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1.1 Introduction and Historical Background

The topic of this chapter is devoted to shape identification problems, i.e. problems where the
shape of an object has to be determined from indirect measurements. Such a situation typically
occurs in problems of tomography, in particular electrical impedance tomography or optical
tomography. For example, a current through a homogeneous object will in general induce a
different potential than the same current through the same object containing an enclosed cavity.
In impedance tomography the task is to determine the shape of the cavity from measurements
of the potential on the boundary of the object. For survey articles on this subject we refer to
[18], [55], and the contribution [Handbook:EIT] in this volume.

As a second of these fields we mention inverse scattering problems where one wants to detect -
and identify - unknown objects through the use of acoustic, electromagnetic, or elastic waves.
Similar to above, one of the important problems in inverse scattering theory is to determine
the shape of the scattering obstacle from field measurements. Applications of inverse scatter-
ing problems occur in such diverse areas as medical imaging, material science, nondestructive
testing, radar, remote sensing, or seismic exploration. A survey on the state of the art of the
mathematical theory and numerical approaches for solving inverse time harmonic scattering
problems until 1998 can be found in the standard monograph [36], see also [Handbook:Inverse
Scattering] or [84] for an introduction and survey on inverse scattering problems.

Shape identification problems are intrinsically nonlinear, i.e. the measured quantities do not
depend linearly on the shape. Even the notion of linearity does not make sense since, in
general, the set of admissible shapes does not carry a linear structure. Traditional (and still
very successful) approaches describe the objects by appropriate parameterizations and compute
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the parameters by iterative schemes as, e.g., Newton-type methods. Newton-type methods
are attractive because of their fast convergence, although they require a good initial guess
to converge. Still, these methods are widely used – partly because techniques from shape
optimization theory can be used to characterize the required first or second order derivatives.
We refer to [85, 90] for general references, and to [58, 59, 66] for applications in inverse scattering
theory.

While classical iterative algorithms use explicit parameterizations of the object, new shape
optimization methods have been developed since around 1995 which completely avoid the use
of parameterizations and replace the classical Fréchet derivative by a geometrically motivated
topological derivative, see, e.g., [51] for the application of these methods in the inverse scattering
context. Yet these methods have the shortcoming that they are not able to change the number
of connectivity components during the algorithm. This has led to the development of level
set methods which are based on implicit representations of the unknown object involving an
“evolution parameter” t. We refer to [25] for a recent survey.

While very successful in many cases, iterative methods for shape identification problems – may
they use classical tools as the Fréchet derivative or more recent techniques such as domain
derivatives, level curves, or topological derivatives – are computationally very expensive since
they require the solution of a direct problem in every step. Furthermore, for many important
cases the convergence theory is still missing. This is due to the fact that these problems are
not only nonlinear but also because their linearizations are improperly posed. Although there
exist many results on the convergence of (regularized) iterative methods for solving nonlinear
improperly posed problems (see, e.g., [40, 65]) the assumptions for convergence are not met in
the applications to shape identification problems.1

These difficulties and disadvantages of iterative schemes gave rise to the development of different
classes of non-iterative methods which avoid the solution of a sequence of direct problems. We
briefly mention decomposition methods (according to the notion of [37]) which consist of an
analytic continuation step (which is linear but highly improperly posed) and a nonlinear step
of finding the boundary of the unknown domain by forcing the boundary condition to hold. We
refer to Section 4.2 of [Handbook:Inverse Scattering].

This chapter will focus on a different class of non-iterative methods, the so-called sampling
methods. The common idea of these methods is the construction of criteria on the known data
to decide whether a given test object (a point or a curve or a set) is inside or outside the
unknown domain D. Then, a grid of “sampling” points z is chosen to place these objects in a
region that is known to contain the unknown domain D, in order to compute the (approximate)
characteristic function of D. The different kinds of sampling methods differ in the way of
defining the criteria and in the type of test objects.

One of the first methods which falls into this class has been developed by David Colton and
one of the authors (A.K.) in 1996 ([35]), now known as the Linear Sampling Method. Its origin
goes back to the Dual Space Method developed between 1985 and 1990 (see, e.g., [36]). The
numerical implementation of the Linear Sampling Method is extremely simple and fast because
sampling is done by points z only. For every sampling point z one has to compute the field of
a point source in z with respect to the background medium2 (if this is constant the response is
even given analytically) and evaluate a series, i.e., a finite sum in practice.

A problem with the Linear Sampling Method from the mathematical point of view is that the
computable criterion is only a sufficient condition which is, in general, not necessary. The Fac-

1Or, at least, it is unknown whether these assumptions are fulfilled or not.
2Essentially, one has to compute the fundamental solution of the underlying differential operator.
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torization Method overcomes this drawback and yields a criterion for z which is both, necessary
and sufficient. Therefore, this method succeeds to provide a simple formula for the characteristic
function of D which can easily be used for numerical computations.

The Factorization Method consists of three components. First, a “measurement operator” M
is factorized in three factors of the form

M = AGA∗ , (1.1.1)

where A∗ is the dual operator of A with respect to the L2 topology. Second, the range of A
is characterized by the obstacle D, and vice versa. Third, if the operator G satisfies a certain
coercivity condition then the range of A can be determined by the given operator M . This
requires some functional analytic results on range identities which we have collected in an
appendix.

Combining these three steps yields an explicit characterization of the unknown obstacle D by
the measurement operator M .

The outline of this chapter is as follows. First, in Section 1.2, we present the Factorization
Method for two different settings in the impedance tomography context. In the very first
setting we deal with insulating inclusions, and this allows for a very elementary presentation of
the method. Afterwards, in Section 1.3, we turn to applications from inverse acoustic and (full
3D) electromagnetic scattering. Finally, we give a brief overview of other sampling type methods
in Section 1.4, including the original Linear Sampling Method and MUSIC type methods.

1.2 The Factorization Method in Impedance Tomography

We start with the impedance tomography problem. Consider an object, that fills a simply con-
nected domain Ω ⊂ Rn with Lipschitz continuous boundary, where n = 2 or n = 3, respectively.
We assume that the object is a homogeneous and isotropic conductor, except for a finite number
m of so-called inclusions, given by domains Di ⊂ Ω, i = 1, . . . ,m, with Lipschitz continuous
boundary ∂Di. We assume that these domains are well separated, i.e., Di∩Dj = ∅ when i 6= j,
and that the complement of the closure D of D =

⋃m
i=1Di is connected. In impedance tomog-

raphy, currents are imposed through the boundary of the object and the resulting boundary
potentials are measured. Linear independent boundary currents yield independent pieces of
information, which can be used as input data to determine the unknown shapes and positions
of the inclusions.

In practice, at least in most medical applications, the boundary currents have a frequency in the
kHz range (5-500 kHz), and the dc approximation with a positive real conductivity σ (or possibly
a positive definite tensor) serves as a suitable physical model. Without loss of generality, we can
always assume that the homogeneous conductivity of the object equals σ = 1, whereas σ 6= 1
within the inclusions.

Below we will consider two specific scenarios. In the first one, we assume that the inclusions are
insulating, formally corresponding to the case where σ = 0. Our analysis of the Factorization
Method for the corresponding inverse problem will be somewhat nonstandard; in particular, we
employ a factorization in only two factors instead of three as in (1.1.1), but this allows for a
most elementary treatment of the method.

Subsequently, we show how to deal with conducting obstacles with a conductivity tensor σ.
Of particular interest is the setting where the object under consideration can be modelled as
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a half space: examples of this sort arise in geophysics, cf. [79], and in medicine, e.g., when a
planar device is used for mammography examinations, cf. [93]. Another interesting application
for the half space problem has recently been considered in [17]. We therefore briefly describe
the differences that arise in this context (mainly in the theoretical justification of the method).
We conclude our case studies with a setting where the inclusion degenerates to a crack, i.e.,
an n − 1 dimensional smooth manifold within Ω. This application requires some care in the
appropriate implementation of the Factorization Method.

1.2.1 Impedance Tomography in the Presence of Insulating Inclusions

To begin with, we take up the case where Ω is a bounded domain, and the domains Di ⊂ Ω,
i = 1, . . . ,m, correspond to insulating inclusions. Within the dc model the potential u0 induced
by a boundary current f is given by

∆u0 = 0 in Ω \D ,
∂

∂ν
u0 = 0 on ∂D ,

∂

∂ν
u0 = f on ∂Ω ,

∫
∂Ω
u0 ds = 0 ,

(1.2.1)

where the normal vectors ν on ∂Ω and ∂D are pointing into the exterior of Ω and D, respectively.
In order to make the forward problem (1.2.1) well-posed we restrict f to be square integrable
with vanishing mean on ∂Ω. The corresponding set of admissible boundary currents is

L2
�(∂Ω) =

{
f ∈ L2(∂Ω) :

∫
∂Ω
f ds = 0

}
. (1.2.2)

Under these assumptions problem (1.2.1) has a unique (weak) solution

u0 ∈ H1
� (Ω \D) =

{
u ∈ H1(Ω \D) :

∫
∂Ω
uds = 0

}
.

The last condition in (1.2.1) normalizes this boundary potential to have vanishing mean; without
this condition, the solution would only be unique up to additive constants, reflecting the fact
that only the voltage, i.e., the difference between the potential at two different points is a
well-defined physical quantity.
Therefore, the direct problem is to determine the field u0 when f and D are given.
The quantity that is measured in impedance tomography is the trace g0 = u0|∂Ω, i.e., the
boundary potential. The corresponding measurement operator

Λ0 :
{
L2
�(∂Ω) → L2

�(∂Ω) ,
f 7→ g0 = u0|∂Ω ,

(1.2.3)

i.e., the so-called Neumann-Dirichlet operator, is usually referred to as absolute data in impedance
tomography.
The inverse problem is to determine the shape of D from the measurement operator Λ0.
For the Factorization Method we employ relative data, that is the difference between the above
Neumann-Dirichlet operator and the corresponding one for a completely homogeneous object
in Ω. To be precise, let u1 be the reference solution for the homogeneous object, given the same
boundary current f ∈ L2

�(∂Ω),

∆u1 = 0 in Ω ,
∂

∂ν
u1 = f on ∂Ω ,

∫
∂Ω
u1 ds = 0 , (1.2.4)
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and denote by Λ1 : f 7→ g1 = u1|∂Ω the Neumann-Dirichlet map associated with (1.2.4). It is
the relative data M = Λ0 − Λ1 that later enters in (1.1.1) to lay the grounds for the setting of
the Factorization Method.
We refer to [Handbook:EIT] for a more elaborate treatment of the impedance tomography
problem, but we will see below that Λ0 − Λ1 is a bounded and positive self adjoint operator.
We also do not discuss practical issues such as electrode models that should be incorporated
into a realistic problem setting. For the same reason we do not comment on how to obtain
relative data in practice; the generation of accurate reference data is indeed a difficult subject,
and some workarounds have therefore been suggested for this purpose3. Our specification of the
impedance tomography problem is thus a purely mathematical one, although it can be shown
to be a pretty reasonable approximation of the real case, cf., e.g., [61, 78].
Before we continue we pause to comment on the nature of the relative data introduced above.
Any function h in the range R(Λ0 − Λ1) of Λ0 − Λ1 corresponds to a suitable input current
f ∈ L2

�(∂Ω), such that h is the trace of w = u0 − u1 : Ω \ D → R, where u0 and u1 are the
solutions of (1.2.1) and (1.2.4), respectively. As u0 and u1 are both harmonic in Ω \ D, the
same holds true for w; on top of that, like u0 and u1, w has finite H1 norm on Ω \D, as well
as vanishing mean on ∂Ω. Moreover, w has homogeneous Neumann boundary conditions on
∂Ω, as u0 and u1 both satisfy the same Neumann boundary condition. And finally, on ∂Di,
i = 1, . . . ,m, we have ∫

∂Di

∂

∂ν
w ds = −

∫
∂Di

∂

∂ν
u1 ds = 0

by virtue of Green’s formula. Accordingly, the range of Λ0 −Λ1 consists of traces of potentials
w from

W =
{
w ∈ H1

� (Ω \D) : ∆w = 0,
∂

∂ν
w = 0 on ∂Ω,

∫
∂Di

∂

∂ν
w = 0, i = 1, . . . ,m

}
. (1.2.5)

It is well known that harmonic functions have infinite smoothness. Moreover, as the elements
of W have a vanishing Neumann derivative on ∂Ω, the “variation” of w on ∂Ω can only be
caused by their behavior near the boundary of D – unless the boundary of Ω is non-smooth. In
other words, the (local) variation of the trace of some function w ∈ W is an indicator for the
(local) width of the domain Ω \D. In fact, as we will show next, it is possible to characterize
D completely, if the set of all traces of W on ∂Ω were known.4

To this end, we introduce the Neumann function N( · , z) associated with the Laplacian in the
domain Ω, which is given as the (distributional) solution of the problem

−∆N(x, z) = δ(x− z) in Ω ,
∂

∂ν
N(x, z) = − 1

|∂Ω|
on ∂Ω ,∫

∂Ω
N(x, z) ds(x) = 0 ,

(1.2.6)

where z ∈ Ω is kept fixed, and the differential operators act on the x-variable only. To achieve
a unique solution we have normalized N( · , z) to have vanishing mean on ∂Ω. The directional
derivative

Uz(x) = p · gradz N(x, z) (1.2.7)
3We like to highlight one recent approach from [57], where different frequencies are used in the experimental

setup to obtain relative data. This approach, however, leads to a different variant of the Factorization Method
than the one that is described here.

