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Abstra
t. We present an error analysis for the numeri
al di�erentiation of noisy data via

smoothing 
ubi
 splines. Our treatment is elementary enough to be in
luded in a 
ourse on numeri
al

analysis. Still, it a

ounts for many numeri
al problems that arise in the solution of mu
h more


omplex ill-posed inverse problems.
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1. Introdu
tion. Reliable numeri
al simulations of te
hni
al pro
esses require

detailed knowledge of the underlying physi
al models. Consider the simulation of heat

transport in a one-dimensional homogeneous medium, where the heat 
ondu
tivity

depends on the temperature. In this 
ase the temperature distribution u is the solution

of a one-dimensional paraboli
 di�erential equation

u

t

=

�

a(u)u

x

�

x

; 0 < x < 1 ; 0 < t < T ; (1.1)

involving some nonlinear di�usion 
oeÆ
ient a : R! R

+

. Problem (1.1) also serves

as a model for the saturation of porous media by liquid 
ow, in whi
h 
ase a(u) is

related to the 
apillary pressure of the pores.

In 
ertain industrial appli
ations the numeri
al simulation may 
onsist in solving

(1.1) for u. We 
all this the dire
t problem. In these simulations it is 
ru
ial that

a 
oeÆ
ient a(u) be used whi
h is not only qualitatively 
orre
t but also reasonably

a

urate. Unfortunately, tabulated values for a(u) from the literature often provide

only a rough guess of the true 
oeÆ
ient; in this 
ase simulations will not be reliable.

Consequently, the identi�
ation of the di�usion 
oeÆ
ient a(u) from experimental

data (typi
ally, u(x; t) for some abs
issa x 2 (0; 1) and 0 < t < T ) is often the �rst

hurdle to 
lear. This is the asso
iated inverse problem.

A standard approa
h for solving the inverse problem is the output least squares

method, whi
h tries to mat
h the given data with simulated quantities using a gradient

or Newton type method for updating the di�usion 
oeÆ
ient. Alternatively, one 
an


onsider (1.1) as a linear equation for a(u). To set up this equation requires the

numeri
al di�erentiation of the data, 
f., e.g., [6℄. This approa
h is 
alled equation

error method.

It must be emphasized that inverse problems, in
luding the one above, are often

very ill-
onditioned : small 
hanges in a( � ) have little e�e
t on the solution u, and


onsequently one 
annot expe
t high resolution re
onstru
tions of a in the presen
e

of measurement errors in u. Indeed, errors in u may 
ause large variations in the


omputed a if they are not taken into a

ount appropriately.

Taking the equation error approa
h the 
onditioning issue for the inverse prob-

lem (1.1) 
an be tied down via its 
onne
tion to numeri
al di�erentiation. In fa
t,

numeri
al di�erentiation en
ompasses many subtleties and pitfalls that a 
omplex

�
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(linear) inverse problem 
an exhibit; yet it is very easy to understand and analyze.

For this reason one 
ould say that numeri
al di�erentiation is ideally suited as a model

for inverse problems in a basi
 numeri
al analysis 
ourse.

To support this statement we are going to revisit in the sequel a well-known

algorithm for numeri
al di�erentiation of noisy data and present a new error bound

for it. The method and the error bound 
an be interpreted as an instan
e of one of

the most important results in the 
enter of a mathemati
al spe
ialization known as

regularization theory for ill-posed problems. Still, our presentation is on a very basi


level and requires no prior knowledge besides standard n-dimensional 
al
ulus and

the notion of 
ubi
 splines.

We mention that Groets
h's book [4℄ presents other realisti
 inverse problems

on an elementary te
hni
al level. Further examples and a rigorous introdu
tion into

regularization theory for the 
omputation of stable solutions to these examples 
an

be found in [1℄.

2. Setting of the problem. Suppose y = y(x) is a smooth fun
tion on 0 �

x � 1 and noisy samples ~y

i

of the values y(x

i

) are known at the points of a uniform

grid � = f0 = x

0

< x

1

< : : : < x

n

= 1g. Let h = x

i+1

� x

i

be the mesh size of the

grid and suppose

j ~y

i

� y(x

i

) j � Æ ; (2.1)

where Æ is a known level of noise in the data. For the moment we shall assume that

the boundary data are known exa
tly:

~y

0

= y(0) and ~y

n

= y(1) :

We are interested in �nding a smooth approximation f

0

(x) of y

0

(x), de�ned for all

x 2 [0; 1℄, from the given data ~y

i

, with some guaranteed (best possible) a

ura
y.

