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Abstract. We reconsider the Linear Sampling Method by Colton and Kirsch,
and provide an analysis which may serve as a justification of the method for
problems where the Factorization Method is known to work. As a by-product,
however, we obtain convincing arguments that one popular implementation of
the Linear Sampling Method may not be as robust as is commonly believed.
Our approach stems from the theory of regularization methods for linear ill-
posed operator equations. More precisely, we derive a novel asymptotic analysis
of the Tikhonov method if the exact right-hand side is inconsistent, i.e., does
not belong to the (dense) range of the corresponding operator. It appears pos-
sible that our results can be a starting point to derive a calibration of standard
implementations of the Linear Sampling Method, in order to obtain reconstruc-
tions of the scattering obstacles that go beyond an approximate localization of
their respective positions.

1. Introduction. The Linear Sampling Method has been introduced by Colton
and Kirsch in their seminal paper [5] to reconstruct one or several unknown acoustic
scatterers from the far field information of scattered waves. Its striking features
are its simplicity (the nonlinear inverse problem is reduced to a sequence of linear
problems with the same operator) and its generality (no a priori information about
the scatterer(s) is required: neither their number nor their physical properties need
to be known).

The Linear Sampling Method has since been applied successfully to a number
of inverse scattering problems, differing in their physical framework or the type of
data that are to be used for the reconstruction, cf., e.g., [4, 7, 10, 13, 19]. Today,
the method belongs to the state of the art techniques in inverse scattering, as is
demonstrated by its treatment in pertinent monographs, e.g., in [3, 6, 15, 16].

Despite its success, however, the Linear Sampling Method still lacks a rigorous
justification. Throughout the literature the method is usually motivated in much
the same way as in the original source [5], although this motivation cannot bear up
against a critical examination, cf. Arens [1], or Section 2 below; another attempt
from [1] to explain its success suffers from a similar shortcoming as the original one,
cf. Remark 3.2.
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Arens’ paper also established a certain link between the Linear Sampling Method
and another method developed by Kirsch [14] shortly after his original paper with
Colton, the so-called Factorization Method. Unlike the Linear Sampling Method,
the Factorization Method has rigorous theoretical grounds in a large variety of im-
portant applications; we refer to Kirsch and Grinberg [15] for a detailed exposition
of this method. According to [1] an appropriate postprocessing of relevant quan-
tities of the Linear Sampling Method can be used to achieve an equivalent of the
Factorization Method (see also Arens and Lechleiter [2] and the account in [15,
Section 11]). This observation, however, does not explain the good performance of
the original Linear Sampling Method, so we shall not delve into this in more detail.

In this paper we provide a qualitative and quantitative analysis of the Linear
Sampling Method, and give an interpretation of our results for cases where the
Factorization Method is also known to work. To this end we formally restrict our
treatment to the specific case of acoustic scattering by sound-soft obstacles. Our
analysis, however, extends to other cases of interest, as it only exploits general tech-
niques from the theory of linear ill-posed problems. More precisely, our main tool
is a careful investigation of the Tikhonov regularization method and the discrep-
ancy principle for linear operator equations with inconsistent right-hand sides and,
possibly, perturbed operators.

To begin with, Section 2 gives a very brief introduction to the Linear Sampling
Method for the inverse obstacle problem in acoustic scattering. As we will see, the
Linear Sampling Method comes with a number of free parameters that can be tuned
to optimize the numerical results. We focus on two particular implementations of
the method, cf. Section 3, which appear to be most sophisticated. In Sections 4 and
5 we pause to prove the aforementioned auxiliary results about Tikhonov regular-
ization with inconsistent right-hand sides; readers who are mainly interested in the
Linear Sampling Method may skip these technical details and jump right away to
Section 6 where our findings are used to illuminate the performance of the Linear
Sampling Method, which we consider to be the major achievement of this work.
In Sections 7 and 8 we conclude with illustrating examples, both numerical and
theoretical ones.

2. Problem setting. As our basic setting we consider the inverse obstacle problem
in acoustic scattering, where one or several sound-soft acoustic scatterer(s), whose
support is denoted by Ω ⊂ R2, are illuminated by time harmonic acoustic waves with
wave number k > 0. Throughout we assume that Ω is the bounded complement
of a domain in R2, that its interior is nonempty and its boundary is sufficiently
smooth, and that k2 is not a Dirichlet eigenvalue of the negative Laplacian in Ω.
We restrict ourselves to two space dimensions because this will correspond to our
numerical examples. Our analysis, however, can easily be generalized to three space
dimensions.

Given a time harmonic incident plane wave

ui(x) = eikd·x , x ∈ R2 ,

where the direction d belongs to the unit sphere S ⊂ R2, scattering obstacles cause a
field u which solves the exterior boundary value problem for the Helmholtz equation,

(1) ∆u + k2u = 0 in R2 \ Ω , u = −ui on ∂Ω ,

Inverse Problems and Imaging Volume 2, No. 3 (2008), 373–395



Why Linear Sampling really seems to work 375

together with the Sommerfeld radiation condition

(2)
∂u

∂r
− iku = o(1/

√
r) , as r = |x| → ∞ .

Under the given assumptions problem (1), (2) has a unique solution u ∈ C2(R2 \
Ω) ∩ C(R2 \ Ω), and this solution has an asymptotic expansion of the form

u(rx̂) =
eikr√
r
u∞(x̂) + O(r−3/2) , x̂ ∈ S , r → ∞ ,

cf., e.g., Colton and Kress [6]. The function u∞ = u∞( · ; d) ∈ L2(S) is the so-
called far field pattern of the scattered wave. This is the measured quantity for our
nonlinear inverse problem of interest:

Given the far field u∞(x̂; d) for all x̂ ∈ S and all incident directions
d ∈ S, determine the support Ω of the scatterer(s).

