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The most accurate model for real-life electrical impedance tomography is the complete
electrode model, which takes into account electrode shapes and (usually unknown) con-
tact impedances at electrode-object interfaces. When the electrodes are small, however,
it is tempting to formally replace them by point sources. This simplifies the model con-
siderably and completely eliminates the effect of contact impedance.

In this work we rigorously justify such a point electrode model for the important
case of having difference measurements (“relative data”) as data for the reconstruction
problem. We do this by deriving the asymptotic limit of the complete model for van-
ishing electrode size. This is supplemented by an analogous result for the case that the
distance between two adjacent electrodes also tends to zero, thus providing a physical
interpretation and justification of the so-called backscattering data introduced by two of
the authors.
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1. Introduction

The aim of electrical impedance tomography is to produce images of the admit-

tance within an electrically conducting object (such as the human body) from
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boundary measurements of current and voltage, cf. the overview articles of Bar-

ber and Brown,1 Cheney, Isaacson and Newell,5 Borcea,3,4 Lionheart,15 Bayford,2

and the book edited by Holder.11 To alleviate modelling errors and measurement

noise, many practical applications of impedance tomography utilize difference mea-

surements (sometimes called “relative data”): For a given set of boundary current

patterns, the measured voltages are compared with a set of reference potentials

to generate an image of the corresponding admittance change inside the object.

Common examples are time-difference and frequency-difference measurements.

The most accurate mathematical (forward) model for impedance tomography

is known as the complete electrode model. This model takes into account both the

shunting effect on the conducting electrodes and the contact impedance between

the electrodes and the imaged object. It has been experimentally verified to be

capable of predicting real-life measurements up to measurement precision, cf. Cheng,

Isaacson, Newell and Gisser,6 and Somersalo, Cheney and Isaacson.20

In many practical applications, the size of the electrodes seems negligibly small

compared to the total boundary area and to the inevitable modelling errors, such

as inaccurate positioning of the electrodes; of the many possible examples, consider,

e.g., the geophysical applications of impedance tomography in Refs. 17, 18 and 19.

It is therefore tempting to formally replace small electrodes by point electrodes

modelled by delta distributions. For difference data this has the additional effect of

eliminating the (usually unknown) contact impedances.

In this work we will give a mathematically rigorous justification for using this

kind of point electrode model by deriving it as an asymptotic limit of the complete

electrode model when the electrodes’ diameter h tends to zero. More precisely, we

will show that the relative approximation error decays like h2, if the electrodes are

replaced by point sources located at their centers. The precise formulation of this

main contribution of our paper is given in Sec. 2.4 below. It is supplemented by an

analogous result for the case that the diameter of the electrodes, i.e., h, is as small

as the distance between two adjacent electrodes: We prove that in the limit h → 0

the corresponding real-world measurements converge to the so-called backscattering

data8,9 introduced by two of the authors before. For backscatter data, however, we

can only prove a convergence rate O(h) as h→ 0.

For completeness, it should be mentioned that the connection between the com-

plete electrode model and the so-called continuum model of impedance tomography

(see, e.g., Ref. 3) has previously been studied in Refs. 12, 13 and 14. However, the

philosophy of these articles differs from the approach of this work: In Refs. 12, 13

and 14 it has been investigated in what sense the current-to-voltage map of the com-

plete electrode model approximates the Neumann-to-Dirichlet boundary operator

of the continuum model as the electrodes get smaller, their number increases, and

their coverage of the object boundary is getting better and better. In the present

work, the locations and the number of the electrodes are fixed and the only thing

that is altered is the electrode size.

The outline of this work is as follows. In Sec. 2 we give the precise mathe-
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matical specifications of the two relevant electrode models, and comment on their

well-posedness for relative data; in a separate subsection we summarize all the geo-

metrical assumptions on the finite size electrodes that we are going to impose when

we let their diameter h go to zero. Afterwards, in Sec. 2.4, we present the main

result of this work, the proof of which is postponed to Sec. 3. Finally, in Sec. 4 we

provide our asymptotic result for backscatter data.

2. The Setting and Main Result

In what follows, we assume that Ω ⊂ R
n, n = 2 or n = 3, is a bounded domain (i.e.,

an open and connected set) with C∞-boundary and connected complement. The

outer unit normal of ∂Ω is denoted by ν. Throughout, let σ0 ∈ C∞(Ω; Cn×n) be

a smooth and (real) symmetric background admittance. We assume that the true

admittance inside Ω is a compactly supported perturbation of σ0, i.e.,

σ = σ0 + κ, (2.1)

where κ ∈ L∞(Ω; Cn×n) is (real) symmetric and supported away from the boundary

∂Ω. Furthermore, both σ and σ0 are assumed to satisfy (see, e.g., Ref. 3)

Re(σξ · ξ) ≥ c‖ξ‖2
Cn , |σξ · ξ| ≤ C‖ξ‖2

Cn , c, C > 0, (2.2)

for all ξ ∈ Cn. Here, and throughout this work, 0 < c < C denote generic constants

(c a small one, C a large one) that are independent of h and that may change from

one occasion to the next.

2.1. Complete electrode model

To begin with, let us recapitulate the complete electrode model, where we employ

superscripts h to serve as a measure for the size of the diameter of the electrodes.

Later we will drive h to zero in the asymptotic analysis.

