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Abstract. We discuss, and compare, two simple methods that provide coordinates of a point
in the vicinity of one inclusion within some object with homogeneous electrical properties. In the
context of nondestructive testing such an inclusion may correspond to a material defect, whereas in
medicine this may correspond to a lesion in the brain, to name only to possible applications. Both
methods use only one pair of voltage/current measurements on the entire boundary of the object to
determine a single pair of coordinates that is considered to be close to the center of the inclusion.
The first method has been proposed previously by Kwon, Seo, and Yoon; the second method, called
here the effective dipole method, appears to be new. We discuss limitations of the two methods,
and derive error bounds for the effective dipole method under realistic assumptions. Finally, we also
comment on other methods to localize inclusions.
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1. Introduction. In their paper [14] (see also [8, 13]), Kwon, Seo, and Yoon
suggested a real-time algorithm for locating an inclusion in a homogeneous conduct-
ing background medium using only one pair of voltage/current measurements on the
boundary of the corresponding domain. Here, ‘to locate’ means to construct one point
in the inclusion or in its close vicinity. Following the title of their paper we will sub-
sequently refer to their method as the location search method. Along with convincing
numerical results Kwon, Seo, and Yoon provided preliminary theoretical estimates
to justify their method for certain ‘restricted cases’ as they say, namely (i) for small
disk-shaped inclusions, and (ii) for small contrasts in the conductivity, respectively.
They close their introduction with the statement: ‘We expect justifications for less
restricted cases to be developed’.

In an attempt to study this method in some broader context, however, we have
found that it is sensitive to the values of two free parameters that come with the
algorithm. Moreover, an inauspicious choice of these parameters results in a failure
of the location search method, except for very special degenerate situations. To be
just a little more precise we mention that the location search method is based on zero
crossings and local extrema of an auxiliary potential in the exterior of the domain,
and according to our analysis below it is important to investigate the near field of
this potential and not its far field. In fact, from this point of view the location search
method can be seen as a variation of other recurrent ideas of using zero crossings
and global extrema of certain boundary measurements to locate inclusions within the
body.

We have to admit that our understanding of the location search method is not
really complete, but we are in the position to suggest a different, and apparently
better, method for locating inclusions, which we shall call the effective dipole method.
Our approach is based on the fact that the potential constructed by Kwon, Seo, and
Yoon is generated by a source supported on the boundary of the inclusion(s). Since
any function that is harmonic in the exterior of a bounded domain agrees near infinity
up to third order accuracy with a dipole potential, we shall call the corresponding
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dipole the ‘effective dipole’ of this potential, and use it to locate the inclusion. A
simple Fourier analysis of this auxiliary potential yields the location of the effective
dipole in a stable way. Numerical results indicate that the effective dipole method
performs at least as good as the location search method (with good choice of the free
parameters for the latter). From our point of view, however, the behaviour of the
effective dipole method is much easier to understand.

Nevertheless, the effective dipole method has its limitations, too, but again these
limitations are more transparent: As our method uses only two complex numbers to
determine the position and the moment of the effective dipole, lack of uniqueness is
an obvious consequence. In fact, counter examples are easy to construct in the more
general context of inverse source problems studied in [4], where much more irregular
sources are admissible, but in the impedance tomography context considered here
we can show that under certain mild restrictions the effective dipole method yields
locations that are close to the center of mass of the inclusion.

We like to mention that other, typically iterative methods can and have been used
to resolve the inverse conductivity problem with only one measurement, cf., e.g., the
results in [1, 6, 7, 10, 12]. Another noniterative approach to deal with this problem
can be based on a theory developed recently by Sylvester and his coauthors for inverse
scattering problems, i.e., the so-called convex scattering support [15]. An application
of this idea to the present problem has been worked out in [5], and we refer to Hakula
and Hyvönen [3] for a numerical comparison of this approach with our effective dipole
method.

The outline of this paper is as follows. In Section 2 we formulate the setting of the
underlying problem and give a brief sketch of the location search method from [14] in
Section 3. There we also show that the auxiliary potential of Kwon, Seo, and Yoon is
the free space electrostatic potential of a certain charge distribution on the boundary
of the inclusion. We study in Section 4 the far field of this potential and derive
formulae for the effective dipole that generates the same far field asymptotically. As a
by-product we can show that the location search method will fail in general when far-
field data of this potential are used. Numerical results in Section 5 allow to compare
the location search method with the new effective dipole method, before we derive
rigorous error bounds for the latter in Section 6. In the final Section 7 we discuss yet
another, more intuitive method for locating the inclusion, and point out connections
between the various methods. We hope to make evident that the effective dipole
method is the most efficient one among all these methods.