If this material is to be presented in 
lass, the pre
ise notion of smoothness de-

pends on the level of the 
ourse. In prin
iple, the Sobolev spa
e H

2

[0; 1℄ of all fun
-

tions f 2 C

1

[0; 1℄ with square integrable se
ond derivative is the appropriate 
hoi
e.

However, C

2

[0; 1℄ would also be all right (see Se
tion 3), but then the following error

bounds are no longer optimal.

Many textbooks on numeri
al analysis la
k a satisfying treatment of numeri
al

di�erentiation. Usually, the treatment is restri
ted to the 
onsisten
y error of sophis-

ti
ated �nite di�eren
e quotients while the stability problem due to error propagation

is often ignored. Combining 
onsisten
y error and propagation error for one-sided

�nite di�eren
es one arrives at the bound

�

�

~y

i+1

� ~y

i

h

� y

0

(x)

�

�

� O(h+ Æ=h ) ; x

i

� x � x

i+1

; (2.2)

for the total error provided that y 2 C

2

[0; 1℄; for a very ni
e pedagogi
al treatment

of this subje
t, see Groets
h [3℄. The right-hand side of (2.2) { as a fun
tion of h {

is plotted in Figure 2.1 (solid line): it attains a minimal value of O(

p

Æ) for h �

p

Æ.

When h is smaller, the bound (2.2) deteriorates.

There is a trivial solution to the stability problem: dis
ard data until the spa
ing

between the grid points is about

p

Æ (this is sometimes 
alled regularization by 
oarse

dis
retization). This is not really satisfying. Ea
h datum 
arries information whi
h

should somehow be put to work. Another short
oming of �nite di�eren
e s
hemes

is the la
k of smoothness of the resulting approximations of y

0

: the �nite di�eren
e

approximations are only pie
ewise 
onstant fun
tions.
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We therefore take a di�erent approa
h { one that uses all the data and leads to

a smooth approximation. Let

kgk =

�

Z

1

0

g

2

(x) dx

�

1=2

denote the L

2

-norm of a square integrable fun
tion over (0; 1). With the aim of

taming the wild os
illations in the approximate derivative that typi
ally appear when

di�erentiating noisy data, it appears natural to pose the numeri
al di�erentiation

problem as a 
onstrained optimization problem:

Problem I. Minimize kf

00

k among all smooth fun
tions f satisfying f(0) = y(0),

f(1) = y(1), and

1

n� 1

n�1

X

i=1

�

~y

i

� f(x

i

)

�

2

� Æ

2

: (2.3)

Then, take the derivative f

0

�

of the minimizing element f

�

as an approximation of y

0

.

It is important that the exa
t solution y belongs to the very 
lass of smooth

fun
tions over whi
h the minimum is taken. In fa
t, given the un
ertainty in the

data, all fun
tions f satisfying (2.3) 
an be 
onsidered as solution 
andidates. The

minimizer of Problem I is the parti
ular 
andidate whi
h is `smoothest'.

If the minimizing element f

�

of Problem I satis�es the 
onstraint (2.3) with stri
t

inequality (i.e., the 
onstraint (2.3) is ina
tive) then f

�

must be the `trivial solution'

`(x) = y(0) + x

�

y(1)� y(0)

�

; (2.4)

i.e., the straight line interpolating the two boundary values. To see this 
onsider

f

t

= (1� t)f

�

for suÆ
iently small nonnegative t: by assumption, f

t

will also satisfy

the 
onstraint (2.3), and kf

00

t

k = (1 � t)kf

00

�

k so that kf

00

�

k must vanish in order to

be minimal. This shows that f

�

is the linear interpolant of the given boundary data.

Note that this 
ase o

urs, if and only if ` satis�es the 
onstraint (2.3).

