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Abstract. We investigate the reconstruction of the positions of a collection of small

metallic objects buried underneath the surface of ground from measurements of the

vertical component of scattered fields corresponding to vertically polarized dipole

excitations on a horizontal two-dimensional measurement device above the surface of

ground. A MUSIC reconstruction method for this problem has recently been proposed

by Iakovleva, Gdoura, Lesselier, and Perrusson [E. Iakovleva, S. Gdoura, D. Lesselier,

and G. Perrusson, Multi-static response matrix of a 3-D inclusion in half space and
MUSIC imaging, IEEE Trans. Antennas Propagat. 55 (2007), 2598–2609]. In this

paper we give a rigorous theoretical justification of this method. To that end we prove

a characterization of the positions of the scatterers in terms of the measurement data,

applying an asymptotic analysis of the scattered fields. We present numerical results

to illustrate our theoretical findings.
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1. Introduction

We investigate a MUSIC method to detect a collection of small metallic objects buried

in the subsoil from near field measurements of time-harmonic electromagnetic fields

above the surface of ground. One possible application we have in mind is the detection

of buried land mines using a multi-static measurement device that contains a grid of

coils to excite and measure electromagnetic waves. Our assumption on the size of the

scatterers is motivated by the fact that metal components contained in land mines

are usually tiny (with diameters of few centimeters at most), while metal detectors

for humanitarian demining often work at very low frequencies (cf. Bruschini [10])

corresponding to wavelengths in the order of kilometers.

As a simplified mathematical model we consider an unbounded two-layered

background medium representing air and soil, respectively, with finitely many small

perfectly conducting scatterers buried in the soil, and an idealized measurement device

operating above the ground. This device provides the sources for the incident fields and

is measuring the corresponding scattered fields. The goal of the inverse problem is to

recover the number and the positions of the unknown scatterers.

To this end we consider a MUSIC method. These are non-iterative reconstruction

algorithms for inverse scattering problems that are particularly adapted to the

reconstruction of small or point-like scatterers, and have proved to be comparatively

robust, even in the presence of noisy data. Starting with the work by Devaney [16],

MUSIC methods have been studied by various authors, e.g., in [2–5, 8, 9, 12, 18–21, 23].

Following Brühl et al. [9], a rigorous foundation of these methods can be based on an

asymptotic analysis of the scattered fields as the size of the scatterers tends to zero. It

turns out that the leading order term in the asymptotic expansion of the scattered fields

is a superposition of dipole fields with singularities at the positions of the scatterers.

This enables the development of a binary criterion to decide whether a given point in

the region of interest supports such an infinitesimal scatterer or not – using only the

measured data as input. An excellent introduction into this field can be found in the

books by Ammari and Kang [6, 7].

We mention that similar arguments can be used to justify so-called Factorization

Methods and Linear Sampling Methods for the reconstruction of the full shape of

objects of arbitrary (not necessarily small) size from scattering data (cf., e.g., Kirsch and

Grinberg [24] and Cakoni and Colton [11] for surveys on these methods). The relation

between these methods and the MUSIC methods has been pointed out in [1,12,19,23].

The asymptotic analysis of the electromagnetic scattering problem of infinitesimal

scatterers in two-layered background media, i.e., the direct problem, has been carried

out in [19]. In this paper one can also find a MUSIC method for a corresponding inverse

problem, using the full three dimensional traces of the scattered magnetic fields as data,

for every possible (vector valued) magnetic source supported on this device.

From a practical point of view, however, it is desirable to reduce this large amount

of measured data. For example, Iakovleva et al. [21] have recently presented a MUSIC
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method for a modification of the above inverse problem, which only uses

(i) incident fields whose polarization is perpendicular to the device, and

(ii) measurements of the normal component of the scattered fields.

This setup mimicks a multi-static measurement device of several coils that are mounted

parallel to the surface of ground.

In this work we provide a theoretical foundation of the method from [21], and we

prove that the positions of the infinitesimal scatterers can be recovered from the given

normal measurement data. Although we can utilize the asymptotic analysis from [19] of

the forward problem to achieve our goal, the techniques from [19] for treating the inverse

problem considered there break down for the particular setting of [21]. We therefore need

to develop a somewhat different line of argument instead. Our findings nicely support

and complement the results from [21], in particular those concerning the structure of

the singular value decomposition of the associated multi-static response matrix.