2. Formulation of the problem. Throughout this paper let Ω and D be
bounded, simply connected domains in R

2 with Ω ⊂ D: D denotes the body of
some object under consideration and Ω the searched for inclusion within the object.
By T = ∂D and Γ = ∂Ω we denote the boundaries of the two domains, and by ν
the normal vectors pointing into the exterior of the respective domains. We usually
write r = |x| for the Euclidean norm of x = (x1, x2) ∈ R

2, and x⊥ = (x2,−x1) for the
clockwise rotation of x by the angle π/2.

The inverse conductivity problem we consider in the sequel has the following
form: Try to locate the domain Ω from the knowledge of the trace g = u|T of the
weak solution of the formal boundary value problem

∇ · σ∇u = 0 in D ,
∂u

∂ν
= f on T , (2.1)
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where the conductivity σ is piecewise constant, namely

σ =

{

1 in D \ Ω ,

κ in Ω ,
(2.2)

for some nonnegative κ 6= 1. The equivalent classical formulation of Problem (2.1),
(2.2) is the diffraction problem

∆u = 0 in D \ Γ ,
∂u

∂ν
= f on T ,

u−|Γ = u+|Γ , κ
∂u−

∂ν
=

∂u+

∂ν
on Γ .

(2.3)

Superscripts + and − specify whether the traces are taken in the exterior or interior
of Ω, respectively. In order to have a unique and nontrivial solution of (2.1), (2.2), or
of (2.3), respectively, we require that

0 6= f ∈ L2
�(T ) = { f ∈ L2(T ) :

∫

T

f(y) ds(y) = 0 } ,

and normalize the solution u, which belongs to the standard Sobolev space H1(D),
in such a way that its trace g belongs to L2

�(T ) as well.
Note that in the so called insulating case, where κ = 0, the diffraction prob-

lem (2.3) decouples: The restriction of u to D\Ω is given as the solution of a Neumann
boundary value problem for the Laplacian with prescribed zero flux across the inner
boundary Γ; then, given u|D\Ω, this potential is extended to a function u ∈ H1(D)

by solving a Dirichlet problem for the Laplacian in Ω, using the trace of u|D\Ω on Γ
as Dirichlet data.

For later use we also define the reference potential

∆u0 = 0 in D ,
∂u0

∂ν
= f on T , (2.4)

and its trace g0 = u0|T ∈ L2
�(T ), which would be measured if no inclusion is present

in D. Occasionally, we refer to g as the absolute data, and g0 − g as the relative
data for our problem. With these notations we follow our previous works, e.g., [5]
in particular, and apologize to those who are used to quite the reverse notation from
[14].

The inverse problem that we are going to consider in this paper is now the fol-
lowing: Locate the inclusion Ω from one single pair (g, f) or (g0 − g, f), respectively,
of nontrivial Cauchy data for the diffraction problem (2.3); i.e., determine from these
data a point in the vicinity of Ω.

3. The location search method. To solve this inverse conductivity problem,
Kwon, Seo, and Yoon restrict themselves to a boundary current

f(y) = a · ν(y) , a ∈ R
2 , |a| = 1 , (3.1)

for some fixed vector a, and use the corresponding boundary potential g to introduce
the auxiliary function

H(x) =

∫

T

∂Φ(x− y)

∂ν(y)
g(y) ds(y) −

∫

T

Φ(x− y)f(y) ds(y) , (3.2)



4 M. HANKE

where x ∈ R
2 \D, and

Φ(x) =
1

2π
log |x|

is the fundamental solution of the Laplace equation. Given H, which can be evaluated
numerically, they determine a root τ = τ1 of

h1(τ ; c1) = H(c1a
⊥ + τa) , τ ∈ R , (3.3)

and a local extremum∗ τ = τ2 of

h2(τ ; c2) = H(c2a+ τa⊥) , τ ∈ R .

The two real numbers c1 and c2 are required to be sufficiently large, for H is only
defined in the exterior of D, and they are free parameters of the location search
method. The appropriate choice of these parameters has not been addressed in [14];
for their numerical examples Kwon, Seo, and Yoon have implemented the method for
the unit disk D, and have chosen c1 = 1.5 and c2 = −1.5, respectively.

The location search method is defined to return the point x∗ = x∗(c1, c2) =
τ1a+ τ2a

⊥ as ‘location’ of Ω, but still, no evidence is provided in [14] that τ1 and τ2
are well defined.