Ex
luding this trivial 
ase, the minimizer f

�

will satisfy (2.3) with equality, and

hen
e, 
an be 
al
ulated using the method of Lagrange. If 1=� denotes the 
orrespond-

ing Lagrange multiplier for 
onstraint (2.3), the equivalent formulation of Problem I

is:

Problem II. Minimize

�[f ℄ �

1

n� 1

n�1

X

i=1

�

~y

i

� f(x

i

)

�

2

+ �kf

00

k

2

(2.5)

among all smooth fun
tions f satisfying f(0) = y(0), f(1) = y(1), where � is su
h

that the minimizing element f

�

of (2.5) satis�es

1

n� 1

n�1

X

i=1

�

~y

i

� f

�

(x

i

)

�

2

= Æ

2

: (2.6)

The derivative f

0

�

of the minimizing fun
tion is then an approximation of y

0

.

Problem II is a spe
ial instan
e of a general method known as Tikhonov regu-

larization; in this 
ontext � is 
alled the regularization parameter, and the way � is


hosen in Problem II is 
alled the dis
repan
y prin
iple (
f. Groets
h [2℄).
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Fig. 2.1. Qualitative behavior of the error bounds (2.2) and (2.7) versus h for �xed Æ = 10

�4

.

Ex
ept for the interpolatory 
onstraints at the boundary of the interval, (2.5) has

been investigated and solved by S
hoenberg [10℄ and Reins
h [8℄ who showed that

the solution of Problem II is a natural 
ubi
 spline over the grid �. Reins
h also

gives a 
onstru
tive algorithm for 
al
ulating this spline. We mention that the whole

algorithm in
luding the determination of the Lagrange multiplier 1=� only takes O(n)

operations, but this is a di�erent story whi
h 
ould �ll another note.

Our main interest is the error f

0

�

� y

0

, i.e., the error of this parti
ular way of

numeri
al di�erentiation. We have the following result whi
h appears to be new; the

proof is given in Se
tion 5.

Theorem 2.1. Let y

00

be square integrable over (0; 1) and f

�

be the minimizer of

Problem II. Then

kf

0

�

� y

0

k �

p

8

�

hky

00

k +

p

Æ ky

00

k

1=2

�

: (2.7)

The theorem says that, as long as h > (Æ=ky

00

k)

1=2

, the error bound is of the

same order as that for �nite di�eren
es, see (2.2). However, the bound (2.7) remains

of order O(

p

Æ) when h! 0, without the need to dis
ard any information. It should

be mentioned that the error estimate (2.7) is sharp in the sense that for Æ = 0, i.e.,

noise-free data, the right-hand side 
oin
ides up to a multipli
ative 
onstant with the

best-possible worst 
ase bound for the interpolating spline (see Lemma 4.2 below).

We 
an also give a hand-waving argument to illustrate the sharpness of the se
ond

term on the right-hand side of (2.7) as h! 0. To this end we integrate by parts and

use the boundary values of f

�

to obtain

kf

0

�

� y

0

k

2

=

Z

1

0

(f

0

�

� y

0

)

2

dx = �

Z

1

0

(f

�

� y)(f

00

�

� y

00

) dx :

By the Cau
hy-S
hwarz inequality the right-hand side is bounded by kf

�

� yk kf

00

�

�

y

00

k ; the �rst fa
tor is approximately Æ as h be
omes small while the se
ond fa
tor is

bounded by 2ky

00

k be
ause of the triangle inequality and the setting of Problem I.

Although Theorem 2.1 may not surprise those who are a
quainted with the litera-

ture on Tikhonov regularization, we emphasize that the standard theory in [1, 2℄ does
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not 
over a result like this. The reason is the somewhat nonstandard 
ombination of

the penalty term kf

00

k in (2.5) and the smoothness assumption on the exa
t solution

y.

The remainder of this paper is organized as follows. In Se
tion 3 we provide a proof

that the minimizing element f

�

is a natural 
ubi
 spline over the grid �. Se
tion 4

summarizes basi
 error estimates in spline approximation. A proof of Theorem 2.1 is


ontained in Se
tion 5. Finally, numeri
al results and 
omments are given in Se
tion 6.

3. The minimizing spline. There are two ways to prove existen
e and unique-

ness of the minimizing element f

�

of (2.5). One possibility is to 
onsider this problem

as a di�erentiable optimization problem over a 
onvex domain in H

2

[0; 1℄. This ap-

proa
h is te
hni
al and requires a number of involved mathemati
al prerequisites if the

derivation is to be rigorous. The te
hnique that we use veri�es dire
tly the optimality

of the 
orresponding spline fun
tion. The short
oming of our approa
h is that the


hara
terization (3.1) of the minimizing element f

�

seems to appear from nowhere,

but we feel that the simpli
ity of the treatment is fair 
ompensation for this.