The given data u∞(x̂; d) can be used as integral kernel to define the so-called far
field operator

(3) Ff(x̂) =

∫

S

u∞(x̂; d)f(d) ds(d) , x̂ ∈ S ,

which maps an incident Herglotz wave of the form

v(x) =

∫

S

eikd·xf(d) ds(d) , x ∈ R2 ,

onto the far field pattern of the corresponding scattered wave u of (1), (2), where
ui is replaced by v in (1). This operator F : L2(S) → L2(S) is compact, injective,
and has dense range, i.e.,

(4) R(F ) = L2(S) ,

cf., e.g., [6, Corollary 3.18].
The focus of the Linear Sampling Method is on the (linear) operator equation

(5) Ff = g ,

where the right-hand side

(6) g(x̂) =
eiπ/4√
8πk

e−ikx̂·z , x̂ ∈ S ,

is the far field pattern of the fundamental solution of the Helmholtz equation with
singularity in the parameter point z ∈ R2. Note, however, that equation (5) hardly
ever has a solution f ∈ L2(S) (see [5], or Section 7 below). Instead, the true motiva-
tion for studying (5) stems from the observation that there are known approximate
solutions f̄ δ of (5) satisfying

(7) ‖F f̄ δ − g‖ ≤ δ

for some fixed δ > 0, such that ‖f̄ δ‖ goes to infinity as z approaches ∂Ω from
the interior, cf. [5]; here and below, we always denote by ‖ · ‖ the norm of L2(S).
Implementations of the Linear Sampling Method therefore aim to solve the far field
equation (5) numerically for various sampling points z within some region of interest
where the scatterer(s) are supposed to be, and somehow measure the “failure” of
this solution process as a function of z. This is the reason why the method is called
“sampling method”.
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As pointed out by Arens [1], however, this motivating statement is a triviality
from a pure functional analytic point of view, because the far field operator F is
compact. Accordingly, equation (5) is always an ill-posed problem, regardless what
kind of right-hand side is used in (5). This implies that for every parameter point
z it is possible to construct approximate solutions with arbitrarily large norm that
satisfy (7). Therefore the aforementioned “motivation” provides no information at
all about the support of the obstacle(s), and a more profound analysis is required
to understand whether and why the Linear Sampling Method really works.

3. Two implementations of the linear sampling method. As the far field
equation (5) is ill-posed, all implementations of the Linear Sampling Method in-
volve some sort of regularization to compute approximate solutions, see, for exam-
ple, Tacchino, Coyle, and Piana [20] for a list and numerical comparison of various
options. In view of (7) one of the most straightforward ones is the Morozov discrep-
ancy principle [17], i.e., to determine an approximate solution f δ of (5) from the
variational principle

(8) f δ = argmin{ f ∈ L2(S) : ‖Ff − g‖ ≤ δ } .
In general, f δ will be different from the particular function f̄ δ mentioned above,
but by construction we always have

(9) ‖f̄ δ‖ ≥ ‖f δ‖ .
Therefore, if the Morozov approximation has large norm, the same must hold true
for the norm of f̄ δ.

It is well-known, cf., e.g., Groetsch [12], that the Morozov principle is connected
to Tikhonov’s regularization method, and that the solution f δ of (8) can be repre-
sented as

(10) f δ = F ∗(FF ∗ + αδI)
−1g ,

where αδ > 0 is the so-called regularization parameter that is implicitly determined
from the nonlinear equation

(11) ‖Ff δ − g‖ = ‖αδ(FF ∗ + αδI)
−1g‖ = δ .

In practice, on the other hand, the far field data are contaminated by measure-
ment errors and only known on some discrete subset of S×S. In this case the given
data only suffice to compute an approximation ũ∞ of u∞ to be used in (3), in which

case the resulting operator F̃ will only be an approximation of F with, say,

(12) ‖F̃ − F‖L2(S)→L2(S) ≤ ‖ũ∞ − u∞‖L2(S×S) =: ε ,

where ‖ · ‖L2(S)→L2(S) is the associated operator norm. In this case the triangle
inequality yields

(13) ‖F̃ f̄ δ − g‖ ≤ ‖(F̃ − F )f̄ δ‖ + ‖F f̄ δ − g‖ ≤ ε‖f̄ δ‖ + δ .

Accordingly, one would like to replace δ in (8) by the somewhat larger bound ε‖f̄ δ‖+
δ, but unfortunately, this bound is not computable as f̄ δ is not available.

The usual remedy is to replace f̄ δ in the upper bound of (13) by an appropriate
Tikhonov approximation. More precisely, one computes

(10′) f δ,ε = F̃ ∗(F̃ F̃ ∗ + αδ,εI)
−1g ,
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and selects the corresponding regularization parameter αδ,ε from the modified dis-
crepancy principle

(11′) ‖F̃ f δ,ε − g‖ = ‖αδ,ε(F̃ F̃ ∗ + αδ,εI)
−1g‖ = ε‖f δ,ε‖ + δ .

Although f δ,ε cannot be motivated by a variational principle similar to (8), the
following proposition shows that (9) still holds when f δ is replaced by f δ,ε.

Proposition 3.1. Assume that g 6= 0 and F has dense range. Furthermore, let ε of
(12) and δ be two nonnegative parameters, not both of them being zero at the same
time. If Problem (10′), (11′) is solvable then its solution f δ,ε is uniquely determined
and satisfies

‖f δ,ε‖ ≤ ‖f̄ δ‖ .
Moreover, this solution exists whenever δ and ε are sufficiently small.

Proof. The unique solvability of the system (10′), (11′) for sufficiently small param-
eters δ and ε has been verified in [18, Lemma 19]. To prove the second assertion we
assume that

(14) ‖f̄ δ‖ < ‖f δ,ε‖ ,

so that we have

‖F̃ f̄ δ − g‖ ≤ ε‖f̄ δ‖ + δ < ε‖f δ,ε‖ + δ

according to (13). However, by the Morozov principle, f δ,ε has minimal norm among
all elements f ∈ L2(S) that satisfy

‖F̃ f − g‖ ≤ ε‖f δ,ε‖ + δ ,

in contradiction to our assumption (14).

Different implementations of the Linear Sampling Method can differ in the spe-
cific regularization method that is used, but also in how they measure the “degree
of (un)solvability” of the far field equation (5). Here we consider two possibilities:

• The first one (Method I) is the usual form of the method as described, for
example, in the book by Cakoni and Colton [3]. It is based on the norm of
the regularized solution f δ,ε of (10′), (11′): A large norm is taken to indicate
that z is either outside of Ω or close to its boundary.

• The second one (Method II) has been suggested by Colton, Piana, and Pot-
thast [8]. It takes course to the particular value of the regularization parameter
αδ,ε in (10′), (11′). A small regularization parameter indicates that the far
field equation allows only very little regularization to approximate the data
within a given accuracy (see also (22) below). Accordingly, the corresponding
approximate solution will have a larger norm.

In practice the parameters ε and δ are usually kept fixed, and the resulting numbers
‖f δ,ε‖ and αδ,ε are considered to be real valued functions of the parameter z ∈ R2.
In the end the numerical “reconstructions” of Ω are nothing else than color coded
plots of these functions. In our analysis of the Linear Sampling Method we will
elaborate on the qualitative form of these plots in the asymptotic regime where one
of the two parameters ε and δ is zero and the other one is close to zero. We will
also indicate a possibility to obtain quantitative reconstructions of Ω by looking at
specific level lines of these functions.
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Remark 3.2. We emphasize that every implementation of the Linear Sampling
Method needs a specification of the particular regularization method and the corre-
sponding rule for the choice of the regularization parameter, because otherwise the
norm of the approximate solutions can be made arbitrarily large, or small, by tuning
the regularization parameter appropriately, cf., e.g., [12, Corollary 2.1.3]. It is for
this reason that Corollary 3.4 in [1] is of no use, either, to explain the performance
of the Linear Sampling Method.