Within the complete electrode model the boundary of Ω is assumed to be partly

covered by M electrodes, which are taken to be ideal conductors, and which are

identified with the open, simply connected, and mutually disjoint parts eh
m ⊂ ∂Ω,

m = 1, . . . ,M , of the surface that they cover. The union of these electrodes is

denoted by Eh. All electrodes may be used both for current injection and voltage

measurement, and the corresponding electrode net currents and voltages are denoted

by {Im}, {Uh
m} ⊂ C, respectively. Due to the principle of charge conservation, the

total current vector I = [Im]Mm=1 belongs to the space

C
M
⋄ :=

{

Z = [Zm]Mm=1 ∈ C
M
∣

∣

∣

M
∑

j=1

Zj = 0
}

.

During electrode measurements, a thin and highly resistive layer is formed at the

electrode-object interface.6 It is characterized by the contact impedances {zm} that

in our analysis are assumed to be complex numbers with positive real parts.
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The corresponding forward problem is as follows: Given a current pattern I ∈

CM
⋄ , find (uh, Uh) ∈ (H1(Ω) ⊕ CM )/C =: H that satisfies

∇ · σ∇uh = 0 in Ω,

ν · σ∇uh = 0 on ∂Ω \ Eh,

uh + zm ν · σ∇uh = Uh
m on eh

m, m = 1, . . . ,M,
∫

eh
m

ν · σ∇uh dS = Im, m = 1, . . . ,M,

(2.3)

in an appropriate weak sense (cf. Ref. 20). Note that in the factor space H the quo-

tient is taken with respect to constant shifts of both, uh and Uh, simultaneously.

This reflects the freedom in the choice of the ground level of potential. By slight

abuse of notation, we will subsequently identify complex numbers with the corre-

sponding constant functions (over an appropriate domain), and refer to equivalence

classes of factor spaces with respect to C to identify elements (be it functions, num-

bers, or tuples of both of them) that only differ by additive shifts. Unless there is a

possibility of confusion, we also do not distinguish between equivalence classes and

representative elements of them.

With this understanding the equations in (2.3) uniquely determine the electro-

magnetic potential uh within Ω, and the potentials {Uh
m} on the electrodes, and

there holds

‖(uh, Uh)‖2
H = inf

c∈C

(

‖uh − c‖2
H1(Ω) +

M
∑

m=1

‖Uh
m − c‖2

L2(eh
m)

)

≤ C
M
∑

m=1

|Im|2/|eh
m|.

(2.4)

Furthermore, we have a similar inequality for the flux of the component uh of the

solution across the boundary, i.e.,

‖ν · σ∇uh‖2
L2(∂Ω) ≤ C

M
∑

m=1

|Im|2/|eh
m|. (2.5)

Both in (2.4) and (2.5), the constant C = C(Ω, σ, {zm}) > 0 is independent of the

electrode configuration. We refer to the material in Ref. 20, Theorem 2.3 of Ref. 12,

and Lemma 2.1 of Ref. 13 for a proof of these results.

Real-life electrode measurements of impedance tomography provide a noisy ver-

sion of the current-to-voltage map

Rh : I 7→ Uh, C
M
⋄ → C

M/C. (2.6)

Accordingly, we denote by (uh
0 , U

h
0 ) ∈ H the reference potential for the background

admittance σ0, i.e., the solution of (2.3) with σ replaced by σ0. R
h
0 : I 7→ Uh

0 is the

corresponding reference measurement operator.
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2.2. Point electrode model

Alternatively, we consider a very simplistic electrode model with electrodes of in-

finitesimal size at the points xm ∈ ∂Ω, m = 1, . . . ,M , where boundary currents are

treated as isolated delta distributions. In other words, the corresponding forward

problem reads

∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω, (2.7)

where

f =

M
∑

m=1

Im δxm ∈ H(1−n)/2−ε(∂Ω), for any ε > 0, (2.8)

with I = [Im]Mm=1 ∈ CM
⋄ being the same as in Sec. 2.1, and δxm being the Dirac

delta distribution on ∂Ω supported in xm. It follows from the standard theory

of elliptic boundary value problems that (2.7)–(2.8) has a unique solution u ∈

H(4−n)/2−ε(Ω)/C satisfying

‖u‖H(4−n)/2−ε(Ω)/C ≤ C‖f‖H(1−n)/2−ε(∂Ω) ≤ C‖I‖CM , (2.9)

for any ε > 0 and some C = Cε > 0; see, e.g., Ref. 16 and Eq. (A.5) of Ref. 9.

Since the Dirichlet boundary value of u is (only) in H(3−n)/2−ε(∂Ω)/C (cf. the

trace theorems in Chapter 2 of Ref. 16), the boundary potential is not well defined

at the discrete point xm — unless Im equals zero —, and thus there is no natural

way of defining counterparts of the voltages Uh and the measurement operator

Rh of the complete electrode model within this point electrode setting. However,

there does exist a counterpart for difference measurements, i.e., for the relative

voltages Uh − Uh
0 , and the relative current-to-voltage map Rh − Rh

0 . To this end,

consider the reference potential u0 ∈ H(4−n)/2−ε(Ω)/C that solves (2.7)–(2.8) for

the background admittance σ0 and set w := u − u0. Then the vector of point

evaluations W :=
[

w(xm)
]M

m=1
∈ CM/C is well-defined; see Lemma 2.1 below. In

our main result we prove that W provides an approximation of the corresponding

relative voltages Uh − Uh
0 of the complete electrode model, if the diameter of the

finite size electrodes is small. An immediate corollary is that the measurement

operator

A : I 7→W, C
M
⋄ → C

M/C, (2.10)

approximates the corresponding relative measurement map Rh−Rh
0 of the complete

electrode model.