4For one insulating inclusion it is even known that the trace of one single potential w ∈ W is enough to identify
D, cf., e.g., [16]. For conducting obstacles (with known conductivity) the corresponding uniqueness problem is
still open.
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with respect to z of N in direction p (of unit length) yields the potential of a dipole source in
z with moment p in the presence of an insulated boundary ∂Ω: We refer to Uz as the dipole
potential, tacitly assuming the dipole moment to be fixed. (All subsequent results hold true for
an arbitrary choice of p ∈ Rn with |p| = 1, and it appears that there is still space to improve
the numerical performance of the method, especially in three space dimensions, provided that
this property is exploited in an optimal way.) We remark that Uz behaves like

Uz(x) ∼


1

2π
(x− z) · p
|x− z|2

, n = 2 ,

1
4π

(x− z) · p
|x− z|3

, n = 3 ,
as x→ z , (1.2.8)

and, in fact, Uz agrees with the right-hand side of (1.2.8) up to a harmonic function. This
statement holds true for every fixed z ∈ Ω.

Now we are ready to formulate the characterization of the inclusion D as it has been estab-
lished by Brühl in his dissertation [21] (see also [22]), and which constitutes the basis for the
Factorization Method.

Theorem 1.2.1 A point z ∈ Ω belongs to D, if and only if the trace φz = Uz|∂Ω coincides with
the trace of some potential w ∈ W.

Proof: First, let z ∈ D. Then the dipole potential Uz is harmonic in Ω \ {z}, i.e., in Ω \ D
and in a neighborhood of ∂D. Accordingly Uz belongs to H1

� (Ω \D). As N(x, z) has the
same Neumann boundary data for any z ∈ Rn, its directional derivative with respect to z has
vanishing Neumann data on ∂Ω. Moreover, according to Green’s formula,∫

∂Di

∂

∂ν
Uz ds = 0 (1.2.9)

for every component Di of D which does not contain z; however, as the total flux of Uz across
∂(Ω \D) vanishes as well, (1.2.9) must also hold true for that component Di of D which does
contain z. Therefore, Uz ∈ W, and its trace belongs to the corresponding trace space.

Now, let z /∈ D, and assume that the trace φz of the dipole potential Uz is the trace of a
potential w ∈ W. As we have seen in the first part of this proof, Uz and w thus have the same
Cauchy data on ∂Ω, and it follows from the uniqueness of solutions of the Cauchy problem for
the Poisson equation that Uz and w coincide in Ω \ (D∪{z}), where both are harmonic.5 Now,
w extends as a harmonic function into the point z, and hence, is bounded near z whereas Uz is
not, cf. (1.2.8). This provides the desired contradiction.

In the last case, where z sits on the boundary of D we can use the same argument as before to
show that w and Uz coincide in Ω \ D. According to (1.2.5), Uz must therefore have a finite
H1-norm on Ω \D, which contradicts the asymptotic behaviour (1.2.8) near z ∈ ∂D.6 �

It turns out that the potentials w = u0 − u1 which provide the given relative data, have
additional features that are not captured by the description of the setW of (1.2.5). For example,
if the boundaries of the domains Di are smooth, then the potential u0 of (1.2.1) can be extended
by reflection to a certain subset of D, showing that w has a harmonic extension to a larger

5It is here where the assumption on the connectedness of Ω \D is needed.
6This argument requires the Lipschitz continuity of ∂D, because this assumption makes sure that we can find

an open cone C ⊂ Ω \D with vertex in z, and hence, that the integral
R
C | gradUz|2 dx is unbounded.
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domain than just Ω \D, see [55, Appendix]. Therefore the space spanned by the relative data
is smaller than the trace space of W in general. Still, there is a means to deduce this trace
space from the given relative data – and the appropriate tool is the Factorization Method.
At this point we deviate from the usual presentation of the Factorization Method to opt for a
more elementary derivation of the main results: Instead of the usual factorization of the data
map in three factors as in (1.1.1) we follow the approach in [23], and factor the relative data in
only two parts, namely

Λ0 − Λ1 = K∗K , (1.2.10)

where K∗ is an appropriate adjoint of the operator K given by

K : f 7→

{
u0 − u1 in Ω \D ,

ci − u1 in Di, i = 1, . . . ,m ,
(1.2.11)

and the real numbers ci in (1.2.11) are the means of the potential u0 at the boundaries of the
insulating inclusions, i.e.,

ci =
1
|∂Di|

∫
∂Di

u0 ds , i = 1, . . . ,m . (1.2.12)

We claim (see Theorem 1.2.3 below for a proof) that K is a continuous operator from L2
�(∂Ω)

to X , where

X =
{
v : Ω→ R : v|Ω\D ∈ H

1
� (Ω \D), v|D ∈ H1(D),

∫
∂Di

[v] ds = 0, i = 1, . . . ,m
}
.

(1.2.13)
In this definition, again, the subscript � indicates that any v ∈ X is required to have vanishing
mean on ∂Ω, and

[v] = v+|∂D − v−|∂D
denotes the jump of v across the boundary of the inclusion(s), defined in the appropriate trace
spaces. Here and below we denote by v+ and v− the restriction of a generic element v ∈ X to
Ω \D and D, respectively. We equip X with the inner product

( v, w )X =
∫

Ω\∂D
grad v · gradw dx =

∫
D

grad v− · gradw− dx +
∫

Ω\D
grad v+ · gradw+ dx ,

(1.2.14)
which turns X into a Hilbert space. Take note that H1

� (Ω), i.e., the set of all functions from
H1(Ω) with vanishing mean on ∂Ω, is a subset of X .

Lemma 1.2.2 Let K ⊂ X be the set of all elements w ∈ X that are harmonic in Ω \ ∂D, and
satisfy

∂

∂ν
w = 0 on ∂Ω and

[ ∂
∂ν
w
]

= 0 on ∂D .

Then K is the orthogonal complement of H1
� (Ω) in X .

Proof: Using Green’s formula for any v ∈ H1
� (Ω) and any w ∈ X that is harmonic in Ω \ ∂D

we obtain∫
Ω\∂D

grad v · gradw dx =
∫
∂Ω
v
∂w

∂ν
ds−

∫
∂D

v
∂w+

∂ν
ds+

∫
∂D

v
∂w−

∂ν
ds

=
∫
∂Ω
v
∂w

∂ν
ds−

∫
∂D

v
[∂w
∂ν

]
ds ,

(1.2.15)
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as v has a well-defined unique trace on ∂D. Now, if we choose w ∈ K then both integrals vanish,
and hence w⊥v with respect to the scalar product in X .

Vice versa, pick w ∈ X from the orthogonal complement of H1
� (Ω), and let v be a C∞ function

with compact support in Ω \D, then Green’s formula yields∫
Ω\D

w∆v dx =
∫
∂Ω
w
∂v

∂ν
ds−

∫
∂D

w
∂v

∂ν
ds−

∫
Ω\D

gradw · grad v dx

=
∫
∂Ω
w
∂v

∂ν
ds−

∫
∂D

w
∂v

∂ν
ds−

∫
Ω\∂D

gradw · grad v dx ,

and all three integrals in the bottom line are zero by construction. Thus, w is harmonic in Ω\D
according to Weyl’s Lemma. The same kind of argument also shows that w is harmonic in D.
Accordingly, as above, (1.2.15) holds true for any v ∈ H1

� (Ω), where now the left hand side of
(1.2.15) is zero because of the orthogonality. A standard variational argument then shows that
the normal derivative of w on ∂Ω and the flux of w across ∂D must vanish. �

We briefly mention that every potential w from W of (1.2.5) has a unique continuation to
a potential w ∈ K, and the restriction of a nontrivial element from K to Ω \ D is a nonzero
element fromW. Accordingly, the set of traces on ∂Ω of potentials fromW and K, respectively,
are the same.

Theorem 1.2.3 The operator K : L2
�(∂Ω) → X defined in (1.2.11) is bounded, injective, and

its range lies dense in the subset K introduced in Lemma 1.2.2. The adjoint operator K∗ : X →
L2
�(∂Ω) satisfies

K∗v =

v|∂Ω , v ∈ K ,

0 , v ∈ H1
� (Ω) .

In particular, there holds K∗K = Λ0 − Λ1, i.e., (1.2.10).

Proof: We recall that the two Neumann problems (1.2.1) and (1.2.4) have well-defined unique
solutions u0 and u1 in the space H1

� (Ω \D) and H1
� (Ω), respectively, that are given by the

corresponding weak formulations∫
Ω\D

gradu0 · grad v0 dx =
∫
∂Ω
fv0 ds for every v0 ∈ H1

� (Ω \D) ,

∫
Ω

gradu1 · grad v dx =
∫
∂Ω
fv ds for every v ∈ H1

� (Ω) .

(1.2.16)

Moreover, the two solutions depend continuously (in H1) on the given boundary data f ∈
L2
�(∂Ω). Accordingly, w = Kf is a well defined element of X and K a bounded linear operator

from L2
�(∂Ω) to X : The jump condition

∫
∂Di

[w] ds = 0 is a consequence of the definition (1.2.12)
of ci and the uniqueness of the trace of u1 on ∂D.

Now, choose any f ∈ L2
�(∂Ω), and denote by u0 and u1 the corresponding solutions of (1.2.1)

and (1.2.4). As in the definition of Kf we can extend u0 to a function

û0 =

{
u0 in Ω \D ,

ci in Di, i = 1, . . . ,m ,
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in X , such that Kf = û0 − u1. First, for v ∈ H1
� (Ω) we have

(Kf, v )X = ( û0, v )X − (u1, v )X =
∫

Ω\D
gradu0 · grad v dx −

∫
Ω

gradu1 · grad v dx = 0

by virtue of (1.2.16), and hence, R(K)⊥H1
� (Ω). It thus follows from Lemma 1.2.2 that R(K) ⊂

K and N (K∗) = R(K)
⊥ ⊃ H1

� (Ω) and, in particular, that K∗v = 0 for every v ∈ H1
� (Ω).

Second, for v ∈ K we compute

(Kf, v )X = ( û0, v )X − (u1, v )X = ( û0, v )X ,

since u1 and v are orthogonal to each other according to Lemma 1.2.2. Together with (1.2.16)
thus follows that

(Kf, v )X =
∫

Ω\D
gradu0 · grad v dx =

∫
∂Ω
fv ds = ( f, v )L2(∂Ω) ,

i.e., that K∗v = v|∂Ω. In particular, for v = Kf = û0 − u1 ∈ K we obtain

K∗Kf = K∗(û0 − u1) = (u0 − u1)|∂D ,

and hence, the assertion (1.2.10) follows, cf. (1.2.3),

Assume now, that R(K) were not dense in K. Then there is some 0 6= v ∈ K ∩ R(K)
⊥

=
K ∩N (K∗), and since 0 = K∗v = v|∂Ω this function v has vanishing Dirichlet boundary values
on ∂Ω. Moreover, as v belongs to K, it is harmonic in Ω\D with vanishing Neumann boundary
values on ∂Ω, see Lemma 1.2.2. Thus, v+ = v|Ω\D = 0 because of the unique solvability of
the Cauchy problem for harmonic functions. Using Lemma 1.2.2 once more, it follows that
v− = v|D is also harmonic with vanishing Neumann boundary values on ∂D, and hence, v−

is constant on each Di, say v−|Di = v−i , i = 1, . . . ,m. Since
∫
∂Di

[v] ds = −v−i |∂D|, and as v
belongs to X , these constants must all be zero. This is a contradiction to v 6= 0, and hence,
R(K) is dense in K.
Finally, to show injectivity of K we assume Kf = 0 for some f ∈ L2

�(∂Ω). Then u0 = u1 in
Ω \ D and u1 = ci in Di, i = 1, . . . ,m. Since u1 is harmonic in all of the domain Ω the field
must be constant in Ω (principle of unique continuation) and the flux f = ∂u1/∂ν vanishes on
∂Ω. �

This theorem – together with Lemma 1.2.2 – reveals that the range of K∗ consists of all
traces of potentials w ∈ K, whereas the range of Λ0 − Λ1 only consists of a dense subset of
this set. Accordingly, we need to find a way to deduce the range of K∗ from the given data to
decrypt the information hidden in these traces according to Theorem 1.2.1.
To this end we exploit the so-called Picard criterion, a formulation of which can be found in
the appendix (Theorem 1.5.1) for the ease of completeness. The Picard criterion is based on
the singular value decomposition of the operator K, which is largely equivalent to the spectral
decomposition of the operator K∗K = Λ0 − Λ1.

Corollary 1.2.4 The operator Λ0 − Λ1 is a compact and self adjoint operator from L2
�(∂Ω)

into itself. As such, L2
�(∂Ω) has an orthonormal eigenbasis {fj} and associated eigenvalues λj,

such that
(Λ0 − Λ1)fj = λjfj , n ∈ N . (1.2.17)

These eigenvalues are positive, and converge to zero as n → ∞. Throughout we shall assume
that they are sorted in non-increasing order.
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Proof: That Λ0 and Λ1 are compact operators can be seen from the fact that the trace space of
H1(Ω\D) on ∂Ω, i.e., H1/2(∂Ω), is compactly embedded in L2(∂Ω). Accordingly, the difference
operator Λ0−Λ1 is compact as well as self adjoint, as follows readily from (1.2.10). Accordingly,
one can find an orthonormal eigenbasis of Λ0 − Λ1 and the associated eigenvalues converge to
zero for j → ∞. It remains to prove that they are all positive; this follows from (1.2.10) and
the injectivity of K by Theorem 1.2.3. �

As we have mentioned before, a point z ∈ Ω belongs to D, if and only if the trace φz of Uz is
the trace of a potential in K, i.e., if it belongs to the range of K∗. As we show in the appendix,
cf. Corollary 1.5.2, this can be tested in the following way.

Theorem 1.2.5 Let {fj} and {λj} be the eigenbasis and eigenvalues of Λ0 − Λ1. Then, for
any point z ∈ Ω,

z ∈ D ⇐⇒
∞∑
n=1

|(φz, fj )L2(∂Ω)|2

λj
< ∞ (1.2.18)

with φz = Uz|∂Ω from (1.2.7).