So, let f

�

be a natural 
ubi
 spline over �, i.e., a fun
tion whi
h is twi
e 
on-

tinuously di�erentiable over [0; 1℄ with f

00

�

(0) = f

00

�

(1) = 0, and whi
h 
oin
ides on

ea
h subinterval [x

i�1

; x

i

℄ of � with some 
ubi
 polynomial. We shall see that the

minimizer f

�

is uniquely determined by 
onne
ting the jumps of f

000

�

at the interior

nodes x = x

i

with the values f

�

(x

i

) through

f

000

�

(x

i

+)� f

000

�

(x

i

�) =

1

�(n� 1)

�

~y

i

� f

�

(x

i

)

�

; i = 1; : : : ; n� 1 : (3.1)

Re
all that the boundary values of f

�

have been �xed to be f

�

(0) = ~y

0

and f

�

(1) = ~y

n

.

For a 
onstru
tive algorithm for 
omputing f

�


ompare [8℄.

For any fun
tion g with square integrable se
ond derivative and boundary values

g(0) = g(1) = 0, integration by parts yields

Z

1

0

g

00

f

00

�

dx = g

0

(1)f

00

�

(1)� g

0

(0)f

00

�

(0) �

Z

1

0

g

0

f

000

�

dx = �

n

X

i=1

Z

x

i

x

i�1

g

0

f

000

�

dx

= �

n

X

i=1

f

000

�

�

�

�

[x

i�1

;x

i

℄

g(x)

�

�

�

x

i

x=x

i�1

;

where we have used the properties of the natural spline f

�

. Sin
e g vanishes at the

boundary, this simpli�es to

Z

1

0

g

00

f

00

�

dx =

n�1

X

i=1

g(x

i

)

�

f

000

�

(x

i

+)� f

000

�

(x

i

�)

�

:

Using (3.1), this yields

2�

Z

1

0

g

00

f

00

�

dx =

2

n� 1

n�1

X

i=1

g(x

i

)

�

~y

i

� f

�

(x

i

)

�

: (3.2)

Now, let f be any fun
tion with square integrable se
ond derivative and boundary
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values f(0) = ~y

0

and f(1) = ~y

n

. Then, the fun
tional � de�ned in (2.5) satis�es

�[f ℄� �[f

�

℄ =

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

��

f(x

i

) + f

�

(x

i

)� 2~y

i

�

+�kf

00

� f

00

�

k

2

+ 2�

Z

1

0

(f

00

� f

00

�

) f

00

�

dx :

Inserting (3.2) with g = f � f

�

for the last integral on the right-hand side one obtains

�[f ℄� �[f

�

℄ =

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

��

f(x

i

) + f

�

(x

i

)� 2~y

i

�

+�kf

00

� f

00

�

k

2

+

2

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

� �

~y

i

� f

�

(x

i

)

�

=

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

�

2

+ �kf

00

� f

00

�

k

2

:

This proves that �[f ℄ � �[f

�

℄ � 0 for the whole 
lass of 
andidates f allowed in

Problem II. Furthermore, if equality holds then f � f

�

must be a linear fun
tion with

vanishing boundary values; hen
e, f = f

�

. Consequently, f

�

is the unique minimizer

of Problem II.

The te
hnique that we have employed to show that f

�

is the minimizer of � is

pretty standard and applies to any quadrati
 fun
tional.

4. Preliminaries on spline approximation. Before proving Theorem 2.1,

we 
olle
t a number of preliminary results that provide ba
kground information on

splines. Ea
h of these fa
ts is easy to prove, but for the reader's 
onvenien
e we

provide appropriate referen
es.

Lemma 4.1. Let s be the natural 
ubi
 spline whi
h interpolates the exa
t data

y(x

i

) at x = x

i

, i = 0; : : : ; n. Then s

00

is the best approximation of y

00

in L

2

(0; 1)

from the spa
e of linear splines over �, i.e.,

ks

00

� y

00

k

2

+ ks

00

k

2

= ky

00

k

2

: (4.1)

Proof. See H�ammerlin and Ho�mann [5, Se
tion 6.2.1℄.