The outline of this paper is as follows. In Section 2 we describe the mathematical

model for the scattering and measurement process we are going to use and summarize the

results of the asymptotic analysis from [19]. Then we develop the theoretical foundation

of the MUSIC method for normal excitations and measurements in Section 3. Finally, in

Section 4, we formulate the reconstruction algorithm and provide numerical examples

to further illustrate the performance of this method. We also compare these results

to numerical results from [19, 20], which utilize fully three-dimensional excitations and

measurements.

2. The direct scattering problem

The mathematical setting of our direct scattering problem is the same as in [19,20]: We

consider a two-layered medium R
3 = R

3
+ ∪ Σ0 ∪ R

3
−, where Σ0 := {x ∈ R

3 | x3 = 0}
corresponds to the surface of ground and the two half spaces R

3
+ and R

3
− above and below

Σ0 represent air and soil, respectively. Both half spaces are assumed to be filled with

homogeneous isotropic materials such that the electric permittivity ε and the magnetic

permeability µ are given by

ε(x ) :=

{

ε+, x ∈ R
3
+,

ε−, x ∈ R
3
−,

µ(x ) :=

{

µ+, x ∈ R
3
+,

µ−, x ∈ R
3
−,

where ε+ and µ± are positive, whereas ε− may be complex with ℜ(ε−) > 0 and ℑ(ε−) ≥ 0

to allow for conductive soils.

Throughout we study time-harmonic electromagnetic waves with an angular

velocity ω > 0, which are governed by the reduced Maxwell equations

curlH + i ωεE = 0, curlE − i ωµH = 0. (1)

The associated (discontinuous) wave number is

k := ω
√

εµ =

{

k+, x ∈ R
3
+,

k−, x ∈ R
3
−,
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with k+ ∈ R, k+ > 0, and ℑ(k−) ≥ 0. Solutions to (1) satisfying the Silver-Müller

radiation condition
∫

∂BR

∣

∣

∣

x

R
×H (x ) +

( ε(x )

µ(x )

)1/2

E (x )
∣

∣

∣

2

ds(x ) = o(1) as R → ∞, (2)

where BR denotes the ball of radius R around the origin, are called radiating solutions.

We suppose that a finite collection of small perfectly conducting objects is buried in

the lower half space. Each of these scatterers is assumed to have the form Dδ,l := zl+δBl,

1 ≤ l ≤ p, where zl 6= zj for l 6= j, and Bl ⊂ R
3 is a bounded simply connected domain

with a smooth, connected boundary. We refer to zl ∈ R
3
− as the position of the scatterer

Dδ,l, and to the value of δ > 0 as its size. We assume δ to be small enough such

that the individual scatterers do not overlap. The union of all scatterers is denoted by

Dδ :=
⋃p

l=1 Dδ,l.

The scattering of an incident wave (E i,H i) by these objects is modeled by an

exterior boundary value problem for Maxwell’s equations (1) in R
3\Dδ for the scattered

wave (E s,H s) subject to the boundary condition ν × E s|∂Dδ
= −ν × E i|∂Dδ

and the

Silver-Müller radiation condition (2) (see, e.g., Monk [27]).

In contrast to [19, 20] we restrict our attention to a constrained set of incident

fields, namely magnetic fields that are generated by vertically polarized magnetic dipole

distributions on a relatively open bounded domain M ⊂ Σd := {x ∈ R
3
+ | x3 = d} in

the upper half space, i.e., for some fixed d > 0. We think of M as the location of a

multi-static measurement device that consists of a sufficiently large number of coils in

horizontal alignment: our numerical examples in Section 4 allude to a setup with 36

coils.

The incident electromagnetic field can thus be written in R
3 \M as

H i := k2
+

∫

M

ϕ(y)Gm(·, y)e3 ds(y), E i := − 1

i ωε
curlH i , (3)

where ϕ ∈ L2(M; C) is the (scalar valued) dipole density and e3 := (0, 0, 1)⊤ represents

the vertical polarization of the magnetic dipoles. Here, G
m denotes the magnetic dyadic

Green’s function, i.e., the (distributional) solution of

curlx
1

ε(x )
curlx G

m(x , y) − ω2µ(x )Gm(x , y) =
1

ε(x )
δ(x − y)I3,

x , y ∈ R
3, where I3 denotes the 3× 3 identity matrix, together with appropriate Silver-

Müller radiation conditions similar to (2). The electric dyadic Green’s function G
e is

defined by the same equations, but with ε and µ interchanged.