Lemma 2.1. The relative potential w = u− u0 satisfies the estimate

‖w‖Hr(∂Ω)/C ≤ C‖I‖CM

for any r ∈ R and C = C(r) > 0. In particular, w|∂Ω belongs to C∞(∂Ω)/C.

Proof. Let us fix ε > 0 and r ≥ 3/2; obviously, the latter choice can be made

without loss of generality. Let Ω0 and Ω1 be auxiliary C∞-domains with connected
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complements, such that suppκ ⊂ Ω0, Ω0 ⊂ Ω1 and Ω1 ⊂ Ω. In addition, let D be

a smooth neighborhood of ∂Ω1 with the property D ⊂ Ω \ Ω0. Since ∇ · σ0∇w = 0

in Ω \ Ω0, it follows from (2.9) and a slight modification of Lemma A.1 in Ref. 9,

i.e., from interior regularity for elliptic equations, that

‖w‖Hr+1/2(D)/C ≤ C‖w‖H(4−n)/2−ε(Ω\Ω0)/C
≤ C‖I‖CM .

In particular, using the trace theorem, we see that w satisfies

∇ · σ0∇w = 0 in Ω \ Ω1, ν · σ0∇w = 0 on ∂Ω, ν · σ0∇w = g on ∂Ω1

for some mean-free g with ‖g‖Hr−1(∂Ω1) ≤ C‖I‖CM . Hence, the claim follows from

the combination of Remark 7.2 in Chapter 2 of Ref. 16 and the trace theorem.

2.3. Geometrical assumptions

We now list our assumptions on the interplay between the two electrode models

introduced in Secs. 2.1 and 2.2 above. As before, we denote by eh
m, m = 1, . . . ,M ,

the finite size electrodes, and by xm the positions of the corresponding point elec-

trodes. As already mentioned, we associate with h the size of the electrodes from

the complete electrode model, and we let h float within some interval 0 < h < h0,

where h0 > 0 is kept fixed.

To be precise, we assume throughout that there is a fixed convex reference do-

main Q ⊂ R
n−1 with |Q| = 1 and 0 ∈ Q, such that, for each positive parameter

h < h0, the electrode eh
m ⊂ ∂Ω, with m fixed, is given by a one-to-one parameteri-

zation

eh
m = Xh

m(Qh) with Qh = hQ ,

which stands for

eh
m =

{

x = Xh
m(s)

∣

∣ s ∈ Qh
}

.

We assume that Xh
m is a diffeomorphism between Qh and eh

m, i.e., both Xh
m

and its inverse are infinitely times continuously differentiable, and that there are

universal constants 0 < c < C <∞, independent of h and m, such that the surface

element dS on eh
m satisfies

dS = σh
m(s) ds with c ≤ σh

m(s) ≤ C , (2.11)

where ds is the Lebesgue’s volume element of Qh. To be precise, by the first part

of (2.11) we mean that
∫

eh
m

g dS =

∫

Qh

(g ◦Xh
m)σh

m ds

for any integrable function g on eh
m, i.e., σh

m is the local stretching factor corre-

sponding to the parameterization Xh
m. In addition, we need some extra control over

the first and second order derivatives of Xh
m, namely we require that

‖Xh
m‖

C2(Q
h
)
≤ C . (2.12)
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It is easy to see that under these assumptions there holds

‖ψ ◦Xh
m‖H1(Qh) ≤ C‖ψ‖H1(eh

m) (2.13)

for every ψ ∈ H1(eh
m), and

|Γ| ≤ C|(Xh
m)−1(Γ)| (2.14)

for any smooth curve Γ ⊂ eh
m. (In fact, for (2.13) and (2.14) to hold the assumption

on the second order derivatives of Xh
m is redundant; however, such an assumption is

needed in the proof of Lemma 3.2 below.) We point out that because of the above

stipulations the area covered by eh
m is given by

|eh
m| =

∫

eh
m

dS =

∫

Qh

σh
m(s) ds = hn−1

∫

Q

σh
m(hs) ds

{

≤ Chn−1

≥ chn−1 .
(2.15)

Finally, concerning the interplay between the two electrode models, we assume

that xm ∈ eh
m, more precisely, that

xm = Xh
m(0) ,

and, to enable an O(h2) approximation property to be established below we require

that
∫

Qh

s σh
m(s) ds = 0 , (2.16)

i.e., that the origin (the preimage of xm under Xh
m) is a (weighted) center of mass

of Qh.

Some interpretation of the above assumptions may be useful:

• For n = 2, i.e., in two space dimensions, the boundary of Ω is a closed curve,

and it is most natural to assume that eh
m are electrodes of length |eh

m| = h,

say. In this case one can choose Q = [−1/2, 1/2], Qh = [−h/2, h/2], and let

Xh
m be, for all h > 0, an arc length parameterization of the boundary. In

this case σh
m ≡ 1, and the condition (2.16) is equivalent to saying that the

position xm = Xh
m(0) of the point electrode is half way (along the boundary

of Ω) between the two end points of the electrode eh
m.

