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Abstract

We introduce a new iterative scheme for solving linear ill-posed problems, similar to
nonstationary iterated Tikhonov regularization, but with an approximation of the underlying
operator to be used for the Tikhonov equations. For image deblurring problems such an
approximation can be a discrete deconvolution that operates entirely in the Fourier domain.
We provide a theoretical analysis of the new scheme, using regularization parameters that
are chosen by a certain adaptive strategy. The numerical performance of this method turns
out to be superior to state of the art iterative methods, including the conjugate gradient
iteration for the normal equation, with and without additional preconditioning.

1 Introduction

We consider the iterative solution of ill-posed equations

Tx = y , (1.1)

where T : X → Y is a linear operator between two Hilbert spaces X and Y. We assume that y
is attainable, i.e., that problem (1.1) has a solution x† of minimal norm. In the present context,
the phrase ill-posed is used to indicate that the (Moore-Penrose) generalized inverse operator of
T is not bounded, and hence, problem (1.1) has to be regularized for a numerical solution.

As far as iterative regularization methods are concerned, these methods typically suffer un-
der one of the following two shortcomings: Either they are extremely slow like, for example, the
so-called Landweber iteration, or they are reasonably fast but may deteriorate if not terminated
appropriately, like the conjugate gradient iteration (cgls). We refer to [9, 17] for a compre-
hensive discussion of these and further properties of iterative regularization methods for linear
ill-posed problems. Preconditioners can be used to accelerate the convergence, cf. [4, 8, 14, 16],
but an imprudent choice of preconditioner may spoil the achievable quality of the computed
restorations.
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While both, the Landweber iteration as well as cgls are based on the normal equation
T ∗Tx = T ∗y associated with (1.1), we propose here a new iterative scheme that uses some
sort of (nonstationary) preconditioning applied to the original problem (1.1). In fact, we do
not require T ∗ for our method, and this can be a benefit in some applications. Under certain
assumptions that allow the construction of an appropriate approximation C of T the new scheme
turns out to be even faster than cgls, while at the same time being much more stable with
respect to the associated termination criterion.

Our scheme can be viewed as a variant of nonstationary iterated Tikhonov regularization,
to the effect that the approximation C enters into the residual correction steps, when linear
equations with T ∗T +αI or TT ∗+αI, α ∈ R, are too expensive to solve. Of course, in that case
efficient solvers for Tikhonov type equations with C need to be available to qualify a potential
candidate for being a good choice of C, compare (2.3) below. At the same time, C should
be close to T in an appropriate sense, see (2.8) below; this closeness property then rules the
adaptive selection of the individual Tikhonov regularization parameters.

We provide an abstract convergence analysis of the new iterative scheme, and illustrate its
numerical performance for some model problems from image deblurring. We start in Section 2
by providing some first preliminary motivation and formulating the final overall algorithm.
Subsequently, in Section 3, convergence and regularization properties of the new scheme will be
derived. Then we turn to image deblurring as the basic application we have in mind. A brief
description of the corresponding setting is the subject of Section 4, and after that we discuss
some numerical examples in Section 5. Finally, we conclude with a short summary of our results.

2 A nonstationary preconditioned iteration

Throughout this paper we assume that, instead of the exact data y ∈ Y of (1.1), we are only
given approximate data yδ ∈ Y with

‖yδ − y‖ ≤ δ , (2.1)

where δ ≥ 0 is the corresponding noise level, with the understanding that the data are exact
when δ = 0.

The algorithm we propose has the following form (see Algorithm I below for the final version,
with all parameters specified): Starting with an initial guess x0 of x† we compute, for n =
0, 1, 2, . . . ,

hn = C∗(CC∗ + αnI)
−1rn , rn = yδ − Txn , (2.2a)

and set
xn+1 = xn + hn . (2.2b)

Note that the linear equation (2.2a) is equivalent to minimizing the Tikhonov functional

‖Chn − rn‖
2 + αn‖hn‖

2 −→ min. (2.3)

over hn ∈ X , where C is the aforementioned approximation of T , and αn is the associated
regularization parameter. In the literature on iterative solvers for (usually well-posed) problems
of the form (1.1) the operator P = C∗(CC∗+αnI)

−1 in (2.2a) would be called preconditioner. As
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we will select different regularization parameters αn in each iteration (see below), it is therefore
appropriate to call the new scheme (2.2) a nonstationary preconditioned iteration.

Before we come to the selection of the regularization parameters (αn)n we list three different
motivations for the scheme (2.2).

