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Abstrat. We present an error analysis for the numerial di�erentiation of noisy data via
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omplex ill-posed inverse problems.

Key words. Numerial di�erentiation, ubi splines, Tikhonov regularization, disrepany

priniple

AMS subjet lassi�ations. 65-01, 65D07, 65D25, 41A15, 65J20

1. Introdution. Reliable numerial simulations of tehnial proesses require

detailed knowledge of the underlying physial models. Consider the simulation of heat

transport in a one-dimensional homogeneous medium, where the heat ondutivity

depends on the temperature. In this ase the temperature distribution u is the solution

of a one-dimensional paraboli di�erential equation

u

t

=

�

a(u)u

x

�

x

; 0 < x < 1 ; 0 < t < T ; (1.1)

involving some nonlinear di�usion oeÆient a : R! R

+

. Problem (1.1) also serves

as a model for the saturation of porous media by liquid ow, in whih ase a(u) is

related to the apillary pressure of the pores.

In ertain industrial appliations the numerial simulation may onsist in solving

(1.1) for u. We all this the diret problem. In these simulations it is ruial that

a oeÆient a(u) be used whih is not only qualitatively orret but also reasonably

aurate. Unfortunately, tabulated values for a(u) from the literature often provide

only a rough guess of the true oeÆient; in this ase simulations will not be reliable.

Consequently, the identi�ation of the di�usion oeÆient a(u) from experimental

data (typially, u(x; t) for some absissa x 2 (0; 1) and 0 < t < T ) is often the �rst

hurdle to lear. This is the assoiated inverse problem.

A standard approah for solving the inverse problem is the output least squares

method, whih tries to math the given data with simulated quantities using a gradient

or Newton type method for updating the di�usion oeÆient. Alternatively, one an

onsider (1.1) as a linear equation for a(u). To set up this equation requires the

numerial di�erentiation of the data, f., e.g., [6℄. This approah is alled equation

error method.

It must be emphasized that inverse problems, inluding the one above, are often

very ill-onditioned : small hanges in a( � ) have little e�et on the solution u, and

onsequently one annot expet high resolution reonstrutions of a in the presene

of measurement errors in u. Indeed, errors in u may ause large variations in the

omputed a if they are not taken into aount appropriately.

Taking the equation error approah the onditioning issue for the inverse prob-

lem (1.1) an be tied down via its onnetion to numerial di�erentiation. In fat,

numerial di�erentiation enompasses many subtleties and pitfalls that a omplex

�
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(linear) inverse problem an exhibit; yet it is very easy to understand and analyze.

For this reason one ould say that numerial di�erentiation is ideally suited as a model

for inverse problems in a basi numerial analysis ourse.

To support this statement we are going to revisit in the sequel a well-known

algorithm for numerial di�erentiation of noisy data and present a new error bound

for it. The method and the error bound an be interpreted as an instane of one of

the most important results in the enter of a mathematial speialization known as

regularization theory for ill-posed problems. Still, our presentation is on a very basi

level and requires no prior knowledge besides standard n-dimensional alulus and

the notion of ubi splines.

We mention that Groetsh's book [4℄ presents other realisti inverse problems

on an elementary tehnial level. Further examples and a rigorous introdution into

regularization theory for the omputation of stable solutions to these examples an

be found in [1℄.

2. Setting of the problem. Suppose y = y(x) is a smooth funtion on 0 �

x � 1 and noisy samples ~y

i

of the values y(x

i

) are known at the points of a uniform

grid � = f0 = x

0

< x

1

< : : : < x

n

= 1g. Let h = x

i+1

� x

i

be the mesh size of the

grid and suppose

j ~y

i

� y(x

i

) j � Æ ; (2.1)

where Æ is a known level of noise in the data. For the moment we shall assume that

the boundary data are known exatly:

~y

0

= y(0) and ~y

n

= y(1) :

We are interested in �nding a smooth approximation f

0

(x) of y

0

(x), de�ned for all

x 2 [0; 1℄, from the given data ~y

i

, with some guaranteed (best possible) auray.