The potential H is a combination of a single and a double layer potential, and as
such a harmonic function in the exterior of D. Moreover, because of the constraint
f ∈ L2

�(T ), H vanishes at infinity. Using Green’s Theorem and the solution u of (2.1)
we can reformulate (3.2) for x ∈ R

2 \D as

H(x) =

∫

D

∇yΦ(x− y) · ∇u(y) dy −
∫

T

Φ(x− y)f(y) ds(y) ,

and two more applications of Green’s Theorem in Ω and D \ Ω, respectively, yield

H(x) =

∫

Γ

Φ(x− y)
∂u−

∂ν
(y) ds(y) −

∫

Γ

Φ(x− y)
∂u+

∂ν
(y) ds(y)

=

∫

Γ

Φ(x− y)ϕ(y) ds(y) , (3.4)

where

ϕ = (1 − κ)
∂u−

∂ν

∣

∣

∣

Γ
(3.5)

according to the jump discontinuity (2.3) of the flux of u across Γ. We prefer the
single layer potential representation (3.4) of H over the corresponding volume integral
derived in [14, eq. (2.1)], as it allows a physical interpretation of H as electrostatic
potential of a charge distribution on the boundary of Ω with density ϕ of (3.5). We
also note that this representation is valid for any boundary current f ∈ L2

�(T ), and
that it provides a harmonic extension of H up to the boundary of Ω.

We conclude this section by briefly looking at the special case where D is the unit
disk. For doing so, we first apply Green’s Theorem to the second integral in (3.2) –

∗whether the extremum of h2 is a maximum or a minimum depends on the sign of κ − 1, as
mentioned in [14], but also on the sign of c2.
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interpreting f as the Neumann derivative of the reference potential u0 from (2.4) –
to obtain

H(x) =

∫

T

∂Φ(x− y)

∂ν(y)
g(y) ds(y) −

∫

T

∂Φ(x− y)

∂ν(y)
u0(y) ds(y)

=

∫

T

∂Φ(x− y)

∂ν(y)

(

g(y) − g0(y)
)

ds(y) , x ∈ R
2 \D , (3.6)

which extends continuously onto T with

H(x) =

∫

T

∂Φ(x− y)

∂ν(y)

(

g(y) − g0(y)
)

ds(y) − 1

2

(

g(x) − g0(x)
)

for x ∈ T . So far we haven’t used that D is the unit disk, but if this happens to
be the case then the kernel ∂Φ(x− y)/∂ν(y) of the last integral is constant, cf., e.g.,
Kress [11], and hence, for the unit disk D the trace of H on T coincides with the
given relative data – up to a factor of two –, i.e.,

H|T =
1

2
(g0 − g) , (3.7)

as g0 and g are both mean free.

4. Far fields and effective dipoles. We have investigated numerically the
sensitivity of the location search method with respect to its two free parameters c1
and c2. As one outcome of this study we have found that the location x∗(c1, c2)
deteriorates when |c1| or |c2| become large: In general x∗(c1, c2) will fall outside the
domain D, eventually.

To verify this observation we analyze the behavior of H(x) for large values of
r = |x|. We do so in a slightly more general context, namely, we consider an arbitrary
real function w which is harmonic in the exterior of some open disk Bρ around the
origin, and which satisfies w(x) → 0 as |x| → ∞. Denoting by

x̂t = (cos t, sin t) , 0 ≤ t < 2π ,

the points on the unit circle, we can expand w in an absolutely converging Fourier
series of the form

w(rx̂t) =

∞
∑

k=−∞

αkr
−|k|eikt , r ≥ ρ , (4.1)

with complex coefficients αk, k ∈ Z. Since w vanishes at infinity we have α0 = 0;
moreover, as w is real-valued, the Fourier coefficients satisfy α−k = αk for k ∈ N.
Thus, we have

w(rx̂t) = 2 (Reα1 cos t− Imα1 sin t)
1

r
+ O(

1

r2
) (4.2)

for large values of r, and this coincides – up to second order – with the field of a dipole

Dz,p(x) =
1

2π

(x− z) · p
|x− z|2 (4.3)

sitting in z = 0 with dipole moment

p = 4π (Reα1,−Imα1) . (4.4)
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Note that all the above considerations are fulfilled for w = H. It follows that
near infinity the zero level set Z of H belongs to an arbitrarily narrow sectorial set
centered around the vector p⊥. As a consequence, if x = c1a

⊥ + τ1a denotes the
intersection of Z with the straight line

Σ = { c1a⊥ + τa : τ ∈ R } ,

occuring in (3.3) then τ1 is the corresponding root of h1 and satisfies

τ1 = τ1(c1) =
a2Reα1 + a1Imα1

a1Reα1 − a2Imα1

c1 + o(c1) , |c1| → ∞ ,

unless a = (a1, a2) of (3.1) happens to be either parallel or orthogonal to p of (4.4).
If a is orthogonal to p then h1 may have no zero at all for |c1| sufficiently large. Only
when a is parallel to p then τ1(c1) may remain useful when |c1| goes to infinity.