The other difference to the setting in [19, 20] concerns the measured quantities:

While the full (3D) scattered fields are measured in [19, 20], here we only consider

the normal trace of the magnetic field H s on M, in agreement with our modelling

assumption that the coils are all mounted horizontally. Accordingly we introduce the

measurement operator

Gδ,n : L2(M; C) → L2(M; C), Gδ,nϕ = e3 ·H s|M.
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In the following, we refer to this measurement setup as normal excitations and

measurements, and to the corresponding measurement data as normal measurement

data.

Note that these normal measurement data can be viewed as a Galerkin projection

of the full 3D measurement operator Gδ considered in [19, (3.7)], i.e.,

Gδ,nϕ = e3 · Gδ (ϕe3) .

As such the asymptotic expansion of the normal measurement data as δ → 0 (i.e., as

the scatterers Dδ,l shrink to the points zl, l = 1, . . . , p) follows readily from [19, (3.7)]:

Theorem 2.1. Assume that ϕ ∈ L2(M; C) and let H i be the corresponding incident

field from (3). Then there exist symmetric and positive definite matrices M
0
B1

, . . . , M0
Bp

∈
R

3×3 and M
∞
B1

, . . . , M∞
Bp

∈ R
3×3, called magnetic and electric polarizability tensors

corresponding to B1, . . . , Bp, respectively, such that

∥

∥

∥
Gδ,nϕ − δ3

p
∑

l=1

e3 ·
(

−k2
−G

m(·, zl)M
0
Bl

H i(zl)

+
µ−

µ+

curlxG
e(·, zl)M

∞

Bl
curlH i(zl)

)∥

∥

∥

L2(M;C)
≤ Cδ4‖ϕ‖L2(M;C) , (4)

as δ → 0, where the constant C > 0 is independent of δ and ϕ.

As usual, in (4) vector operators operate on matrices column by column.

3. Characterization of the scatterers in terms of normal measurement data

We are now going to use the asymptotic expansion (4) to characterize the positions of

the scatterers in terms of normal measurement data. While this goal is similar to the

one in [19], we emphasize that the proofs from [19], which rely on unique continuation

results for solutions of boundary and transmission problems for Maxwell’s equations,

do not apply here. Rather, we have to use a different approach, which is based on the

scalar Helmholtz equation for the vertical component of the magnetic field.

To begin with, we define the operator Tn : L2(M; C) → L2(M; C),

Tnϕ =

p
∑

l=1

e3 ·
(

−k2
−G

m(·, zl)M
0
Bl

H i(zl)

+
µ−

µ+

curlxG
e(·, zl)M

∞

Bl
curlH i(zl)

)

,

by the leading order term of the asymptotic expansion (4). This operator can be

factorized in the form Tn = RnMR⊤
n , where Rn : C

3×2p → L2(M; C) is defined by

Rna = k2
−

p
∑

l=1

e3 ·
(

G
m(·, zl)al +

µ−

µ+

curlxG
e(·, zl)ap+l

)

, (5)

for a = (a1, . . . ,a2p) ∈ C
3×2p, al ∈ C

3, and M : C
3×2p → C

3×2p is defined by

Ma =
µ+

µ−

(

−M
0
B1

a1, . . . ,−M
0
Bp

ap,
1

k2
−

M
∞

B1
ap+1, . . . ,

1

k2
−

M
∞

Bp
a2p

)

.
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A short calculation shows that R⊤
n : L2(M; C) → C

3×2p is given by

R⊤

n ϕ =
µ−

µ+

(H i(z1), . . . ,H
i(zp), curlH i(z1), . . . , curlH i(zp)),

where H i is the incident magnetic field from (3) (so far, this is similar to [19, Sect. 9]).

Note that the operator Tn corresponds to the multi-static response matrix considered

in [21], and which has been decomposed analogously in that work.

One major difference to [19] is the lack of injectivity of the operator Rn:

Lemma 3.1. The operator Rn has a non-trivial null space given by

N (Rn) = {0}p × (Ce3)
p := {(0, . . . ,0, t1e3, . . . , tpe3) | t1, . . . , tp ∈ C}.