If this material is to be presented in lass, the preise notion of smoothness de-

pends on the level of the ourse. In priniple, the Sobolev spae H

2

[0; 1℄ of all fun-

tions f 2 C

1

[0; 1℄ with square integrable seond derivative is the appropriate hoie.

However, C

2

[0; 1℄ would also be all right (see Setion 3), but then the following error

bounds are no longer optimal.

Many textbooks on numerial analysis lak a satisfying treatment of numerial

di�erentiation. Usually, the treatment is restrited to the onsisteny error of sophis-

tiated �nite di�erene quotients while the stability problem due to error propagation

is often ignored. Combining onsisteny error and propagation error for one-sided

�nite di�erenes one arrives at the bound

�

�

~y

i+1

� ~y

i

h

� y

0

(x)

�

�

� O(h+ Æ=h ) ; x

i

� x � x

i+1

; (2.2)

for the total error provided that y 2 C

2

[0; 1℄; for a very nie pedagogial treatment

of this subjet, see Groetsh [3℄. The right-hand side of (2.2) { as a funtion of h {

is plotted in Figure 2.1 (solid line): it attains a minimal value of O(

p

Æ) for h �

p

Æ.

When h is smaller, the bound (2.2) deteriorates.

There is a trivial solution to the stability problem: disard data until the spaing

between the grid points is about

p

Æ (this is sometimes alled regularization by oarse

disretization). This is not really satisfying. Eah datum arries information whih

should somehow be put to work. Another shortoming of �nite di�erene shemes

is the lak of smoothness of the resulting approximations of y

0

: the �nite di�erene

approximations are only pieewise onstant funtions.
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We therefore take a di�erent approah { one that uses all the data and leads to

a smooth approximation. Let

kgk =

�

Z

1

0

g

2

(x) dx

�

1=2

denote the L

2

-norm of a square integrable funtion over (0; 1). With the aim of

taming the wild osillations in the approximate derivative that typially appear when

di�erentiating noisy data, it appears natural to pose the numerial di�erentiation

problem as a onstrained optimization problem:

Problem I. Minimize kf

00

k among all smooth funtions f satisfying f(0) = y(0),

f(1) = y(1), and

1

n� 1

n�1

X

i=1

�

~y

i

� f(x

i

)

�

2

� Æ

2

: (2.3)

Then, take the derivative f

0

�

of the minimizing element f

�

as an approximation of y

0

.

It is important that the exat solution y belongs to the very lass of smooth

funtions over whih the minimum is taken. In fat, given the unertainty in the

data, all funtions f satisfying (2.3) an be onsidered as solution andidates. The

minimizer of Problem I is the partiular andidate whih is `smoothest'.

If the minimizing element f

�

of Problem I satis�es the onstraint (2.3) with strit

inequality (i.e., the onstraint (2.3) is inative) then f

�

must be the `trivial solution'

`(x) = y(0) + x

�

y(1)� y(0)

�

; (2.4)

i.e., the straight line interpolating the two boundary values. To see this onsider

f

t

= (1� t)f

�

for suÆiently small nonnegative t: by assumption, f

t

will also satisfy

the onstraint (2.3), and kf

00

t

k = (1 � t)kf

00

�

k so that kf

00

�

k must vanish in order to

be minimal. This shows that f

�

is the linear interpolant of the given boundary data.

Note that this ase ours, if and only if ` satis�es the onstraint (2.3).

Exluding this trivial ase, the minimizer f

�

will satisfy (2.3) with equality, and

hene, an be alulated using the method of Lagrange. If 1=� denotes the orrespond-

ing Lagrange multiplier for onstraint (2.3), the equivalent formulation of Problem I

is:

Problem II. Minimize

�[f ℄ �

1

n� 1

n�1

X

i=1

�

~y

i

� f(x

i

)

�

2

+ �kf

00

k

2

(2.5)

among all smooth funtions f satisfying f(0) = y(0), f(1) = y(1), where � is suh

that the minimizing element f

�

of (2.5) satis�es

1

n� 1

n�1

X

i=1

�

~y

i

� f

�

(x

i

)

�

2

= Æ

2

: (2.6)

The derivative f

0

�

of the minimizing funtion is then an approximation of y

0

.