Since the above considerations already reveal that the location search method
will generically deteriorate when |c1| is getting large, we only briefly mention that a
similar reasoning with analogous outcome applies when |c2| is getting large.

We conclude that the good numerical results presented in [14] rely on the fact that
Kwon, Seo, and Yoon consider the potential H near the boundary of D, and not its
far field. In fact, in their numerical examples D is the unit disk, and thus, except for
a factor of two, H coincides with the given relative data, cf. (3.7). As a consequence,
the location search method is closely related to finding the zeros and local extrema of
g0−g on the circle. We emphasize that the latter is a well-known procedure to obtain
a first guess about the location of some inclusions, cf., e.g., Lionheart, Polydorides,
and Borsic [9], and we will reconsider this issue in Section 7.

Now we return to the analysis of the far field behavior (4.2) of the general potential
w, and incorporate second order information near infinity.

Proposition 4.1. If w is given by (4.1) with α1 6= 0, then

w(x) = Dz,p(x) +O(
1

|x|3 ) , |x| → ∞ , (4.5)

if and only if p is as in (4.4) and

z =
(

Re
α2

α1

,−Im
α2

α1

)

. (4.6)

Proof. Expanding Dz,p of (4.3) near infinity we have

Dz,p(rx̂t) =
1

2π
(rx̂t · p− z · p)

(

1 + 2
x̂t · z
r

+O(
1

r2
)
)1

r2

=
1

2π

( x̂t · p
r

+
2(x̂t · p)(x̂t · z) − z · p

r2
+ O(

1

r3

)

.

The first term of this expansion agrees with D0,p(rx̂t), and therefore p has to be
chosen by (4.4) to satisfy (4.5). Turning to the second term of the expansion we write
p = (p1, p2) and z = (z1, z2), and use trigonometric identities to obtain

2(x̂t · p)(x̂t · z) − z · p = (p1z1 − p2z2) cos 2t + (p1z2 + p2z1) sin 2t . (4.7)
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In complex variables the center z and the moment p of the dipole correspond to
ζ = z1 + iz2 and 4πα1, respectively, cf. (4.4), and thus we can rewrite (4.7) as

2(x̂t · p)(x̂t · z) − z · p = 4π
(

Re (α1ζ) cos 2t + Im (α1ζ
)

sin 2t) .

Comparing this with (4.1) we conclude that (4.5) holds true, if and only if p is given
by (4.4) and

2α1ζ = 2α2 ,

the latter being equivalent to (4.6).
It follows that the far field of any potential w which is harmonic in the exterior of

a bounded domain, and which decays like 1/|x| as |x| → ∞, agrees up to third order
with the far field of some uniquely defined dipole potential Dz,p. We call Dz,p the
effective dipole for the potential w.

5. The effective dipole method. As we have already mentioned, the potential
H satisfies the requirements for w from the previous section if α1 6= 0, and hence,
generically, H agrees near infinity up to third order with the potential of an effective
dipoleDz∗,p. Moreover, according to (4.4) and (4.6), the moment p and the location z∗

of this effective dipole can be readily obtained from a Fourier transform of the values
of H along some circle |x| = ρ that contains D in its interior. When D is the unit
disk then we can choose ρ = 1, and all we need to compute is a fast Fourier transform
of the relative data g0 − g, cf. (3.7); in the general case we first need to evaluate (3.2),
or (3.6), on |x| = ρ using the trapezoidal rule, say. In any case this method is very
easy to implement. As H is generated by a source located on the boundary of the
inclusion Ω, cf. (3.4), we can hope that the effective dipole is somehow related to Ω,
and we therefore propose to use z∗ to locate Ω.

This is the effective dipole method.
In Figure 5.1 we present numerical results for the location search method and

the effective dipole method, respectively, with D being the unit disk. Each of the
four plots shows an inclusion Ω within the unit circle, together with its reconstructed
locations: In each plot the bullet marks the location computed by the effective dipole
method, and the circle depicts the result of the location search method. We have also
included the locations (marked by a plus sign) which have been obtained by a third,
somewhat ad hoc method, which will be discussed in more detail in Section 7.

For these reconstructions we have used throughout the same boundary current
f(t) = sin t, corresponding to the choice a = (0, 1) in (3.1); the conductivity within
the inclusion is either κ = 5 or κ = 0. Voltage data on the boundary have been
computed with a boundary element method, using 768 equidistant grid points on T
and 70 grid points on Γ, respectively. For the implementation of the location search
method we have used the same parameters c1 = 1.5 and c2 = −1.5 as in [14]; no
attempt has been made to optimize these parameters.