• In three space dimensions, one can think of Qh being a planar reference

shape for each of the electrodes, that is shrinking with decreasing size pa-

rameter h. Think of these electrodes as being elastic, so that they can be

attached to the surface ∂Ω around xm. The corresponding deformation is

determined by Xh
m, with

σh
m(s) =

∣

∣

∣

∂Xh
m

∂s1
(s) ×

∂Xh
m

∂s2
(s)
∣

∣

∣
, s = (s1, s2) ,

being the local stretching factor. In order to satisfy condition (2.16), one

has to make sure that the position of the point electrode is some kind of

center of eh
m (which is not the center of mass, though, as the latter does

not usually sit on ∂Ω).
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2.4. The main result

We are now ready to formulate the main result of this paper. Recall that, given a

current pattern I, we denote by Uh and Uh
0 the voltages on the finite size electrodes

corresponding to the admittance σ of (2.1) and to the background admittance σ0,

respectively. Similarly, in the framework of point electrodes, u and u0 stand for the

respective potentials of Sec. 2.2, and W :=
[

(u − u0)(xm)
]M

m=1
∈ C

M/C contains

the relative voltages on the point electrodes.

Theorem 2.1. Under the assumptions from Sec. 2.3,
∥

∥(Uh − Uh
0 ) −W

∥

∥

CM /C
≤ Ch2 ‖I‖

CM ,

where C > 0 is independent of h ∈ (0, h0) and I ∈ CM
⋄ .

For the corresponding measurement maps of the complete electrode model and

the point electrode model,

Rh : I 7→ Uh, Rh
0 : I 7→ Uh

0 , and A : I 7→W,

we deduce that A is an accurate approximation of Rh − Rh
0 , provided that the

parameter h, which measures the diameter of the electrodes, is relatively small.

Corollary 2.1. Under the assumptions from Sec. 2.3,
∥

∥(Rh −Rh
0 ) −A

∥

∥

L(CM
⋄ ,CM /C)

≤ Ch2,

where C > 0 is independent of h ∈ (0, h0).

Remark 2.1. Suppose that the point electrode locations {xm} are not the centers

of the corresponding finite size electrodes {eh
m} in the sense of (2.16). In such a

case Theorem 2.1 and Corollary 2.1 are no longer valid. However, as long as only

xm ∈ eh
m, m = 1, . . . ,M , one can still obtain the weaker convergence rate

∥

∥(Rh −Rh
0 ) −A

∥

∥

L(CM
⋄ ,CM/C)

≤ Ch. (2.17)

In fact, the proof of Lemma 3.2 below could be shortened considerably, and also

the geometrical assumptions about the finite size electrodes could be weakened, if

the aim was only to prove an O(h)-estimate.

Furthermore, it is easy to see from the proof of Theorem 2.1 that its assertion

remains valid, if one or all xm deviate from the center of the respective electrode(s)

by O(h2).

3. Proof of the Main Result

This section is devoted to proving Theorem 2.1. For a current pattern I ∈ CM
⋄ , let

(uh, Uh) and (uh
0 , U

h
0 ) be the solution pairs of (2.3) corresponding to the admittance

σ from (2.1) and the background admittance σ0, respectively, and set (wh,Wh) :=

(uh − uh
0 , U

h − Uh
0 ).
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We begin with a refinement of the inequality (2.5) for the complete electrode

model, which – in contrast to (2.5) – is only valid on the electrodes.

Lemma 3.1. The component uh of the solution to (2.3) satisfies

‖ν · σ∇uh‖2
H1(Eh) ≤ C

M
∑

m=1

|Im|2/|eh
m|,

where C > 0 is independent of the electrode configuration, and of h, in particular.

Proof. Because σ is smooth in a neighborhood of ∂Ω, the Neumann-to-Dirichlet

map corresponding to the first equation of (2.3) is bounded from the subspace of

L2(∂Ω)-functions with zero integral mean to H1(∂Ω)/C (cf., e.g., Theorem A.3 of

Ref. 9), and thus (2.5) gives

‖uh‖2
H1(∂Ω)/C

≤ C
M
∑

m=1

|Im|2/|eh
m|.

Hence, it follows from the third equation of (2.3) that (cf. Remark 6 on p. 146 of

Ref. 7)

‖ν · σ∇uh‖2
H1(Eh) ≤ C

M
∑

m=1

‖Uh
m − uh‖2

H1(eh
m)

≤ C

M
∑

m=1

(

‖uh‖2
H1(eh

m)/C
+ ‖Uh

m − uh‖2
L2(eh

m)

)

≤ C

(

M
∑

m=1

|Im|2/|eh
m| +

M
∑

m=1

‖Uh
m − uh‖2

L2(eh
m)

)

.

For the second term on the right hand side we have

M
∑

m=1

‖Uh
m − uh‖2

L2(eh
m) ≤ C

M
∑

m=1

(

‖Uh
m − c‖2

L2(eh
m) + ‖c− uh‖2

L2(eh
m)

)

≤ C

(

‖uh − c‖2
H1(Ω) +

M
∑

m=1

‖Uh
m − c‖2

L2(eh
m)

)

,

where we have applied the trace theorem. By taking the infimum over c ∈ C, and

using (2.4) it thus follows that

M
∑

m=1

‖Uh
m − uh‖2

L2(eh
m) ≤ C

M
∑

m=1

|Im|2/|eh
m|,

which completes the proof.

Next we provide a first result (in a comparatively weak norm) on how well uh

approximates the potential u of Sec. 2.2 for point electrodes on ∂Ω.
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Lemma 3.2. Under the assumptions from Sec. 2.3 we can find for every ǫ > 0

some Cε > 0 such that

‖ν · σ∇(uh − u)‖H−(n+3)/2−ε(∂Ω) ≤ Cεh
2‖I‖CM

for every 0 < h < h0 and all I ∈ CM
⋄ .