• If the operator C in (2.2a) or (2.3), respectively, were replaced by T then (2.2) would
be the (nonstationary) iterated Tikhonov method investigated in [13]. To achieve rapid
convergence, a recommended choice for the parameter sequence (αn)n is the geometric
sequence

αn = αqn, n = 0, 1, 2, . . . , (2.4)

where α > 0 and 0 < q ≤ 1. The classical stationary iterated Tikhonov method is obtained
for q = 1. As mentioned before the iterated Tikhonov method would require an efficient
solver for linear systems with operators T ∗T + αnI. Variant (2.3) will be a preferred
alternative if systems with C∗C + αnI can be solved more easily.

• The iterated Tikhonov method can be interpreted as an iterative refinement procedure,
where the update hn is obtained by applying Tikhonov regularization to the error equation
Ten ≈ rn, where

en = x† − xn (2.5)

is the error after n steps. Note that in view of (2.1) this error equation is (only) correct up
to the perturbation in the data. Taking this into account one may as well consider instead
the “model equation”

Cen ≈ rn , (2.6)

possibly tolerating a slightly larger misfit. Solving (2.6) by means of Tikhonov regular-
ization then corresponds to (2.3), resp. (2.2a). With this point of view the choice of the
regularization parameters should also reflect how much we trust in the model (2.6).

• This leads us to our third motivation. The Levenberg-Marquardt iteration is a means
to solve nonlinear equations, where in each iteration a Tikhonov-type functional (2.3) is
minimized, with C being an approximate derivative of the respective nonlinear operator,
and the parameter αn, again, depends on how much one trusts in the corresponding
linearized model. For ill-posed (nonlinear) problems a variant of this scheme was proposed
in [12], and there it has been suggested to choose the parameter αn such that the model
equation (2.6) is only solved up to a certain relative amount, i.e., such that

‖rn − Chn‖ = qn‖rn‖ , (2.7)

where qn is smaller than one, but not too small. This is the choice that we adopt here for
our purposes.

To derive a sophisticated value for the parameter qn in (2.7) we impose a closeness assumption
on the given approximation C of T , namely that

‖(C − T )z‖ ≤ ρ ‖Tz‖ , z ∈ X , (2.8)
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for some 0 < ρ < 1/2. We mention that such a condition may be hard to satisfy for a specific
problem, as it implies – using the triangle inequality – that

(1− ρ)‖Tz‖ ≤ ‖Cz‖ ≤ (1 + ρ)‖Tz‖ (2.9)

for all z ∈ X , i.e., that C and T are spectrally equivalent. However, in the context of image
deblurring an assumpion like (2.8) may not be far fetched, see Section 4.

Proposition 1 Assume that (2.8) is satisfied for some 0 < ρ < 1/2, and let τ∗ = (1+ρ)/(1−2ρ).
Then, if τn = ‖rn‖/δ > τ∗, it follows that

‖rn − Cen‖ ≤
(

ρ +
1 + ρ

τn

)

‖rn‖ < (1− ρ)‖rn‖ . (2.10)

Proof: We rewrite

rn − Cen = yδ − Txn − Cen = yδ − y + (T − C)en ,

and use (2.1) and (2.8) to estimate

‖rn − Cen‖ ≤ ‖yδ − y‖ + ρ‖Ten‖ ≤ ‖yδ − y‖ + ρ
(

‖rn‖ + ‖yδ − y‖
)

≤ (1 + ρ)δ + ρ‖rn‖ .

By assumption, we have δ = ‖rn‖/τn, and this then yields the first inequality in (2.10). The
second inequality follows from

ρ +
1 + ρ

τn
< ρ +

1 + ρ

τ∗
= 1− ρ .

Given the assumption (2.8) Proposition 1 provides a justification of the model equation (2.6)
as long as the size of the residual rn is not too close to the noise level. Now we can summarize
our nonstationary preconditioned iterative scheme as follows:

Algorithm I Let x0 ∈ X be given, and set r0 = yδ − Tx0. Choose τ = (1 + 2ρ)/(1 − 2ρ) with

ρ from (2.8), and fix q ∈ (2ρ, 1).
While ‖rn‖ > τδ, let τn = ‖rn‖/δ, and compute

hn = C∗(CC∗ + αnI)
−1rn , (2.11a)

where αn is such that

‖rn − Chn‖ = qn‖rn‖ , qn = max
{

q, 2ρ+ (1 + ρ)/τn
}

, (2.11b)

and update

xn+1 = xn + hn , rn+1 = yδ − Txn+1 . (2.11c)
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The parameter q in Algorithm I is meant as a safeguard to prevent that the residual decreases
too rapidly. Our theoretical results do not utilize this parameter. However, if ρ happens to be too
small, or if (2.8) is only satisfied approximately, then error components may build up strongly;
see also the discussion at the end of Section 5.1.

