

(�) = ke

i(��#)

exp(ke

i(��#)

) =

1

X

m=1

k

m

(m� 1)!

e

im(��#)

:

Using the fa
t that the e

im(��#)

, m 2 N, are eigenfun
tions of �

�

��

1

with asso
iated

eigenvalues 2��

2m

=(m(1� ��

2m

)), where � = (1� �)=(1 + �) 2 (0; 1℄, 
f. e.g. [12℄, we

obtain

hf

k;d

; (�

�

� �

1

)f

k;d

i =

1

X

m=1

2��

1� ��

2m

2m

(k�)

2m

(m!)

2

:

Sin
e

0 < 2�� �

2��

1� ��

2m

�

2��

1� ��

2

we have

hf

k;d

; (�

�

� �

1

)f

k;d

i �

1

X

m=1

2m

(m!)

2

(k�)

2m

= 2k� I

1

(2k�);

where I

1

is the modi�ed Bessel fun
tion of order one. Hen
e, 
f. Gradshteyn and

Ryzhik [13, Eq. 8.451.5℄,

hf

k;d

; (�

�

� �

1

)f

k;d

i �

p

k e

2k�

:

Thus we see that the sum in (4.2) 
onverges if and only if t > �, and hen
e t(d) = �

for ea
h dire
tion d. This establishes (4.3) in this spe
ial 
ase.
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Figure 5. Left: averaged eigenvalues (blue) and squared Fourier 
oeÆ
ients

versus eigenvalue 
ount. Right: in
lusion 
 (dashed line) and two test points.

5. Numeri
al results

All our 
omputations in this se
tion 
orrespond to the 2D 
ase. We use syntheti
 data

from a �nite element simulation of the forward problem and assume that boundary

data are available on the whole boundary. Currently, it is not 
lear how to adapt the

theoreti
al results to more realisti
 ele
trode models like those from [8, 21, 22℄.

5.1. The test for 
onvergen
e of (3.3)

As has been mentioned before, a robust 
onvergen
e test for the series in (3.3),

respe
tively (4.2), is fundamental for a su

essful performan
e of both algorithms.

The motivation for our numeri
al 
onvergen
e 
riterion emanates from the example at

the end of Se
tion 4. In [5℄ it has been shown for the same example that the numerators

and denominators in (3.3) de
ay more or less exponentially. This is also true for the

numerators and denominators in (4.2) a

ording to the example in Se
tion 4. Thus,

from a 
omparison of the de
ay rates one 
an infer 
onvergen
e or divergen
e of the two

series. Our numeri
al experiments 
on�rm this behavior for more general situations,

and hen
e we base our 
onvergen
e test on this assumption.

Figure 5 illustrates the algorithm for two test points z

O

(green, O) inside and z

M

(red, M) outside a 
ir
ular in
lusion with 
ondu
tivity � = 0:5. The left hand side plot

shows three least squares �tting straight lines: The blue one �ts the eigenvalues of

�

�

��

1

(blue dots), the other two lines �t the squared Fourier 
oeÆ
ients of the test

points with the respe
tive 
olor. Note that the slope of ea
h straight line measures

the mean exponential de
ay rate of the �tted quantities. We therefore regard a test

point as an element of the in
lusion, if and only if the line through its squared Fourier


oeÆ
ients is steeper than the blue line.

In our 
ode we slightly modify this 
riterion. Rather than �tting all eigenvalues

and all Fourier 
oeÆ
ients, we average them pairwise in the following way: Instead

of �

2k�1

and �

2k

we take their geometri
 mean (�

2k�1

�

2k

)

1=2

as one single number;

instead of hg

z;d

; v

2k�1

i

2

and hg

z;d

; v

2k

i

2

we take their sum hg

z;d

; v

2k�1

i

2

+ hg

z;d

; v

2k

i

2

as 
orresponding data. The usage of these averaged quantities is again motivated by

the radially symmetri
 example, see [4℄ for a detailed dis
ussion. In short, the reason

is that ea
h frequen
y 
omes with a pair of 
urrent patterns (a sine and a 
osine) and

it appears natural to treat the 
orresponding quantities as one pie
e of data. This is
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.

also the way how Figure 5 has been 
reated: Ea
h marker in the left hand side plot

of this �gure represents one of these averages.

Repeating this test for ea
h ofM = 65�65 points on an equidistant grid 
overing

B yields the yellow shaded re
onstru
tion of 
 shown in Figure 5.