4. Auxiliary results about the discrepancy principle: The case ε = 0. For
the time being let us investigate the equation

(15) Ff = g

with a general right-hand side g ∈ L2(S) and F as above. We mention, however,
that all the results in this and the following section hold for general operators F
between two Hilbert spaces X and Y ; all that we require is that the range R(F ) of
F is dense in Y .

The (modified) discrepancy principle has been analyzed in detail by Vainikko [21,
22] under the assumption that (15) has a solution f ∈ L2(S). His analysis exhibits
a crucial role of so-called source conditions for either the solution or, equivalently,
the right-hand side of (15). We define the nested linear spaces

(16) R(|F |ν) = R((FF ∗)ν/2) , ν ≥ 0 ,

cf., e.g., [9, Section 3.2], which satisfy the property

(17) R(|F |ν) ( R(|F |µ) when 0 ≤ µ < ν .

Note that

(18) R(|F |0) = L2(S) and R(|F |1) = R(F ) .

It is said that g satisfies the source condition g ∈ R(|F |ν) for some ν > 0, if and
only if there is some w ∈ L2(S) such that

(19) g = (FF ∗)ν/2w .

In particular, cf. (18), equation (15) has a solution f ∈ L2(S), if and only if g
satisfies the source condition (19) for some ν ≥ 1.

Consider now the Tikhonov approximation

(20) fα = F̃ ∗(F̃ F̃ ∗ + αI)−1g

where
‖F̃ − F‖ ≤ ε ,

and the regularization parameter α > 0 is determined from the modified discrepancy
principle

(21) ‖F̃ fα − g‖ = τ(ε‖fα‖ + δ) ,

where τ ≥ 1 is some fixed parameter. If τ > 1 then one of Vainikko’s results from
[21] states that the regularization parameter α satisfies

(22) α ≥ c(ε+ δ)2/ν ,

provided that g satisfies the source condition (19) for some ν ∈ [1, 2] and that ε and
δ are sufficiently small; in (22) and throughout this paper the constant c denotes a
generic positive constant, independent of ε and δ, but depending on the particular
function g via the source w from (19). The inequality (22) may be interpreted as
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follows: With increasing regularity of the right-hand side, i.e., with increasing ν,
more regularization is admissible without violating the discrepancy principle. Or,
to put it the other way round, when the problem is getting hard, i.e., when ν
gets small, only little regularization is tolerable to determine a viable approximate
solution.

Vainikko’s analysis is restricted to source conditions (19) with exponents ν ≥ 1,
and thus is not applicable in our context. However, his result and many more from
the general theory of linear ill-posed problems (cf., e.g., [9]) suggest to relax this
constraint and to study exponents 0 < ν ≤ 1 to analyze the present situation. One
of the outcomes of our analysis is that for ν ∈ (0, 1) the two parameters ε and δ in
(21) have a different impact, in contrast to their role in (22), say. To simplify our
analysis we will study these parameters separately by setting the other one to zero
in either case.

We start with the classical instance where F is given exactly, i.e., when ε =
0. The case ε > 0 will be postponed to Section 5. Concerning the case ε =
0 we first quote from [12, Theorem 3.3.1] or [18, Section 7] that problem (20),
(21) is uniquely solvable whenever 0 < δ < ‖g‖/τ . Moreover, for fixed τ ≥ 1
the corresponding regularization parameter α = α(δ) is a continuous and strictly
monotonically increasing function of δ with

lim
δ→0

α(δ) = 0 and lim
δ→‖g‖/τ

α(δ) = ∞ .

Without loss of generality we restrict our attention to the fixed parameter τ = 1 in
the sequel.

Theorem 4.1. Let g satisfy the source condition (19) for some w ∈ L2(S) and

0 < ν ≤ 1, and, for 0 < δ < ‖g‖ let fα of (20) with F̃ = F and corresponding
regularization parameter α be defined by

(23) ‖Ffα − g‖ = δ .

Then we have

(24) ‖fα‖ ≤ c δ
ν−1

ν

and

(25) α ≥ c δ2/ν .

For 0 < ν < 1 the somewhat stronger asymptotics

(26) ‖fα‖ = o(δ
ν−1

ν ) and αν/δ2 → ∞
hold as δ goes to zero.

Proof. Rewriting g = (FF ∗)ν/2w we conclude from (20) that

‖fα‖ = ‖(FF ∗)1/2(FF ∗ + αI)−1g‖
= ‖(FF ∗)(ν+1)/2(FF ∗ + αI)−1w‖
≤ ‖(FF ∗)(ν+1)/2(FF ∗ + αI)−1‖‖w‖ .

The operator norm can be estimated using spectral theoretical arguments, namely

‖(FF ∗)(ν+1)/2(FF ∗ + αI)−1‖ ≤ sup
λ>0

λ(ν+1)/2

λ+ α

=
1

2
(1 + ν)(1+ν)/2(1 − ν)(1−ν)/2α(ν−1)/2 ,
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and hence, we have

(27) ‖fα‖ ≤ c α(ν−1)/2 .

Note that ν ≤ 1, and hence the desired estimate (24) follows readily from (25), once
the latter has been verified.

To this end we remark that, similar to above, we have

‖(FF ∗)ν/2(FF ∗ + αI)−1‖ ≤ sup
λ>0

λν/2

λ+ α
=

1

2
νν/2(2 − ν)1−ν/2αν/2−1 ,

and hence,

(28) ‖Ffα − g‖ = α‖(FF ∗)ν/2(FF ∗ + αI)−1w‖ ≤ c αν/2 .

It therefore follows from (11) that

δ = ‖Ffα − g‖ ≤ c αν/2 .

and thus we have established (25).
To prove the remaining assertions (26) we need to refine the previous estimate.