Remark: With the notations 1/∞ = 0 and signα =
{
α/|α|, α 6= 0,

0, α = 0,
for any α ∈ C we note

that

χD(z) = sign

∑
j

∣∣(φz, fj)L2(∂Ω)

∣∣2
λj

−1

, z ∈ Ω ,

is the characteristic function of D. In particular, this result provides a constructive proof of the
uniqueness of the inverse problem.

1.2.2 Conducting Obstacles

Next, we turn to the case of anisotropic conducting obstacles. To this end we assume that for
each x ∈ Ω the conductivity σ(x) is a real, symmetric positive definite n×n-matrix, measurable
and essentially bounded as a function of x, and that the associated quadratic form is bounded
from below by some positive constant c > 0, i.e.

p ·
(
σ(x)p

)
≥ c for every x ∈ D and every p ∈ Rn with |p| = 1 and σ(x) = I on Ω \D ,

(1.2.19)
where D denotes the obstacles, that are assumed to have the same topological properties as
before. Another assumption that seems to be necessary for the validity of the Factorization
Method7 is that

p ·
(
σ(x)p

)
≤ κ < 1 for every p ∈ Rn with |p| = 1, and every x ∈ D , (1.2.20)

which states that the background conductivity of the object is strictly larger than within the
inclusions. Instead of (1.2.20) one can alternatively require that the conductivity within the
inclusions is strictly larger than in the background, with straightforward modifications of the
analysis; however, we will stick to the above assumption for the ease of simplicity. We mention

7It is an open problem whether the Factorization Method is applicable, if inequality (1.2.20) holds in some
obstacles, while p ·

`
σ(x)p

´
≥ γ > 1 in other inlusions; numerically, the method does not seem to deterior in this

“mixed case”.
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that the assumption that the background conductivity be strictly larger (or smaller) than within
the object can be relaxed to just being larger (or smaller), for the prize that the outcome of the
method is unspecified for sampling points right on the boundary of the inclusions, cf. [43].
With conducting obstacles the potential corresponding to a boundary current f ∈ L2

�(∂Ω) is
given as the (weak) solution u ∈ H1

� (Ω) of the boundary value problem

div(σ gradu) = 0 in Ω ,
∂

∂ν
u = f on ∂Ω ,

∫
∂Ω
u ds = 0 , (1.2.21)

which replaces the model (1.2.1) from Section 1.2.1 above. Accordingly we denote by Λ the
Neumann-Dirichlet map associated with (1.2.21), i.e., Λ : f 7→ g = u|∂Ω.
As before, the corresponding inverse problem is to determine the shape of the obstacles
D from the relative data Λ − Λ1. Here, again, Λ1 corresponds to the “unperturbed” case
σ = σ1 = 1 everywhere in Ω.
We mention that the problem whether not only D but the conductivity σ itself is uniquely
determined by these data is completely settled when n = 2 – as long as σ is isotropic, cf. [14].
For n = 3 this question is still open for general scalar L∞−conductivities. Partial answers are
known, we refer to [Handbook:EIT]. However, the set D is uniquely determined as we will see
below in Theorem 1.2.9.
Now we proceed to derive a factorization of Λ− Λ1 in three factors as in (1.1.1), i.e.,

Λ− Λ1 = AGA∗ . (1.2.22)

To this end we imagine the effect of a virtual source ϕ on the boundary of the obstacle D, given
that the boundary of the object Ω is insulated: The corresponding potential v is the solution
of the boundary value problem

∆v = 0 in Ω \D , − ∂

∂ν
v = ϕ on ∂D ,

∂

∂ν
v = 0 on ∂Ω ,

∫
∂Ω
v ds = 0 .

(1.2.23)

Recall that the normal vector ν on ∂D has been fixed to point into the interior of Ω \D, and
therefore the minus sign in front of the normal derivative on ∂D reflects the fact that ϕ is
considered to be a source, and not a sink. We will require that this source has vanishing mean
on each connected component Di of D, i.e.,

ϕ ∈ H
−1/2
∗ (∂D) =

{
ϕ ∈ H−1/2(∂D) :

∫
∂Di

ϕds = 0 , i = 1, . . . ,m
}
, (1.2.24)

where the integrals have to be interpreted as dual pairings between H−1/2 functions and the
unit constant from H1/2. For later use we remark that the dual space of H−1/2

∗ (∂D) can be
identified with the subspace

H
1/2
∗ (∂D) =

{
ψ ∈ H1/2(∂D) :

∫
∂Di

ψ ds = 0 , i = 1, . . . ,m
}

(1.2.25)

of H1/2(∂D).
Associated with (1.2.23) we define the operator

A :

{
H
−1/2
∗ (∂D) → L2

�(∂Ω) ,
ϕ 7→ v|∂Ω ,

(1.2.26)
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and remark that the adjoint operator A∗ : L2
�(∂Ω) → H

1/2
∗ (∂D) of A is easily seen to map

f ∈ L2
�(∂Ω) onto the trace of the solution u0 of (1.2.1) on the boundary of the obstacle – after

an appropriate renormalization of this trace on each component ∂Di of ∂D. More precisely the
following holds

(A∗f)(x) = u0(x)− ci for x ∈ ∂Di , i = 1, . . . ,m , (1.2.27)

with ci as in (1.2.12).
In order to establish (1.2.22) it remains to determine the operator G in the middle. We

define G via the weak solution w of the diffraction problem

div(σ gradw) = 0 in Ω \ ∂D ,
∂

∂ν
w = 0 on ∂Ω ,

∫
∂Ω
w ds = 0 ,[

w
]
∂D

= ψ ,
[
ν · (σ gradw)

]
∂D

= 0 ,
(1.2.28)

and the solution w1 of the corresponding problem with σ replaced by one everywhere. Again,
the normal ν on ∂D is pointing into the exterior of D. Note that when σ = 1 throughout all
of Ω, then the corresponding solution w1 of (1.2.28) can be represented as a modified double
layer potential with density ψ and the Neumann function for the Laplacian as kernel, i.e.,

w1(x) =
∫
∂D

∂

∂yν
N(x, y)ψ(y) ds(y) , x ∈ Ω \ ∂D .

For a general conductivity tensor the weak form of (1.2.28) is obtained by integrating the
differential equation against any test function v ∈ H1(Ω) and using partial integration, which
yields ∫

Ω\∂D
gradw ·

(
σ grad v

)
dx = 0 for every v ∈ H1(Ω) . (1.2.29)

Now we can make the Ansatz w = w1 + ŵ with ŵ ∈ H1(Ω) to rewrite this as a standard
variational problem in H1(Ω): Find ŵ ∈ H1(Ω) such that∫

Ω
grad ŵ ·

(
σ grad v

)
dx = −

∫
Ω\∂D

gradw1 ·
(
σ grad v

)
dx

for every v ∈ H1(Ω). From this follows readily that problem (1.2.28) has a unique weak solution
in H1(Ω \ ∂D), provided that ψ ∈ H1/2(∂D), i.e., that ψ belongs to the trace space of H1(D).
In accordance with the definition of A∗, however, we will restrict ψ to H1/2

∗ (∂D).

The flux of w and w1 across ∂D is well defined in H−1/2(∂D), cf., e.g., [46, Thm. 2.5], and
there holds ∫

∂Di

∂

∂ν
(w+ − w+

1
) ds =

∫
∂Di

ν · (σ gradw−) ds −
∫
∂Di

∂

∂ν
w−
1

ds

=
∫
Di

div(σ gradw) dx −
∫
Di

∆w1 dx = 0 .

We can therefore define the bounded operator G in the following way:

G :


H

1/2
∗ (∂D) → H

−1/2
∗ (∂D) ,

ψ 7→ ∂

∂ν
(w+ − w+

1
)
∣∣∣
∂D

.
(1.2.30)
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Theorem 1.2.6 With A and G defined as above, the difference Λ − Λ1 of the two Neumann-
Dirichlet operators associated with (1.2.21) and (1.2.4), respectively, satisfies

Λ− Λ1 = AGA∗ .

Proof: Consider an arbitrary element f ∈ L2
�(∂Ω) and the corresponding function ψ = A∗f ,

which satisfies
ψ|∂Di

= u0|∂Di
− ci ,

where u0 is given by (1.2.1), and ci is as in (1.2.12). The function ψ belongs to H1/2
∗ (∂D), and

it is easy to verify that the associated solution w1 of (1.2.28) – where σ is replaced by one – is
given by

w1 =

{
u0 − u1 in Ω \D ,

ci − u1 in Di, i = 1, . . . ,m ,

where u1 is the solution of (1.2.4). Similarly, the solution w of (1.2.28) is given by

w =

{
u0 − u in Ω \D ,

ci − u in Di, i = 1, . . . ,m ,

with u from (1.2.21). Accordingly, w+ − w+
1

= u+
1
− u+, and hence,

ϕ = GA∗f =
∂

∂ν
(u+

1
− u+)

∣∣∣
∂D

.

If we insert this particular source term ϕ into (1.2.23) then we conclude readily that the asso-
ciated solution v of (1.2.23) is given by v = u+ − u+

1
. It thus follows from (1.2.26) that

AGA∗f = Aϕ = g − g1 = (Λ− Λ1)f

as required. �

At this occasion we recall that every function w ∈ W of (1.2.5) has a well-defined normal
derivative ϕ ∈ H

−1/2
∗ (∂D) at the inner boundary ∂D, and hence, solves the corresponding

boundary value problem (1.2.23). And vice versa, the solution of (1.2.23) for any ϕ ∈ H−1/2
∗ (∂D)

belongs to W. Thus, we can reformulate Theorem 1.2.1 as follows.

Theorem 1.2.7 A point z ∈ Ω belongs to D, if and only if the trace φz of the dipole potential
Uz in z, defined by (1.2.7), belongs to R(A).

As in the insulating case it remains to derive a constructive algorithm to test whether the trace
of some dipole potential belongs to R(A), or not. The next step on our way towards this goal
is an investigation of the functional analytic properties of the operator G. In the following we
will often consider operators acting between a reflexive Banach space X and its dual space X∗.
We will denote the action of an element ` ∈ X∗ on an element ψ ∈ X by 〈`, ψ〉 and the pair of
spaces by 〈X∗, X〉 in order to indicate that the first argument belongs to X∗ and the second to
X. A particular example is the Sobolev space H1/2

∗ (∂D) with dual space H−1/2
∗ (∂D).
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Theorem 1.2.8 The operator G : H1/2
∗ (∂D) → H

−1/2
∗ (∂D) is self adjoint8 and coercive, i.e.

there exists γ > 0 with

〈Gψ,ψ 〉 ≥ γ‖ψ‖2
H1/2(∂D)

for all ψ ∈ H1/2
∗ (∂D) . (1.2.31)

Here, 〈 · , · 〉 denotes the dual pairing in the dual system 〈H−1/2
∗ (∂D), H1/2

∗ (∂D) 〉.

Proof: The proof proceeds in a couple of steps.

1. At first we establish the symmetry of G. Take any ψ and ψ̃ from H
1/2
∗ (∂D), define w and

w1 as in the proof of Theorem 1.2.6, and – using ψ̃ instead of ψ in (1.2.28) – define w̃ and w̃1
accordingly. Then we conclude that

〈Gψ, ψ̃ 〉 =
∫
∂D

ψ̃
∂

∂ν
w+ ds −

∫
∂D

ψ̃
∂

∂ν
w+
1

ds

=
∫
∂D

(w̃+ − w̃−)
∂

∂ν
w+ ds −

∫
∂D

(w̃+
1
− w̃−

1
)
∂

∂ν
w+
1

ds

=
∫
∂D

w̃+ ∂

∂ν
w+ ds −

∫
∂D

w̃−
(
ν · (σ gradw−)

)
ds

−
∫
∂D

w̃+
1

∂

∂ν
w+
1

ds +
∫
∂D

w̃−
1

∂

∂ν
w−
1

ds .

Now we can use (1.2.28), and apply Green’s formula in D or Ω\D, respectively, in each of these
integrals (care has to be taken concerning the orientation of the normal on ∂D), to obtain

〈Gψ, ψ̃ 〉 = −
∫

Ω\D
grad w̃ · gradw dx−

∫
D

grad w̃ ·
(
σ gradw) dx

+
∫

Ω\D
grad w̃1 · gradw1 dx+

∫
D

grad w̃1 · gradw1 dx

=
∫

Ω\∂D
grad w̃1 · gradw1 dx−

∫
Ω\∂D

grad w̃ ·
(
σ gradw) dx ,

(1.2.32)

from which the symmetry of G is obvious.

2. Turning to the coerciviy assertion (1.2.31) we fix some ψ ∈ H1/2
∗ (∂D) and employ the weak

form (1.2.29) of (1.2.28) with v = w−w1 ∈ H1(Ω). Starting from (1.2.32) with ψ = ψ̃ we thus

8i.e. G coincides with G∗ : H
1/2
∗ (∂D)→ H

−1/2
∗ (∂D) if the bi-dual of H

1/2
∗ (∂D) is identified with itself.
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obtain

〈Gψ,ψ 〉 =
∫

Ω\∂D
| gradw1|2 dx −

∫
Ω\∂D

gradw ·
(
σ gradw

)
dx

=
∫

Ω\∂D
| gradw1|2 dx −

∫
Ω\∂D

gradw ·
(
σ gradw

)
dx

+ 2
∫

Ω\∂D
gradw ·

(
σ grad(w − w1)

)
dx

=
∫

Ω\∂D
| gradw1|2 dx +

∫
Ω\∂D

gradw ·
(
σ gradw

)
dx

− 2
∫

Ω\∂D
gradw ·

(
σ gradw1

)
dx

=
∫

Ω\∂D
gradw1 ·

(
(1− σ) gradw1

)
dx +

∫
Ω\∂D

grad(w − w1) ·
(
σ grad(w − w1)

)
dx

≥
∫

Ω\∂D
gradw1 ·

(
(1− σ) gradw1

)
dx .