We mention that, by construction, and by virtue of Proposition 1, there is a unique positive
regularization parameter αn that determines hn in the prescribed manner, cf., e.g., Groetsch [11].
This parameter can be computed with few steps of an appropriate Newton scheme, cf., e.g., [9,
Prop. 9.8]. Accordingly, Algorithm I is well defined; moreover, as we will see in the following
section, if δ > 0, then this algorithm will terminate after n = nδ ≥ 0 iterations with

‖rnδ
‖ ≤ τδ < ‖rn‖ , n = 0, 1, . . . , nδ − 1 . (2.12)

This stopping rule is known as discrepancy principle. When δ = 0, on the other hand, i.e., if the
data are exact, the iterates xn of the algorithm will converge to an exact solution as n → ∞,
cf. Theorem 4. To simplify the formulation of subsequent results, we formally set nδ = +∞ in
this case.

3 Convergence analysis of the nonstationary iteration

We now turn to the theoretical properties of Algorithm I, following mostly the line of argu-
ment developed in [12] for the analysis of the aforementioned regularizing Levenberg-Marquardt
scheme for nonlinear ill-posed problems.

Proposition 2 Under assumption (2.8) the norm of the iteration error en = x† − xn of Algo-

rithm I decreases monotonically for n = 0, 1, . . . , nδ − 1:

‖en‖
2 − ‖en+1‖

2 ≥ 2ρ ‖(CC∗ + αnI)
−1rn‖ ‖rn‖ . (3.1)

Proof: From (2.11) follows

‖en‖
2 − ‖en+1‖

2 = 2〈 en, hn 〉 − ‖hn‖
2

= 2〈Cen, (CC∗ + αnI)
−1rn 〉 − 〈 rn, CC∗(CC∗ + αnI)

−2rn 〉

= 2〈 rn, (CC∗ + αnI)
−1rn 〉 − 〈 rn, CC∗(CC∗ + αnI)

−2rn 〉

− 2〈 rn − Cen, (CC∗ + αnI)
−1rn 〉

≥ 2〈 rn, (CC∗ + αnI)
−1rn 〉 − 2〈 rn, CC∗(CC∗ + αnI)

−2rn 〉

− 2〈 rn − Cen, (CC∗ + αnI)
−1rn 〉

= 2αn〈 rn, (CC∗ + αnI)
−2rn 〉 − 2〈 rn − Cen, (CC∗ + αnI)

−1rn 〉

≥ 2αn〈 rn, (CC∗ + αnI)
−2rn 〉 − 2 ‖rn − Cen‖ ‖(CC∗ + αnI)

−1rn‖

= 2 ‖(CC∗ + αnI)
−1rn‖

(

‖αn(CC∗ + αI)−1rn‖ − ‖rn − Cen‖
)

.

Now, since αn(CC∗ + αnI)
−1rn = rn − Chn by virtue of (2.11a), we have

‖en‖
2 − ‖en+1‖

2 ≥ 2 ‖(CC∗ + αnI)
−1rn‖

(

‖rn − Chn‖ − ‖rn − Cen‖
)

.
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Inserting (2.11b) and the estimate (2.10) we thus conclude that

‖en‖
2 − ‖en+1‖

2 ≥ 2 ‖(CC∗ + αnI)
−1rn‖

(

qn‖rn‖ −
(

ρ+
1 + ρ

τn

)

‖rn‖
)

≥ 2ρ ‖(CC∗ + αnI)
−1rn‖ ‖rn‖ ,

as has been claimed.

From inequality (3.1) of Proposition 2 we can draw further important conclusions.

Corollary 3 With the assumption and notation of Proposition 2 there holds

‖e0‖
2 ≥ 2ρ

nδ−1
∑

n=0

‖(CC∗ + αnI)
−1rn‖ ‖rn‖ ≥ c

nδ−1
∑

n=0

‖rn‖
2 (3.2)

for some constant c > 0, depending only on ρ of (2.8) and on the parameter q of Algorithm I.

Proof: The first inequality simply follows by taking the sum of (3.1) from n = 0 up to n = nδ−1:

‖e0‖
2 ≥ 2ρ

nδ−1
∑

n=0

‖(CC∗ + αnI)
−1rn‖ ‖rn‖ . (3.3)

To proceed further we need to derive lower bounds for ‖(CC∗ + αnI)
−1rn‖, when 0 ≤ n < nδ.

We first estimate αn. For α > qn‖C‖2/(1 − qn) and 0 ≤ λ ≤ ‖C‖2 there holds

α

λ+ α
≥

α

‖C‖2 + α
=

(

1 + ‖C‖2/α
)−1

> qn ,

and hence,

‖α(CC∗ + αI)−1rn‖ > qn ‖rn‖ ,

as ‖rn‖ > 0 for n < nδ. Since the residual norm of the Tikhonov approximation is strictly increas-
ing with α (cf. [11]) this implies that the parameter αn of (2.11b) satisfies αn ≤ qn‖C‖2/(1−qn),
and therefore

‖(CC∗ + αnI)
−1rn‖ =

1

αn

‖rn − Chn‖ =
qn
αn

‖rn‖ ≥
1− qn
‖C‖2

‖rn‖ .

