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Abstract. We reconsider the Landweber iteration for nonlinear ill-posed prob-
lems. It is known that this method beomes a regularization method in case the
iteration is terminated as soon as the residual drops below a certain multiple of the
noise level in the data. So far, all known estimates of this factor are greater than two.
Here we derive a smaller factor that may be arbitrarily close to one depending on the
type of nonlinearity of the underlying operator equation.
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1. Introduction. At about 1990 Heinz W. Engl and his group at
the Johannes Kepler University in Linz/Austria started to push forward
a theory concerning the regularization of nonlinear ill-posed problems.
Together with Karl Kunisch and Andreas Neubauer he wrote a seminal
paper [5] on the Tikhonov regularization method for nonlinear problems,
establishing a first order optimal error bound as they were well-known
for linear problems at the time; other papers soon followed (cf., e.g., the
monograph [4] for additional references).

While having been a young postdoc with Heinz in Linz during the
winter term 1992/93 we took up this momentum and developed a con-
vergence analysis for the nonlinear Landweber iteration ([7], jointly with
Andreas Neubauer and Otmar Scherzer). Later, further people from Linz,
especially Barbara Blaschke-Kaltenbacher got interested in iterative reg-
ularization methods, most notably Bakushinskii’s iteratively regularized
Gauß-Newton scheme; see [8] for a compilation of the corresponding re-
sults. The analysis of some of these methods utilizes ideas that have first
been formulated in [7], especially the monotonicity argument that was
essential for our proof of convergence.

This argument, in turn, was borrowed from a paper by Defrise and
de Mol [3] on the discrepancy principle for the linear Landweber method,
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but may have its roots in work done by McCormick and Rodrigue [9];
see also Alifanov and Rumjancev [2]. In its original formulation, cf. [10],
Morozov’s discrepancy principle suggests to terminate the iteration as
soon as the data fit is on the order of the (presumably known) noise level
in the data. The Defrise/de Mol argument, however, only applies as long
as the residual is twice that large, and this shortcoming manifested itself
in our stopping rule for the nonlinear Landweber iteration.

It was few years later, in 1999, that Tautenhahn and Hämarik [11]
developed the so-called monotonicity rule for choosing regularization pa-
rameters in various regularization methods for linear problems, again.
For the Landweber iteration their argument can be seen as a refinement
of the original Defrise/de Mol estimate, powerful enough to extend their
result to the discrepancy principle in Morozov’s original spirit; see also
Alifanov, Artyukhin, and Rumyantsev [1, pp. 65]. In this note we show
that a similar refinement of our argument in [7] leads to a compara-
ble improvement of the stopping criterion for the nonlinear Landweber
iteration, and, at the same time, to better accuracy of the computed ap-
proximations. An improvement of this sort had already been envisaged
by Hämarik [6].

2. The setting. Consider an ill-posed problem

F (x) = y , (2.1)

where F is a nonlinear operator with open domain D(F ) in a Hilbert
space X , and with images in another Hilbert space Y . The task is to
determine the exact solution x† ∈ D(F ) of (2.1) from approximate data
yδ with

‖yδ − y‖ ≤ δ , (2.2)

where δ < ‖y‖ is reasonably small. To apply the nonlinear Landweber
iteration

xδ
k+1 = xδ

k + F ′(xδ
k)

∗
(
yδ − F (xδ

k)
)
, k = 0, 1, 2, . . . , (2.3)

we need to assume that F is Fréchet differentiable, and that

‖F ′(x)‖ ≤ γ ≤ 1 (2.4)

holds for every x in a neighborhood Bρ(x
†) ⊂ X , i.e., an open ball of

radius ρ around x†. Note that (2.4) can always be achieved by a proper
scaling of the problem.
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More restrictive is the so-called weak Scherzer condition

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η‖F (x̃)− F (x)‖ (2.5)

for the Taylor remainder of F ; here, x and x̃ are arbitrary elements from
Bρ(x

†), and η < 1/2 is an appropriate constant. We refer to [4] for an
interpretation of this condition; we also quote from loc. cit. that (2.5)
implies the alternative bound

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η

1− η
‖F ′(x)(x̃− x)‖ , (2.6)

as well as

‖F (x̃)− F (x)‖ ≤ 1

1− η
‖F ′(x)(x̃− x)‖ (2.7)

for x and x̃ as above. Note that η > 0 unless F is affine linear in Bρ(x
†).