The integrand of the last integral vanishes in Ω \D, and can be bounded from below using the
restriction (1.2.20) on the conductivity. Accordingly we have

〈Gψ,ψ 〉 ≥ (1− κ)
∫
D
| gradw1|2 dx . (1.2.33)

3. To accomplish the proof of (1.2.31) we need to show that

‖ gradw1‖L2(D) ≥ c‖ψ‖H1/2(∂D) (1.2.34)

for some constant c > 0. Assume the contrary: Let ψ(j) ∈ H1/2
∗ (∂D) and the corresponding

w
(j)
1

be such that ‖ψ(j)‖H1/2(∂D) = 1 for every j, and that ‖ gradw(j)
1
‖L2(D) converges to zero

as j tends to infinity. Define w̃(j)
1
∈ H1(Ω \ ∂D) as

w̃
(j)
1

=

{
w

(j)
1

in Ω \D ,

w
(j)
1
− c(j)

i in Di, i = 1, . . . ,m ,

with
c

(j)
i =

1
|∂Di|

∫
∂Di

(w(j)
1

)− ds , i = 1, . . . ,m .

Then w̃
(j)
1
|Di has vanishing mean on ∂Di, and ‖ grad w̃(j)

1
‖L2(Di) → 0 for every i = 1, . . . ,m

as j → ∞. By virtue of the Poincaré inquality this implies that w̃(j)
1

tends to zero in H1(D).
From (1.2.28) thus follows that the normal derivative ∂

∂ν w̃
(j)
1

at ∂D (from either side) tends
to zero in H−1/2(∂D), and hence, that w̃(j)

1
|Ω\D converges in H1(Ω \ D) to the solution of

the homogeneous Neumann problem, normalized at the outer boundary. In other words, w̃(j)
1

converges to zero in H1(D) and in H1(Ω \D) as j →∞. Recurring to (1.2.28) once again, we
observe that

ψ(j)|∂Di
+ c

(j)
i = [w(j)

1
]∂Di

+ c
(j)
i = [w̃(j)

1
]∂Di

, (1.2.35)
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and since ψ(j) ∈ H1/2
∗ (∂D) it follows by integration over ∂Di that

c
(j)
i =

1
|∂Di|

∫
∂Di

[w̃(j)
1

]∂Di
ds− 1

|∂Di|

∫
∂Di

ψ(j) ds =
1
|∂Di|

∫
∂Di

[w̃(j)
1

]∂Di
ds → 0

as j runs to infinity. Inserting this into (1.2.35) we conclude that

ψ(j)|∂Di
= [w̃(j)

1
]∂Di

− c
(j)
i → 0 , j →∞ ,

in H1/2(∂Di), i = 1, . . . ,m, but this contradicts ‖ψ(j)‖H1/2(∂D) = 1. Therefore (1.2.34) is true

for some c > 0 and every ψ ∈ H1/2
∗ (∂D), and hence, (1.2.31) follows from (1.2.33) and (1.2.34).

�

By virtue of Theorem 1.2.8 all assumptions of Corollary 1.5.6 are satisfied for the factoriza-
tion of the relative data Λ− Λ1 established in Theorem 1.2.7. Therefore we can now conclude
the main result of this section.

Theorem 1.2.9 Let z ∈ Ω and φz be defined as before.

Then: z ∈ D ⇐⇒
∞∑
n=1

|(φz, fj )L2(∂Ω)|2

λj
< ∞ ,

where fj and λj are the orthonormal eigenfunctions and eigenvalues of Λ− Λ1.

1.2.3 Local Data

It is an important feature of the Factorization Method that it can be easily adapted to applica-
tions where the given data correspond to what is called the local Neumann-Dirichlet map Λ`.
This is the map that takes Neumann boundary values supported on some relatively open subset
Γ ⊂ ∂Ω only, and returns the corresponding boundary potentials on the very same subset (nor-
malized to have vanishing mean, say). The local Neumann-Dirichlet map occurs whenever part
of the boundary is inaccessible to measurements, in which case Γ corresponds to that part of the
boundary of Ω where electrodes can be attached. Mathematically, the local Neumann-Dirichlet
map can thus be interpreted as a Galerkin projection

Λ` = PΛP ∗ (1.2.36)

of the full Neumann-Dirichlet map, where

P :
{
L2
�(∂Ω) → L2

�(Γ) ,
g 7→ g|Γ − 1

|Γ|
∫

Γ g ds , (1.2.37)

and P ∗ is its L2 adjoint, i.e.,

P ∗f =

{
f on Γ ,
0 on ∂D \ Γ .

From Theorem 1.2.6 we immediately conclude that if the conductivity distribution satisfies
(1.2.19) and (1.2.20), then the difference of the two local Neumann-Dirichlet maps Λ` and Λ`

1

can be factorized in the form
Λ` − Λ`

1
= (PA)G(PA)∗

with A and G as before. Moreover, the coercivity of G allows a constructive way to check
whether a given function belongs to R(PA), considered as an operator from H

−1/2
∗ (∂D) to

L2
�(Γ). Note that it is obvious from Theorem 1.2.7, that the function Pφz belongs to R(PA)

when z ∈ D; the converse statement requires a little more efforts.
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Theorem 1.2.10 Let Γ be a relatively open subset of ∂Ω, and let P be the projector defined
in (1.2.37). Then z ∈ D, if and only if Pφz ∈ R(PA).

Proof: According to the definition (1.2.26) of A the test function Pφz belongs to R(PA), if
and only if φz coincides on Γ (up to a constant) with the trace of a solution v of (1.2.23). In
this case, however, the dipole potential Uz and the function v are both harmonic functions in
Ω \ (D ∪ {z}), and have the same Cauchy data on Γ (again, up to a constant). Now we choose
a connected subset Ω′ of Ω \ (D ∪ {z}), whose boundary contains a portion of Γ that is also
a relatively open subset of ∂Ω. Then Uz and v coincide up to a constant in Ω′ according to
Holmgren’s theorem, and hence, near all of ∂Ω. This shows that φz ∈ R(A), and hence, the
assertion follows from Theorem 1.2.7. �

Accordingly, if Γ is a relatively open subset of ∂Ω then Theorem 1.2.9 also extends readily
to the local situation, if the eigenfunctions and eigenvalues of Λ− Λ1 are replaced by those of
Λ` − Λ`

1
.

Note that Theorem 1.2.10 requires that Γ is a relatively open subset of ∂Ω, and in fact, the
Factorization Method no longer applies for discrete measurements or finitely many boundary
currents. Still, this is precisely the situation that is encountered in practice, as data are always
finite dimensional. Due to the rapid decay of the eigenvalues of Λ−Λ1, however, the full relative
data can be very well approximated by operators of finite rank, such as those corresponding to
real data; see [55] for detailed numerical examples.

1.2.4 Other Generalizations

The half space problem

The Factorization Method can also be applied to a related inverse electrostatic problem in full
space with near field data, if the same manifold of codimension one is used to generate a source
and to measure the resulting change of the potential. In fact, this problem which has been
studied in [53] and [76], is very similar to the setting for the Helmholtz equation that we will
consider in the following section. We also like to refer to [15] where this approach has been
applied to some real two dimensional data.
For quite a few applications, however, the impedance tomography problem is more appropriately
modelled in a half space, rather than in the full space or within a bounded domain. For this
setting new difficulties arise, as the data (may) live on the entire, unbounded boundary of the
surface, which calls for weighted Sobolev spaces for an appropriate theoretical analysis. In the
sequel we restrict our attention to three space dimensions (n = 3), as the two dimensional case
needs some additional attention, cf. [56], and at the same time appears to be less interesting
from a practical point of view.
We consider the half space Ω = {x ∈ R3 : ν ·x < 0}, where ν ∈ R3 is a fixed unit vector, which
coincides with the outer normal on the hyperplane {x : ν · x = 0}, which is the boundary of
Ω. The main difficulty in the analysis of this problem is that solutions of the corresponding
conductivity problem

div(σ gradu) = 0 in Ω ,
∂

∂ν
u = f on ∂Ω , (1.2.38)

need no longer belong to L2(Ω); instead one has to resort to weighted Sobolev spaces, such as

U = {u ∈ D′(Ω) : (1 + | · |2)−1/2u ∈ L2(Ω), | gradu| ∈ L2(Ω) } ,
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to search for a unique solution of (1.2.38). If σ is given by (1.2.19), then a weak solution u ∈ U
can be shown to exist provided that f belongs to

L2,−1(∂Ω) = { f : (1 + | · |2)1/2f ∈ L2(∂Ω) } ,

in which case the trace of u belongs to the dual space L2,1(∂Ω) of L2,−1(∂Ω). Note that no
normalization of u is required in (1.2.38) because solutions in U are implicitly normalized to
vanish at infinity. We refer to [56] for further details about the forward problem.

Within this function space setting the Neumann-Dirichlet operator is defined in a natural way
as an operator Λ : L2,−1(∂Ω) → L2,1(∂Ω), and the difference between Λ and Λ1 (the latter
corresponding to the homogeneous half space) admits a factorization (1.2.22) as before, where
now

A :

{
H
−1/2
∗ (∂D) → L2,1(∂Ω) ,

ϕ 7→ v|∂Ω ,

and v solves the same boundary value problem as in (1.2.23), except for the missing normaliza-
tion over the boundary ∂Ω. Furthermore, the self adjoint operator G is defined as before (with
the appropriate definition of a weak solution of (1.2.28)), and is coercive again.

We emphasize that the dipole potential (1.2.7) for the half space is explicitly known, i.e., we
have (up to a negligible multiplicative constant)

φz(x) =
(x− z) · p
|x− z|3

, x ∈ ∂Ω . (1.2.39)

With these notations the characterization of the inclusions can be established in much the same
way as before, see [56]:

Theorem 1.2.11 A point z ∈ Ω belongs to D, if and only if φz of (1.2.39) belongs to R(A).

For real applications the measuring device will only cover a bounded region Γ ⊂ ∂Ω. The
corresponding local Neumann-Dirichlet operator Λ` can then be embedded in the standard L2

framework from the previous section, and the usual Picard series can be used to implement the
range test. For the ease of completeness we briefly mention that for such local data the test
dipole φz can be replaced by the function

φ̃z(x) =
1

|x− z|
, x ∈ Γ ,

which is the trace of the corresponding Neumann function (again, up to a multiplicative con-
stant), as the latter has a vanishing normal derivative on the boundary of the half space. We
hasten to add, though, that φ̃z must not be used for full data, as it does not belong to L2,1(∂Ω).
Numerically, however, this modification of the method has no significant benefit.

The crack problem

Another case of interest are cracks, i.e., lower dimensional manifolds of codimension one, that are
insulating, say. This setting has important applications in nondestructive testing of materials.
Consider a domain Ω ⊂ Rn, with n = 2 or n = 3 again, and the union Σ =

⋃m
i=1 Σi ⊂ Ω

of m smooth, bounded manifolds (the insulating cracks), such that Σi ∩ Σj = ∅ and Ω \ Σ is



21

connected. Given a boundary current f ∈ L2
�(∂Ω) the induced potential satisfies the model

equations

∆u0 = 0 in Ω \ Σ ,
∂

∂ν
u0 = 0 on Σ ,

∂

∂ν
u0 = f on ∂Ω , (1.2.40)

and the corresponding Neumann-Dirichlet operator is the map that takes f onto the trace of u
on ∂Ω:

Λ :
{
L2
�(∂Ω) → L2

�(∂Ω) ,
f 7→ u|∂Ω .

The crack case can be analyzed in a similar way as in Section 1.2.1, cf. [23], using a factorization
Λ−Λ1 = K∗K, where K is almost identical to the operator in (1.2.11), except that it maps into
H1(Ω \ Σ). There is a more important difference, though. As the crack has no interior points,
the range test will always fail with the hitherto used test function φz, as the dipole singularity
of Uz is too strong to belong to H1(Ω \ Σ), even when z ∈ Σ. To detect a crack we therefore
need to construct a new test function by integrating the function φz over z along some “test
arc” (in R2) or some “test surface” (in R3).

The range test can then be implemented by placing linear (planar) test cracks in different
sampling points with various orientations, see [23] for numerical reconstructions in two space
dimensions. The amount of work thus grows substantially, as we now have 2 degrees of freedom
to sample (a test point and a normal direction) instead of only one in the previous cases. Also,
in a numerical realization, test cracks will – at best – only touch the crack tangentially, but
in theory this already suffices to ruin the range test. It turns out that in practice the usual
implementation with the test function φz performs as good as the more elaborate but expensive
variant described above. As said before, in theory φz will never belong to the range of K; in
practice, however, it will “almost” do so, i.e., the Picard series (1.2.18) will grow much more
slowly in the close neighborhood of the crack.