5.2. The test for 
onvergen
e of (4.2)

For Ikehata's method we use a similar approa
h to determine for ea
h dire
tion d

the 
onvergen
e abs
issa t(d), i.e. the in�mum of all t for whi
h the series in (4.2)

remains �nite. This is illustrated in Figure 6 for the same example as before. The

left hand side plot 
ontains the least squares �tted straight lines through the data

hf

k;d

; (�

�

� �

1

)f

k;d

i, plotted in semi-logarithmi
 s
ale as a fun
tion of k. For the

upper line (B) we have used d = (1; 0), the other line (M) 
orresponds to d = (0; 1).

From the slope of the line we dedu
e our estimate for t(d).

In the right hand side plot the gray lines indi
ate the boundaries of the half planes

E

d;t(d)

for M

1=2

= 65 dire
tions d; the two darker lines show the results for the two

dire
tions exampli�ed in the left hand plot. The 
yan shaded region is the interse
tion

of all these half planes and hen
e the re
onstru
tion of 
onv(
) a

ording to (4.3).

5.3. Numeri
al 
omparison

In the sequel we des
ribe further numeri
al examples with more 
ompli
ated phantoms

to 
ompare the performan
e of the two algorithms. In all �gures the in
lusion 
 is

indi
ated by a dashed line, the yellow shaded re
onstru
tion is the one obtained with

the algorithm of Se
tion 3, the (darker) 
yan shaded re
onstru
tion 
orresponds to

Ikehata's method.

In our �rst example (left plot in Figure 7) 
 has a sharp 
orner but is 
onvex.

The phantom in our se
ond test 
ase (right plot in Figure 7) is the 
elebrated kite

obsta
le of the inverse s
attering 
ommunity, 
f. e.g. [20℄. In both examples we let

� = 0:5 within the in
lusion. We re
all that the method of Ikehata 
an at best re
over

the 
onvex hull of 
; this 
an be observed in the re
onstru
tion of the kite phantom.

Even for the 
onvex in
lusion, though, the yellow re
onstru
tion is slightly superior

to the 
yan one.
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Figure 7. Left: Convex in
lusion with sharp 
orner. Right: Kite phantom.
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Figure 8. Two in
lusions with �

1

= 0:5 and �

2

= 0:5, 0:99, 1, respe
tively (from

left to right).

It is striking that the yellow re
onstru
tions seem to approximate 
 from the

interior, whereas the 
yan re
onstru
tions almost always overestimate the in
lusions.

This 
an be explained to some extent with a re�ned asymptoti
 analysis of the

individual terms in (3.3), respe
tively (4.2), at least in the radially symmetri
 
ase.

In Figure 8 we present a sequel of re
onstru
tions of two in
lusions 


1

and 


2

within a non-
ir
ular domain. The 
ondu
tivity of 


1

has �xed value � = 0:5 for

all three examples, whereas the 
ondu
tivity of 


2

varies in 
ontrast from � = 0:5

(left) through � = 0:99 (middle) to � = 1 (right). The latter means nothing else than

that there is no se
ond in
lusion in the right example, as is 
learly dete
ted by both

methods.

When � = 0:5 in 


2

both methods perform fairly well, 
omparable to the

re
onstru
tions in Figure 7. Of 
ourse, as Ikehata's method approximates the (simply


onne
ted) 
onvex hull of 
 it is not possible to dedu
e the number of 
omponents of


 from the 
yan re
onstru
tion. When � = 0:99 in 


2

the 
ontrast to the ba
kground

is extremely small. With this in mind the two re
onstru
tions in the middle plot are

surprisingly good. Although 


2

is almost invisible, both methods 
an \see" part of

it, and the method of Se
tion 3 is able to distinguish the two in
lusions, paying the

pri
e of a smeared approximation of 


1

.
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Figure 9. Left: exa
t (�) and perturbed (Æ) averaged eigenvalues of �

�

� �

1

.

Right: exa
t (triangles) and perturbed (lines) values hf

k;d

; (�

�

��

1

)f

k;d

i for two

dire
tions. In ea
h 
ase Æ � 2:98 � 10

�4

.

5.4. Noisy data

Ele
tri
al impedan
e tomography is an extremely ill-posed inverse problem and every

re
onstru
tion method requires some sort of regularization in the presen
e of noisy

data. In the sequel we point out how regularization 
an be in
orporated into the

two algorithms. We also investigate the robustness of these methods by adding 0:1%

noise to ea
h measurement eg

k

(relative to L

2

(T )). The noise manifests itself as a

perturbation E of the operator �

�

� �

1

, where the norm Æ = kEk is of the order of

the noise level.