Now, according to the choice of parameters in Algorithm I, 1−qn = min{1−q, 1−2ρ−(1+ρ)/τn},
and

1− 2ρ− (1 + ρ)/τn =
1 + 2ρ

τ
−

1 + ρ

τn
>

1 + 2ρ

τ
−

1 + ρ

τ
= ρ/τ .

Therefore, there exists c > 0, depending only on ρ and q such that 1− qn ≥ c ‖C‖2/(2ρ), and

‖(CC∗ + αnI)
−1rn‖ ≥

c

2ρ
‖rn‖ for n = 0, 1, . . . , nδ − 1 .

6



Inserting this into (3.3) the second assertion follows as well.

The implications of Corollary 3 are two-fold: First, it follows from the outer inequality in
(3.2) that the sum of squares of the residual norms is bounded, and hence, if δ > 0 there must
be a first integer nδ < ∞ such that (2.12) is fulfilled. In other words: Algorithm I terminates
after finitely many iterations, when δ > 0.

On the other hand, if the data are exact (δ = 0) then it can be deduced from Corollary 3
that the iterates of Algorithm I converge to an exact solution of (1.1) as n → ∞. This we show
next.

Theorem 4 Assume that the data are exact, i.e., δ = 0, and that x0 is no solution of prob-

lem (1.1). Then the sequence (xn)n converges as n → ∞ to the solution of (1.1) that is closest

to x0.

Proof: If δ = 0 then the stopping criterion (2.12) can only be satisfied with n = nδ for a
solution xn of (1.1). In this case, if n > 0 then hn−1 must coincide with en−1 up to an element
in the null space of T , that is, in the null space of C, by virtue of (2.9). Accordingly, it follows
from (2.11b) and Proposition 1 that

qn−1‖rn−1‖ = ‖rn−1 − Chn−1‖ = ‖rn−1 −Cen−1‖ ≤
(

ρ +
1 + ρ

τn−1

)

‖rn−1‖.

This, however, contradicts the definition (2.11b) of qn−1. Therefore, the iteration does not
terminate for exact data, unless x0 is already a solution of (1.1).

We show next that (xn)n is a Cauchy sequence. To this end, consider for m > l

‖xm − xl‖
2 = ‖em − el‖

2 = ‖em‖2 − ‖el‖
2 − 2〈 el, em − el 〉

= ‖em‖2 − ‖el‖
2 + 2〈 el, xm − xl 〉 .

Inserting (2.11c) and (2.11a) it follows that

‖xm − xl‖
2 = ‖em‖2 − ‖el‖

2 + 2

m−1
∑

k=l

〈 el, hk 〉

= ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

〈Cel, (CC∗ + αkI)
−1rk 〉

≤ ‖em‖2 − ‖el‖
2 + 2

m−1
∑

k=l

‖Cel‖ ‖(CC∗ + αkI)
−1rk‖ .
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Likewise, we obtain for l ≥ n that

‖xl − xn‖
2 = ‖en‖

2 − ‖el‖
2 − 2〈 el, en − el 〉 = ‖en‖

2 − ‖el‖
2 − 2

l−1
∑

k=n

〈 el, hk 〉

= ‖en‖
2 − ‖el‖

2 − 2

l−1
∑

k=n

〈Cel, (CC∗ + αkI)
−1rk 〉

≤ ‖en‖
2 − ‖el‖

2 + 2

l−1
∑

k=n

‖Cel‖ ‖(CC∗ + αkI)
−1rk‖ .

Together with (2.9) it thus follows that for general m > n and any l ∈ {n, . . . ,m − 1} there
holds

‖xm − xn‖
2 ≤ 2‖xm − xl‖

2 + 2‖xl − xn‖
2

≤ 2‖em‖2 + 2‖en‖
2 − 4‖el‖

2 + 4

m−1
∑

k=n

‖Cel‖ ‖(CC∗ + αkI)
−1rk‖

≤ 2‖em‖2 + 2‖en‖
2 − 4‖el‖

2 + 4(1 + ρ)

m−1
∑

k=n

‖rl‖ ‖(CC∗ + αkI)
−1rk‖ .

Now we choose l to be that particular iteration index in the interval {n, . . . ,m− 1}, for which
‖rl‖ becomes minimal, so that

‖xm − xn‖
2 ≤ 2‖em‖2 + 2‖en‖

2 − 4‖el‖
2 + 4(1 + ρ)

m−1
∑

k=n

‖rk‖ ‖(CC∗ + αkI)
−1rk‖ .