One-dimensional cracks in three-dimensional objects cannot be reconstructed in this way, be-
cause the potential does not “see” inhomogeneities of this size. However, one can use an
asymptotic analysis similar to the derivation of MUSIC type algorithms that are discussed in
Section 1.4.2 below. Here we give a brief sketch of an argument provided in [48], and refer
to this paper for further details. The basic idea is that realistic “one-dimensional” cracks in
a 3D world are not exactly one-dimensional, but better modelled as extremely thin tubular
inclusions of small diameter δ > 0. The corresponding relative data Λδ − Λ1, where Λδ is the
Neumann-Dirichlet operator associated with the tubular inclusion and Λ1 is as usual, turn out
to satisfy an asymptotic expansion in δ,

Λδ − Λ1 = δ2M̂ + o(δ2) ,

possibly after selecting an appropriate (sub)sequence δk → 0. The operator M̂ that constitutes
the dominating term of this expansion admits a factorization similar to (1.2.22). In contrast
to the MUSIC framework below, this operator has infinite dimensional range. Although the
operators of the corresponding factorization are somewhat different from the ones that we have
encountered above, the bottom line is the same as for one-dimensional cracks in two space
dimensions: The same integrated test function belongs to the range of the operator A of this
factorization, if and only if the corresponding test arc is part of the crack. The singular value
decomposition of M̂ can be used to evaluate this test, and in practice this singular value
decomposition can be approximated by the one of Λδ − Λ1, i.e., by the given data.
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1.3 The Factorization Method in Inverse Scattering Theory

The second part of this chapter is devoted to the Factorization Method for problems in in-
verse scattering theory for time-harmonic waves. The scattering of an incident plane wave by
a medium gives rise to a scattered field which is measured “far away” from the medium. The
Factorization Method characterizes the shape of the scattering medium from this far field in-
formation. The measurement operator will be the far field operator F which maps the density
of the incident Herglotz-field to the corresponding far field pattern of the scattered field.
The far field operator F allows a factorization of the form (1.1.1) where the operators A and G
depend on the specific situation. We will discuss two typical cases and start with the scattering
by a sound-soft obstacle D in Section 1.3.1. This is an example of a non-absorbing medium
which is mathematically reflected by the fact that the far field operator is normal - though not
self adjoint as for the corresponding problem in impedance tomography. It was this example for
which the Factorization Method was developed for the first time in [67]. In Section 1.3.2 we will
study the scattering of time-harmonic electromagnetic plane waves by an absorbing medium.
In this case the corresponding far field operator fails to be normal.
Each case study will start with a short repetition of the corresponding direct problem. Then
the inverse problem will be stated and a factorization of the form (1.1.1) will be derived. As in
impedance tomography a crucial point is to establish in each case a certain coercivity condition
for G. In addition, one needs to prove a range identity which describes the range of A via the
known – possibly non-normal – data operator F .
Here and throughout the following sections, S2 = {x ∈ R3 : |x| = 1} denotes the unit sphere in
R3.

1.3.1 Inverse Acoustic Scattering by a Sound-Soft Obstacle

This section is devoted to the analysis of the Factorization Method for the most simplest case in
scattering theory. We consider the scattering of time-harmonic plane waves by an impenetrable
obstacle D ⊂ R3 which we model by assuming Dirichlet boundary conditions on the boundary
∂D of D. As before we assume that D is a finite union D =

⋃m
i=1Di of bounded domains Di

such that Di∩Dj = ∅ for i 6= j. Furthermore, we assume that the boundaries ∂Di are Lipschitz
continuous, and that the exterior R3 \ D of D is connected. Finally, let k > 0 be the wave
number and

ui(x) = exp(ik x · θ̂) , x ∈ R3 , (1.3.1)

be the incident plane wave of direction θ̂ ∈ S2. The obstacle D gives rise to a scattered field
us ∈ C2(R3 \ D) ∩ C(R3 \ D) which superposes ui and results in the total field u = ui + us

which satisfies the Helmholtz equation

∆u+ k2u = 0 outside D , (1.3.2)

and the Dirichlet boundary condition

u = 0 on ∂D . (1.3.3)

The scattered field us satisfies the Sommerfeld radiation condition

∂us

∂r
− ik us = O

(
r−2
)

for r = |x| → ∞ (1.3.4)

uniformly with respect to x̂ = x/|x| ∈ S2.
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The direct scattering problem is to determine the scattered field us for a given obstacle
D ⊂ R3, some θ̂ ∈ S2 and k > 0.
For the treatment of this direct problem we refer to [36] (see also [Handbook:Inverse Scattering,
Section 2.2]). There it is also shown that the scattered field us has the asymptotic behavior

us(x) =
exp(ik|x|)

4π|x|
u∞(x̂) + O(|x|−2) , |x| → ∞ , (1.3.5)

uniformly with respect to x̂ = x/|x| ∈ S2. The function u∞ : S2 → C is analytic and is called
the far field pattern of us. It depends on the wave number k, the direction θ̂ ∈ S2, and on the
domain D. Since we will keep k > 0 fixed, only the dependence on θ̂ is indicated: u∞ = u∞(x̂; θ̂)
for x̂, θ̂ ∈ S2.
In the inverse scattering problem the far field pattern u∞(x̂; θ̂) is known for all x̂, θ̂ ∈ S2

and some fixed k > 0 and the domain D has to be determined. We refer again to [36] or
[Handbook:Inverse Scattering] for the presentation of the most important properties of this
inverse scattering problem. The knowledge of u∞(x̂; θ̂) for all x̂, θ̂ ∈ S2 determines the integral
kernel of the far field operator F from L2(S2) into itself, which is defined by

(Fg)
(
x̂
)

=
∫
S2

u∞(x̂; θ̂) g(θ̂) ds(θ̂) for x̂ ∈ S2 . (1.3.6)

The far field operator F is compact, normal9, and the so-called scattering operator I + ik
8π2 F is

unitary in L2(S2).

As in Section 1.2.2 the first step is to derive a factorization of F in the form (1.1.1).
The operator A is the data to pattern operator which maps f ∈ H1/2(∂D) to the far field pattern
v∞ of the radiating10 solution v ∈ H1

loc(R3 \D) of

∆v + k2v = 0 in the exterior of D , v = f on ∂D . (1.3.7)

Here, H1
loc(R3 \ D) is the space of functions v with v|B\D ∈ H1(B \ D) for all balls B ⊂ R3.

Existence and uniqueness is assured (see, e.g., Chapter 9 of [81]).

Theorem 1.3.1 Define the operator A : H1/2(∂D)→ L2(S2) by Af = v∞ where v∞ is the far
field pattern of the unique radiating solution v ∈ H1

loc(R3 \D) of (1.3.7). Then A is one-to-one
with dense range, and the following factorization holds.

F = −AS∗A∗ (1.3.8)

where A∗ : L2(S2)→ H−1/2(∂D) is the dual of A and S∗ : H−1/2(∂D)→ H1/2(∂D) is the dual
of the single layer boundary operator S : H−1/2(∂D)→ H1/2(∂D) defined by11

(Sϕ)(x) =
∫
∂D

ϕ(y) Φ(x, y) ds(y) , x ∈ ∂D . (1.3.9)

Here, Φ denotes the fundamental solution of the Helmholtz equation, i.e.

Φ(x, y) =
exp(ik|x− y|)

4π|x− y|
, x, y ∈ R3 , x 6= y . (1.3.10)

9i.e. F commutes with its adjoint F ∗
10i.e. v satisfies the Sommerfeld radiation condition (1.3.4)
11Actually, the explicit definition (1.3.9) of this operator makes only sense for smooth functions ϕ. It has to

be extended to functionals ϕ ∈ H−1/2(∂D) by a density or duality argument.
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Proof: The injectivity of A follows immediately from Rellich’s Lemma (see [36] or [Hand-
book:Inverse Scattering, Lemma 2.2]). The denseness of the range of A can be shown by ap-
proximating any g ∈ L2(S2) by a finite sum of spherical harmonics to which the corresponding
field can be written down explicitely.
To derive the factorization define the auxiliary operator H : L2(S2)→ H1/2(∂D) by

(Hg)(x) =
∫
S2

g(θ̂) exp(ik x · θ̂) ds(θ̂) =
∫
S2

g(θ̂)ui(x; θ̂) ds(θ̂) , x ∈ ∂D .

First we note that u∞(·; θ̂) = −Aui(·; θ̂) by the definition of A and thus, by the superposition
principle, Fg = −AHg for all g ∈ L2(S2), i.e. F = −AH. We compute the dual H∗ :
H−1/2(∂D)→ L2(S2) as

(H∗ϕ)(x̂) =
∫
∂D

ϕ(y) exp(−ik x̂ · y) ds(y) , x̂ ∈ S2 .

The fundamental solution Φ has the asymptotic behaviour

Φ(x, y) =
exp(ik|x|)

4π|x|
exp(−ik x̂ · y) + O(|x|−2) , |x| → ∞ , (1.3.11)

uniformly w.r.t. x̂ ∈ S2 and y ∈ ∂D, and thus has the far field pattern Φ∞(x̂, y) = exp(−ik x̂·y).
Therefore, again by superposition, H∗ϕ = ASϕ, i.e. H = S∗A∗. Substituting this into F =
−AH yields (1.3.8). �

Therefore, F allows a factorization in the form (1.1.1) with G = −S∗. The most important
properties of this operator are collected in the following theorem. (For a proof see, e.g., [81, 74].)

Theorem 1.3.2 Assume that k2 is not a Dirichlet eigenvalue of −∆ in D. Then the following
holds.

(a) S is an isomorphism from the Sobolev space H−1/2(∂D) onto H1/2(∂D).

(b) Im〈ϕ, Sϕ〉 < 0 for all ϕ ∈ H−1/2(∂D) with ϕ 6= 0. Here, 〈·, ·〉 denotes the duality pairing
in 〈H−1/2(∂D), H1/2(∂D)〉.

(c) Let Si be the single layer boundary operator (1.3.9) corresponding to the wave number
k = i. The operator Si is self adjoint and coercive as an operator from H−1/2(∂D) onto
H1/2(∂D), i.e. there exists c0 > 0 with

〈ϕ, Siϕ〉 ≥ c0‖ϕ‖2H−1/2(∂D)
for all ϕ ∈ H−1/2(∂D) . (1.3.12)

(d) The difference S − Si is compact from H−1/2(∂D) into H1/2(∂D).

From this theorem the following coercivity result can be derived.
Assume that k2 is not a Dirichlet eigenvalue of −∆ in D. Then there exists c1 > 0 with∣∣〈ϕ, Sϕ〉∣∣ ≥ c1‖ϕ‖2H−1/2(∂D)

for all ϕ ∈ H−1/2(∂D) . (1.3.13)

This establishes the first step of the Factorization Method. In the second step the domain D is
characterized by the range of the operator A.
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Theorem 1.3.3 For any z ∈ R3 define the function φz ∈ L2(S2) by

φz(x̂) = exp(−ik x̂ · z) , x̂ ∈ S2 . (1.3.14)

Then z belongs to D, if and only if φz ∈ R(A)

Proof: Let first z ∈ D. From (1.3.11) we conclude that φz is the far field pattern of Φ(·, z),
thus φz = Af where f = Φ(·, z)|∂D ∈ H1/2(∂D).
Let now z /∈ D and assume, on the contrary, that φz = Af for some f ∈ H1/2(∂D). Let v be
as in the definition of Af . Then φz = v∞. From Rellich’s Lemma and unique continuation we
conclude that Φ(·, z) and v coincide in R3 \

(
D ∪ {z}

)
. By the same arguments as in the proof

of Theorem 1.2.1 this is a contradiction since v is regular and Φ(·, z) is singular at z. �

From the factorization (1.3.8) we conclude that R(F ) ⊂ R(A) and thus

φz ∈ R(F ) =⇒ z ∈ D .

Therefore, the condition on the left hand side determines only a subset of D. One can show,
cf. [35], that for the case of D being a ball the left hand side is only satisfied for the center
of this ball. Nevertheless, the (regularized version) of the test φz ∈ R(F ) leads to the Linear
Sampling Method, cf. Section 1.4.1.

In the third step of the Factorization Method the range R(A) of A has to be expressed by the
known data operator F . This is achieved by a second factorization of F based on the spectral
decomposition of the normal operator F . From now on we make the assumption that k2 is
not a Dirichlet eigenvalue of −∆ in D. Then the far field operator is one-to-one as it follows
directly from the factorization (1.3.8) and part (a) of Theorem 1.3.2.
Since F is compact, normal and one-to-one there exists a complete set of orthonormal eigen-
functions ψj ∈ L2(S2) with corresponding eigenvalues λj ∈ C, j = 1, 2, 3, . . . (see, e.g., [89]).
Furthermore, since the operator I+ik/(8π2)F is unitary the eigenvalues λj of F lie on the circle
of radius 1/r and center i/r where r = k/(8π2). The spectral theorem for normal operators
yields that F has the form

Fψ =
∞∑
j=1

λj(ψ,ψj)L2(S2) ψj , ψ ∈ L2(S2) . (1.3.15)

Therefore, F has a second factorization in the form

F = (F ∗F )1/4G2 (F ∗F )1/4 , (1.3.16)

where the self adjoint operator (F ∗F )1/4 : L2(S2) → L2(S2) and the signum G2 : L2(S2) →
L2(S2) of F are given by

(F ∗F )1/4ψ =
∞∑
j=1

√
|λj | (ψ,ψj)L2(S2) ψj , ψ ∈ L2(S2) , (1.3.17)

G2ψ =
∞∑
j=1

λj
|λj |

(ψ,ψj)L2(S2) ψj , ψ ∈ L2(S2) . (1.3.18)

Also this operator G2 satisfies a coercivity condition of the form (1.3.13).
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Theorem 1.3.4 Assume that k2 is not a Dirichlet eigenvalue of −∆ in D. Then there exists
c2 > 0 with ∣∣(ψ,G2ψ)L2(S2)

∣∣ ≥ c2‖ψ‖2L2(S2) for all ψ ∈ L2(S2) . (1.3.19)

Proof: It is sufficient to prove (1.3.19) for ψ ∈ L2(S2) of the form ψ =
∑

j cjψj with ‖ψ‖2L2(S2) =∑
j |cj |2 = 1. With the abbreviation sj = λj/|λj | it is

∣∣(G2ψ,ψ)L2(S2)

∣∣ =

∣∣∣∣∣∣∣
 ∞∑
j=1

sj cj ψj ,

∞∑
j=1

cj ψj


L2(S2)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=1

sj |cj |2
∣∣∣∣∣∣ .