Proof. Let a ∈ N (Rn). Then,

H̃ := k2
−

p
∑

l=1

(

G
m(·, zl)al +

µ−

µ
curlxG

e(·, zl)ap+l

)

together with the corresponding electric field Ẽ := − 1
i ωε

curlH̃ fulfills Maxwell’s

equations (1) in R
3\⋃p

l=1{zl} and the radiation condition (2), and its normal component

vanishes on M, i.e. e3 ·H̃ |M = 0. Since e3 ·H̃ |Σd
is analytic, it has to vanish on Σd, and

therefore, H̃3 := e3 · H̃ is a radiating solution of Helmholtz’s equation ∆H̃3 + k2
+H̃3 = 0

in the half space {x ∈ R
3 | x ·e3 > d } with H̃3|Σd

= 0. Applying the reflection principle

H̃3 can be extended to R
3 by

H̃e
3(x ) :=

{

H̃3(x ), x · e3 ≥ d,

−H̃3(α(x )), x · e3 < d,

where α denotes a reflection operator given by α : R
3 → R

3, α(x ) := x −2(x ·e3−d)e3.

By construction H̃e
3 and ∂H̃3/∂e3 are continuous across Σd and H̃e

3 satisfies the

Sommerfeld radiation condition. Hence H̃e
3 is a radiating solution of Helmholtz’s

equation ∆H̃e
3 + k2

+H̃e
3 = 0 in R

3. Thus (cf. Colton and Kress [13, p. 20]), H̃e
3 = 0 in

R
3, especially H̃3 = 0 in {x ∈ R

3 | x · e3 > d }. By analyticity H̃3 = 0 in R
3
+, and since

[µH̃3]Σ0
= 0 and [∂H̃3/∂e3]Σ0

= 0 (cf. Cutzach et al. [14, p. 439]), Holmgren’s theorem

(cf. Kress [25, Thm. 2.2, p. 41]) yields that H̃3 = 0 in a neighborhood of Σ0 in R
3
−. Once

more using analyticity we conclude that H̃3 = 0 in R
3 \ ⋃p

l=1{zl}.
Studying H̃3 close to zl, 1 ≤ l ≤ p, we find that limt→0 H̃3(zl + tb) = 0 for any

b ∈ R
3. Observing that G

m(·, zl) and G
e(·, zl) are smooth perturbations of the dyadic

Green’s function for the homogeneous background medium with wave number k− around

zl, we find that the singularity of G
m(·, zl) in zl is of order 3, while the singularity of

curlxG
e(·, zl) in zl is only of order 2 (cf. [18, pp. 125–126] for a details). More precisely,

we have

e3 · Gm(zl + te3, zl)al = t−3c1(−2al · e3) + O(t−2),

e3 · Gm(zl + t(e1 + e3), zl)al = t−3c2(−3al · e1 − al · e3) + O(t−2),

e3 · Gm(zl + t(e2 + e3), zl)al = t−3c2(−3al · e2 − al · e3) + O(t−2)
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as t → 0, where c1 and c2 are constants, and therefore al = 0. Furthermore,

e3 · curlxG
e(zl + te1, zl)ap+l = t−2c3ap+l · e2 + O(t−1),

e3 · curlxG
e(zl + te2, zl)ap+l = t−2c3(−ap+l · e1) + O(t−1)

as t → 0, where c3 is a constant, and thus ap+l is a multiple of e3. Hence,

N (Rn) ⊂ {0}p × (Ce3)
p.

On the other hand, e3 · ( 1
µ
curlxG

e(·, zl)e3) is bounded in a neighborhood of

zl (see [18, p. 125]), and therefore an entire solution of a transmission problem

for Helmholtz’s equation satisfying the Sommerfeld radiation condition. Hence,

e3 · ( 1
µ
curlxG

e(·, zl)e3) = 0 (cf. Kristensson [26] if k ∈ R, and Petry [28, Prop. 2.3]

if k /∈ R), and we obtain that {0}p × (Ce3)
p ⊂ N (Rn).

The non-injectivity of Rn distinguishes normal measurement data from fully three-

dimensional measurement data (or tangential data), and has fundamental consequences

on MUSIC reconstruction methods, because the dimension of the essential range of the

measurement operator Gδ,n changes.

Proposition 3.1. The range of Tn has dimension 5p and is given by

R(Tn) = spanC {e3 · Gm(·, zl)ej1 , e3 · curlxG
e(·, zl)ej2

| j1 = 1, 2, 3; j2 = 1, 2; l = 1, . . . , p}.