Since the sequence (‖ek‖)k is monotonically decreasing and nonnegative, it is convergent with
some limit ǫ ≥ 0, and thus the above right-hand side becomes arbitrarily small for n and m
sufficiently large, as its last term is the partial sum of a converging series, see Corollary 3.
This means that (xn)n is a Cauchy sequence with limit x ∈ X , say. Accordingly, the residues
rn = y − Txn converge to y − Tx, while, by virtue of Corollary 3 again, rn converges to zero at
the same time. This shows that Tx = y, i.e., that x solves (1.1).

By construction every iterate xn satisfies

xn − x0 =
n−1
∑

k=0

hk ∈ R(C∗) = N (C)⊥ ,

and hence, x − x0 is orthogonal to the null space of C. This null space, however, coincides
with the null space of T by virtue of (2.9). Therefore, x− x0 ∈ N (T )⊥, i.e., x is the particular
solution of (1.1) that is closest to x0 in the norm of X .

For inexact data, on the other hand, Algorithm I is a regularization method, provided that
(2.8) holds true. The precise statement is as follows.
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Theorem 5 Assume that (2.8) holds for some 0 < ρ < 1/2, and let δ 7→ yδ be a function from

R
+ to Y such that (2.1) holds true for all δ > 0. For fixed parameters τ and q denote by nδ the

corresponding stopping indices of Algorithm I, and by xδ the resulting approximations. Then,

as δ → 0, xδ converges to the solution of (1.1) that is closest to x0 in the norm of X .

We omit the proof, because it can be copied from the proof of Theorem 2.3 in [12]; see also [9,
Thm. 11.5]. Its essential ingredients are the monotonicity property established in Proposition 2,
and the continuous dependence of the nth iterate xn on the data yδ.

4 Image deblurring

As an application we now turn to image deblurring problems. Such problems are usually for-
mulated as large linear systems of the form

Tx = y (4.1)

where the vector x represents the pixel values of an unknown true image, y contains the pixel
values of the observed (blurred) image, and the matrix T describes the blurring phenomenon,
cf., e.g., Bertero [3]. Again, in practice, noisy data yδ are given instead of y, with

‖yδ − y‖ ≤ δ ,

where, often, the noise level δ is known or can be estimated. For present day imaging purposes,
the vectors x and y (resp. yδ) can be of dimension 106 and higher, and accordingly, the matrix
T is extremely large. Although, strictly speaking, its Moore-Penrose inverse is continuous (as T
is acting in finite dimensional spaces), the formulation (4.1) should be viewed as a discretization
of an underlying first kind integral equation (1.1) that is ill-posed in the sense used before. Ac-
cordingly, (4.1) is very ill-conditioned and, following the terminology introduced by Hansen [15],
we call (4.1) a discrete ill-posed problem.

In this paper we confine ourselves to the most elementary situation, and assume that the
blur of the image can be described by a space invariant point spread function (PSF). While
the corresponding integral operator is then of convolution type, the discrete problem also has
to take into account the limited field of view, which requires the incorporation of appropriate
boundary conditions into the model.

The resulting matrices are usually hard to invert explicitly, and for the same reason, Tikhonov-
type functionals like

‖yδ −Tx‖2 + α ‖x‖2

are difficult to minimize. In the past these discrete problems have therefore been solved by
Fourier filtering techniques (discrete deconvolution, cf., e.g., Andrews and Hunt [1]), but it is
now commonly recognized that these Fourier techniques introduce annoying artefacts into the
reconstructions when the image is not periodic outside the field of view. Today iterative methods
are the preferred option for the solution of (4.1), cf., e.g., Berisha and Nagy [2] for a recent survey
on these matters.
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Fourier filtering techniques can, however, be exploited for the purpose of preconditioning
the problem. A first proposal of this sort was made in [14]; however, the corresponding precon-
ditioned conjugate gradient iteration (pcgls) has stability problems, as the choice of the free
parameters is somewhat tricky. As a side comment we also mention that the known precondi-
tioners have been designed for the normal equations system associated with (4.1), and therefore
do not apply to all boundary conditions equally well; see Sect. 5.3 below.

Here we make a different suggestion and recommend to apply Algorithm I to the discrete
problem (4.1), where the coefficient matrix T that carries the “correct” boundary conditions of
the model is approximated by the doubly circulant matrix C that corresponds to the discrete
Fourier deconvolution (that is, to periodic boundary conditions) of a suitably truncated PSF
(where necessary). With this choice ofC the computation of (2.11a), but also the adaptive choice
of the regularization parameters αn in order to fulfill (2.11b) can be realized very efficiently in
the Fourier domain, such that the evaluation of the residual rn remains the major computational
burden in each iteration.