The complex number
∑∞

j=1 sj |cj |2 belongs to the closure of the convex hull C = conv{sj : j ∈
N} ⊂ C of the complex numbers sj . We conclude that∣∣(G2ψ,ψ)L2(S2)

∣∣ ≥ inf{|z| : z ∈ C}

for all ψ ∈ L2(S2) with ‖ψ‖L2(S2) = 1. From the facts that λj lie on the circle with center i/r
passing through the origin and that λj tends to zero as j tends to infinity we conclude that the
only accumulation points of the sequence {sj} can be +1 or −1. From the factorization (1.3.8)
and Theorem 1.3.2 it can be shown (see the proof of Theorem 1.23 of [74]) that indeed 1 is the
only accumulation point, i.e. sj → 1 as j tends to infty. Therefore, the set C is contained in the
part of the upper half-disk which is above the line ` =

{
tŝ+ (1− t)1 : t ∈ R

}
passing through ŝ

and 1. Here, ŝ is the point in {sj : j ∈ N} with the smallest real part. Therefore, the distance
of the origin to this convex hull C is positive, i.e., there exists c2 with (1.3.19). �

From Theorem 1.3.1 and equation (1.3.16) the scattering operator F can be written as

F = AG1A
∗ = (F ∗F )1/4G2 (F ∗F )1/4 (1.3.20)

where we have set G1 = −S∗. Both of the operators Gj , j = 1, 2, are coercive in the sense of
(1.3.13) and (1.3.19), respectively. By the range identity of Corollary 1.5.4 the ranges of A and
(F ∗F )1/4 coincide. The combination of this result and Theorem 1.3.3 yields the main result of
this section.12

Theorem 1.3.5 Assume that k2 is not a Dirichlet eigenvalue of −∆ in D. For any z ∈ R3

define again φz ∈ L2(S2) by (1.3.14), i.e.

φz(x̂) := exp(−ik x̂ · z) , x̂ ∈ S2 .

Then

z ∈ D ⇐⇒ φz ∈ R((F ∗F )1/4) ⇐⇒
∑
j

∣∣(φz, ψj)L2(S2)

∣∣2
|λj |

< ∞ . (1.3.21)

Here, λj ∈ C are the eigenvalues of the normal operator F with corresponding normalized
eigenfunctions ψj ∈ L2(S2).

Formula (1.3.21) provides a simple and fast technique to visualize the object D by plotting
the inverse of the series on the right hand side. In practise, this will be a finite sum instead of a
series, but the value of the finite sum is much larger for points z outside than for points inside
of D. We refer to the original paper [67] for some typical plots.

12To derive the second equivalence of (1.3.21) Theorem 1.5.1 of Picard has been applied.
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Remark 1.3.6 It is illuminating to compare the presentation in this section with the one for
impedance tomography from Section 1.2.2. The relative potential u− u1 considered there cor-
responds to the scattered wave us = u − ui, i.e., the total field minus the incoming field; the
incoming field is the potential that is induced by the excitation if the background is homoge-
neous, whereas the total field is the corresponding solution in the presence of the scatterer.

In both cases, the operator that maps the excitation onto the associated “relative data” can
be factorized in three operators: the one that is applied first, i.e. A∗, maps the excitation/the
incoming field onto the boundary of the obstacle(s), the operator A that is applied last, maps
appropriate boundary data on the obstacle onto the “outgoing field” and its measured data.
Accordingly, the operator in the middle encodes the “refraction” at the obstacle(s).

As such, we can view the factorization from impedance tomography as a generalization of
Huygen’s principle to the diffusion problem (1.2.21), although the time causality from scattering
theory has no apparent physical analog in stationary diffusion processes.

1.3.2 Inverse Electromagnetic Scattering by an Inhomogeneous Medium

This section is devoted to the analysis of the Factorization Method for the inverse scattering of
electromagnetic time-harmonic plane waves by an inhomogeneous non-magnetic and conduct-
ing medium. Let k = ω

√
ε0µ0 > 0 be the wave number with angular frequency ω, electric

permittivity ε0, and magnetic permeability µ0 in vacuum. The incident plane wave has the
form

H i(x) = p exp(ik θ̂ · x) , Ei(x) = − 1
iωε0

curlH i(x) , (1.3.22)

for some polarization vector p ∈ C3 and some direction θ̂ ∈ S2 such that p · θ̂ = 0. This pair
satisfies the time harmonic Maxwell system in vacuum, i.e.

curlEi − iωµ0H
i = 0 in R3, (1.3.23)

curlH i + iωε0E
i = 0 in R3 . (1.3.24)

This incident wave is scattered by a medium with space dependent electric permittivity ε = ε(x)
and conductivity σ = σ(x). We assume that the magnetic permeability µ is constant and equal
to the permeability µ0 of vacuum. Furthermore, we assume that ε ≡ ε0 and σ ≡ 0 outside of
some bounded domain. The total fields are superpositions of the incident and scattered fields,
i.e. E = Ei + Es and H = H i +Hs and satisfy the Maxwell system

curlE − iωµ0H = 0 in R3, (1.3.25)

curlH + iωεE = σE in R3 . (1.3.26)

Also, the tangential components of E and H are continuous on interfaces where σ or ε are
discontinuous. Finally, the scattered fields have to satisfy the Silver-Müller radiation condition

√
µ0H

s(x)× x̂ −
√
ε0E

s(x) = O
(

1
|x|2

)
as |x| → ∞ (1.3.27)

uniformly w.r.t. x̂ = x/|x| ∈ S2. The complex-valued relative electric permittivity εr is defined
by

εr(x) =
ε(x)
ε0

+ i
σ(x)
ω ε0

. (1.3.28)
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Note that εr ≡ 1 outside of some bounded domain. The equation (1.3.26) can then be written
in the form

curlH + iωε0εrE = 0 in R3 . (1.3.29)

It is preferable to work with the magnetic field H only. This is motivated by the fact that the
magnetic field is divergence free as seen from (1.3.25) and the fact that div curl = 0. In general,
this is not the case for the electric field E. Eliminating the electric field E from the system
(1.3.25), (1.3.29) leads to

curl
[

1
εr

curlH
]
− k2H = 0 in R3 . (1.3.30)

The incident field H i satisfies

curl2H i − k2H i = 0 in R3. (1.3.31)

Subtracting both equations yields

curl
[

1
εr

curlHs

]
− k2Hs = curl

[
q curlH i

]
in R3 , (1.3.32)

where the contrast q is defined by q = 1 − 1/εr. The Silver-Müller radiation condition turns
into

curlHs(x)× x̂− ikHs(x) = O
(

1
|x|2

)
, |x| → ∞. (1.3.33)

The continuity of the tangential components of E and H translates into analogous requirements
for Hs and curlHs.
It will be necessary to allow more general source terms on the right-hand side of (1.3.32). In
particular, we will consider the problem to determine a radiating13 solution v ∈ Hloc(curl,R3)
of

curl
[

1
εr

curl v
]
− k2v = curl f in R3 (1.3.34)

for given f ∈ L2(R3)3 with compact support14. The solutions v of (1.3.34) as well as of (1.3.30)
and (1.3.32) have to be understood in the variational sense, i.e. v ∈ Hloc(curl,R3) satisfies∫

R3

[
1
εr

curl v · curlψ − k2 v · ψ
]

dx =
∫

R3

f · curlψ dx (1.3.35)

for all ψ ∈ H(curl,R3) with compact support. For any domain Ω the Sobolev space H(curl,Ω)
is the space of all vector fields v ∈ L2(Ω)3 such that also curl v ∈ L2(Ω)3. Furthermore,
Hloc(curl,R3) = {v : v|B ∈ H(curl, B) for all balls B ⊂ R3}.
Outside of the supports of εr − 1 and f the solution satisfies curl2 v − k2v = 0. Taking the
divergence of this equation and using the identities div curl = 0 and curl2 = −∆ + grad div this
system is equivalent to the pair of equations

∆v + k2v = 0 and div v = 0 .

Classical interior regularity results (cf. [81] combined with [36]) yield that v is analytic outside
of the supports of εr − 1 and f . In particular, the radiation condition (1.3.33) is well defined.

13i.e. v satisfies the Silver-Müller radiation condition (1.3.33)
14For any open set D the space L2(D)3 denotes the space of vector functions v : D → C3 such that all

components are in L2(D)
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There are several ways to show the Fredholm property of equation (1.3.34). We refer to [82]
for the treatment by a variational equation with non-local boundary conditions or to [74] for a
treatment by an integro-differential equation of Lippmann-Schwinger type.
The question of uniqueness of radiating solutions to (1.3.34) is closely related to the validity
of the unique continuation principle. It is known to hold for piecewise Hölder-continuously
differentiable functions εr (see [82]).
As in the case of the Helmholtz equation every radiating vector field v satisfying curl2 v−k2v = 0
outside of some ball has the asymptotic behavior

v(x) =
exp(ik|x|)

4π|x|
v∞(x̂) + O(|x|−2) , |x| → ∞ ,

uniformly with respect to x̂ = x/|x| ∈ S2 (see again [36]). The vector field v∞ is uniquely
determined and again called the far field pattern of v. It is a tangential vector field, i.e.
v∞ ∈ L2

t (S
2) where

L2
t (S

2) =
{
w ∈ L2(S2)3 : w(x̂) · x̂ = 0 , x̂ ∈ S2

}
.

The inverse problem is to determine the shape D of the contrast q from the far field pattern
H∞(x̂; θ̂, p) for all x̂, θ̂ ∈ S2 and p ∈ C3 with p · θ̂ = 0. Because of the linear dependence of
H∞ on p it is sufficient to know H∞ only for a basis of two vectors for p. As in impedance
tomography the task of determining only D is rather modest since it is well known that one can
even reconstruct q uniquely from this set of data, see [38]. However, the proof of uniqueness
is non-constructive while the Factorization Method will provide an explicit characterization of
the characteristic function of D which can, e.g., be used for numerical purposes. Also, the
Factorization Method can – with only minor modifications – be carried over for anisotropic
media (as in Section 1.2.2) where it is well known that εr can only be determined up to smooth
change of coordinates.

For the remaining part of this section we make the following assumption.

Assumption 1.3.7 Let D ⊂ R3 be a finite union D =
⋃m
i=1Di of bounded domains Di such

that Di ∩ Dj = ∅ for i 6= j. Furthermore, we assume that the boundaries ∂Di are Lipschitz
continuous and the exterior R3 \D of D is connected. Let εr ∈ L∞(D) satisfy

(1) Im εr ≥ 0 in D.

(2) There exists c2 > 0 with Re εr ≥ 1 + c2 on D.

(3) For every f ∈ L2(R3)3 with compact support there exists a unique radiating solution of
(1.3.34).

We extend εr by one outside of D and define the contrast by q = 1 − 1/εr, thus Im q ≥ 0 and
Re q ≥ (1 + c2)c2/‖εr‖2∞ > 0 on D.

Condition (3) is, e.g., satisfied for Hölder-continuously differentiable parameters ε and σ (see
[82]).

The far field operator F : L2
t (S

2)→ L2
t (S

2) is defined as

(Fp)(x̂) :=
∫
S2

H∞
(
x̂; θ, p(θ)

)
ds(θ) , x̂ ∈ S2. (1.3.36)
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F is a linear operator since H∞ depends linearly on the polarization p.
The first step in the Factorization Method is to derive a factorization of F in the form F =
AT ∗A∗ where the operators A : L2(D)3 → L2

t (S
2) and T : L2(D)3 → L2(D)3 are defined as

follows.
The data-to-pattern operator A : L2(D)3 → L2

t (S
2) is defined by Af := v∞ where v∞ denotes

the far field pattern corresponding to the radiating (variational) solution v ∈ Hloc(curl,R3) of

curl
[

1
εr

curl v
]
− k2v = curl

[
q√
|q|

f

]
in R3 . (1.3.37)

Again, the contrast is given by q = 1 − 1/εr. We note that the solution exists by part (3) of
Assumption 1.3.7.
The operator T : L2(D)3 → L2(D)3 is defined by Tf = (sign q) f −

√
|q| curlw

∣∣
D

, where
w ∈ Hloc(curl,R3) is the radiating solution of

curl2w − k2w = curl
[√
|q| f

]
in R3 . (1.3.38)

The solution exists and is unique (see, e.g. [74]).

Theorem 1.3.8 Let Assumption 1.3.7 hold. Then F from (1.3.36) can be factorized as

F = AT ∗A∗ (1.3.39)

where A∗ : L2
t (S

2) → L2(D)3 and T ∗ : L2(D)3 → L2(D)3 denote the adjoints of A and T ,
respectively. Furthermore, A∗ is injective.

For a proof of this and the following result we refer to [74].

Remark: The solution w of (1.3.38) can be expressed in the form (see [74])

w(x) = curl
∫
D

√
|q(y)| f(y) Φ(x, y) dy , x ∈ R3 ,

which yields an explicit expression of T .

The following theorem corresponds to Theorem 1.3.2 and collects properties of the operator T
needed for the analysis of the Factorization Method.

Theorem 1.3.9 Let the conditions of Assumption 1.3.7 hold and let T : L2(D)3 → L2(D)3 be
defined above. Then the following holds:

(a) The imaginary part ImT = 1
2i(T − T

∗) is non-positive, i.e.

Im(Tf, f)L2(D)3 ≤ 0 for all f ∈ L2(D)3 .

(b) Define the operator T0 from L2(D)3 into itself by T0f = (sign q) f for f ∈ L2(D)3. Then
T − T0 is compact in L2(D)3.

(c) T is an isomorphism from L2(D)3 onto itself.

As in Section 1.3.1 we first characterize the domain D by the range R(A) of A. The proof of
the following result can again be found in [74].
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Theorem 1.3.10 Let the conditions of Assumption 1.3.7 hold. For any z ∈ R3 and fixed
p ∈ C3 we define φz ∈ L2

t (S
2) as the far field pattern of the electric dipole at z with moment p,

i.e.
φz(x̂) = −ik (x̂× p) exp(−ik x̂ · z) , x̂ ∈ S2 . (1.3.40)

Then z belongs to D, if and only if, φz ∈ R(A).