Since α = α(δ) is an increasing continuous function of δ with α → 0 as δ → 0, we
can choose γ = γ(δ) such that

(29) α = o(γ) and γ = o(1) as δ → 0 ;

for example, we can pick γ(δ) =
√

α(δ). Next we note that the function

λ 7→ λν/2

λ+ α

is monotonically decreasing for λ > λ∗ = να/(2 − ν). As a consequence, we have

(30) sup
λ>γ

λν/2

λ+ α
=

γν/2

γ + α
≤ γν/2−1

for δ sufficiently small. Now we need to introduce the spectral family {Eλ}λ of the
operator FF ∗, cf., e.g., [9, Section 2.3]. Then we can rewrite w = Eγw+(I −Eγ)w
and obtain

δ ≤ α‖(FF ∗)ν/2(FF ∗ + αI)−1Eγw‖
+ α‖(FF ∗)ν/2(FF ∗ + αI)−1(I − Eγ)w‖

≤ α‖(FF ∗)ν/2(FF ∗ + αI)−1‖‖Eγw‖
+ α‖(FF ∗)ν/2(FF ∗ + αI)−1(I − Eγ)‖‖w‖

≤ cαν/2
(

‖Eγw‖ + (α/γ)1−ν/2‖w‖
)

.

According to (29) the expression in paranthesis goes to zero as δ → 0, and hence,

αν/δ2 → ∞ as δ → 0 ,

as was to be shown. For 0 < ν < 1 this implies that

α(ν−1)/2δ
1−ν
ν → 0 as δ → 0 ,

and inserting this into (27) the first asymptotics in (26) follows as well.

We mention in passing that estimate (25) of Theorem 4.1 matches Vainikko’s
estimates (22) when ε = 0. The focus of our interest, however, is on the case
0 < ν ≤ 1. In this case the upper bound (24) for ‖fα‖ goes to infinity as δ → 0
when 0 < ν < 1; it remains finite for the extreme case ν = 1, i.e., when g ∈ R(F ),
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where fα converges to a solution of (15) as δ → 0, and hence, estimate (24) is sharp
for ν = 1.

On the other hand, both estimates (24) and (25) fail to be real sharp for 0 < ν <
1, as is demonstrated in (26). In the remainder of this section we will investigate
this issue somewhat further and prove two converse results which show that the
exponents in (24), (25), are best possible.

Theorem 4.2. Assume that for some given g ∈ L2(S) the regularization parameter
α of (23) satisfies α ≥ cδ2/ν for some 0 < ν ≤ 2 and all δ > 0 sufficiently small.
Then g ∈ R(|F |µ) for every 0 ≤ µ < ν. If ν = 2 then we have g ∈ R(FF ∗).

Proof. For ease of notation we introduce the nondecreasing lower semicontinuous
function

(31) η(λ) = 〈Eλg, g 〉 = ‖Eλg‖2 , λ ∈ R .

(Note that for compact operators F like the far field operator (3) η is a piecewise
constant step function.) Then we can rewrite (11) and estimate

(32)

δ2 =

∫ ∞

0

( α

λ+ α

)2

dη(λ) ≥
∫ α

0

( α

λ+ α

)2

dη(λ) ≥ 1

4

∫ α

0

dη(λ)

=
1

4
‖Eαg‖2 .

Together with the assumption (25) we thus have

‖Eαg‖ = O(αν/2) ,

the constant in the O( · ) notation being independent of the particular value of δ.
Now, as δ runs through some interval (0, δ∗], α = α(δ) attains all values within
some interval (0, α∗]. Therefore the first assertion of Theorem 4.2 follows from [9,
Lemma 4.12].

If ν = 2, i.e., α ≥ cδ, then we conclude from (11) that

δ = ‖α(FF ∗ + αI)−1g‖ ≥ cδ ‖(FF ∗ + αI)−1g‖ ,

i.e., wα = (FF ∗ +αI)−1g remains bounded as α goes to zero. Accordingly, there is
a sequence (αn)n with αn → 0 as n→ ∞ such that wαn converges weakly to some
w ∈ L2(S). It follows that FF ∗wαn ⇀ FF ∗w, and hence,

g = (FF ∗ + αnI)wαn = FF ∗wαn + αnwαn ⇀ FF ∗w .

Accordingly, g ∈ R(FF ∗), as was to be shown.

Concerning the rate of divergence of ‖fα‖ we can establish a similar result.

Theorem 4.3. Assume that for some fixed g ∈ L2(S) the solution fα of (23)
satisfies ‖fα‖ ≤ cδ(ν−1)/ν for some 0 < ν ≤ 1 and all δ > 0 sufficiently small. Then
g ∈ R(|F |µ) for every 0 ≤ µ < ν. If ν = 1 then we have g ∈ R(F ).

Proof. We use the same notation as in Theorem 4.2. Let αj = 2−jα∗, j = 0, 1, 2, . . .,
and denote by δj the associated value of the regularization parameter for which
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α(δj) = αj . Then, for 0 < µ < ν we have

∫ α∗

αn−

λ−µ dη(λ) =

n
∑

j=1

∫ 2αj

αj−

λ−µ dη(λ) =

n
∑

j=1

∫ 2αj

αj−

λν−µλ−ν dη(λ)

≤
n
∑

j=1

(2αj)
ν−µ

∫ 2αj

αj−

λ−ν dη(λ)

= αν−µ∗

n
∑

j=1

(2µ−ν)j−1

∫ 2αj

αj−

λ−ν dη(λ) .

Using Hölder’s inequality we can estimate the integral on the last line to obtain

∫ 2αj

αj−

λ−ν dη(λ) ≤
(

∫ 2αj

αj−

λ−1 dη(λ)

)ν (
∫ 2αj

αj−

dη(λ)

)1−ν

≤
(

4

∫ 2αj

αj−

λ

(λ+ αj)2
dη(λ)

)ν (

9

∫ 2αj

αj−

( αj
λ+ αj

)2

dη(λ)

)1−ν

≤
(

4

∫ ∞

0

λ

(λ+ αj)2
dη(λ)

)ν (

9

∫ ∞

0

( αj
λ+ αj

)2

dη(λ)

)1−ν

≤ 9‖fαj‖2ν‖Ffαj − g‖2(1−ν) .

By assumption, ‖fαj‖2ν ≤ c2νδ
2(ν−1)
j , and hence, using (23), we conclude that

∫ 2αj

αj−

λ−ν dη(λ) ≤ 9c2ν for every j = 0, 1, 2, . . .

Inserting this above we finally obtain that

∫ α∗

αn−

λ−µ dη(λ) ≤ 9c2ναν−µ∗

n−1
∑

j=0

(2µ−ν)j ≤ 9c2ναν−µ∗

1 − 2µ−ν
< ∞

for every n = 1, 2, . . ., and hence, that g ∈ R(|F |µ).
If the assumptions of Theorem 4.3 are valid for ν = 1 then ‖fα‖ remains bounded

as δ → 0. In this case the assertion follows from [9, Proposition 3.6].