According to [7] the nonlinear Landweber iteration (2.3) converges
for every x0 sufficiently close to x† to some solution x̂ of (2.1) if the
data are exact, i.e., if δ = 0 in (2.2), and if F satisfies (2.4) and (2.5)
for some 0 < η < 1/2; the limit x̂ = x̂(x0), however, will depend on
the initial guess x0 and need not coincide with x†, if F ′(x†) happens to
have a nontrivial null space. For inexact data yδ, on the other hand, the
Landweber iteration can be turned into a regularization method, if the
iteration is terminated appropriately: More precisely, if {yδ}δ>0 ⊂ Y is
a family of approximations of the exact data y subject to (2.2), and if
the Landweber iteration is terminated after kδ iterations, where kδ ∈ N

is determined by the inequality chain

‖yδ − F (xδ
kδ)‖ ≤ τδ < ‖yδ − F (xδ

k)‖ , 0 ≤ k < kδ, (2.8)

then it has been shown in [7] that there holds

xδ
kδ → x̂ as δ → 0 , (2.9)

provided that the parameter τ is coupled to the constant η in (2.5) via

τ > τ ∗(η) := 2
1 + η

1− 2η
. (2.10)

In (2.9) the limit x̂ is the same as the limit of the Landweber iteration
in the exact data case.

Rule (2.8) is known as discrepancy principle: it states that the iter-
ation is to be terminated as soon as the norm of the residual starts to
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Fig. 2.1. The graphs of τ∗ from (2.10) and τγ from (2.11) as functions of η ∈
(0, 1/2), using γ = 1, resp. γ = 1/2, for the latter. Also included is τ∗/2.

drop below a certain multiple τ of the noise level. Ideally, this parameter
should be τ = 1 as suggested by Morozov, or close to one; however, the
right-hand side of (2.10) is always greater than two, and gets arbitrarily
large when η comes close to 1/2.

Here we will prove that this number τ can be chosen significantly
smaller than in (2.10), and hence, further iterations are possible without
loosing the aforementioned theoretical properties of the method. In fact,
these additional iterations improve the accuracy of the approximations,
as we will see below. More precisely, we show that we can choose

τ > τγ(η) := α+
γ (η)

1 + η

1− 2η
(2.11)

in (2.8), with

α+
γ (η) =

√
1− 4η + (5 + γ4)η2 − 2η3 + ηγ2

1− η
, (2.12)

where γ has been introduced in (2.4). The two bounds τ ∗ and τγ, as
functions of η, are illustrated in Figure 2.1.

We show next how to adapt the arguments from [4] to this modified
stopping rule. To this end we start with an auxiliary result.

Lemma 2.1. Let rδk = yδ − F (xδ
k) and Ak = F ′(xδ

k), k = 0, 1, 2, . . . .
Assume further that F satisfies (2.4) and (2.5) with some constant 0 <
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η < 1/2. Then there holds

‖(I −AkA
∗
k)r

δ
k‖ ≥ ‖rδk+1‖ − ηγ2

1− η
‖rδk‖

with γ of (2.4).
Proof. We have

rδk+1 = yδ − F (xδ
k+1) = yδ − F (xδ

k + A∗
kr

δ
k)

= rδk + F (xδ
k)− F (xδ

k + A∗
kr

δ
k)

= (I −AkA
∗
k)r

δ
k −

(
F (xδ

k + A∗
kr

δ
k) − F (xδ

k) − F ′(xδ
k)A

∗
kr

δ
k

)
.

The Taylor remainder term within the big parentheses can be estimated
by means of (2.5) and its corollary (2.6), to obtain

‖(I −AkA
∗
k)r

δ
k‖ ≥ ‖rδk+1‖ − η

1− η
‖AkA

∗
kr

δ
k‖ ≥ ‖rδk+1‖ − ηγ2

1− η
‖rδk‖ ,

where we have used assumption (2.4) for the final estimate.

3. Monotonicity of the Landweber iterates. The following re-
sult provides the key improvement of the analysis in [7], resp. Proposi-
tion 11.2 from [4].