Proof. Since R(Rn) is finite dimensional and M is symmetric, we find that

R(Rn) = N (R⊤

n )a and R(RnMR⊤

n ) = N (RnMR⊤

n )a, (6)

where N (R⊤
n )a and N (RnMR⊤

n )a denote the annihilators of N (R⊤
n ) and N (RnMR⊤

n ),

respectively, in L2(M; C). Furthermore, for φ ∈ N (RnMR⊤
n ) we have

0 = 〈φ,RnMR⊤

n φ〉
M

= 〈R⊤

n φ,MR⊤

n φ〉
C3×2p ,

and hence we can use the positive definiteness of the electric and magnetic polarizability

tensors to conclude that φ ∈ N (R⊤
n ). It follows that N (RnMR⊤

n ) ⊂ N (R⊤
n ), and

therefore we have R(Rn) ⊂ R(RnMR⊤
n ) according to (6). Thus we have shown that

R(Rn) = R(Tn), and the assertion is now a consequence of (5) and Lemma 3.1.

For the implementation of a MUSIC algorithm it is essential to characterize the

range of Tn in terms of the positions of the infinitesimal scatterers. In [19] it has been

shown that for full 3D measurements (and the same applies for tangential data, too) the

trace of the magnetic field of a (magnetic or electric) dipole on M belongs to the range

of the leading order term of the asymptotic expansion of the corresponding measurement

operator, if and only if the location of the dipole coincides with the position of any one

of the scatterers. As indicated by Proposition 3.1 the situation is slightly more delicate

for normal measurement data:
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Proposition 3.2. Let d = (d1,d2) ∈ (C3 × C
3) \ ({0} × (Ce3)), y ∈ R

3
− and

gn
y,d := e3 · (Gm(·, y)d1 + curlxG

e(·, y)d2)|M. (7)

Then, gn
y,d ∈ R(Tn) if and only if y ∈ {z1, . . . , zp}.

Proof. If gn
y,d ∈ R(Tn) then we can write gn

y,d as

gn
y,d =

p
∑

l=1

(e3 · Gm(·, zl)al + e3 · curlxG
e(·, zl)al+p)) on M,

with a1, . . . ,ap ∈ C
3 and ap+1, . . . ,a2p ∈ C

3 \ (Ce3) according to Proposition 3.1.

Moreover,

H a :=

p
∑

l=1

(

G
m(·, zl)al +

µ+

µ
curlxG

e(·, zl)al+p

)

as well as

H d := G
m(·, y)d1 +

µ+

µ
curlxG

e(·, y)d2

together with the corresponding electric fields fulfill Maxwell’s equations (1) in R
3 \

(
⋃p

l=1{zl} ∪ {y}) and the radiation condition (2). Since their normal components

coincide on M, H̃ := H a −H d together with the associated electric field Ẽ is a

radiating solution of (1) in R
3 \ (

⋃p
l=1{zl} ∪ {y}) with vanishing normal component

on M, i.e. e3 · H̃ |M = 0. As in the proof of Lemma 3.1 we conclude that H̃3 = 0 in

R
3\(

⋃p
l=1{zl}∪{y}), which means that Ha

3 = Hd
3 in R

3\(
⋃p

l=1{zl}∪{y}). However, this

implies that y ∈ {z1, . . . , zp}, which shows the necessity of this condition. Its sufficiency

is a consequence of Proposition 3.1.

In other words, the so-called test dipoles gn
y,d to be used in the MUSIC algorithm

must not correspond to electric dipoles with a vertical polarization. Note that, in

contrast to [19], the magnetic field H̃ constructed in the proof of Proposition 3.2 is not

vanishing in general – only its vertical component is.

4. The MUSIC reconstruction method

To implement the range characterization from Proposition 3.2 in a MUSIC algorithm,

we employ a three-dimensional grid of test points y ∈ R
3
− in some region of interest

contained in the lower half space, and consider test dipoles gn
y,d as in Proposition 3.2.