We have thus established a strong link between the value of the parameter ν in
the source condition (19), and the decay of the regularization parameter α of the
discrepancy principle and also the rate of divergence of the corresponding Tikhonov
approximations, at least when ε = 0 in (21) and (12).

5. Auxiliary results about the discrepancy principle: The case δ = 0. A
crucial difference between Vainikko’s analysis of the discrepancy principle and the
present setting within the context of the Linear Sampling Method is in the role of
the two parameters ε and δ in (21). While the two parameters have equal weight in
the solvable case of [21], they experience a different weighting on the right-hand side
of (21) for unsolvable linear equations, as the Tikhonov approximation fα will blow
up in norm as ε and δ go to zero. This has some subtle implications for the analysis
of the Linear Sampling Method below. To make this analysis more transparent, and
since this is the way the Linear Sampling Method has mostly been implemented in
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the literature anyway, we set δ = 0 in the sequel, and focus solely on the role of ε.
In other words, we consider

(33) fα = F̃ ∗(F̃ F̃ ∗ + αI)−1g ,

where the regularization parameter α is given by the nonlinear equation

(34) ‖F̃ fα − g‖ = ε‖fα‖ ,

and F̃ satisfies

‖F̃ − F‖ ≤ ε .

By virtue of Proposition 3.1, problem (33), (34) has a unique solution for g 6= 0
and ε sufficiently small. By slight abuse of notation we write α = α(ε) for the
corresponding regularization parameter. For later use we establish a somewhat
stronger result than Proposition 3.1 for the case where F̃ = F for every ε > 0.

Proposition 5.1. Assume that g 6= 0, F̃ = F for every ε > 0, and that F has dense
range. Then the regularization parameter α = α(ε) of (33), (34), is a continuous
and strictly monotonically increasing function of ε with

lim
ε→0

α(ε) = 0 and lim
ε→∞

α(ε) = ∞ .

Proof. By virtue of (34) we can consider

(35) ε =
‖Ffα − g‖

‖fα‖

as a function of α ∈ (0,∞). The numerator is a strictly increasing continuous
function of α while the denominator is continuous and strictly decreasing. As a
consequence, ε = ε(α) is a continuous and strictly increasing function. In the limit,
when α → 0 the numerator of (35) converges to zero while the denumerator either
goes to infinity, or stays away from zero. Hence, ε can be extended continuously
by zero for α = 0. As α → ∞ the numerator converges to ‖g‖ whereas the de-
nominator converges to zero. Accordingly, ε → ∞ as α → ∞. Thus, ε = ε(α)
is a strictly monotonic and continuous mapping of [0,∞) onto itself which has a
strictly monotonic continuous inverse mapping α = α(ε), which has all the required
properties.

We now consider the maximal rate of divergence of the regularized solutions as
ε→ 0.

Theorem 5.2. Let g satisfy (19) for some w ∈ L2(S) \ {0} and 0 < ν < 1, and let

fα be the solution of (33), (34), where ‖F̃ − F‖ ≤ ε. Then we have

(36) ‖fα‖ ≤ c εν−1 .

Proof. We need to distinguish two cases. In the first case we assume that

(37) α ≥ 1 − ν

1 + ν
ε2 ,
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and refer to (27) and (28) to estimate

‖fα‖ = ‖F̃ ∗(F̃ F̃ ∗ + αI)−1g‖

≤ ‖F ∗(FF ∗ + αI)−1g‖ + ‖(F̃ ∗ − F ∗)(FF ∗ + αI)−1g‖
+ ‖F̃ ∗

(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖

≤ c α(ν−1)/2 + ‖F̃ ∗ − F ∗‖ ‖(FF ∗ + αI)−1g‖
+ ‖F̃ ∗

(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖

≤ c α(ν−1)/2 + c εα(ν−2)/2 + ‖F̃ ∗
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖ .
Following [21] we rewrite the operator in paranthesis in the final term as

(38)

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1

= (F̃ F̃ ∗ + αI)−1(F − F̃ )F ∗(FF ∗ + αI)−1

+ (F̃ F̃ ∗ + αI)−1F̃ (F ∗ − F̃ ∗)(FF ∗ + αI)−1 ,

and obtain, using (27) and (28) again, that

‖F̃ ∗
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖

≤ ‖F̃ ∗(F̃ F̃ ∗ + αI)−1‖ ‖F − F̃‖ ‖F ∗(FF ∗ + αI)−1g‖
+ ‖F̃ ∗(F̃ F̃ ∗ + αI)−1F̃‖ ‖F ∗ − F̃ ∗‖ ‖(FF ∗ + αI)−1g‖

≤ c α−1/2εα(ν−1)/2 + c εα(ν−2)/2

= c εα(ν−2)/2 .

Inserting this above, we have thus shown that

‖fα‖ ≤ c α(ν−1)/2 + c εα(ν−2)/2 ,

and since the two exponents of α are negative we can use (37) to achieve the desired
bound (36).

In the second case we need to consider the situation where

(39) α ≤ 1 − ν

1 + ν
ε2 .

In this case we take into account that the regularization parameter satisfies (34),
and hence we have

(40)

ε‖fα‖ = ‖α(F̃ F̃ ∗ + αI)−1g‖

≤ ‖α(FF ∗ + αI)−1g‖ + α‖
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖

≤ cαν/2 + α‖
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖
by virtue of (28). To proceed we make another use of the spectral family {Eλ}λ of
FF ∗, and rewrite the expression within the norm of the second term as

(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g

=
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

Eε2g(41a)

+ (F̃ F̃ ∗ + αI)−1F̃ (F ∗ − F̃ ∗)(FF ∗ + αI)−1(I − Eε2)g(41b)

+ (F̃ F̃ ∗ + αI)−1(F − F̃ )F ∗(FF ∗ + αI)−1(I − Eε2)g ,(41c)
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cf. (38), and estimate the three terms on the right-hand side separately. For the
first term we have

‖
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

Eε2g‖

≤
(

‖(F̃ F̃ ∗ + αI)−1‖ + ‖(FF ∗ + αI)−1‖
)

‖Eε2(FF ∗)ν/2w‖ ,

and hence,

(42a) ‖
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

Eε2g‖ ≤ 2

α
εν‖w‖ .

For the second and the third term we first note that, since ν < 1, the two functions

λ 7→ λν/2

λ+ α
and λ 7→ λ(ν+1)/2

λ+ α

are strictly decreasing for λ ≥ 1+ν
1−ν α, and in particular for λ ≥ ε2 by virtue of (39).