Problem II is a speial instane of a general method known as Tikhonov regu-

larization; in this ontext � is alled the regularization parameter, and the way � is

hosen in Problem II is alled the disrepany priniple (f. Groetsh [2℄).
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Fig. 2.1. Qualitative behavior of the error bounds (2.2) and (2.7) versus h for �xed Æ = 10

�4

.

Exept for the interpolatory onstraints at the boundary of the interval, (2.5) has

been investigated and solved by Shoenberg [10℄ and Reinsh [8℄ who showed that

the solution of Problem II is a natural ubi spline over the grid �. Reinsh also

gives a onstrutive algorithm for alulating this spline. We mention that the whole

algorithm inluding the determination of the Lagrange multiplier 1=� only takes O(n)

operations, but this is a di�erent story whih ould �ll another note.

Our main interest is the error f

0

�

� y

0

, i.e., the error of this partiular way of

numerial di�erentiation. We have the following result whih appears to be new; the

proof is given in Setion 5.

Theorem 2.1. Let y

00

be square integrable over (0; 1) and f

�

be the minimizer of

Problem II. Then

kf

0

�

� y

0

k �

p

8

�

hky

00

k +

p

Æ ky

00

k

1=2

�

: (2.7)

The theorem says that, as long as h > (Æ=ky

00

k)

1=2

, the error bound is of the

same order as that for �nite di�erenes, see (2.2). However, the bound (2.7) remains

of order O(

p

Æ) when h! 0, without the need to disard any information. It should

be mentioned that the error estimate (2.7) is sharp in the sense that for Æ = 0, i.e.,

noise-free data, the right-hand side oinides up to a multipliative onstant with the

best-possible worst ase bound for the interpolating spline (see Lemma 4.2 below).

We an also give a hand-waving argument to illustrate the sharpness of the seond

term on the right-hand side of (2.7) as h! 0. To this end we integrate by parts and

use the boundary values of f

�

to obtain

kf

0

�

� y

0

k

2

=

Z

1

0

(f

0

�

� y

0

)

2

dx = �

Z

1

0

(f

�

� y)(f

00

�

� y

00

) dx :

By the Cauhy-Shwarz inequality the right-hand side is bounded by kf

�

� yk kf

00

�

�

y

00

k ; the �rst fator is approximately Æ as h beomes small while the seond fator is

bounded by 2ky

00

k beause of the triangle inequality and the setting of Problem I.

Although Theorem 2.1 may not surprise those who are aquainted with the litera-

ture on Tikhonov regularization, we emphasize that the standard theory in [1, 2℄ does
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not over a result like this. The reason is the somewhat nonstandard ombination of

the penalty term kf

00

k in (2.5) and the smoothness assumption on the exat solution

y.

The remainder of this paper is organized as follows. In Setion 3 we provide a proof

that the minimizing element f

�

is a natural ubi spline over the grid �. Setion 4

summarizes basi error estimates in spline approximation. A proof of Theorem 2.1 is

ontained in Setion 5. Finally, numerial results and omments are given in Setion 6.

3. The minimizing spline. There are two ways to prove existene and unique-

ness of the minimizing element f

�

of (2.5). One possibility is to onsider this problem

as a di�erentiable optimization problem over a onvex domain in H

2

[0; 1℄. This ap-

proah is tehnial and requires a number of involved mathematial prerequisites if the

derivation is to be rigorous. The tehnique that we use veri�es diretly the optimality

of the orresponding spline funtion. The shortoming of our approah is that the

haraterization (3.1) of the minimizing element f

�

seems to appear from nowhere,

but we feel that the simpliity of the treatment is fair ompensation for this.