The suggestion of approximating T by this particular matrix C goes back to Strang [21].
As far as our assumption (2.8) concerning the closeness of this approximation is concerned, we
start by mentioning that the boundary conditions have a very local effect on the overall system,
i.e., the approximation error T−C can generically be decomposed as

T−C = E+R , (4.2)

where E is a matrix of small norm (it can be zero, if the PSF is compactly supported), and R

is a matrix of small rank (compared to the dimension of the problem), cf., e.g., Ng [19]. Images
in the range of R are usually zero except for small neighborhoods of the boundary, but we have
to admit that we do not know whether a rigorous estimate of the form (2.8), i.e.,

‖(T −C)z‖ ≤ ρ ‖Tz‖

will hold for all (relevant) vectors z and some parameter ρ < 1/2. However, cf. Figure 4 (b) below,
our numerical results confirm that the model equation (2.6) holds to good relative accuracy, in
that the estimate (2.10), which is one of the major consequences of (2.8), is nicely satisfied with
an appropriate (small) choice of ρ of a few percent. An explanation may be that for (2.6) to be
an appropriate model, accurate boundary conditions are not that important, since the error is
more or less well distributed over the domain – at least in the earlier stages of the iteration.

As we will see in the numerical results of the following section our new nonstationary pre-
conditioned iteration is faster than any other iterative regularization method for this kind of
problems, but still very robust with respect to the termination criterion.

5 Numerical results

The following experiments have been carried out in Matlab 7.12 using Version 2 of the Matlab
Toolbox RestoreTools [18], see also [2]. For the nonstationary preconditioned iteration (2.2) we
compare the geometric sequence (2.4) of parameters αn (labeled “Geometric” in the plots) with
their adaptive selection as defined in Algorithm I (“Algor. I”). In both variants the parameter q
determines how fast the sequence (αn)n decreases, and we fix q = 0.7 in either case. (See the end
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Figure 1: Example 1 – from left to right: true image, PSF, and observed image with ν = 0.5%.

of Sect. 5.1 for a discussion of this particular choice.) Moreover, for the geometric sequence (2.4)
we start with α0 = α = 0.5 because the PSF has mean one and is nonnegative, hence ‖T‖∞ ≈ 1.
The two nonstationary preconditioned algorithms are compared with cgls and pcgls, where
the latter uses the preconditioner from [14] provided by the toolbox. For every iterative method
we choose the given data as initial approximation x0.

For our simulations the exact data y have been perturbed by synthetically generated noise
vectors with normally distributed entries with zero mean. The variance of the entries is chosen
so as to achieve different noise levels δ, and below we refer to

ν =
δ

‖y‖

as the corresponding relative amount of noise. All iterative methods are terminated according
to the discrepancy principle (2.12); while Algorithm I requires to choose τ = (1 + 2ρ)/(1 − 2ρ),
we use τ = 1.01 for the other three algorithms. To compare the quality of the restorations, we
evaluate their relative restoration errors (RRE), i.e.,

RRE =
‖x− x†‖

‖x†‖
,

where x is the computed solution. Since the relevance of this number is often criticized, we also
display the corresponding restorations to allow for a visual comparison.

5.1 Example 1

We start with a test problem of size 256× 256, shown in Figure 1, that has often been used as a
benchmark in the literature, cf., e.g. [14, 18], with a PSF designed to model atmospheric blur,
and ν = 0.5% noise. This example employs zero Dirichlet boundary conditions, and hence T is
a block Toeplitz matrix with Toeplitz blocks. Recall that we use for C the block circulant matrix
with circulant blocks obtained by imposing periodic boundary conditions. For this example we
have found that we can work with a small value ρ = 10−3 to satisfy (2.8) and (2.10).

We refer to Figures 2 and 3 for the iteration history and the restored images of the four
different methods, respectively. These results highlight the effectiveness of our nonstationary
preconditioned method, both for the geometric sequence and the adaptive choice of the regu-
larization parameters. In particular, both algorithms exhibit fast convergence without losing in
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Figure 2: Example 1 – RRE and relative norm of the residual at each iteration.

(a) (b) (c) (d)

Figure 3: Example 1 – restored images.
(a) Algorithm I with adaptive choice: RRE = 0.288, it. 12;
(b) Nonstationary iteration (2.2) with geometric sequence (αn): RRE = 0.287, it. 23.;
(c) cgls: RRE = 0.290, it. 90; (d) pcgls: RRE = 0.314, it. 31.

quality of the restoration or stability, as it sometimes happens with pcgls. In particular, in this
example PCGLS exhibits a strong increase of the error norm in the very first iteration.