Therefore we can conclude that

(42b)

‖(F̃ F̃ ∗ + αI)−1F̃ (F ∗ − F̃ ∗)(FF ∗ + αI)−1(I − Eε2)g‖

≤ ‖(F̃ F̃ ∗ + αI)−1F̃‖ ‖F ∗ − F̃ ∗‖ ‖(FF ∗ + αI)−1(FF ∗)ν/2(I − Eε2)w‖

≤ 1√
α
ε

εν

ε2 + α
‖w‖ ≤ εν−1

√
α

‖w‖ .

Similarly we obtain that

(42c)

‖(F̃ F̃ ∗ + αI)−1(F − F̃ )F ∗(FF ∗ + αI)−1(I − Eε2)g‖

≤ ‖(F̃ F̃ ∗ + αI)−1‖ ‖F − F̃‖ ‖(FF ∗ + αI)−1(FF ∗)(ν+1)/2(I − Eε2 )w‖

≤ 1

α
ε
εν+1

ε2 + α
‖w‖ ≤ εν

α
‖w‖ .

Inserting (42) into (41) we thus conclude that

‖
(

(F̃ F̃ ∗ + αI)−1 − (FF ∗ + αI)−1
)

g‖ ≤ c
(εν−1

√
α

+
εν

α

)

,

and, combining this with (40) and (39), we have finally shown that

ε ‖fα‖ ≤ c
(

αν/2 + εν−1√α + εν
)

≤ c εν .

This proves assertion (36) also in the second case.

A few remarks are in order. First, we mention that as in Theorem 4.1 one can
refine the above arguments to improve the result of Theorem 5.2 to

‖fα‖ = o(εν−1) ,

whenever g belongs to R((FF ∗)ν/2) with 0 < ν < 1. Second, the estimate (36)
extends to the case ν = 1, since then we have g ∈ R(F ), and hence, fα converges to
a solution of (15) as ε→ 0, cf. [22, Theorem 4]. Third, in contrast to Theorem 4.1,
we have not been able to obtain a lower bound for the regularization parameter α
of the modified discrepancy principle when δ = 0 and 0 < ν < 1. Nonetheless we
will examplify below that, as a rule of thumb, the regularization parameter roughly
decays like ε2 as ε→ 0, quite independently of the value of ν.

But before we address this problem, we first want to investigate the sharpness of
Theorem 5.2. To this end we consider the special case where F̃ = F for every value
of ε > 0.
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Proposition 5.3. Let g 6= 0 be fixed and fα be defined by (33), (34), where F̃ = F .
If ‖fα‖ ≤ cεν−1 for some 0 < ν ≤ 1 and all ε > 0, then g ∈ R(|F |µ) for every
0 ≤ µ < ν. If ν = 1 then we have g ∈ R(F ).

Proof. We let

δ = ‖Ffα − g‖ ,
and obtain from (34) and the given assumptions that

(43) δ = ε ‖fα‖ ≤ c εν .

Accordingly, fα is the solution of the classical Morozov discrepancy principle (23)
where δ → 0 as ε → 0. Soving (43) for ε, we obtain ε ≥ cδ1/ν , and hence, we
conclude that

‖fα‖ ≤ c εν−1 ≤ c δ(ν−1)/ν .

As δ depends continuously on ε via fα, cf. Proposition 5.1, we can now apply
Theorem 4.3 to obtain the desired result.

It follows from this result that the exponent in (36) is best possible under the
general assumptions made in Theorem 5.2.

We conclude this section with an example for which we can actually verify that
the regularization parameter α decays like ε2 as ε→ 0, regardless of the size of the
exponent ν ∈ (0, 1) in the source condition (19).

Example 1. Let F : L2(0, 1) → L2(0, 1) be such that FF ∗ is the multiplication
operator

(44) (FF ∗g)(t) = tg(t) , g ∈ L2(0, 1), t ∈ (0, 1) .

Then the spectral measure η of (31) is given by

η(λ) = 〈Eλg, g 〉 =

∫ λ

0

|g(t)|2 dt , t ∈ (0, 1) ,

and the function

(45) g(t) = t(ν−1)/2 , t ∈ (0, 1) ,

belongs to R(|F |µ) whenever 0 < µ < ν < 1.

For this particular g of (45) and for F̃ = F we compute

α‖fα‖2 =

∫ 1

0

αλ

(α+ λ)2
dη(λ) =

1

α

∫ 1

0

λν

(1 − βλ)2
dλ

=
1

α

1

ν + 1
F (2, ν + 1; ν + 2;β) ,

where β = −1/α and F is the hypergeometric function. From the asymptotic be-
havior of the hypergeometric function, cf., e.g., Gradshteyn and Ryzhik [11, 9.132],
thus follows that

α‖fα‖2 ∼ ν
π

sin(νπ)
αν , α→ 0 .

In a similar fashion we obtain that

‖Ffα − g‖2 =

∫ 1

0

α2

(α+ λ)2
dη(λ) =

∫ 1

0

λν−1

(1 − βλ)2
dλ

=
1

ν
F (2, ν; ν + 1;β) ∼ (1 − ν)

π

sin(νπ)
αν ,
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and we therefore conclude from (34) that

ε2 = α
‖Ffα − g‖2

α‖fα‖2
∼ 1 − ν

ν
α , α→ 0 ,

i.e., that

(46) α ∼ ν

1 − ν
ε2 , ε→ 0 ,

for g of (45) and F̃ = F for every ε > 0.

Unfortunately, concerning our analysis of the Linear Sampling Method, this ex-
ample is only of limited value, because the far field operator, unlike the multiplica-
tion operator (44), is a compact operator with a discrete spectrum. We expect that
for compact operators the decay of α = α(ε) is more irregular as ε→ 0.

6. Quantitative analysis of the linear sampling method. We have seen in
the previous two sections that the norm of the regularized solutions as well as
the magnitude of the regularization parameter strongly depend on the source rep-
resentability (19) of the right-hand side g. In the context of the Linear Sampling
Method this representability may be used to distinguish different points in the plane
or the region of interest.

Accordingly we introduce the sets

(47) Ων = { z ∈ R2 : gz ∈ R(|F |ν) } , 0 ≤ ν ≤ 1 ,

where we denote by gz the right-hand side (6) of the far field equation (5) corre-
sponding to the sampling point z ∈ R2. We conclude from (17) that

(48) Ων ⊂ Ωµ , 0 ≤ µ < ν ≤ 1 ,

where the largest set Ω0 coincides with R2 by virtue of (18), i.e., Ω0 contains every
sampling point. Moreover, because of the theoretical foundation of the Factorization
Method (see [14]) there is a strong connection between these nested sets and our
inverse scattering problem: namely, Ω1/2 coincides with the interior of the support
of the true obstacles, i.e.,

(49) Ω1/2 = Ω◦ .