So, let f

�

be a natural ubi spline over �, i.e., a funtion whih is twie on-

tinuously di�erentiable over [0; 1℄ with f

00

�

(0) = f

00

�

(1) = 0, and whih oinides on

eah subinterval [x

i�1

; x

i

℄ of � with some ubi polynomial. We shall see that the

minimizer f

�

is uniquely determined by onneting the jumps of f

000

�

at the interior

nodes x = x

i

with the values f

�

(x

i

) through

f

000

�

(x

i

+)� f

000

�

(x

i

�) =

1

�(n� 1)

�

~y

i

� f

�

(x

i

)

�

; i = 1; : : : ; n� 1 : (3.1)

Reall that the boundary values of f

�

have been �xed to be f

�

(0) = ~y

0

and f

�

(1) = ~y

n

.

For a onstrutive algorithm for omputing f

�

ompare [8℄.

For any funtion g with square integrable seond derivative and boundary values

g(0) = g(1) = 0, integration by parts yields

Z

1

0

g

00

f

00

�

dx = g

0

(1)f

00

�

(1)� g

0

(0)f

00

�

(0) �

Z

1

0

g

0

f

000

�

dx = �

n

X

i=1

Z

x

i

x

i�1

g

0

f

000

�

dx

= �

n

X

i=1

f

000

�

�

�

�

[x

i�1

;x

i

℄

g(x)

�

�

�

x

i

x=x

i�1

;

where we have used the properties of the natural spline f

�

. Sine g vanishes at the

boundary, this simpli�es to

Z

1

0

g

00

f

00

�

dx =

n�1

X

i=1

g(x

i

)

�

f

000

�

(x

i

+)� f

000

�

(x

i

�)

�

:

Using (3.1), this yields

2�

Z

1

0

g

00

f

00

�

dx =

2

n� 1

n�1

X

i=1

g(x

i

)

�

~y

i

� f

�

(x

i

)

�

: (3.2)

Now, let f be any funtion with square integrable seond derivative and boundary
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values f(0) = ~y

0

and f(1) = ~y

n

. Then, the funtional � de�ned in (2.5) satis�es

�[f ℄� �[f

�

℄ =

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

��

f(x

i

) + f

�

(x

i

)� 2~y

i

�

+�kf

00

� f

00

�

k

2

+ 2�

Z

1

0

(f

00

� f

00

�

) f

00

�

dx :

Inserting (3.2) with g = f � f

�

for the last integral on the right-hand side one obtains

�[f ℄� �[f

�

℄ =

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

��

f(x

i

) + f

�

(x

i

)� 2~y

i

�

+�kf

00

� f

00

�

k

2

+

2

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

� �

~y

i

� f

�

(x

i

)

�

=

1

n� 1

n�1

X

i=1

�

f(x

i

)� f

�

(x

i

)

�

2

+ �kf

00

� f

00

�

k

2

:

This proves that �[f ℄ � �[f

�

℄ � 0 for the whole lass of andidates f allowed in

Problem II. Furthermore, if equality holds then f � f

�

must be a linear funtion with

vanishing boundary values; hene, f = f

�

. Consequently, f

�

is the unique minimizer

of Problem II.

The tehnique that we have employed to show that f

�

is the minimizer of � is

pretty standard and applies to any quadrati funtional.

4. Preliminaries on spline approximation. Before proving Theorem 2.1,

we ollet a number of preliminary results that provide bakground information on

splines. Eah of these fats is easy to prove, but for the reader's onveniene we

provide appropriate referenes.

Lemma 4.1. Let s be the natural ubi spline whih interpolates the exat data

y(x

i

) at x = x

i

, i = 0; : : : ; n. Then s

00

is the best approximation of y

00

in L

2

(0; 1)

from the spae of linear splines over �, i.e.,

ks

00

� y

00

k

2

+ ks

00

k

2

= ky

00

k

2

: (4.1)

Proof. See H�ammerlin and Ho�mann [5, Setion 6.2.1℄.