Lemma 4.2. Let s be the natural 
ubi
 spline over � whi
h interpolates the exa
t

data y(x

i

) at x = x

i

, i = 0; : : : ; n. Then,

ks

0

� y

0

k �

h

�

ky

00

k :

Proof. The proof follows that of Theorem 1.3 in the book by Strang and Fix [12℄,

it a
tually simpli�es be
ause in our 
ontext s

00

�y

00

2 L

2

. At the end of the proof one

has to apply the inequality k(s� y)

00

k � ky

00

k whi
h follows from Lemma 4.1.

We will also use the following approximation property of pie
ewise 
onstant

splines:
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Lemma 4.3. Let g have a square integrable derivative over [0; 1℄, and let � be the

best approximation in L

2

(0; 1) of g from the spa
e of pie
ewise 
onstant splines over

�. Then

kg � �k � hkg

0

k :

Proof. See S
humaker [11, Thm. 6.1℄.

5. Proof of Theorem 2.1. In view of Lemma 4.2 it suÆ
es to study the error

kf

0

�

� s

0

k , where s is the interpolating natural 
ubi
 spline for the exa
t data y(x

i

),

i = 0; : : : ; n.

To this end, let e = f

�

�s and 
onsider the best approximating pie
ewise 
onstant

spline � of e

0

with respe
t to L

2

(0; 1), i.e.,

�j

(x

i�1

;x

i

)

= �

i

=

1

h

Z

x

i

x

i�1

e

0

dx : (5.1)

Rewrite ke

0

k

2

as follows:

ke

0

k

2

=

Z

1

0

e

0

(e

0

� �) dx +

Z

1

0

e

0

�dx =

Z

1

0

e

0

(e

0

� �) dx +

n

X

i=1

�

i

Z

x

i

x

i�1

e

0

dx

=

Z

1

0

e

0

(e

0

� �) dx +

n

X

i=1

�

i

�

e(x

i

)� e(x

i�1

)

�

=

Z

1

0

e

0

(e

0

� �) dx +

n�1

X

i=1

e(x

i

)

�

�

i

� �

i+1

�

+ e(1)�

n

� e(0)�

1

=

Z

1

0

e

0

(e

0

� �) dx +

n�1

X

i=1

e(x

i

)

�

�

i

� �

i+1

�

=: I

1

+ I

2

; (5.2)

where we have used that e(0) = e(1) = 0 (sin
e f

�

and s interpolate y at the bound-

ary). It remains to estimate the two terms I

1

and I

2

in (5.2). For the �rst term we

use the Cau
hy-S
hwarz inequality and Lemma 4.3 to obtain

I

1

� ke

0

k ke

0

� �k � hke

0

k ke

00

k :

The formulation of Problem I implies that kf

00

�

k � ky

00

k , and hen
e

ke

00

k � kf

00

�

k + ks

00

k � 2ky

00

k (5.3)

by Lemma 4.1. Therefore we obtain the following estimate for I

1

:

I

1

� 2hke

0

k ky

00

k : (5.4)

Next we estimate I

2

using the Cau
hy-S
hwarz inequality in R

n�1

and (5.1). This

yields

I

2

2

�

n�1

X

i=1

e

2

(x

i

)

n�1

X

i=1

�

�

i

� �

i+1

�

2

=

n�1

X

i=1

e

2

(x

i

)

n�1

X

i=1

1

h

2

�

Z

x

i

x

i�1

�

e

0

(x)� e

0

(x+ h)

�

dx

�

2

:

7



Note that, by 
onstru
tion,

n�1

X

i=1

e

2

(x

i

) =

n�1

X

i=1

�

f

�

(x

i

)� y(x

i

)

�

2

� 4nÆ

2

;

and hen
e,

I

2

2

� 4n

3

Æ

2

n�1

X

i=1

�

Z

x

i

x

i�1

Z

x+h

x

je

00

(t)j dt dx

�

2

� 4n

3

Æ

2

n�1

X

i=1

�

Z

x

i

x

i�1

Z

x

i+1

x

i�1

je

00

(t)j dt dx

�

2

� 4nÆ

2

n�1

X

i=1

�

Z

x

i+1

x

i�1

je

00

(t)j dt

�

2

:

The last integral 
an be estimated using Cau
hy-S
hwarz and (5.3) again:

I

2

2

� 4nÆ

2

n�1

X

i=1

Z

x

i+1

x

i�1

je

00

(t)j

2

dt

Z

x

i+1

x

i�1

dt � 8 Æ

2

2ke

00

k

2

� 64 Æ

2

ky

00

k

2

:

Inserting this and (5.4) into (5.2) we �nally obtain

ke

0

k

2

� 2hke

0

k ky

00

k + 8 Æky

00

k :

Completing the squares this 
an be rewritten as

�

ke

0

k � hky

00

k

�

2

�

�

hky

00

k +

p

8

p

Æky

00

k

1=2

�

2

:

This yields

ke

0

k � 2hky

00

k +

p

8

p

Æky

00

k

1=2

;

and from Lemma 4.2 we therefore obtain

kf

0

�

� y

0

k � ke

0

k + ks

0

� y

0

k � 2hky

00

k +

p

8

p

Æky

00

k

1=2

+

h

�

ky

00

k :

This 
ompletes the proof.

6. Numeri
al results and 
on
luding remarks. Theorem 2.1 extends in a

straightforward way to the situation when the boundary data of y are also perturbed.

In this 
ase one 
an 
onsider the fun
tion

Y (x) = y(x) + ~y

0

� y(0) + "x ;

where " = ~y

n

� y(1) + y(0) � ~y

0

. Then Y (0) = ~y

0

and Y (1) = ~y

n

, and hen
e

Theorem 2.1 applies to Y . Note that Y

00

= y

00

. Consequently, if Æ is repla
ed by 2Æ in

Problems I and II then Theorem 2.1 yields the same bound as before for kf

0

�

� Y

0

k ,

and sin
e kY

0

� y

0

k = j"j � 2Æ the same type of bound results for kf

0

�

� y

0

k as well.

For the inverse problem of determining the di�usion 
oeÆ
ient a( � ) in (1.1),


onsidered in [6℄, an industrial 
lient provided temperature measurements of u(x

i

; t

j

)

at a few thermo
ouples at lo
ations x

i

and equidistant times t

j

2 [0; T ℄. A 
ru
ial

step of the equation error method used in [6℄ requires the knowledge of u

t

(x

i

; t), i.e.,

8



1 2 3 4 5

x 10
4

400

450

500

550

600

1 2 3 4 5

x 10
4

−0.01

0

0.01

0.02

Fig. 6.1. Given data (left) and their numeri
al derivatives (right)

numeri
al di�erentiation of the given data. The left-hand side plot in Figure 6.1

shows the measurements u(0; t

j

) (the 
ir
les) and the 
orresponding smoothing 
ubi


spline. The right-hand side plot shows the numeri
al derivatives 
omputed with �nite

di�eren
es (the dashed, pie
ewise 
onstant fun
tion) and the smoothing spline (solid

line), respe
tively.

For the purpose of re
onstru
ting a the pie
ewise 
onstant approximation is use-

less for its la
k of smoothness; the exa
t solution u of this paraboli
 equation is known

to be smooth so that a 
ubi
 spline approximation is mu
h more appropriate. The

entire algorithm for re
onstru
ting the di�usion 
oeÆ
ient is des
ribed in [6℄.

All temperature measurements turned out to be multiples of �ve (

Æ

C); 
onse-

quently the �nite di�eren
e quotient approximation of u

t

only takes a few distin
t

values. On the other hand this allows an estimation of Æ in (2.1); we took Æ = 2:5

presuming a rounding to the 
losest multiple of �ve in the measuring pro
ess. With

this value of Æ the Lagrange multiplier 1=� was tuned so as to satisfy (2.6).

The idea of smoothing data by 
ubi
 splines has a long tradition, espe
ially among

statisti
ians. Some of these works are related to ours in that they also address the

problem of numeri
al di�erentiation. For example, see the book by Wahba [13℄, whi
h

summarizes her early work in this area, and also the paper by Ri
e and Rosenblatt [9℄.

Beyond the 
ubi
 spline setting there are lots of other approa
hes to the topi
 of

this paper. A good pla
e to sear
h for additional literature is the book by Murio [7℄,

whi
h fo
uses on the molli�
ation method. We 
aution, however, that many numeri
al

s
hemes impose arti�
ial boundary 
onditions on y, whi
h may lead to annoying

boundary artifa
ts for pra
ti
al data sets.

A
knowledgement. This work has been inspired by a note of Chu
k

Groets
h [3℄. We are very grateful for his 
areful reading of our manus
ript and

his editorial suggestions, whi
h improved the paper a lot.
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