In the same spirit we subsequently denote by

(50) ν(z) = sup { ν > 0 : z ∈ Ων }
the so-called convergence abscissa of the exponent in the source condition for gz of
(6) associated with the sampling point z ∈ R2.

Ultimately, we argue that the contour lines of usual reconstructions of the Linear
Sampling Method approximate, roughly speaking, boundaries of the nested sets Ων ,
or level lines of the function ν = ν(z). It then follows from (49) that one of these
contour or level lines is close to the boundaries of the scattering obstacles, which is
what is observed in practice.

To be more precise we recall, cf. Section 3 and the notation in there, that recon-
structions of the Linear Sampling Method either consist of a plot of the norms of the
regularized approximations f δ,ε (Method I) or of the corresponding regularization
parameters αδ,ε (Method II). In Method I the plot usually employs a logarithmic
scale, whereas the initiators of Method II [8] refrained from using a logarithmic
scale. Since δ = 0 in the code from [8] this preference is reasonable in the light of
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Example 1, cf. (46); when ε = 0, however, a logarithmic scale is more appropriate
in Method II as well, compare (25) and Theorem 4.2.

In the following section we therefore show plots of the following four functions
of z:

ϕδ(z) = log ‖f δ,0‖/ | log δ| ,(51a)

ψε(z) = log ‖f0,ε‖/ | log ε| ,(51b)

ρδ(z) = logαδ,0/ log δ ,(51c)

γε(z) = α0,ε/ε
2 .(51d)

The functions ϕδ and ρδ correspond to the case ε = 0 of Section 4, whereas ψǫ and
γǫ correspond to δ = 0 as in Section 5. Note that neither the logarithms nor the
divisors in (51) do affect the form of the contour lines. According to (24) we can
now, for example, estimate

ϕδ(z) ≤ log c

| log δ| +
1 − ν(z)

ν(z)
,

provided that δ < 1, and where the constant c is independent of δ, but still depends
on ν and on z. We even know from Theorem 4.3 that the asymptotic upper bound
(1 − ν(z))/ν(z) is sharp as δ → 0. This indicates that

ϕδ(z) . (1 − ν(z))/ν(z)(52a)

for δ sufficiently small, although this approximation is no rigorous bound, as we
have little to no control on the magnitude of the constant c in (24). Similarly, we
expect

ψε(z) . 1 − ν(z) ,(52b)

ρδ(z) . 2/ν(z) ,(52c)

whenever δ and ε go to zero. According to (49) the particular level line correspond-
ing to ν = 1/2 of either of these three functions should provide a good guess of the
boundaries of the true scattering obstacles.

7. Example: Scattering from the unit disk. To put our results in a realistic
perspective we consider now in some detail the special situation when Ω is a disk
of radius R centered at the origin, because for this example the singular value
decomposition of the (exact) far field operator F and the corresponding expansion
of the right-hand side g = gz of (6) are explicitly known, cf., e.g., [5].

To be specific, the singular functions of the associated far field operator are given
by the trigonometric basis {einφ}n∈Z, where φ denotes the polar angle of x̂ ∈ S, and

λn =

√

2

πk

∣

∣

∣

∣

∣

Jn(kR)

H
(1)
n (kR)

∣

∣

∣

∣

∣

, n ∈ Z ,

are the associated singular values. According to the Jacobi-Anger expansion, cf.,
e.g., [6], we can develop gz for z = r(cos θ, sin θ) into the trigonometric series

gz(cosφ, sinφ) =
eiπ/4√
8πk

∞
∑

n=−∞

e−in(θ+π/2)Jn(kr) e
inφ , 0 ≤ φ < 2π ,
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and therefore, by Picard’s theorem, the set Ων of (47) consists of all z ∈ R2 for
which the infinite series

∞
∑

n=0

∣

∣

∣

∣

J2
n(kr)

J2ν
n (kR)

∣

∣

∣

∣

|H(1)
n (kR)|2ν , r = ‖z‖ ,

converges. Since Jn(0) = 0 for n 6= 0, and
∣

∣

∣

∣

J2
n(kr)

J2ν
n (kR)

∣

∣

∣

∣

|H(1)
n (kR)|2ν ∼ 22ν−1

π
n−1

( ek

2n

)2n(1−2ν)( r

R2ν

)2n

as n→ ∞ and r 6= 0, we conclude that

(53) Ων =











{0} , 1/2 < ν ≤ 1 ,

Ω◦ , ν = 1/2 ,

R2 , 0 ≤ ν < 1/2 .

This seems to indicate that the entire plane R2 is divided in only three separate
regions that could be distinguished according to our approach. However, as always,
computer results are considerably more subtle, as we shall illustrate for the case
R = 1, i.e., for scattering from the unit disk. In the standard IEEE arithmetic with
roughly 16 relevant decimal digits only 17 singular values of the far field operator
corresponding to the unit disk Ω are above machine precision, and hence, the source
condition (19) needs to be interpreted on a different level:

We say that g ∈ L2(S) satisfies a discrete source condition with exponent ν̃ > 0,
if

(54) (I − Eeps)g = (I − Eeps)(FF
∗)ν̃/2w for some w ∈ L2(S) with ‖w‖ = 1 .

Here again, {Eλ} is the spectral family of FF ∗, and eps refers to the relevant
absolute precision of the given computer approximation of FF ∗. Note that even
for eps = 0 the above definition differs from the classical one in (19) because
of the constraint on w. We nevertheless incorporate this constraint because the
asymptotic results from Sections 4 and 5 all somehow involve the norm of w and
therefore deteriorate when ‖w‖ gets either large or small.

An appealing consequence of (54) is that the discrete source condition defines
a continuous function ν̃(z) which maps z ∈ R2 onto the unique positive number
ν̃ which satisfies (54) for g = gz. This is in contrast to the function ν(z) of (50),
which may have jump discontinuities, cf. (53). Note that for a disk centered at the
origin the values of ν and ν̃, as well as the four functions from (51) only depend on
the norm r = ‖z‖ of z, just as the Fourier coefficients of gz do.

We claim that the expected bounds of (52) will rather depend on ν̃(z) than on
ν(z). To substantiate this claim we provide computational results for R = 1 and
k = 1: Figure 1 shows a plot of ν̃ over the radius r of the sampling point z, together
with the three approximations νϕ, νρ, and νψ, that are obtained when the respective
inequalities (52) are considered to be equalities and are solved for ν, i.e.,

(55) νϕ(z) =
1

ϕδ(z) + 1
, νρ(z) =

2

ρδ(z)
, νψ(z) = 1 − ψε(z) .

The corresponding parameters have been set to be δ = 10−6 and ε = 10−6, respec-
tively. (See the following section concerning details about the numerical implemen-
tation.)