Proposition 3.1. Let the assumptions (2.2), (2.4), and (2.5) hold

with 0 < η < 1/2, and denote by x any solution of (2.1). Then, a

sufficient condition for xδ
k+1 to be a better approximation of x than xδ

k is

that

‖yδ − F (xδ
k+1)‖ > τγ(η) δ (3.1)

with τγ(η) of (2.11).
Proof. We adopt the notation from Lemma 2.1. As in [4] we start by

reformulating the difference

∆ = ‖xδ
k+1 − x‖2 − ‖xδ

k − x‖2

between the squared norms of two consecutive iteration errors; we want
to show that ∆ will be negative, if (3.1) holds. Following [4] we have

∆ = 2 〈 rδk, yδ −F (xδ
k)−F ′(xδ

k)(x− xδ
k) 〉 − 〈 rδk, (I −AkA

∗
k)r

δ
k 〉 − ‖rδk‖2,
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and, by inserting the exact data y and using (2.2) and (2.5), we obtain

∆ = 2 〈 rδk, y − F (xδ
k)− F ′(xδ

k)(x− xδ
k) 〉

+ 2〈 rδk, yδ − y 〉 − 〈 rδk, (I −AkA
∗
k)r

δ
k 〉 − ‖rδk‖2

≤ 2η ‖rδk‖ ‖y − F (xδ
k)‖ + 2δ ‖rδk‖

− 〈 rδk, (I −AkA
∗
k)r

δ
k 〉 − ‖rδk‖2

≤ (2η − 1) ‖rδk‖2 + 2(1 + η)δ ‖rδk‖ − 〈 rδk, (I − AkA
∗
k)r

δ
k 〉 . (3.2)

So far, this estimate is exactly the same as in [4]. The difference lies in the
upcoming more subtle treatment of the very last term 〈 rδk, (I−AkA

∗
k)r

δ
k 〉,

which has simply been neglected in [4], by virtue of its nonnegativity due
to (2.4). Here we perform a case-by-case analysis instead, depending on
whether

‖rδk+1‖ ≥ ηγ2

1− η
‖rδk‖ , (3.3)

or not, where γ ≤ 1 is the constant occurring in (2.4).
Assume first that (3.3) holds true. Then we use the refined estimate

〈 rδk, (I − AkA
∗
k)r

δ
k 〉 = ‖(I −AkA

∗
k)

1/2rδk‖2 ≥ ‖(I − AkA
∗
k)r

δ
k‖2 ,

which follows from the fact that ‖I−AkA
∗
k‖ ≤ 1. By virtue of Lemma 2.1

we thus conclude that

〈 rδk, (I − AkA
∗
k)r

δ
k 〉 ≥

(
‖rδk+1‖ − ηγ2

1− η
‖rδk‖

)2

,

because the assumption (3.3) garantees that the term in parantheses is
nonnegative. Inserting this last inequality into (3.2) we obtain

∆ ≤
(
2η − 1− η2γ4

(1− η)2

)
‖rδk‖2 + 2(1 + η)δ ‖rδk‖

− ‖rδk+1‖2 +
2ηγ2

1− η
‖rδk‖‖rδk+1‖

= 2‖rδk‖
(
(1 + η)δ − α−

γ (η)‖rδk+1‖
)
−

(
‖rδk+1‖ − β(η)‖rδk‖

)2

,

where β(η) =
(
1− 2η + η2γ4/(1− η)2

)1/2
, and

α−
γ (η) = β(η) − ηγ2

1− η
=

√
1− 4η + (5 + γ4)η2 − 2η3 − ηγ2

1− η

=
1− 2η

α+
γ (η)

=
1 + η

τγ(η)
(3.4)
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with α+
γ of (2.12) and τγ(η) of (2.11). We thus have established that

∆ ≤ 2α−
γ (η)‖rδk‖

(
τγ(η) δ − ‖rδk+1‖

)
. (3.5)

On the other hand, if (3.3) fails to hold, then we estimate as in [4],
i.e., drop the nonnegative term 〈 rδk, (I−AkA

∗
k)r

δ
k 〉 in (3.2), and then use

(the opposite of) (3.3), and (3.4), to obtain

∆ ≤ 2(1 + η)δ ‖rδk‖ − (1− 2η)‖rδk‖2

≤ 2(1 + η)δ ‖rδk‖ − (1− η)(1− 2η)

ηγ2
‖rδk‖ ‖rδk+1‖

= 2α−
γ (η) ‖rδk‖

(
τγ(η) δ − 1− η

2ηγ2
α+
γ (η) ‖rδk+1‖

)
.