Figure 4 (a) depicts the regularization parameters (αn)n in logarithmic scale. We note that in
the very last iteration of Algorithm I the regularization parameter is increasing in order to satisfy
(2.11b), because then also the value of qn increases, compare Figure 4 (b). This latter plot not
only shows qn as a function of n, but also exhibits the quality of the model fit ‖rn −Cen‖/‖rn‖
for each iteration. Thus we can check that for our choice of ρ the quantity qn is indeed an
upper bound for this model fit as predicted by Proposition 1. As a consequence the monotonic
decrease of the iteration error of Algorithm I is in accordance with Proposition 2.

We hasten to add that for this particular example Algorithm I is not very sensitive to the
choice of ρ. Indeed, for ρ = 10−4 we obtain RRE = 0.287 after 13 iterations, while for ρ = 10−2

we have RRE = 0.295 after 11 iterations. Likewise, Algorithm I is robust also with respect to the
parameter q: Figure 5 shows the values of qn and the quality of the model fit ‖rn −Cen‖/‖rn‖
when taking q = 0.6 and q = 0.8, respectively. With q = 0.6 Algorithm I terminates after 10
iterations with RRE = 0.287, while for q = 0.8 it terminates after 18 iterations with RRE =

12



0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

 

 

Algor. I
Geometric

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

 

 

‖rn −Cen‖/‖rn‖
qn

(a) (b)

Figure 4: Example 1 – (a) αn vs n; (b) verification of (2.10)
.
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Figure 5: Example 1 – values of qn and verification of (2.10) for q = 0.6 and q = 0.8.

0.288. We do not recommend, however, to choose this parameter much smaller than q = 0.6,
as for smaller values of q and small noise the algorithm with the geometric sequence (αn)n may
fail to meet the stopping criterion. The adaptive strategy of Algorithm I appears to be more
robust in that sense, but still, the residual norms can start oscillating when the regularization
parameters are forced to be too small too early in the iteration, and then the convergence history
may become somewhat erratic; see the discussion of Figure 9 in Sect. 5.2.

5.2 Example 2

Next we consider the well-known Shepp-Logan phantom displayed in Figure 6, cropped down
to size 237× 237, and degraded by a (nonsymmetric) Gaussian blur defined in the file Gaussian-
Blur422.mat included in Version 2 of RestoreTools. Due to the black (i.e., zero) background we
again set up T by imposing zero Dirichlet boundary conditions and choose the same closeness
parameter ρ = 10−3 as before. For this second example pcgls, as provided by the toolbox, fails
in determining an appropriate threshold parameter (called τ in [14, 18]) to construct the corre-
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Figure 6: Example 2. From left to right: true image, PSF, and blurred image without noise.

ν Algorithm I
Iteration (2.2) with
geometric sequence

cgls pcgls

0.5% 0.281 (13) 0.282 (18) 0.284 (55) 0.289 (18)
1% 0.293 (11) 0.296 (14) 0.296 (32) 0.303 (17)
3% 0.318 (7) 0.317 (10) 0.321 (13) 0.318 (9)

Table 1: Example 2: RREs for different noise levels with the number of iterations in parentheses.

sponding preconditioner, and so we fix this parameter by hand to be equal to 3ν. This choice
does accelerate the convergence of cgls without losing in quality of the restoration, although it
may not be the optimal parameter, which is hard to estimate a priori.

In view of the results for different noise levels listed in Table 1 we emphasize the robustness
of the nonstationary preconditioned method, both for the geometric sequence and the adap-
tive choice of (αn)n: For each noise level the nonstationary preconditioned methods compute
restorations with RREs that are comparable to the ones of cgls, but with much fewer iterations.
Moreover, we recall that matrix–vector products with C∗(CC∗ + αnI)

−1 are computationally
cheaper than those with T∗, and hence the overall costs of the new iterative schemes are signifi-
cantly smaller. Figures 7 and 8 depict the iteration history and the reconstructions for the case
of 3% noise.

In this example, when the noise gets small, e.g., for ν = 0.1%, the convergence history of Al-
gorithm I becomes somewhat erratic if we stick to the small value ρ = 10−3 chosen above. This
can be detected from the residuals ‖rn‖ as well as from the chosen regularization parameters αn,
as is illustrated in Figure 9: When the estimate (2.10) is violated, and the algorithm attempts
to invert noise components, then the residual norms increase, and thereafter the regularization
parameters and the residual norms start to zigzag up and down. Interesting enough, the algo-
rithm often recovers, and in the particular case shown in Figure 9 the iteration terminates after
24 steps with a reasonable restoration (RRE = 0.254).