In contrast to the data operators Λ0 − Λ1 or Λ − Λ1 of Section 1.2, or the far field operator
F of Section 1.3.1, the far field operator for absorbing media – as in the present case – fails to
be normal or even self adjoint. Therefore, the approaches of the previous sections – i.e. the
application of the range identities of Corollaries 1.5.6 and 1.5.4 – are not applicable. However,
application of Theorem 1.5.5 to the far field operator F from L2

t (S
2) into itself and the operator

G = T ∗ : L2(D)3 → L2(D)3 yields the characterization of D via an auxiliary operator

F# = |ReF |+ ImF , (1.3.41)

cf. (1.5.5), which is easily obtained from the given far field data.

Theorem 1.3.11 Let the conditions of Assumption 1.3.7 hold. For any z ∈ R3 define again
φz ∈ L2

t (S
2) by (1.3.40). Then, with F# of (1.3.41) there holds

z ∈ D ⇐⇒ φz ∈ R(F 1/2
# ) ⇐⇒

∑
j

∣∣(φz, ψj)L2(S2)

∣∣2
|λj |

< ∞ . (1.3.42)

Here, λj ∈ C are the eigenvalues of the self adjoint and positive compact operator F# with
corresponding normalized eigenfunctions ψj ∈ L2

t (S
2).

1.3.3 Historical Remarks and Open Questions

Historically, the Factorization Method originated from the Linear Sampling Method which will
be explained in Section 1.4.1 below (see also [Handbook:Inverse Scattering, Section 5.2]). The
Linear Sampling Method studies the far field equation Fg = φz in contrast to the Factorization
Method which characterizes the domain D by exactly those points z for which the modified far
field equation F

1/2
# g = φz is solvable where F# = (F ∗F )1/2 in the case of Section 1.3.1 and

F# = |ReF |+ ImF in the case of Section 1.3.2. It is easily seen that the points for which the
far field equation Fg = φz is solvable determines only a subset of D – which can consist of a
single point only, as the example of a ball shows.
The implementation of the Factorization Method is as simple and universal as of the Linear
Sampling Method. Only the far field operator F – i.e., in practice a finite dimensional approx-
imation – has to be known. No other a priori information on the unknown domain D such as
the number of components or the kind of boundary condition has to be known in advance. The
mathematical justification, however, has to be proven for every single situation. Since their
first presentations, the Factorization Method has been justified for several problems in inverse
acoustic and electromagnetic scattering theory such as the scattering by inhomogeneous media
([68, 70, 73, 74]), scattering by periodic structures ([11, 12]), and scattering by obstacles under
different kinds of boundary conditions ([50, 74]). The Factorization Method can also be adapted
for scattering problems for a crack ([75]) with certain modifications; we refer to the remarks
concerning the crack problem in Section 1.2.4. The Factorization Method for elastic scattering
problems and wave guides is studied in [9] and [30], respectively.
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In many situations near field measurements on some surface Γ for point sources on the same
surface Γ as incident fields rather than far field measurements for plane waves as incident fields
are available. The corresponding “near field operator” M : L2(Γ)→ L2(Γ) allows a factorization
in the form M = BGB′ where B′ is the adjoint with respect to the bilinear form

∫
Γ u v ds rather

than the (sesquilinear) inner product
∫

Γ u v ds. The validity of the range identity for these kind
of factorizations is not known so far and is one of the open problems in this field. For certain
situations (see [74]) the corresponding far field operator F can be computed from M and the
Factorization Method can then be applied to F .

Also the cases where the background medium is more complicated than the free space can be
treated, see [49, 74] for scattering problems in a half space and [72] for scattering problems in
layered media.

The justification of the Factorization Method for arbitrary elliptic boundary value problems or
even more general problems is treated in [45, 71, 83].

1.4 Related Sampling Methods

This section is devoted to some alternate examples of sampling methods which were developed
during the last decade: the Linear Sampling Method, first introduced by Colton and Kirsch
in [35], the closely related MUSIC, the Singular Sources Method by Potthast (see [86]), and
Ikehata’s Probe Method (see [63]). However, it is not the aim of this section to report on all
sampling methods. In particular, we do not discuss the enclosure method or the no-response
test but refer to the monograph [87] and the survey article [88].

1.4.1 The Linear Sampling Method

Here we reconsider the inverse scattering problem for time-harmonic plane acoustic waves of
Section 1.3.1, i.e. the problem to determine the shape of an acoustically soft obstacle D from
the knowledge of the far field pattern u∞(x̂; θ̂) for all x̂, θ̂ ∈ S2. We refer to (1.3.1)–(1.3.6) for
the mathematical model and the definition of the far field operator F from L2(S2) into itself.

The Factorization Method for inverse scattering problems studies solvability of the equation
F

1/2
# g = φz in L2(S2) where F# = (F ∗F )1/2 in the case where F is normal (as, e.g., in

Section 1.3.1) and F# = |ReF |+ ImF in the general case with absorbtion, see Theorems 1.3.5
and 1.3.11, respectively. In contrast to this equation, the Linear Sampling Method considers
the far field equation

Fg = φz in L2(S2) . (1.4.1)

We mention again that in general no solution of this equation exists. However, one can compute
“approximate solutions” g = gz,ε of (1.4.1) such that ‖g‖L2(S2) behaves differently for z being
inside or outside of D. We refer to [Handbook:Inverse Scattering, Theorem 5.3] for a more
precise formulation of this behaviour.

The drawback of this result – and all the other attempts to justify the Linear Sampling Method
rigorously – is that there is no guarantee that the solution of a regularized version of (1.4.1),
e.g. by Tikhonov regularization, will actually pick the density g = gz,ε with the properties
of the aforementioned “approximate solution”. We refer to [54] for a discussion of this fact.
However, numerically the method has proven to be very effective for a large class of inverse
scattering problems, see e.g. [26] for the scattering by cracks, [27] for inverse scattering problems
for anisotropic media, [19] for wave guide scattering problems, [33, 34, 52] for electromagnetic



33

scattering problems, and [29, 31, 41] for elastic scattering problems. Modifications of the Linear
Sampling Method and combinations with other methods can be found in [8, 20, 80].

For the cases in which the Factorization Method in the form (F ∗F )1/4g = φz is applicable a
complete characterization of the unknown obstacle D by a modification of the Linear Sampling
Method can be derived by replacing the indicator value ‖g‖L2(S2) by (g, φz)L2(S2). This is
summarized in the following theorem (see [10, 13] and, for the following presentation, [74]).

Theorem 1.4.1 Let u∞ = u∞(x̂; θ̂) be the far field pattern corresponding to the scattering
problem (1.3.1) – (1.3.4) with associated far field operator F , and assume that k2 is not a
Dirichlet eigenvalue of −∆ in D. Furthermore, for every z ∈ D let gz ∈ L2(S2) denote the
solution of (F ∗F )1/4gz = φz, i.e. the solution obtained by the Factorization Method, and for
every z ∈ R3 and ε > 0 let g = gz,ε ∈ L2(S2) be the Tikhonov approximation of (1.4.1), i.e. the
unique solution of

(εI + F ∗F )g = F ∗φz (1.4.2)

which is computed by the Linear Sampling Method (if Tikhonov’s regularization technique is
chosen). Here, φz ∈ L2(S2) is defined in (1.3.14). Furthermore, let vgz,ε(z) =

(
gz,ε, φz

)
L2(S2)

=∫
S2 gz,ε(θ̂) exp(ik θ̂ · z) ds(θ̂) denote the corresponding Herglotz wave function evaluated at z.

(a) For every z ∈ D the limit limε→0 vgz,ε(z) exists. Furthermore, there exists c > 0,
depending on F only, such that for all z ∈ D the following estimates hold:

c ‖gz‖2L2(S2) ≤ lim
ε→0

∣∣vgz,ε(z)
∣∣ ≤ ‖gz‖2L2(S2) . (1.4.3)

(b) For z /∈ D the absolute values
∣∣vgz,ε(z)

∣∣ tend to infinity as ε tends to zero.

Proof: Using an orthonormal system
{
ψj : j ∈ N

}
of eigenfunctions ψj corresponding to

eigenvalues λj ∈ C of F one computes the Tikhonov approximation gz,ε from (1.4.2) as

gz,ε =
∞∑
j=1

λj
|λj |2 + ε

(φz, ψj)L2(S2) ψj .

From vg(z) = (g, φz)L2(S2) for any g ∈ L2(S2) we conclude that

vgz,ε(z) =
∞∑
j=1

λj
|λj |2 + ε

∣∣(φz, ψj)L2(S2)

∣∣2 . (1.4.4)

(a) Let now z ∈ D. Then (F ∗F )1/4gz = φz is solvable in L2(S2) by Theorem 1.3.5 and
thus (φz, ψj)L2(S2) = ((F ∗F )1/4gz, ψj)L2(S2) = (gz, (F ∗F )1/4ψj)L2(S2) =

√
|λj | (gz, ψj)L2(S2).

Therefore, we can express vgz,ε(z) as

vgz,ε(z) =
∞∑
j=1

λj |λj |
|λj |2 + ε

∣∣(gz, ψj)L2(S2)

∣∣2 = ‖gz‖2L2(S2)

∞∑
j=1

ρj
λj |λj |
|λj |2 + ε

, (1.4.5)

where ρj =
∣∣(gz, ψj)L2(S2)

∣∣2/‖gz‖2L2(S2) is non-negative with
∑

j ρj = 1. An elementary argu-
ment (theorem of dominated convergence) yields convergence

∞∑
j=1

ρj
λj |λj |
|λj |2 + ε

−→
∞∑
j=1

ρj
λj
|λj |

=
∞∑
j=1

ρj sj
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as ε tends to zero where again sj = λj/|λj |. The properties of ρj imply that the limit belongs
to the closure C of the convex hull of the complex numbers {sj : j ∈ N}. The same argument
as in the proof of Theorem 1.3.4 yields that C has a positive distance c from the origin, i.e.∣∣∣∑∞j=1 ρj sj

∣∣∣ ≥ c which proves the lower bound. The upper estimate is seen directly from (1.4.5).

(b) Let now z /∈ D and assume on the contrary that there exists a sequence {εn} which tends
to zero and such that |vn(z)| is bounded. Here we have set vn = vgz,εn

for abbreviation. Since
sj converge to 1 there exists j0 ∈ N with Reλj > 0 for j ≥ j0. From (1.4.4) for ε = εn we get

vn(z) =
j0−1∑
j=1

λj
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2 +
∞∑
j=j0

λj
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2 .
Since the finite sum is certainly bounded for n ∈ N there exists c1 > 0 such that∣∣∣∣∣∣

∞∑
j=j0

λj
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2∣∣∣∣∣∣ ≤ c1 for all n ∈ N .

Observing that for any complex number w ∈ C with Rew ≥ 0 and Imw ≥ 0 we have that
Rew + Imw ≥ |w| we conclude (note that also Imλj > 0)

2 c1 ≥ 2

∣∣∣∣∣∣
∞∑
j=j0

λj
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2∣∣∣∣∣∣ ≥
∞∑
j=j0

Reλj + Imλj
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2
≥

∞∑
j=j0

|λj |
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2 ≥ J∑
j=j0

|λj |
|λj |2 + εn

∣∣(φz, ψj)L2(S2)

∣∣2
for all n ∈ N and all J ≥ j0. Letting n tend to infinity yields boundedness of the finite
sum uniformly w.r.t. J and thus convergence of the series

∑∞
j=j0

1
|λj |
∣∣(φz, ψj)L2(S2)

∣∣2. From
(1.3.21) therefore follows that z ∈ D, which is the desired contradiction. �

Obviously, this kind of modification of the original Linear Sampling Method can be done for all
inverse scattering problems for which Theorem 1.3.5 holds. This includes scattering by acousti-
cally hard obstacles or inhomogeneous non-absorbing media or, with appropriate modifications,
scattering by open arcs.

1.4.2 MUSIC

The Linear Sampling Method investigates “to what extent” the far field equation

Fg = φz

is solvable for a number of sampling points z within some region of interest. As we have
mentioned before, this equation has a solution in very rare cases only, and usually not for every
z ∈ D.

However, if the obstacle is very small then it turns out that the far field operator almost
degenerates to a finite rank operator, in which case the “numerical range” of F and (F ∗F )1/4

would be the same finite dimensional subspace, where the latter is known to contain φz for every
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z ∈ D – under appropriate assumptions on the particular problem setting (see Sections 1.2 and
1.3).

To investigate this observation in more detail we embed the real scene in a parameterized
family of problems, where the parameter δ > 0 reflects the scale of the problem. Assume that
the scatterer D =

⋃m
i=1Di consists of m obstacles given as

Di = zi + δUi i = 1, . . . ,m , (1.4.6)

where each domain Ui contains the origin, has Lipschitz continuous boundary, and the closure
of Ui has a connected complement. We shall call zi the location of Di and Ui its shape. We
focus our presentation on an inhomogeneous medium setting for acoustic scattering, i.e., the
Helmholtz equation, to provide analogies to both settings from Section 1.3. Let ρ0 and c0 be
the density and the speed of sound in vacuum, k = ω/c0 be the associated wave number with
frequency ω, and ui(x) = exp(ikx · θ̂) be an incoming plane wave. Then, if we assume that the
density ρi and the sound of speed ci in each object Di are real and constant, then the total field
uδ = ui + usδ solves the Helmholtz equation (see, e.g., [36])

div
(

1
ρ

graduδ

)
+ ω2η uδ = 0 in R3 , (1.4.7)

with the radiation condition

∂usδ
∂r
− ik usδ = O

(
r−2
)

for r = |x| → ∞ , (1.4.8)

uniformly with respect to x̂ = x/|x|, and the parameter η equals η0 = 1/ρ0 in R3 \ D, and
ηi = c2

0/(c
2
i ρi) in Di, i = 1, . . . ,m, respectively. We mention that for constant η = 1/ρ0 it

has been shown in [73] that the standard Factorization Method (with F# = (F ∗F )1/2) applies
for this setting with fixed scaling parameter δ. We know of no result, however, where the
Factorization Method is used to reconstruct the supports of ρ − ρ0 and η − η0 in this setting
simultaneously, although there are partial results for a similar problem (in a bounded domain,
and with a different sign of η) arising in optical tomography, cf. [44, 60].