Proof. 1. Let ϕ ∈ C∞(∂Ω) be fixed, and denote ν · σ∇uh|∂Ω by fh. Note that it

follows from Lemma 3.1 and (2.15) that

‖fh‖2
H1(eh

m) ≤ Ch1−n‖I‖2
CM . (3.1)

According to the boundary conditions of (2.3) and (2.7), we can therefore rewrite

∣

∣〈ν · σ∇(uh − u), ϕ〉
∣

∣ =

∣

∣

∣

∣

∣

∫

∂Ω

fhϕdS −
M
∑

m=1

Imϕ(xm)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

m=1

∫

eh
m

fh
(

ϕ− ϕ(xm)
)

dS

∣

∣

∣

∣

∣

≤
M
∑

m=1

∣

∣

∣

∣

∣

∫

eh
m

(fh − Im/|e
h
m|)
(

ϕ− ϕ(xm)
)

dS +
Im
|eh

m|

∫

eh
m

(

ϕ− ϕ(xm)
)

dS

∣

∣

∣

∣

∣

,

and hence,

∣

∣〈ν · σ∇(uh − u), ϕ〉
∣

∣ ≤

M
∑

m=1

‖fh − Im/|e
h
m|‖L2(eh

m)‖ϕ− ϕ(xm)‖L2(eh
m)

+

M
∑

m=1

|Im|

|eh
m|

∣

∣

∣

∣

∣

∫

eh
m

ϕdS − ϕ(xm)|eh
m|

∣

∣

∣

∣

∣

.

(3.2)

The terms that enter on the right-hand side of (3.2) will now be treated separately

for any fixed m ∈ {1, . . . ,M}.

2. To begin with, we remark that, according to (2.3), ψ = fh − Im/|e
h
m| has

vanishing integral mean over eh
m, i.e.,

0 =

∫

eh
m

ψ(x) dS =

∫

Qh

ψ(Xh
m(s))σh

m(s) ds = hn−1

∫

Q

ψ(Xh
m(hs))σh

m(hs) ds .

Therefore the Poincaré-Friedrichs inequality for the domain Q yields

∫

Q

∣

∣

∣
ψ(Xh

m(hs))σh
m(hs)

∣

∣

∣

2

ds ≤ C

∫

Q

∣

∣

∣
∇s

(

ψ(Xh
m(hs))σh

m(hs)
)∣

∣

∣

2

ds

≤ Ch2h1−n

∫

Qh

∣

∣

∣
∇s

(

ψ(Xh
m(s))σh

m(s)
)∣

∣

∣

2

ds ,
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and hence, as σh
m is bounded by c from below,

‖fh − Im/|e
h
m|‖2

L2(eh
m) = ‖ψ‖2

L2(eh
m) ≤

1

c

∫

Qh

∣

∣

∣
ψ(Xh

m(s))σh
m(s)

∣

∣

∣

2

ds

=
1

c
hn−1

∫

Q

∣

∣

∣
ψ(Xh

m(sh))σh
m(sh)

∣

∣

∣

2

ds

≤ Ch2

∫

Qh

∣

∣

∣
∇s

(

ψ(Xh
m(s))σh

m(s)
)
∣

∣

∣

2

ds .

Due to (2.12), σh
m is uniformly bounded in C1(Q

h
) with respect to h, and we can

continue by using (2.13) to obtain

‖fh − Im/|e
h
m|‖2

L2(eh
m) ≤ Ch2‖ψ ◦Xh

m‖2
H1(Qh) ≤ Ch2‖ψ‖2

H1(eh
m)

≤ Ch2
(

‖fh − Im/|e
h
m|‖2

L2(eh
m) + ‖fh‖2

H1(eh
m)

)

,

and hence, assuming that Ch2 ≤ 1/2 and using (3.1), we conclude that

‖fh − Im/|e
h
m|‖L2(eh

m) ≤ Ch‖fh‖H1(eh
m) ≤ Ch3/2−n/2‖I‖CM . (3.3)

3. Due to (2.14), for any x ∈ eh
m there exists a smooth curve Γ ⊂ eh

m connecting

x and xm such that

|Γ| ≤ Ch.

Indeed, one can construct such a Γ by taking the line segment between the points

(Xh
m)−1(x) and (Xh

m)−1(xm) in Qh, and mapping it back onto eh
m with Xh

m. As a

consequence,
∣

∣ϕ(x) − ϕ(xm)
∣

∣ ≤ Ch‖ϕ‖C1(∂Ω) ,

and hence, by virtue of (2.15) there holds

‖ϕ− ϕ(xm)‖2
L2(eh

m) ≤ Ch2|eh
m|‖ϕ‖2

C1(∂Ω) ≤ Chn+1‖ϕ‖2
C1(∂Ω) . (3.4)

4. According to (2.16), the quadrature formula
∫

eh
m

ϕdS =

∫

Qh

(ϕ ◦Xh
m)σh

m ds ≈ ϕ(xm)|eh
m| (3.5)

is exact whenever ϕ ◦ Xh
m is a polynomial of degree less or equal to one. Because

Qh is convex, we can expand

(ϕ ◦Xh
m)(s) = ϕ(xm) + s · ∇s(ϕ ◦Xh

m)(0) + r(s) ,

where

|r(s)| ≤ C|s|2‖ϕ‖C2(∂Ω)

because of (2.12). Hence,
∣

∣

∣

∣

∣

∫

eh
m

ϕdS − ϕ(xm)|eh
m|

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Qh

r(s)σh
m(s) ds

∣

∣

∣

∣

≤ Chn+1‖ϕ‖C2(∂Ω) . (3.6)
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5. Inserting the three estimates (3.3), (3.4), and (3.6), together with (2.15) into

(3.2), we finally arrive at
∣

∣〈ν · σ∇(uh − u), ϕ〉
∣

∣ ≤ Ch2‖I‖CM‖ϕ‖C2(∂Ω) .