It is not difficult to check that

α+
γ (η) ≥ 2ηγ2

1− η
, 0 < η < 1/2 ,

showing that (3.5) is valid in either case.
We thus conclude that if ‖rδk+1‖ > τγ(η)δ, the difference ∆ of the two

consecutive error terms will be negative, i.e., ‖xδ
k+1 − x‖ < ‖xδ

k − x‖, as
has been claimed.

Note that for exact data (δ = 0) Proposition 3.1 implies that the
iteration error decreases monotonically as function of k ∈ N0. But for
the proof of convergence of the corresponding iterates (xk)k to a solution
x̂ of (2.1) as presented, e.g., in [4], the convergence of the series

∞∑

k=0

‖yδ − F (xk)‖2 < ∞ (3.6)

is another important ingredient. Under our relaxed assumptions this by-
product of the proof of Proposition 3.1 is a little more difficult to deduce
than in [4]; this is the content of the following corollary.

Corollary 3.2. Under the assumptions of Proposition 3.1, if ‖yδ−
F (xδ

k)‖ > τδ for all 0 ≤ k ≤ k∗ with some τ > τγ(η), then

k∗τ
2δ2 ≤

k∗∑

k=1

‖yδ − F (xδ
k)‖2 ≤ 1

1 + η

τγ(η)τ

τ − τγ(η)
‖x0 − x†‖2 . (3.7)
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Proof. From (3.5) we conclude that for 0 ≤ k < k∗ and x = x†

‖xδ
k − x†‖2 − ‖xδ

k+1 − x†‖2

≥ 2α−
γ (η)‖rδk‖

(
‖rδk+1‖ − τγ(η) δ

)

≥ 2α−
γ (η)

τ − τγ(η)

τ
‖rδk‖‖rδk+1‖ .

From Lemma 2.1 it follows that

‖rδk+1‖ ≤ ‖(I − AkA
∗
k)r

δ
k‖ +

ηγ2

1− η
‖rδk‖

≤
(
1 +

ηγ2

1− η

)
‖rδk‖ ≤ 2 ‖rδk‖

for any k ∈ N0, any 0 < η < 1/2, and any value of γ ≤ 1 in (2.4).
Eliminating ‖rδk‖ in this manner from the previous estimate, and inserting
(3.4) we obtain

‖xδ
k − x†‖2 − ‖xδ

k+1 − x†‖2 ≥ (1 + η)
τ − τγ(η)

τγ(η)τ
‖rδk+1‖2 .

Adding these inequalities from k = 0 to k∗ − 1 the assertion of this
corollary follows.

For exact data we now can let k∗ → ∞ in (3.7) to obtain the conver-
gence of the series (3.6). For inexact data, on the other hand, we conclude
from (3.7) that there must be a first index k∗ where the additional as-
sumption of this corollary fails to hold, which shows that the discrepancy
principle (2.8) yields a well-defined finite stopping index kδ ∈ N, as long
as the parameter τ in (2.8) satisfies τ > τγ(η) with τγ(η) of (2.11).

4. The regularizing properties of the improved stopping rule.

In the previous section we have seen that the discrepancy principle (2.8)
with parameter τ > τγ(η) is a well-defined stopping rule for the nonlin-
ear Landweber iteration, and that the iteration error is monotonically
decreasing up to the next-to-last iterate. Here we prove that it is also a
regularization method.

Theorem 4.1. Let the assumptions (2.2), (2.4), and (2.5) hold with

0 < η < 1/2, and fix τ > τγ(η) of (2.11). If the Landweber iteration

is stopped with kδ according to the discrepancy principle (2.8) then xδ
kδ

converges to a solution x̂ of (2.1) as δ → 0.
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Proof. The proof is much like the proof of Theorem 11.5 in [4]: One
has to consider finite accumulation points of kδ as δ → 0, and subse-
quences of kδ that go to infinity; while the finite accumulation points can
be treated exactly as in [4], a more careful analysis is required in the
other case.

Accordingly, let δn be a sequence going to zero as n → ∞, and kn =
kδn be corresponding stopping indices of (2.8) with

k1 < k2 <, . . . < kn → ∞ as n → ∞ .