As can be seen, the effective dipole method and the ad hoc method give very
good results close to the center of the inclusions whereas the results for the location
search method are somewhat inferior in two of these examples. (In the example on
the upper right of Figure 5.1, taken from [14], all three reconstructions are almost on
top of each other).

In a second test series we have run the effective dipole method and the ad hoc
method for two representative examples with four different input currents f , each,
cf. Figure 5.2. While three of them are trigonometric current patterns with varying
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Fig. 5.1. Computed locations of four different inclusions: effective dipole method (bullet) versus
the location search method (circle) and the geometric location method (plus signs) of Section 7. The
two inclusions in the top row have conductivity κ = 5, inclusions in the bottom row are perfect
insulators.

spatial frequencies, the fourth example (‘dipole’) is a localized boundary current ob-
tained from the first 32 terms of the Fourier series of a tangential dipole source located
at t = π/4. Only for the nonconvex inclusion one of the computed locations fails to sit
within the inclusion. In fact, the locations appear to move towards the boundary of Ω
with increasing spatial frequency of the current patterns. For the localized boundary
current the reconstruction is surprisingly close to the low frequent one. We will partly
explain this performance in the following section. In both test series the conductivity
κ within the inclusion does not seem to play a prominent role.

Finally, we briefly comment on the influence of noise within the data. As the
effective dipole method uses only the first two Fourier coefficients of the potential H
one can expect that the method is pretty stable. On the other hand, as pointed out
in [3], for example, in real world situations the amount of noise will rather depend
on the magnitude of g than on g0 − g, the latter being much smaller – at least for
higher frequencies. Since the relative data g0 − g have been used for our numerical
experiments it is therefore not surprising to see that the reconstructions with noisy
data become worse with increasing frequency of the boundary current, cf. Figure 5.3.
In this figure similar reconstructions are shown as in Figure 5.2 (right), but now
with 3 % noise in the data relative to the norm of g. This plot also includes the



Location search with one measurement 9

 

 

PSfrag replacements

sin t

sin 4t

cos 9t

dipole

 

 

PSfrag replacements

sin t

sin 4t

cos 9t

dipole

Fig. 5.2. Computed effective dipole locations for different boundary currents; same conductivi-
ties as in Figure 5.1.
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Fig. 5.3. Computed locations for noisy data (3 % noise).

reconstruction of the location search method (‘KSY’) with input current f(t) = sin t
for the ease of comparison. It can be seen that only the two reconstructions using
this low frequent boundary current are fully stable.

6. Error bounds for the effective dipole method. Let ζ be the complex
number associated with the coordinates (4.6) of the effective dipole z∗ corresponding
to the auxiliary potential H, i.e.,

ζ = α2/α1 , (6.1)

where

αk =
1

2π
ρk

∫ 2π

0

H(ρx̂t) e
−ikt dt , k ∈ Z . (6.2)

Here, we tacitly assume that α1 6= 0. For later use we emphasize that the location of
the effective dipole is independent of rotations of the underlying coordinate system: If
we rotate the coordinate system by an angle θ counter clockwise, say, then the resulting
Fourier coefficients αk will be multiplied by eikθ, and hence, ζ will be multiplied by
e−iθ, which corresponds to the same location as before of the effective dipole in the
rotated disk.



10 M. HANKE

Inserting (3.4) for H in (6.2), and using the symmetry of the fundamental solution
of the Laplace equation, we first rewrite the Fourier coefficients of H by

αk =
1

2π

∫

Γ

vk(x)ϕ(x) ds(x) , (6.3)

where we have introduced, for k ∈ Z, the adjoint potentials

vk(x) =

∫ 2π

0

Φ(x− ρx̂t) ρ
ke−ikt dt =

∫

∂Bρ

Φ(x− y)ψk(y) ds(y) ,

with

ψk(ρx̂t) = ρk−1e−ikt , 0 ≤ t ≤ 2π .