This plot is interesting in several respects. First, the function ν̃ is, as expected,
continuous and strictly decreasing; it is therefore well suited to distinguish different
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Figure 1. Approximations of ν for a scattering circle of radius
R = 1

parts of our region of interest. Note, however, that ν̃ > 1/2 at r = 1, and therefore
the calibration of the Linear Sampling Method, i.e., the selection of an appropriate
contour line, will be a delicate issue in implementations of the method; we will
briefly return to this problem in Section 8.

Second, the three graphs of νϕ, νρ, and νψ are all qualitatively similar to the one
of ν̃. This may serve as a justification of our analysis of the Linear Sampling Method,
although these approximations are not too close to ν̃ quantitatively. Of course, this
should not be a surprise because the identities (55) are severe oversimplifications of
our theoretical results, as they (i) ignore the inequality signs in (52), and (ii) the
fact, that the analysis in Sections 4 and 5 comes with quite a number of generic
constants (which, in fact, all depend on z).

8. More numerical examples. While the previous section provides some limi-
tations of our approach, we now present additional numerical results to illustrate
potential benefits from our work. In all our numerical results the wave number has
been set to be k = 1, and we use 128 incoming waves with equidistant directions
d ∈ S and corresponding measurements of the far field. These data are generated
using a boundary element method.

To begin with we start with the famous kite-shaped obstacle from the pertinent
literature. Figure 2 shows the reconstructions of the four variants of the Linear
Sampling Method described in Section 6, i.e., color coded plots of the four functions
ϕδ, ρδ, ψǫ, and γǫ of (51). These reconstructions use the same parameters δ = 10−6,
resp. ǫ = 10−6, as in the previous section. Reconstructions with Method I are shown
in the left hand column, the right hand column corresponds to Method II; the
reconstructions using ε = 0 are in the top row, those with δ = 0 are in the bottom
row. In these color coded plots the position of the kite phantom is emphasized by a
bold solid black line, and the respective level lines corresponding to the ideal value
ν = 1/2 are indicated as white lines; in theory these level lines should coincide with
the boundary of the scattering obstacle. In none of our reconstructions this happens
to be the case, but except for the last plot there is always one level line which does
agree very well with ∂Ω. These white dashed level lines correspond to the numbers

(56) νϕ = 0.67 , νρ = 0.68 , and νψ = 0.75 ,
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Figure 2. Reconstructions of a kite according to the four functions (51)

respectively. Note that these numbers match very well with the corresponding
function values near the boundary of the scattering circle from the previous section,
cf. Figure 1.

Besides, the first three plots in Figure 2 are also very similar to each other,
although this depends on the respective color maps, of course. The plot of γε,
however, is clearly different: This plot only reveals some smaller features within
the obstacle, and none of the level lines is a reasonable approximation of the kite’s
boundary. To a certain extent the smaller features can also be seen in the other
plots; it is therefore possible that the total field u has an analytic continuation into
the obstacle, right up to these smaller domains.

Figure 3 presents in the same way numerical results for two scattering objects,
one kite and one ellipse, using the same parameters δ = 10−6 and ε = 10−6 as
before. This figure nicely underlines the well-known fact that the Linear Sampling
Method is able to reconstruct multiple scatterers without the need to know their
number in advance.

What is remarkable here is that the dashed reconstructions of the two obstacles
correspond to the very same values of ν as before, cf. (56). (We remark, that the
marginally larger value νψ = 0.76 would have given a slightly better reconstruction
of the obstacles in the third plot.) For this example the plot of ψε yields a better,
namely smoother, reconstruction of the two obstacles, because the level lines of the
two plots in the top row of Figure 3 exhibit oscillations that are not present in the
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Figure 3. Reconstructions of two objects according to the four
functions (51)

third plot. The plot of γε is absolutely useless; it is significantly worse than in the
previous example.

Finally, we reconsider the kite example, but this time we use noisy data. To be
specific we use the same computed far field as above, but add a Gaussian random
vector on top of these data such that

(57) ‖F̃ − F‖L2(S)→L2(S) = ε := 10−2 .

To put this into perspective we note that in this example ‖F‖L2(S)→L2(S) ≈ 0.72,
such that the amount of noise we use is slightly above 1 %.

As before, Figure 4 shows the corresponding four reconstructions, this time with
parameters δ = 10−2 and ε = 10−2 because of (57). In these plots the level lines
corresponding to ν = 0.5 are mostly outside the region of interest, but again, the
first three plots have (white dashed) level lines which approximate the obstacle
reasonably well. The corresponding values of ν, however, are significantly larger
than in (56), namely

νϕ = 1.13 , νρ = 1.16 , and νψ = 1.07 .

In fact, it comes as no surprise (as the discrete source condition depends on the
precision eps of the relevant far field approximation) that the exponent ν̃ of (54)
increases as the number of eigenvalues above eps decreases – and so do the appro-
priate approximations of ν̃.
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Figure 4. Reconstructions of the kite using noisy data

As in all previous examples, the level lines of γε are very poor approximations of
∂Ω.

9. Conclusions. Our theoretical and numerical results provide significant evidence
that implementations of the Linear Sampling Method according to Method I (i.e.,
based on the norms of the Tikhonov approximations) provide good reconstructions
of the scattering obstacles, at least when the Factorization Method is known to work.
With the classical Morozov principle (11) reconstructions can also be based on the
size of the regularization parameter (Method II). In either case the asymptotic
analysis of these regularization methods opens up some possibility to calibrate the
method, i.e., to predetermine values of appropriate level curves to reconstruct ∂Ω.
These levels appear to depend on the size of the parameters δ and ε on the one hand,
and on the wave number and the diameter of the obstacles on the other hand, but
only to a lesser extent on the specific form of the scatterers.

Our results do not support the use of Method II in combination with the modified
discrepancy principle (34). In fact, taking also the numerical results from [8] into
account we find that this approach can only be used to locate the approximate
positions of the scatterer(s) but not really their shapes.

We finally remark that our analysis immediately extends to the Factorization
Method, where instead of (5) one is interested in solutions of Gf = gz with gz as
before and G = |F |1/2. As R(|F |ν) = R(|G|2ν ), the level lines of the corresponding
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functions ν(z), or ν̃(z), respectively, are the same as in our approach in the exterior
of Ω, where gz /∈ R(G). In the interior of Ω, however, the functions ϕδ and ψε of
(51) will go to zero for the Factorization Method as δ and ε go to zero, and this is
the reason why – on the grounds of Method I – the shapes of the scatters are better
to detect visually with the Factorization Method than with the Linear Sampling
Method.
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