Let x̂ be the solution of (2.1) to which the Landweber iteration converges
in the exact data case. Then, for n > m, Proposition 3.1 yields

‖xδn
kn−1 − x̂‖ ≤ . . . ≤ ‖xδn

km
− x̂‖ ≤ ‖xδn

km
− xkm‖ + ‖xkm − x̂‖ ,

and for any ε > 0 we can fix m = m(ε) so large that the last term on the
right-hand side is less than ε/2. Because of the stability of the Landweber
iteration we also have ‖xδn

km
− xkm‖ < ε/2 as soon as n > n(ε) > m(ε),

showing that

‖xδn
kn−1 − x̂‖ ≤ ε

for n > n(ε). But then we conclude from (2.3) and (2.4), with rn =
yδn − F (xδn

kn−1), that

‖xδn
kn

− x̂‖ = ‖xδn
kn−1 − x̂+ F ′(xδn

kn−1)
∗rn‖

≤ ε + ‖F ′(xδn
kn−1)

∗rn‖ ≤ ε + ‖rn‖ ,

and it follows from (2.7) that

‖xδn
kn

− x̂‖ ≤ ε + ‖yδn − y‖ + ‖y − F (xδn
kn−1)‖

≤ ε + δn +
1

1− η
ε ≤ 2

1− η
ε

by choosing n sufficiently large. This establishes our assertion.

In [7] we also investigated the order-optimality of the nonlinear Land-
weber iteration under additional assumptions on F . The corresponding
result for our improved stopping rule is as follows.

Theorem 4.2. Assume that F satisfies (2.4), and that

F ′(x) = RxF
′(x†) for all x ∈ Bρ(x

†)
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and some ρ > 0, where the map x 7→ Rx ∈ B(Y) is Lipschitz continuous
in Bρ(x

†). Then, if τ > 1 and x† − x0 =
(
F ′(x†)∗F ′(x†)

)ν
f for some

0 < ν ≤ 1/2 and f ∈ X with ‖f‖ sufficiently small, and if ‖yδ − y‖ ≤ δ,
then there is a constant c > 0 such that the stopping index kδ of (2.8) is
well defined, and there holds

kδ ≤ c (‖f‖/δ)1/(2ν+1),

and

‖xδ
kδ − x†‖ ≤ c ‖f‖1/(2ν+1)δ2ν/(2ν+1) .

Concerning the proof we remark that the new assumption on F im-
plies that (2.5) holds for any value of η > 0 provided that x̃ and x are
sufficiently close to x†, i.e., in our region of interest, if f ∈ X as intro-
duced in the statement of the theorem is sufficiently small. Since τγ(η)
approaches one as η → 0 it follows that τ > τγ(η) for η sufficiently small,
that is, for f sufficiently small, and therefore the stopping index (2.8) is
well defined in that case.

With this in mind the proof of Theorem 4.2 is exactly the same as
in [7], with obvious modifications of the corresponding constants, and is
therefore omitted here.

5. Summary. We have shown that in the discrepancy principle (2.8)
for the nonlinear Landweber iteration smaller parameters τ are admissible
than those that have previously been used; new bounds for τ are given
by τγ(η) of (2.11), where 0 < η < 1/2 is the constant in the nonlinearity
constraint (2.5) on the operator F , and 0 < γ ≤ 1 is a bound for its
Fréchet derivative, cf. (2.4). The value of τγ(η) depends monotonically
on η and γ, and comes arbitrarily close to the optimal parameter τ = 1
when η approaches zero, i.e., when the problem becomes ‘more and more
linear’.

Another simple computation reveals that the new bounds for τ are
only half as large as the previously known ones, i.e., τ ∗(η) of (2.10),
provided that

γ2 ≤ 1− η . (5.1)

In view of (2.4) this inequality can always be achieved by rescaling the
problem, as such a rescaling does not alter the constant η in (2.5). How-
ever, as smaller values of γ lead to smaller step sizes in the Landweber
iteration, this will typically slow down the convergence. On the other
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hand, the requirement (5.1) is not too dramatic, either, as its right-hand
side is greater than 1/2, and hence, γ = 1/

√
2 will always be sufficient.

Once again, we refer to Figure 2.1 for a comparison of the old and
new bounds for τ .
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