As the operator Tn has finite rank, we can define the orthogonal projection

P : L2(M; C) → R(Tn) on the range of Tn, with which the angle β(y) between gn
y,d

and R(Tn) is given by

cot β(y) =
‖Pgn

y,d‖L2(M;C)

‖(I − P )gn
y,d‖L2(M;C)

, y ∈ R
3
−,

where I denotes the identity operator. Then Proposition 3.2 yields that

y ∈ {z1, . . . , zp} ⇐⇒ β(y) = 0 ⇐⇒ cot β(y) = ∞. (8)
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As

Tn =
1

δ3
Gδ,n + O(δ)

by Theorem 2.1, we can approximate the projection P by the projection

P δ
5p : L2(M; C) → spanC{uδ

1 , . . . ,u
δ
5p}

on the essential range of Gδ,n, i.e., our normal measurement data, which is spanned by

the left singular vectors uδ
1 , . . . ,u

δ
5p of the 5p largest singular values of Gδ,n. Therewith,

we approximate

cot β(y) ≈
‖P δ

5pg
n
y,d‖L2(M;C)

‖(I − P δ
5p)g

n
y,d‖L2(M;C)

=: cot βδ
5p(y). (9)

In view of (8), cot βδ
5p(y) should be large for test points y which are close to the points

z1, . . . , zp, and hence, the positions of the scatterers can be visualized, for example, by

plotting cot βδ
5p or isosurfaces of this indicator function in the region of interest.

Following [9], the unknown number of scatterers p ∈ N could be found by estimating

the dimension of the essential range of Gδ, which amounts to searching for a reasonable

gap in the set of singular values. However, in our numerical tests we found that this

approach only works well if the scatterers are very small compared to (i) the distances

between each other, and (ii) their distance to the interface. Furthermore, the signal-

to-noise ratio must not be too small. A more stable way to estimate p is to visualize

cot βδ
l from (9) for increasing values l = 5, 10, 15, 20, . . .. Typically, the number of

reconstructed scatterers increases with l until all scatterers have been found. We refer

to [9] and [20] for numerical tests of these strategies.

We illustrate the MUSIC algorithm with normal measurement data by means

of some numerical examples, and we compare the reconstructions to those in [19, 20]

obtained from fully three-dimensional excitations and measurements. As in [19, 20] we

therefore consider a two-layered background medium, where ε+ = ε0 = 8.85 ·10−12 Fm−1

and µ+ = µ0 = 8.85 · 10−12 Hm−1, and

ε− = ε0

(

εr + i
σ

ωε0

)

= (0.867 + i 59.5) · 10−10 Fm−1,

µ− = (1 + χ)µ0 = 1.26 · 10−6 Hm−1,

modeling air and soil, respectively. The particular parameters σ = 7.5 · 10−4 Sm−1,

χ = 1.9 · 10−5, and εr = 9.8, which we use for the lower half space refer to measurement

data for a poor clay sand (cf. Igel and Preetz [22]).

The measurement device in this example operates on a square M of size 50×50 cm2

parallel to the surface of ground with its center 10 cm above the origin (0, 0, 0). Modeling

a device of 36 coils we impose vertically polarized magnetic dipoles with a frequency of

20 kHz on a 6×6 equidistant grid on M, simulate the vertical components of the resulting

scattered fields, and evaluate these fields on the same grid, using a Nyström’s method

for two-layered background media. This yields a 36× 36 matrix Gh
δ,n approximating the

measurement operator Gδ,n. The wave numbers in this example are k+ = 4.22 ·10−4 m−1
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Figure 1. Cross-sectional plots of cot βδ
10

(y) at y3 = −10 cm (left) and y3 = −30 cm

(right).

in air and k− = (7.77 + i 7.66) · 10−3 m−1 in soil, which corresponds to wave lengths

λ+ = 14.9 km and λ− = 0.81 km.

As a test case, two perfectly conducting ellipsoidal obstacles with semi axes of

length (2, 2, 0.5) cm and (2, 1, 4) cm, respectively, are assumed to be buried in the lower

half space. The centers of the two scatterers are located at (10,−15,−10) cm and

(−15, 10,−30) cm, respectively. Observe that the scattering objects are smaller than

the wave lengths in both half spaces by many orders of magnitude. Our simulated

forward data contain an estimated numerical error of 1.1%, and additionally we add

3% uniformly distributed error to simulate measurement errors (noise).

In the MUSIC reconstruction method we use the test function gn
y,d from (7) with

polarization vector d = (e3,0). Its numerical implementation is the same that has

been used in [19,20]. We compute the singular value decomposition of the matrix Gh
δ,n,

and use the left singular vectors to approximate the indicator function cot βδ
10 from (9)

on a three-dimensional equidistant grid with step size 0.5 cm in the region of interest

[−25, 25]2 × [−40, 0] cm3 in the lower half space.