Now, if ε > 0 then H(n+3)/2+ε(∂Ω) is continuously embedded in C2(∂Ω) according

to the Sobolev embedding theorem, cf. Hebey,10 and hence, there is Cε > 0 such

that
∣

∣〈ν · σ∇(uh − u), ϕ〉
∣

∣ ≤ Cεh
2‖I‖CM‖ϕ‖H(n+3)/2+ε(∂Ω) .

Because C∞(∂Ω) is dense in H(n+3)/2+ε(∂Ω) (see, e.g., Sec. 7.3 of Chapter 1 in

Ref. 16), we deduce that

‖ν · σ∇(uh − u)‖H−(n+3)/2−ε(∂Ω) ≤ Cεh
2‖I‖CM ,

which completes the proof.

Due to the regularity properties of elliptic partial differential equations, the

approximation of Lemma 3.2 gets stronger if one concentrates on the behavior of the

corresponding potentials at some distance from the boundary ∂Ω. This statement

is made concrete by the following corollary.

Corollary 3.1. Let Ω0 ⊂ Rn be a nonempty domain such that Ω0 ⊂ Ω. Then, there

holds that

‖uh − u‖H1(Ω0)/C ≤ Ch2‖I‖CM ,

and

‖uh‖H1(Ω0)/C + ‖u‖H1(Ω0)/C ≤ C‖I‖CM ,

where C = C(Ω0) > 0 is independent of h.

Proof. Since uh − u satisfies the conductivity equation for the admittance σ of

(2.1), and since σ is smooth in some neighborhood of ∂Ω, it follows from Lemma 3.2

and the continuous dependence on the boundary data for the Neumann problem

(cf. Eq. (A.5) of Ref. 9) that

‖uh − u‖H−n/2−ε(Ω)/C ≤ Cεh
2‖I‖CM (3.7)

for some Cε > 0.

Using a similar interior regularity argument as in the proof of Lemma 2.1, we

see that uh − u satisfies the Neumann problem

∇ · σ∇(uh − u) = 0 in Ω0, ν · σ∇(uh − u) = g on ∂Ω0 (3.8)

for any smooth domain Ω0 with connected complement such that suppκ ⊂ Ω0 and

Ω0 ⊂ Ω, and for some mean-free g with ‖g‖L2(∂Ω0) ≤ C(Ω0)h
2‖I‖CM . Notice that

a more general Ω0 can be enclosed by a domain with these properties. Hence, the
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claim about uh − u follows from the continuous dependence on the Neumann data

in (3.8); see, e.g, the variational techniques in Ref. 7.

The estimate for u is obtained in the exactly same manner, with (2.9) playing

the role of (3.7). Finally, the claim about uh follows from the triangle inequality.

We can now deduce Theorem 2.1 from Corollary 3.1 by a duality argument.

Proof of Theorem 2.1. Let I ∈ CM
⋄ be arbitrary and choose an auxiliary domain

Ω0 such that suppκ ⊂ Ω0 and Ω0 ⊂ Ω. We fix the ground level of potential, i.e.,

choose a representative of a quotient equivalence class, so that

J := Wh −W = ((Rh −Rh
0 ) −A)I ∈ C

M
⋄ , (3.9)

where Wm = w(xm) is defined as in (2.10). We denote by (vh, V h) ∈ H the solution

of the complete electrode problem (2.3) for this newly defined electrode current pat-

tern J = [Jm]Mm=1. The variational formulation for this problem in Proposition 3.1

of Ref. 20 gives

M
∑

m=1

JmW
h
m =

∫

Ω

σ∇vh · ∇wh dx+

M
∑

m=1

1

zm

∫

eh
m

(vh − V h
m)(wh −Wh

m) dS

= −

∫

Ω0

κ∇uh
0 · ∇vh dx, (3.10)

where the second step is a consequence of the very same variational formulation

for the pairs (uh, Uh) and (uh
0 , U

h
0 ), respectively, together with the definition of

(wh,Wh).

Similarly, let v ∈ H(4−n)/2−ε(Ω)/C solve the forward problem

∇ · σ∇v = 0 in Ω, ν · σ∇v = g on ∂Ω,

with the point current pattern

g =

M
∑

m=1

Jm δxm .

We introduce a mean-free sequence (gk) ⊂ C∞(∂Ω) that converges towards g in

the topology of H(1−n)/2−ε(∂Ω) (cf., e.g., Sec. 7.3 of Chapter 1 in Ref. 16). As in

the proof of Corollary 3.1, it follows from interior regularity arguments that the

solutions (vk) ⊂ H1(Ω)/C of

∇ · σ∇vk = 0 in Ω, ν · σ∇vk = gk on ∂Ω,

fulfil

lim
k→∞

‖vk − v‖H1(Ω0)/C = 0.