We begin with our method of Se
tion 3. From perturbation theory we know

that the eigenvalues of �

�

� �

1

+ E di�er by at most Æ from the eigenvalues

of the unperturbed operator. This 
an also be observed in the left hand plot of

Figure 9, whi
h shows the true and perturbed (averaged) eigenvalues for the 
onvex

phantom in Figure 7. Here, Æ � 2:98 � 10

�4

and the perturbed eigenvalues level

o� near � = 2:7 � 10

�4

. This indi
ates that the re
onstru
tion should be based

only on those terms in the series (3.3) with j�

k

j > Æ; this kind of regularization is

similar to a te
hnique for linear ill-posed problems known as trun
ated singular value

de
omposition, 
f. [11℄. Although Æ is hardly known in pra
ti
e, it is easy to sele
t the

appropriate terms using a plot like Figure 9. In this parti
ular example we 
an take

four averaged eigenvalues that sti
k out of the noise level. Note that this sele
tion of

eigenvalues is done only on
e in the beginning.

The re
onstru
tions for the three phantoms are shown in Figure 10. As one might

expe
t the quality of the re
onstru
tions deteriorates be
ause of noise as 
ompared

to Figures 7 and 8, but nevertheless gives valuable information about the lo
ation of

the in
lusions. Only in the last example the algorithm fails to distinguish the two

in
lusions (both with 
ondu
tivity � = 0:5).

In Ikehata's method the appearan
e of E 
auses perturbations in (4.4) up to the

order of

Ækf

k;d

k

2

L

2

(T )

; where kf

k;d

k

L

2

(T )

= O(ke

ks(d)

) as k !1 (5.1)

and s(d) = supfx � d : x 2 Tg > t(d). Ignoring the polynomial fa
tors in (4.4)

and (5.1) we expe
t that the error term will in general dominate hf

k;d

; (�

�

��

1

)f

k;d

i
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Figure 10. Re
onstru
tions with noisy data (0:1% noise).

for \frequen
ies" k beyond

k

Æ

(d) =

j log Æj

2(s(d)� t(d))

; (5.2)

and the 
omputation of t(d) as des
ribed in Se
tion 5.2 should therefore only use

frequen
ies k < k

Æ

(d). Consequently, the larger s(d)� t(d) the less frequen
ies 
an be

used for the dire
tion d, and this implies that the re
onstru
tion of those parts of the

boundary of 
onv(
), whi
h are far from the outer boundary T will be very sensitive

to noise. This is 
on�rmed by the numeri
al results in Figure 10, most strikingly for

the �rst two examples.

Unfortunately, k

Æ

(d) 
annot be evaluated in pra
ti
e, even if Æ were known,

be
ause t(d) is not. However, as illustrated in Figure 9 (right), the sequen
e (4.4) still

behaves like e

2kt(d)

for small frequen
ies k before the asymptoti
 behavior (5.1) sets

in, and it is straightforward to �nd the transient between the two regimes numeri
ally

(see the bullets in Figure 9). This parti
ular plot refers to the re
onstru
tion in the

middle of Figure 10, in whi
h B is the unit 
ir
le and Æ � 2:98 � 10

�4

. For the solid


urve, where d = (1; 0) we have s(d) = 1 and t(d) = 0:5, hen
e (5.2) yields k

Æ

(d) � 8:1.

In 
ontrast, when d = (�1; 0) as for the dashed 
urve, we have s(d) = 1, t(d) = 0,

whi
h gives k

Æ

(d) � 4:1 in this 
ase. Hen
e, the numeri
al dete
tion of the transient

in Figure 9 a
tually appears to be more robust than the rule of thumb value (5.2).

5.5. Summary

For 
omparison we show in Figure 11 the result of a typi
al iterative output least

squares method for the two phantoms of Figure 8 with � = 0:5 in both inlusions, see

also Figure 10 (right) for the same example with noise. This method uses an inexa
t

Gau�-Newton s
heme with a 
onjugate gradient inner iteration and sophisti
ated


hoi
e of the regularization parameters. The two obje
ts are visible, but it is diÆ
ult

to lo
ate their pre
ise boundaries. We emphasize that these re
onstru
tions require

far more 
omputing time than the methods presented in this paper.

We 
on
lude that the two methods provide interesting alternatives to iterative

Newton-type methods for the impedan
e tomography problem. Both methods are

extraordinarily 
heap and give reasonable information on in
lusions with distin
t

jumps in the 
ondu
tivity within a homogeneous ba
kground. Due to the ill-

posed nature of the problem the two methods are very sensitive to noise, although
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Figure 11. Re
onstru
tions using output least squares. Left: no noise. Right:

0:1% noise.

regularization 
an be in
orporated in a very natural way. The numeri
al experiments

indi
ate that the method of Se
tion 3 is more robust in this 
ase.
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