Lemma 4.2. Let s be the natural ubi spline over � whih interpolates the exat

data y(x

i

) at x = x

i

, i = 0; : : : ; n. Then,

ks

0

� y

0

k �

h

�

ky

00

k :

Proof. The proof follows that of Theorem 1.3 in the book by Strang and Fix [12℄,

it atually simpli�es beause in our ontext s

00

�y

00

2 L

2

. At the end of the proof one

has to apply the inequality k(s� y)

00

k � ky

00

k whih follows from Lemma 4.1.

We will also use the following approximation property of pieewise onstant

splines:
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Lemma 4.3. Let g have a square integrable derivative over [0; 1℄, and let � be the

best approximation in L

2

(0; 1) of g from the spae of pieewise onstant splines over

�. Then

kg � �k � hkg

0

k :

Proof. See Shumaker [11, Thm. 6.1℄.

5. Proof of Theorem 2.1. In view of Lemma 4.2 it suÆes to study the error

kf

0

�

� s

0

k , where s is the interpolating natural ubi spline for the exat data y(x

i

),

i = 0; : : : ; n.

To this end, let e = f

�

�s and onsider the best approximating pieewise onstant

spline � of e

0

with respet to L

2

(0; 1), i.e.,

�j

(x

i�1

;x

i

)

= �

i

=

1

h

Z

x

i

x

i�1

e

0

dx : (5.1)

Rewrite ke

0

k

2

as follows:

ke

0

k

2

=

Z

1

0

e

0

(e

0

� �) dx +

Z

1

0

e

0

�dx =

Z

1

0

e

0

(e

0

� �) dx +

n

X

i=1

�

i

Z

x

i

x

i�1

e

0

dx

=

Z

1

0

e

0

(e

0

� �) dx +

n

X

i=1

�

i

�

e(x

i

)� e(x

i�1

)

�

=

Z

1

0

e

0

(e

0

� �) dx +

n�1

X

i=1

e(x

i

)

�

�

i

� �

i+1

�

+ e(1)�

n

� e(0)�

1

=

Z

1

0

e

0

(e

0

� �) dx +

n�1

X

i=1

e(x

i

)

�

�

i

� �

i+1

�

=: I

1

+ I

2

; (5.2)

where we have used that e(0) = e(1) = 0 (sine f

�

and s interpolate y at the bound-

ary). It remains to estimate the two terms I

1

and I

2

in (5.2). For the �rst term we

use the Cauhy-Shwarz inequality and Lemma 4.3 to obtain

I

1

� ke

0

k ke

0

� �k � hke

0

k ke

00

k :

The formulation of Problem I implies that kf

00

�

k � ky

00

k , and hene

ke

00

k � kf

00

�

k + ks

00

k � 2ky

00

k (5.3)

by Lemma 4.1. Therefore we obtain the following estimate for I

1

:

I

1

� 2hke

0

k ky

00

k : (5.4)

Next we estimate I

2

using the Cauhy-Shwarz inequality in R

n�1

and (5.1). This

yields

I

2

2

�

n�1

X

i=1

e

2

(x

i

)

n�1

X

i=1

�

�

i

� �

i+1

�

2

=

n�1

X

i=1

e

2

(x

i

)

n�1

X

i=1

1

h

2

�

Z

x

i

x

i�1

�

e

0

(x)� e

0

(x+ h)

�

dx

�

2

:
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Note that, by onstrution,

n�1

X

i=1

e

2

(x

i

) =

n�1

X

i=1

�

f

�

(x

i

)� y(x

i

)

�

2

� 4nÆ

2

;

and hene,

I

2

2

� 4n

3

Æ

2

n�1

X

i=1

�

Z

x

i

x

i�1

Z

x+h

x

je

00

(t)j dt dx

�

2

� 4n

3

Æ

2

n�1

X

i=1

�

Z

x

i

x

i�1

Z

x

i+1

x

i�1

je

00

(t)j dt dx

�

2

� 4nÆ

2

n�1

X

i=1

�

Z

x

i+1

x

i�1

je

00

(t)j dt

�

2

:

The last integral an be estimated using Cauhy-Shwarz and (5.3) again:

I

2

2

� 4nÆ

2

n�1

X

i=1

Z

x

i+1

x

i�1

je

00

(t)j

2

dt

Z

x

i+1

x

i�1

dt � 8 Æ

2

2ke

00

k

2

� 64 Æ

2

ky

00

k

2

:

Inserting this and (5.4) into (5.2) we �nally obtain

ke

0

k

2

� 2hke

0

k ky

00

k + 8 Æky

00

k :

Completing the squares this an be rewritten as

�

ke

0

k � hky

00

k

�

2

�

�

hky

00

k +

p

8

p

Æky

00

k

1=2

�

2

:

This yields

ke

0

k � 2hky

00

k +

p

8

p

Æky

00

k

1=2

;

and from Lemma 4.2 we therefore obtain

kf

0

�

� y

0

k � ke

0

k + ks

0

� y

0

k � 2hky

00

k +

p

8

p

Æky

00

k

1=2

+

h

�

ky

00

k :

This ompletes the proof.

6. Numerial results and onluding remarks. Theorem 2.1 extends in a

straightforward way to the situation when the boundary data of y are also perturbed.

In this ase one an onsider the funtion

Y (x) = y(x) + ~y

0

� y(0) + "x ;

where " = ~y

n

� y(1) + y(0) � ~y

0

. Then Y (0) = ~y

0

and Y (1) = ~y

n

, and hene

Theorem 2.1 applies to Y . Note that Y

00

= y

00

. Consequently, if Æ is replaed by 2Æ in

Problems I and II then Theorem 2.1 yields the same bound as before for kf

0

�

� Y

0

k ,

and sine kY

0

� y

0

k = j"j � 2Æ the same type of bound results for kf

0

�

� y

0

k as well.

For the inverse problem of determining the di�usion oeÆient a( � ) in (1.1),

onsidered in [6℄, an industrial lient provided temperature measurements of u(x

i

; t

j

)

at a few thermoouples at loations x

i

and equidistant times t

j

2 [0; T ℄. A ruial

step of the equation error method used in [6℄ requires the knowledge of u

t

(x

i

; t), i.e.,

8
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Fig. 6.1. Given data (left) and their numerial derivatives (right)

numerial di�erentiation of the given data. The left-hand side plot in Figure 6.1

shows the measurements u(0; t

j

) (the irles) and the orresponding smoothing ubi

spline. The right-hand side plot shows the numerial derivatives omputed with �nite

di�erenes (the dashed, pieewise onstant funtion) and the smoothing spline (solid

line), respetively.

For the purpose of reonstruting a the pieewise onstant approximation is use-

less for its lak of smoothness; the exat solution u of this paraboli equation is known

to be smooth so that a ubi spline approximation is muh more appropriate. The

entire algorithm for reonstruting the di�usion oeÆient is desribed in [6℄.

All temperature measurements turned out to be multiples of �ve (

Æ

C); onse-

quently the �nite di�erene quotient approximation of u

t

only takes a few distint

values. On the other hand this allows an estimation of Æ in (2.1); we took Æ = 2:5

presuming a rounding to the losest multiple of �ve in the measuring proess. With

this value of Æ the Lagrange multiplier 1=� was tuned so as to satisfy (2.6).

The idea of smoothing data by ubi splines has a long tradition, espeially among

statistiians. Some of these works are related to ours in that they also address the

problem of numerial di�erentiation. For example, see the book by Wahba [13℄, whih

summarizes her early work in this area, and also the paper by Rie and Rosenblatt [9℄.

Beyond the ubi spline setting there are lots of other approahes to the topi of

this paper. A good plae to searh for additional literature is the book by Murio [7℄,

whih fouses on the molli�ation method. We aution, however, that many numerial

shemes impose arti�ial boundary onditions on y, whih may lead to annoying

boundary artifats for pratial data sets.
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