Since
∫

∂Ω

gkw dS =

∫

Ω

σ∇vk · ∇w dx = −

∫

Ω0

κ∇u0 · ∇vk dx,
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and since w is smooth on ∂Ω (cf. Lemma 2.1), we obtain that

M
∑

m=1

JmWm = lim
k→∞

∫

∂Ω

gkw dS = −

∫

Ω0

κ∇u0 · ∇v dx. (3.11)

Combining (3.9), (3.10) and (3.11), we deduce that

‖Wh −W‖2
CM =

∫

Ω0

(κ∇u0 · ∇v − κ∇uh
0 · ∇vh) dx

≤ C
(

‖u0 − uh
0‖H1(Ω0)/C‖v‖H1(Ω0)/C

+ ‖uh
0‖H1(Ω0)/C‖v − vh‖H1(Ω0)/C

)

≤ Ch2‖Wh −W‖CM ‖I‖CM ,

where the last step follows by applying Corollary 3.1 to each of the four distributions

u0 − uh
0 , v, uh

0 and v− vh. In consequence, division by ‖Wh −W‖CM completes the

proof. �

Concerning Remark 2.1 we note that the special definition (2.16) of xm as

the weighted center of mass of eh
m is only used in the fourth part of the proof

of Lemma 3.2: Assuming merely that xm belongs to eh
m reduces the accuracy of

the quadrature formula (3.5), so that it is exact only for constants. Accordingly,

this decreases the exponent of h on the right-hand side of (3.6) by one, which car-

ries over to (3.2) and, eventually, to the conclusion of Lemma 3.2. This first order

convergence rate in h then transports trivially to Corollary 3.1 and Theorem 2.1.

4. Electrode Dipoles and Backscatter Data

In this section we restrict our attention to two space dimensions, i.e., n = 2, and

to the case where there are only two small electrodes attached close to each other

on ∂Ω. For any fixed y ∈ ∂Ω we let X ∈ C∞(R; R2) be a counterclockwise |∂Ω|-

periodic parameterization of ∂Ω with respect to arc length, such that X(0) = y,

and

∂Ω =
{

X(s)
∣

∣ −|∂Ω|/2 ≤ s < |∂Ω|/2
}

.

Then we define a pair of electrodes centered around y via

eh
+ =

{

X(s)
∣

∣ h/2 < s < 3h/2
}

,

and

eh
− =

{

X(s)
∣

∣ X(−s) ∈ eh
+

}

,

where h > 0 is the length of the electrodes. The idea is to drive 1/(2h) units of

current from eh
+ to eh

− and measure the resulting potential difference.
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In this setting, the forward solution of this problem is the unique pair (uh, Uh) ∈

H1(Ω) ⊕ C that satisfies weakly

∇ · σ∇uh = 0 in Ω,

ν · σ∇uh = 0 on ∂Ω \ (eh
+ ∪ eh

−),

uh + z±ν · σ∇u
h = ±Uh on eh

±,
∫

eh
±

ν · σ∇uh dS = ±1/(2h),

(4.1)

where we have fixed the ground level of potential in an obvious way. Let (uh
0 , U

h
0 ) ∈

H1(Ω) ⊕ C be the solution of (4.1) when σ of (2.1) is replaced by the smooth

background admittance σ0. As in Sec. 3 we set (wh,Wh) = (uh−uh
0 , U

h−Uh
0 ), and

define

bh = Wh/h.

Our goal is to prove that bh can be approximated by the corresponding backscat-

ter data introduced in Refs. 8 and 9.a Such data are defined via the following variant

of the point electrode forward problem introduced in Sec. 2.2:

∇ · σ∇u = 0 in Ω, ν · σ∇u = −δ′y on ∂Ω, (4.2)

where the (mean-free) dipole current δ′y ∈ H−3/2−ε(∂Ω), ε > 0, is defined by virtue

of

〈δ′y, v〉 = −
∂v(X(s))

∂s

∣

∣

∣

s=0
(4.3)

for v ∈ H3/2+ε(∂Ω). It follows, e.g., from the material in the appendix of Ref. 9

that (4.2) has a unique solution u ∈ H−ε(Ω)/C for any ε > 0 satisfying

‖u‖H−ε(Ω)/C ≤ C, (4.4)

where C = C(Ω, σ, ǫ) > 0 is independent of y. We denote by u0 the reference

potential, i.e., the solution of (4.2) with σ replaced by σ0, and set w = u − u0.

Then, the backscatter data of electrical impedance tomography at y is defined to

be

b = −〈δ′y, w〉.

Take note that b is a well defined number because the dipole δ′y does not see the

ground level of potential and, furthermore,

‖w‖Hr(∂Ω)/C ≤ C, (4.5)

aWe mention that it has been shown in Ref. 8 that these backscatter data (as a function of the
point y ∈ ∂Ω) uniquely define a simply connected insulating obstacle within Ω, if the background
admittance σ0 is constant.
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for any r ∈ R and C = C(r) > 0 that can be chosen independently of y ∈ ∂Ω.

This estimate follows by repeating the argumentation of Lemma 2.1 and noticing

that the appearing constants can be chosen so that they depend on κ, σ0 and the

geometry of Ω, but not on y.

The main result of this section is as follows:

Theorem 4.1. There holds

|bh − b| ≤ Ch,

where C > 0 is independent of h > 0 and y ∈ ∂Ω.

The rest of this section is devoted to proving Theorem 4.1. We start by presenting

the counterpart of Corollary 3.1 in this new setting.

Lemma 4.1. Let uh and u be given by (4.1) and (4.2), respectively. Furthermore,

let Ω0 ⊂ R2 be a nonempty domain such that Ω0 ⊂ Ω. Then there holds that

‖uh − u‖H1(Ω0)/C ≤ Ch,

and

‖uh‖H1(Ω0)/C + ‖u‖H1(Ω0)/C ≤ C,

where C = C(Ω0) > 0 is independent of h and y ∈ ∂Ω.