Figure 1 shows cross-sectional plots of cot βδ
10(y) at y3 = −10 and y3 = −30 cm,

respectively. According to Proposition 3.2 the local maxima of cot βδ
10 indicate the

approximate positions of the scatterers, but the values of these local maxima are

not necessarily the same for each scatterer; they rather depend on the quality of the

approximation in (9), and therefore on the size and position of the scatterers itself, but

also on the noise level.

The left hand plot in Figure 2 shows isosurface plots of cot βδ
10 and their projections

on the coordinate planes. This yields a three-dimensional visualization which provides

a certain impression on the approximate positions of buried objects. The smaller these

isosurfaces are, the better the positions of the scatterers can be estimated from such

plots. On the other hand, the threshold cannot be too large, as the isosurfaces should

not degenerate to a point, or even an empty set, to be clearly visible. Also, as we have

argued before, a reasonable threshold value will vary with each individual scatterer.

We therefore use different thresholds in different areas of the region of interest, and we
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Figure 2. Reconstruction from normal measurement data (left) vs. reconstruction

from full three-dimensional measurement data (right).

determine the corresponding values for cot βδ
10 from a visual inspection of several cross-

sectional plots with different heights y3 as in Figure 1. Here, the isosurface corresponding

to the upper obstacle uses the threshold cot βδ
10 = 30, while the other one corresponds to

cot βδ
10 = 35. We mention that it should be possible to develop an automatical routine

for finding reasonable thresholds, but this is beyond the scope of this paper.

For comparison the right hand plot in Figure 2 shows reconstructions obtained from

fully three-dimensional excitations and measurements as discussed in [19,20]. Here the

forward data are computed by the same Nyström method as before, containing 3.4%

estimated relative numerical error and additional 3% uniformly distributed data noise.

The isosurface corresponding to the upper obstacle is given by cot β̃δ
12 = 45 and the

other one corresponds to cot β̃δ
12 = 55. The angle β̃δ

12 is defined similar to (9), but

instead of the left singular vectors of Gh
δ,n the left singular vectors of the measurement

operator corresponding to the three-dimensional excitation and measurement data are

used, and the test function gn
y,d is replaced by gy,d := (Gm(·, y)d1 + curlyG

e(·, y)d2)|M
with d1 = e3 and d2 = 0. As both, the test functions and the measurement data

are different in the two setups, it is no surprise that the thresholds chosen in the two

subplots of Figure 2 are different as well.

For both settings the MUSIC algorithm detects the two scatterers at about the

correct location; even the shape of the isosurfaces nicely agrees with the general shape

of the scatterers, although this is not supported by our theory. The two reconstructions

are of comparable quality, but the method presented here uses only one ninth of the

data used by the original method from [19,20].

In an attempt to study the effect of noise on our algorithm, we show in Figure 3

two reconstructions for the same forward problem as above (normal measurement data

only), but based on data that have been perturbed by 10 % and 25 % additive noise,

respectively. With 10 % noise the positions of the scatterers are still relatively well

reconstructed, whereas with 25 % noise the position of the lower object has been
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Figure 3. Reconstruction from normal measurement data with 10% noise (left) and

25% noise (right).

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

Figure 4. Singular values of the measurement operators Gh
δ,n (+ without additional

noise, ◦ with 3% noise, ▽ with 10% noise, △ with 25% noise, ¤ with 50% noise).

misplaced by about 10 cm. Still, these are excellent results which do benefit to some

extent from the fact that the signals from the two scatterers within the data have

approximately equal strength.

When we increase the noise level even further, then the reconstructions show only

one object located closely to the center of mass of the union of the two scatterers. This

is due to the fact that then only three singular values of Gh
δ,n stick out of the noise level

(cf. Figure 4), and the corresponding singular vectors contain too little information to

distinguish the two scatterers.

For a more detailed study of the resolution and the robustness of MUSIC methods

for electromagnetic subsurface exploration we refer to [20].
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5. Conclusions

Our theoretical results show that the MUSIC algorithm can be used to detect small

objects from time-harmonic electromagnetic scattering data using normal excitations

and measurements only. We have exemplified that the reconstructed positions of the

scatterers are comparable to those obtained from full three-dimensional excitations and

measurements. We have also seen that in practice the applicability will ultimately

depend on the accuracy with which the scattered field can be measured.
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