Using the jump relation of single layer potentials we conclude that vk is the (unique)
solution of the diffraction problem

∆vk = 0 in R
2 \ ∂Bρ , vk(x) = o(1) for |x| → ∞ ,

v−k (ρx̂t) = v+

k (ρx̂t) ,
∂v+

k

∂ν
(ρx̂t) − ∂v−k

∂ν
(ρx̂t) = ρk−1e−ikt , 0 ≤ t < 2π ,

and hence,

vk(rx̂t) = − 1

2k

{

rke−ikt , 0 ≤ r < ρ ,

ρ2kr−ke−ikt , r ≥ ρ .
(6.4)

For k = 1 and k = 2, and x ∈ Γ ⊂ D ⊂ Bρ, this becomes

v1(x) =
−x1 + ix2

2
and v2(x) =

x2
2 − x2

1 + i 2x1x2

4
(6.5)

in terms of the Cartesian coordinates. Inserting this into (6.3) and (6.1) we obtain

ζ =

∫

Γ

(

(x2
1 − x2

2)/2 + ix1x2

)

ϕ(x) ds(x)
∫

Γ

(x1 + ix2)ϕ(x) ds(x)
. (6.6)

We consider first the denominator of (6.6). Using (3.5) and Green’s Theorem we
can rewrite

∫

Γ

(x1 + ix2)ϕ(x) ds(x) = (1 − κ)

∫

Ω

∇(x1 + ix2) · ∇u(x) dx

= (1 − κ)
(

∫

Ω

∂u

∂x1

(x) dx + i

∫

Ω

∂u

∂x2

(x) dx
)

.

(6.7)

Similarly we obtain for the numerator of (6.6) the representation
∫

Γ

(

(x2
1−x2

2)/2 + ix1x2

)

ϕ(x) ds(x) = (1 − κ)

∫

Ω

(x1 + ix2,−x2 + ix1) · ∇u(x) dx

= (1 − κ)
(

∫

Ω

(x1,−x2) · ∇u(x) dx + i

∫

Ω

(x2, x1) · ∇u(x) dx
)

.
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Expanding (6.6) by the complex conjugate of (6.7) we eventually find that the coor-
dinates of z∗ = (z1, z2), i.e., the real and imaginary parts of ζ are given by

z1 =
(

∫

Ω

x1

∂u

∂x1

dx

∫

Ω

∂u

∂x1

dx +

∫

Ω

x1

∂u

∂x2

dx

∫

Ω

∂u

∂x2

dx

−
∫

Ω

x2

∂u

∂x2

dx

∫

Ω

∂u

∂x1

dx +

∫

Ω

x2

∂u

∂x1

dx

∫

Ω

∂u

∂x2

dx
)

/M

and

z2 =
(

∫

Ω

x1

∂u

∂x2

dx

∫

Ω

∂u

∂x1

dx −
∫

Ω

x1

∂u

∂x1

dx

∫

Ω

∂u

∂x2

dx

+

∫

Ω

x2

∂u

∂x1

dx

∫

Ω

∂u

∂x1

dx +

∫

Ω

x2

∂u

∂x2

dx

∫

Ω

∂u

∂x2

dx
)

/M ,

where

M =
(

∫

Ω

∂u

∂x1

dx
)2

+
(

∫

Ω

∂u

∂x2

dx
)2

. (6.8)

Reordering terms, this can be rewritten in the following way:

z∗ =

∫

Ω

x c(x) dx +

∫

Ω

x⊥d(x) dx , (6.9)

where

c(x) =
∂u

∂x1

(x)
1

M

∫

Ω

∂u

∂x1

dy +
∂u

∂x2

(x)
1

M

∫

Ω

∂u

∂x2

dy (6.10)

and

d(x) =
∂u

∂x1

(x)
1

M

∫

Ω

∂u

∂x2

dy − ∂u

∂x2

(x)
1

M

∫

Ω

∂u

∂x1

dy . (6.11)

Note that
∫

Ω

c(x) dx = 1 and

∫

Ω

d(x) dx = 0 . (6.12)

As a consequence of (6.10) and (6.11), if we adopt at this point the motivating
assumption from [14], namely that ∇u = (a1, a2) ∈ R

2 is constant within Ω, then
d = 0 and c = 1/|Ω| are also constant (|Ω| denotes the area of Ω), and hence, z∗ is
the center of mass x of Ω. Moreover, we can relax this assumption to obtain error
bounds for z∗ − x. To this end, we first introduce the mean of the gradient over Ω,
i.e.,

g =
1

|Ω|

∫

Ω

∇u(y) dy , (6.13)

and conclude from (6.7) that α1 6= 0, if and only if g 6= 0.
Theorem 6.1. Denote by x the center of mass of Ω, and assume that the effective

dipole z∗ of H is well defined, i.e., that g of (6.13) is nonzero. If

|∇u(x) − g|
|g| ≤ ε (6.14)
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for some ε > 0 and all x ∈ Ω, then we have

|z∗ − x| ≤ ωε ,

where ω =
∫

Ω
|x| dx/|Ω| is the mean absolute value within Ω.