This instability can be fixed by increasing ρ. Figure 9 also displays the history of the
residuals and regularization parameters for ρ = 10−2. In this case the zigzagging disappears,
and Algorithm I terminates after 17 iterations with RRE = 0.261. Note that, according to
(2.11b) a different value of ρ only affects the final stage of the iteration; in this particular case
the two sequences (αn)n start to differ from n = 15 onwards.

We mention that larger values of ρ also give rise to larger values of τ (by virtue of the
definition of τ in Algorithm I), to satisfy our theory. In practice, however, the latter may result
in a too early termination of the iteration according to (2.12). In that case it may pay to
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Figure 7: Example 2 – RRE and relative norm of the residual at each iteration (ν = 3%).

Figure 8: Example 2 – restored images for ν = 3%.
From left to right: Algorithm I, iteration (2.2) with geometric parameter sequence, cgls, pcgls.
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Figure 9: Example 2 with ν = 0.1% – ‖rn‖/‖y
δ‖ (left) and αn (right) vs n.
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Figure 10: Example 3. From left to right: true image, sketch of the PSF, and blurred image
without noise.

cautiously continue the iteration somewhat further while monitoring the residual norms. As
mentioned before, an increase of the residual norm is often a reasonable indicator for some
trouble going on.

5.3 Example 3

Our third test problem is the image “Barbara” of size 452×452, corrupted by a 15 pixels diagonal
motion blur and ν = 1% noise, see Figure 10; the sketch of the PSF displays the locations of
the corresponding nonzero pixel entries on the antidiagonal (like the “flip matrix” of order 15),
the respective numbers being equal to 1/15, each. Since the image is part of a larger scene we
impose so-called antireflective boundary conditions as suggested by Serra-Capizzano [20]. The
corresponding matrix T has a Toeplitz plus Hankel plus low rank structure, both at the block
level and within the blocks. Although antireflective boundary conditions yield a small modelling
error, the normal equation system should be avoided for that approach, as the corresponding
restorations in the range of T∗ come with unwanted boundary artefacts; compare [5, 7]. One
possibility is to use a reblurring approach instead, cf. [6], in which case T∗ is replaced by a so-
called reblurring matrix T′, but then cgls and pcgls will fail, as T′T is no longer symmetric. In
fact, numerical results by Fan and Nagy [10] show that the reblurring conjugate gradient iteration
with antireflective boundary conditions fails for this image “Barbara” and a diagonal motion
blur, and they suggested so-called “synthetic” boundary conditions instead to fix this problem.
Alternatively, one can stay with the simpler antireflective model and use the scheme (2.2) in lieu
of the conjugate gradient iteration, because there the preconditioner is applied to the original
system (1.1) and not to the normal equation system, and hence, neither the adjoint of T nor
any substitute are needed for the implementation.

We apply Algorithm I with parameter ρ = 10−2 for the closeness estimate (2.8) to solve this
problem, and compare the results to the nonstationary preconditioned iteration (2.2) with the
geometric sequence (αn)n, and with the reblurring cgls variant. As expected, cgls fails to
converge and does not meet the stopping criterion, hence we terminate this method when its
minimum RRE is reached (this, however, is not possible in practice); even with this beneficial
selection the cgls reconstruction is clearly worse than the ones of the nonstationary schemes,
while the number of iterations is comparable. See Figure 11 for the iteration history, and
Figure 12 for the corresponding restorations.
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Figure 11: Example 3 – RRE and relative norm of the residual at each iteration.

(a) (b) (c)

Figure 12: Example 3 – restored images.
(a) Algorithm I: RRE = 0.110, it. 6;
(b) Iteration (2.2) with geometric sequence: RRE = 0.110, it. 9;
(c) cgls: RRE = 0.131, it. 5;

6 Summary

We have developed a new nonstationary preconditioned iterative scheme for solving linear ill-
posed problems which is motivated by the nonstationary iterated Tikhonov method. The new
algorithm applies well to image restoration problems with arbitrary boundary conditions, using
a preconditioner that operates in the Fourier domain.

The rapid convergence of the iteration is determined by the correspondig sequence of reg-
ularization parameters (αn)n of the intermediate Tikhonov problems. We propose an adaptive
choice introduced earlier for a nonlinear Levenberg-Marquardt scheme, which can be justified
theoretically under suitable assumptions, cf. (2.8). Alternatively, a geometric parameter se-
quence, αn = αqn, may also be suitable in practice, but for this choice we have no rigorous
convergence analysis, and in our numerical experiments this variant exhibited a tendency to
require more iterations to achieve the same accuracy.

Our numerical results show that the new method outperforms the standard conjugate gradi-
ent iteration of the normal equation, and also its preconditioned counterpart. At the same time
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the method appears to be much more stable and also to be robust with respect to appropriate
stopping rules.
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