Proof. The leading idea of this proof is the same as in Lemma 3.2 and Corollary 3.1:

We first show that ν · σ∇uh|∂Ω provides an approximation of δ′y in some weak

Sobolev norm, after which the assertion follows by an interior regularity argument.

It is straightforward to see that the constants in the estimates below can be chosen

so that they depend on σ and the geometry of Ω, but not on y ∈ ∂Ω.

A simple calculation utilizing the boundary conditions of (4.1) shows that
∫

∂Ω

ν · σ∇uhϕdS =
1

2h2

∫

eh
+

ϕdS +

∫

eh
+

(ν · σ∇uh − 1/(2h2))(ϕ − ϕ(y)) dS

−
1

2h2

∫

eh
−

ϕdS +

∫

eh
−

(ν · σ∇uh + 1/(2h2))(ϕ − ϕ(y)) dS

for ϕ ∈ C∞(∂Ω). As ±1/(2h2) is the mean of ν · σ∇uh over eh
±, the Poincaré

inequality and Lemma 3.1 provide the estimate

‖ν · σ∇uh ∓ 1/(2h2)‖L2(eh
±

) ≤ Ch‖ν · σ∇uh‖H1(eh
±

) ≤ Ch−1/2.

Furthermore, as in part 3 of Lemma 3.2, we have that for all x ∈ eh
±,

|ϕ(x) − ϕ(y)| ≤ Ch‖ϕ‖C1(∂Ω),

so that we get from the Sobolev embedding theorem

‖ϕ− ϕ(y)‖L2(eh
±

) ≤ Ch3/2‖ϕ‖C1(∂Ω) ≤ Ch3/2‖ϕ‖H3/2+ε(∂Ω)
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for any ε > 0 and some C = Cε > 0. Combining the above estimates, it follows

from the Schwarz inequality that
∣

∣

∣

∣

∣

∫

∂Ω

ν · σ∇uhϕdS −
1

2h2

∫

eh
+

ϕdS +
1

2h2

∫

eh
−

ϕdS

∣

∣

∣

∣

∣

≤ Ch‖ϕ‖H3/2+ε(∂Ω),

and hence, the triangle inequality gives

|〈ν · σ∇(uh − u), ϕ〉| ≤

∣

∣

∣

∣

∣

∂ϕ(X(s))

∂s

∣

∣

∣

s=0
−

1

2h2

∫

eh
+

ϕdS +
1

2h2

∫

eh
−

ϕdS

∣

∣

∣

∣

∣

+ Ch‖ϕ‖H3/2+ε(∂Ω).

(4.6)

Using Taylor’s theorem around s = 0 together with the Sobolev embedding theorem,

it is straightforward to deduce that (cf. the appendix of Ref. 8)
∣

∣

∣

∣

∣

∂ϕ(X(s))

∂s

∣

∣

∣

s=0
−

1

2h2

∫

eh
+

ϕdS +
1

2h2

∫

eh
−

ϕdS

∣

∣

∣

∣

∣

≤ Ch‖ϕ‖H5/2+ε(∂Ω).

Hence, as C∞(∂Ω) is dense in H5/2+ε(∂Ω), the estimate

‖ν · σ∇(uh − u)‖H−5/2−ε(∂Ω) ≤ Ch, C = C(ε) > 0, (4.7)

follows by taking the supremum over ϕ with ‖ϕ‖H5/2+ε(∂Ω) = 1 in (4.6). With (4.7)

in the role of Lemma 3.2 and (4.4) in that of (2.9), the assertion follows by repeating

the argumentation from the proof of Corollary 3.1.

Now, we have gathered enough material to prove Theorem 4.1. The techniques

used below are in essence the same as in the proof of Theorem 2.1.

Proof of Theorem 4.1. Let us fix y ∈ ∂Ω, but note that all constants in the follow-

ing estimates can be chosen independently of y. Moreover, we choose an auxiliary

domain Ω0 such that suppκ ⊂ Ω0 and Ω0 ⊂ Ω.

The definition of bh and the variational formulation of the forward problem (4.1)

gives (cf. Proposition 3.1 of Ref. 20)

bh = 2(1/(2h))Wh

=

∫

Ω

σ∇uh · ∇wh dx+
1

z+

∫

eh
+

(uh − Uh)(wh −Wh) dS

+
1

z−

∫

eh
−

(uh + Uh)(wh +Wh) dS

= −

∫

Ω0

κ∇uh
0 · ∇uh dx. (4.8)

On the other hand, after approximating −δ′y by a sequence of smooth mean-free

functions (gk) in the topology of H−3/2−ε(∂Ω), exactly the same line of reasoning

as in the second paragraph of the proof of Theorem 2.1 indicates that

b = −〈δ′y, w〉 = lim
k→∞

∫

∂Ω

gkw dS = −

∫

Ω0

κ∇u0 · ∇u dx.
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Combining this with (4.8) results in

|bh − b| =

∣

∣

∣

∣

∫

Ω0

(κ∇u0 · ∇u− κ∇uh
0 · ∇uh) dx

∣

∣

∣

∣

≤ Ch,

where the last step follows with the same rationale that has been used for the last

estimate in the proof of Theorem 2.1, with Lemma 4.1 playing the role of Corollary

3.1. This completes the proof. �
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