Proof. With g = (g1, g2) we can rewrite

c(x) =
|Ω|
M

(

g1
∂u

∂x1

(x) + g2
∂u

∂x2

(x)
)

and

1

|Ω| =
|Ω|
M

(g2
1 + g2

2) =
|Ω| |g|2
M

. (6.15)

Similarly we obtain

d(x) =
|Ω|
M

(

g2
( ∂u

∂x1

(x) − g1
)

− g1
( ∂u

∂x2

(x) − g2
)

)

.

We want to estimate

z∗ − x =

∫

Ω

xc(x) dx − 1

|Ω|

∫

Ω

x dx +

∫

Ω

x⊥d(x) dx

=

∫

Ω

x
(

c(x) − 1

|Ω|
)

dx +

∫

Ω

x⊥d(x) dx

=
|Ω|
M

∫

Ω

x
(

g1
( ∂u

∂x1

(x) − g1
)

+ g2
( ∂u

∂x2

(x) − g2
)

)

dx

+
|Ω|
M

∫

Ω

x⊥
(

g2
( ∂u

∂x1

(x) − g1
)

− g1
( ∂u

∂x2

(x) − g2
)

)

dx

=
|Ω|
M

∫

Ω

XGT (∇u(x) − g) dx ,

where X = [x x⊥] and G = [g g⊥] are 2× 2 matrices. Denoting by ‖ · ‖ the spectral
norm in R

2×2 it follows that

|z∗ − x| ≤ |Ω|
M

∫

Ω

‖X‖ ‖G‖ |∇u(x) − g| dx =
|Ω|
M

|g|
∫

Ω

|x| |∇u(x) − g| dx .

Inserting the assumption (6.14), as well as (6.15), we thus conclude that

|z∗ − x| ≤ ε
|Ω|
M

|g|2
∫

Ω

|x| dx = ε
1

|Ω|

∫

Ω

|x| dx = ω ε ,

as was to be shown.
Theorem 6.1 shows that the distance between the location computed by the ef-

fective dipole method and the center of mass of Ω is bounded by the maximal relative
error in Ω between the spatially varying gradient and its mean. Unfortunately, we
do not know how to compute or estimate this error (6.14), neither a priori nor a
posteriori. Accordingly, Theorem 6.1 only provides qualitative information about the
computed location z∗.
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For the ease of completeness, we state another error estimate that may be more
appropriate to use in certain contexts.

Theorem 6.2. Assume that ∇u(x) belongs for all x ∈ Ω to some closed quarter

plane Q rotated around the origin. If δ denotes the radius of the circumcircle of Ω
then there holds

d(z∗,Ω) ≤
√

2 δ ,

where d(z∗,Ω) is the Hausdorff distance between Ω and the location z∗ of the effective

dipole method.

Proof. By virtue of our assumptions, we can fix a point x◦ such that

|x− x◦| ≤ δ for all x ∈ Ω .

Moreover, in view of the remark following (6.2), we can rotate the coordinate system
in such a way that Q becomes the quarter plane of nonnegative coordinates, i.e.,
that both components of ∇u are nonnegative throughout Ω according to the present
assumption. Furthermore, ∇u cannot vanish identically in Ω: Otherwise ϕ of (3.5)
would be zero, and hence, u would be constant within Ω; using the transmission
conditions from (2.3) it would then follow that u|D\Ω is a solution of the Cauchy
problem

∆u = 0 in D \ Ω ,
∂u

∂ν

∣

∣

∣

Γ
= 0 , u|Γ = constant ,

in which case u would be constant in all of D, which is a contradiction to f 6= 0. From
this we conclude that (6.13) is nonzero, i.e., that the effective dipole method is well
defined.

Using the two identities in (6.12) we obtain from (6.9) that

z∗ − x◦ =

∫

Ω

(

(x− x◦)c(x) + (x− x◦)⊥d(x)
)

dx ,

and hence,

|z∗ − x◦| ≤
∫

Ω

∣

∣ (x− x◦)c(x) + (x− x◦)⊥d(x)
∣

∣dx

=

∫

Ω

|x− x◦|
(

c2(x) + d2(x)
)1/2

dx

≤ δ

∫

Ω

(

c2(x) + d2(x)
)1/2

dx .

Moreover, by virtue of (6.10) and (6.11), we can rewrite

c2(x) + d2(x) =
1

M
|∇u(x)|2 ,

and conclude that

|z∗ − x◦| ≤ δ
1√
M

∫

Ω

|∇u(x)| dx .

Making use of the two inequalities

2M ≥
(

∫

Ω

∂u

∂x1

(x) dx+

∫

Ω

∂u

∂x2

(x) dx
)2

,
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Fig. 7.1. Boundary potential and approximating dipole potentials.

and

|∇u(x)| ≤ ∂u

∂x1

(x) +
∂u

∂x2

(x) , x ∈ Ω ,

where the latter one holds true because ∂u/∂x1 and ∂u/∂x2 are both assumed to be
nonnegative in Ω, we finally obtain that

|z∗ − x◦| ≤
√

2 δ
1√
2M

(

∫

Ω

∂u

∂x1

(x) dx+

∫

Ω

∂u

∂x2

(x) dx
)

≤
√

2 δ ,

which was to be shown.
Both theorems establish that the location of the effective dipole method is useful,

i.e., close to the convex hull of Ω, when the current flows in essentially uniform direc-
tion through the inclusion Ω. This observation is in favor of low frequent boundary
currents like the ones from (3.1) considered in [14], but also in favor of very local-
ized dipole type currents. When the boundary currents are strongly oscillating then
currents may flow in various directions through Ω, and the error bounds and the com-
puted locations can deteriorate. This is in good agreement with the numerical results
shown in Figure 5.2.

7. Comparison with ad hoc location methods. In [9, p. 31], Lionheart,
Polydorides, and Borsic provide an intuitive argument to locate the inclusion Ω from
the zeros of the relative data, g0 − g, when D is the unit disk. Note that in this case
the relative data essentially coincide with the trace of H, cf. (3.7).

Lionheart, Polydorides, and Borsic start from the assumption that the difference
between u and the reference potential u0 behaves like the potential of some dipole
located in Ω. To illustrate this assumption consider the three graphs in Figure 7.1, in
which the solid line depicts the given relative data, i.e., the boundary potential g0 − g
for the example corresponding to the right-hand side plot in Figure 5.2 with boundary
current f(t) = sin 4t. The other two graphs are boundary values of dipole potentials:
The dotted line represents the effective dipole potential determined in the previous
sections, and the dashed line is the dipole potential determined from the zeros z1/2

and the two extrema α and β of the given relative data.
In the following we will focus on the latter, and describe our geometric construc-

tion of the center and the moment of this dipole, which is outlined in Figure 7.2. The
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Fig. 7.2. Geometric determination of a suitable dipole potential, and the corresponding level lines.

four points A, B, Z1, and Z2 in Figure 7.2 correspond to the four polar angles α, β,
z1, and z2 from Figure 7.1, and thus mark the two global extrema and the two zeros
of the relative boundary data, respectively. Following [9] we assume that the center
of the dipole is lying on the straight line connecting the two zeros Z1/2 ∈ T of g0 − g;
this straight line should be orthogonal to the dipole moment p. Furthermore, for a
true dipole potential the dipole is also sitting on a circle connecting the two extrema
of g0 − g; the center C of this circle (not shown on this plot) is the intersection of the
two tangents of the unit disk through A and B. If the relative data are the boundary
values of an exact dipole potential then C would also lie on the extended line through
Z1 and Z2.

How is this geometric location method related to the other two methods described
in the previous sections? Well, first of all we have to clarify that withinD the potential
u0 − u cannot be approximated by a dipole potential, as u0 − u must have vanishing
flux on the boundary of D. However, u0−u can behave like a directional derivative of
the Neumann function for the Laplacian, cf. Cedio-Fengya, Moskow, and Vogelius [2]
for a rigorous asymptotic argument to support this latter claim. On the other hand,
when D is the unit disk, the distinction between dipole potentials and derivatives of
Neumann functions, or between u0−u and H, respectively, becomes irrelevant as their
boundary values only differ by a factor of two. Therefore the three location search
methods do all require or imply, more or less explicitly, that the auxiliary potential
H introduced by Kwon, Seo, and Yoon (and thus the boundary values u0 − u on T )
can well be approximated by the potential of a dipole located near the center of the
inclusion. For the effective dipole method this is the case, for example, if the gradient
of u is almost constant within the inclusion, cf. Theorem 6.1. The location search
method requires in addition that the imposed boundary current is of the type (3.1),
and that the associated dipole moment p is very close to the associated vector a from
(3.1); this becomes clear from looking at the equipotentials in Figure 7.2. The other
two methods do not require such an assumption, as becomes evident from Figures 5.2
and 7.1, however, the geometric location method is only applicable after a conformal
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transformation of D (and the given data) onto the unit disk. The computed locations
of the effective dipole method have been shown to be very accurate, and even best in
most of our examples.

8. Conclusions. We have compared three methods for the location of inclusions
within some homogeneous background material using only one pair of current/voltage
measurements on the boundary. We have developed arguments to support our claim
that the new effective dipole method is the most efficient and the most reliable among
these methods: It requires very little prerequisites, uses a simple and well-defined
formula for computing the corresponding location, and this location is often found
to be close to the center of mass of the inclusion. The error bounds that we have
obtained can be used to justify our numerical findings.
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