The idea to approach this problem is based on an asymptotic expansion of the far field u∞δ of
the scattered wave with respect to the parameter δ in (1.4.6). We quote the following result
from [4].

Theorem 1.4.2 The far field of the scattering problem (1.4.7) – (1.4.8) for the scatterers given
in (1.4.6) satisfies

u∞δ (x̂; θ̂) = δ3k2
m∑
i=1

(( ρi
ρ0
− 1
)
x̂ ·Miθ̂ −

( ηi
η0
− 1
)
|Ui|
)

exp
(
ik (θ̂ − x̂) · zi

)
+ o(δ3) , (1.4.9)

and the associated far field operator can be rewritten as

F = δ3F̂ + o(δ3) (1.4.10)

in the norm of L(L2(S2)), where the rank of the operator F̂ is at most 4m. Here, |Ui| is the
Lebesgue measure of Ui, and Mi ∈ R3×3 are symmetric positive definite matrices that depend
on the shape Ui, the so-called polarization tensors.
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As is obvious, the scattered field and its far field vanish as δ → 0. The corresponding rate δ3

reflects the space dimension; in R2 the corresponding field decays like δ2 as δ → 0.
The importance of Theorem 1.4.2 stems from the fact that the leading order approximation F̂
of the far field operator F has finite rank, whereas F has infinite dimensional range. The rank
of F̂ is 4m, unless some of the scatterers have the same material parameters as the background
vacuum. Note that the dominating term of u∞δ consists of two parts: The first contribution
stems from the change in the density ρ and corresponds to the far field of a dipole (point source)
in zi; likewise, the second term corresponds to the far field of a monopole in zi, and this is the
result of a change in the parameter η.
It is easy to deduce from Theorem 1.4.2 that we can factorize F̂ quite naturally in three factors.

Theorem 1.4.3 The operator F̂ : L2(S2)→ L2(S2) admits a factorization of the form

F̂ = −BMB′ (1.4.11)

where B : C4m → L2(S2) maps a vector [p1, . . . , pm, a1, . . . , am]T ∈ C4m with pi ∈ C3 and
ai ∈ C, i = 1, . . . ,m, to the far field of

u(x) =
m∑
i=1

(
pi · gradz Φ(x, zi) + aiΦ(x, zi)

)
,

where Φ is as in (1.3.10), M ∈ R4m×4m is a real block diagonal matrix with m blocks of size
3× 3 and m single elements on its diagonal, and M is nonsingular, if and only if ρi 6= ρ0 and
ηi 6= η0 for all i = 1, . . . ,m. The operator B′ is the dual operator of B with respect to the
bilinear forms of C4m and L2(S2), i.e., B′g consists of the gradients and point values of the
Herglotz wave function

vg(x) =
∫
S2

g(θ̂) exp(ikx · θ̂) ds(θ̂) , x ∈ R3 ,

evaluated at the points zi, i = 1, . . . ,m.

As M in (1.4.11) is invertible, the range of F̂ and the range of B coincide, and it consists of
the far fields of the monopoles and all possible dipoles emanating from the locations zi of Di,
i = 1, . . . ,m. Using the unique continuation principle we can thus conclude the following result:

Corollary 1.4.4 If each scatterer has a different permittivity than the background medium,
then a point z ∈ R3 is the location zi of one of the scatterers, if and only if φz belongs to the
range of F̂ .

When δ is small, it follows from (1.4.10) that numerically, the range of F and the range of F̂ are
the same, essentially. By this we mean that the dominating 4m singular values of F are small
perturbations of the nonzero singular values of F̂ , and the corresponding singular subspaces are
also close to each other. Moreover, we expect to see a sharp gap between the 4mth and the
4m + 1st singular value of F . We can search for this gap to determine the number m of the
scatterers, and then determine the angle between the test function φz and the 4m-dimensional
dominating singular subspace of F . When z is close to the location of one of the scatterers then
this angle will be small, otherwise this angle will be larger. This way images can be produced
that enable one to visualize the approximate locations of the scatteres, but not their shape.
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This approach applies for all problem settings that have been discussed in Sections 1.2 and
1.3, and many more. In impedance tomography, for example, the corresponding asymptotic
expansion of the boundary potential has the form

uδ(x)− u1(x) = δn
m∑
i=1

1− κi
κi

gradz N(x, zi) ·Mi gradu1(zi) + o(δn) , x ∈ ∂Ω , (1.4.12)

where n is again the space dimension, N the Neumann function (1.2.6), and Mi the associated
polarization tensor; cf. [28]. The leading order approximation of the difference between the
associated Neumann-Dirichlet operators, Λδ − Λ1, can be factorized in a similar way as in
Theorem 1.4.3, and has an nm-dimensional range that is spanned by dipole potentials sitting
in the locations zi of the obstacles Di, i = 1, . . . ,m; recall that n is the space dimension.

For the full Maxwell’s equations considered in Section 1.3.2 the range space of the corresponding
far field operator F of (1.3.36) consists of the magnetic far fields corresponding to electric dipoles
at the infinitesimal scatterers; if the scatterers also differ in their magnetic permeability then
the range space also contains the far fields of the magnetic dipoles in zi, i = 1, . . . ,m.

The method described above for reconstructing the locations of small scatterers is often called
MUSIC in the inverse problems community. Originally, the MUSIC algorithm is a signal pro-
cessing tool for frequency estimation from the noisy spectrum of some signal15, cf., e.g., [91].
In a seminal report [39] this algorithm was suggested to detect “point scatterers” on the basis
of the Born approximation, which led to an algorithm that is not exactly the same, but related
to the one we have sketched above. The relation between this algorithm and the Factorization
Method has subsequently been recognized in [32, 70]. However, although the form of the fac-
torization (1.4.11) is similar to the ones for the Factorization Method derived in Sections 1.2
and 1.3, it is slightly different in its precise interpretation; this has been exemplified in [2] by
taking the limit of each of the factors from Theorem 1.2.6 as δ → 0.

The derivation of asymptotic formulas as in Theorem 1.4.2 goes back to the landmark paper [42].
In [24], formula (1.4.12) from [28] was used to provide the rigorous foundation of the MUSIC
type algorithm from above. Important extensions and generalizations to other problem settings
include [1, 4, 7, 47, 92]; for a more detailed survey and further references we refer to the
monographs [5, 6].

Numerical illustrations of this approach can be found in various papers; see, for example,
[3, 24, 47].

1.4.3 The Singular Sources Method

As in Section 1.3.1 we reconsider the simple inverse scattering problem for the Helmholtz equa-
tion in R3 to determine the shape of an acoustically soft obstacle D from the knowledge of the
far field pattern u∞(x̂; θ̂) for all x̂, θ̂ ∈ S2. We refer again to (1.3.1)–(1.3.6) for the mathematical
model and the definition of the far field operator F from L2(S2) into itself. Note that again
us = us(x; θ̂) and u∞ = u∞(x̂; θ̂) denote the scattered field and far field pattern, respectively,
corresponding to the incident plane wave of direction θ̂ ∈ S2.

The basic tool in the Singular Sources Method is to consider also the scattered field vs = vs(x; z)
which corresponds to the incident field vi(x) = Φ(x, z) of (1.3.10) of a point source, where z /∈ D
is a given point. The scattered field vs(z; z) evaluated at the source point blows up when z

15MUSIC stands for MUltiple SIgnal Classification.
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tends to a boundary point. One can prove (see [74, 87]) that there exists a constant c > 0
(depending on D and k only) such that∣∣vs(z; z)∣∣ ≥ c

d(z, ∂D)
for all z /∈ D . (1.4.13)

Here, d(z, ∂D) = inf
{
|z − y| : y ∈ ∂D

}
denotes the distance of z to the boundary of D.

The idea of the Singular Sources Method is to fix z /∈ D and ε > 0 and a bounded domain
Gz ⊂ R3 such that its exterior is connected and z /∈ Gz and D ⊂ Gz. Runge’s Approximation
Theorem (see, e.g., [74]) yields the existence of g ∈ L2(S2) depending on z, Gz, and ε such that

‖vg − Φ(·, z)‖C(Gz) ≤ ε (1.4.14)

where vg denotes the Herglotz wave function, defined by

vg(x) =
∫
S2

g(θ̂) exp(ik x · θ̂) ds(θ̂) , x ∈ R3 .

In the following only the dependence on ε is indicated by writing gε. The following convergence
result for the Singular Sources Method is known (see [74, 87]).

Theorem 1.4.5 Let u∞ = u∞(x̂; θ̂), x̂, θ̂ ∈ S2, be the far field pattern of the scattering problem
(1.3.2), (1.3.3), (1.3.4). Fix z /∈ D and a bounded domain Gz ⊂ R3 such that its exterior is
connected and z /∈ Gz and D ⊂ Gz. For any ε > 0 choose g = gε ∈ L2(S2) with (1.4.14). Then

lim
δ→0

lim
ε→0

∫
S2

(Fgε)(−θ̂) gδ(θ̂) ds(θ̂) = vs(z; z) ,

i.e. by substituting the form of F ,

lim
δ→0

lim
ε→0

∫
S2

∫
S2

u∞(−θ̂; η̂) gε(η̂) gδ(θ̂) ds(η̂) ds(θ̂) = vs(z; z) .

Note that the limits are iterated, i.e. first the limit w.r.t. ε has to be taken and then the limit
w.r.t. δ.

Combining this result with (1.4.13) yields

lim
δ→0

lim
ε→0

∣∣∣∣∫
S2

∫
S2

u∞(−θ̂; η̂) gε(η̂) gδ(θ̂) ds(η̂) ds(θ̂)
∣∣∣∣ ≥ c

d(z, ∂D)
. (1.4.15)

This result assures that for z sufficiently close to the boundary ∂D (and regions Gz chosen
appropriately) the quantity

lim
δ→0

lim
ε→0

∣∣∣∣∫
S2

∫
S2

u∞(−θ̂; η̂) gε(η̂) gδ(θ̂) ds(η̂) ds(θ̂)
∣∣∣∣

becomes large.

It is convenient to use domains Gz of the special form

Gz,p = (z + ρ p) +
{
x ∈ R3 : |x| < R ,

x

|x|
· p > − cosβ

}
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for some (large) radius R > 0, opening angle β ∈ [0, π/2), direction of opening p ∈ S2, and
ρ > 0. The dependence on β, ρ, and R is not indicated since they are kept fixed. This domain
Gz,p is a ball centered at z+ρp with radius R from which the cone of direction −p and opening
angle β has been removed. Obviously, it is chosen such that z /∈ Gz,p. These sets Gz,p are
translations and rotations of the reference set

Ĝ =
{
x ∈ R3 : |x| < R ,

x

|x|
· p̂ > − cosβ

}
for p̂ = (0, 0, 1)>, i.e. Gz,p = z +MĜ for some orthogonal M ∈ R3×3.

With these transformations, we can consider the singular sources method as a sampling method
with sampling objects z and M .

From the arguments used in the proof of Theorem 1.4.5 it is not clear whether or not the
common limit limε,δ→0 exists. However, if k2 is not a Dirichlet eigenvalue of −∆ in D then the
following stronger result than (1.4.15) can be obtained by using the factorization (1.3.8).

Theorem 1.4.6 Let z /∈ D and Gz ⊂ R3 be a bounded domain such that its exterior is connected
and z /∈ Gz and D ⊂ Gz. For any ε > 0 choose gε ∈ L2(S2) with (1.4.14) with respect to the
H1−norm, i.e.

‖vgε − Φ(·, z)‖H1(Gz) ≤ ε .

Assume furthermore that k2 is not a Dirichlet eigenvalue of −∆ in D. Then there exists a
constant c > 0 depending only on D and k such that∣∣∣∣limε→0

∫
S2

∫
S2

u∞(θ̂; η̂) gε(η̂) gε(θ̂) ds(η̂) ds(θ̂)
∣∣∣∣ = lim

ε→0

∣∣(Fgε, gε)L2(S2)

∣∣ ≥ c

d(z, ∂D)
.

For a proof we refer to [74]. Numerical reconstructions with the Singular Sources Methods are
shown in [87].

1.4.4 The Probe Method

The Probe Method has originally been proposed in [63] for the inverse problem of impedance
tomography of Section 1.2.2, and here we also restrict our attention to this setting. To be
precise, let σ ∈ L∞(Ω) be a (complex valued) admittivity function, and define u ∈ H1

� (Ω) as
the unique (weak) solution of the boundary value problem

div(σ gradu) = 0 in Ω , σ
∂

∂ν
u = f on ∂Ω ,

∫
∂Ω
uds = 0 , (1.4.16)

where f ∈ L2
�(∂Ω). For the spaces H1

� (Ω) and L2
�(∂Ω) we refer to Section 1.2.1.

As in Section 1.2.2 we assume that σ ∈ L∞(Ω) is a perturbation of the constant background
admittivity function σ1 = 1. More precisely, let D ⊂ Ω be again the finite union of domains
such that Ω \D is connected and σ = 1 in Ω \D, and let there be a constant c0 > 0 such that

Imσ(x) ≤ 0 and Reσ(x) ≥ 1 + c0 on D . (1.4.17)

The case 0 < c0 ≤ Reσ(x) ≤ 1 − c0 can be treated in a similar way (see [74]). The
unique solvability of the direct problem, i.e., the boundary value problem (1.4.16), guarantees
existence of the Neumann-to-Dirichlet operators Λ,Λ1 : L2

�(∂Ω)→ L2
�(∂Ω) corresponding to σ

and σ1 = 1, respectively.
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As in Section 1.2.2 the goal of the inverse problem is to determine the support D of σ − 1
from the knowledge of the absolute data Λ, or the relative data Λ− Λ1. The difference to the
setting in Section 1.2.2 is that σ is now a scalar and complex valued function.

In the probe method the sampling objects are curves in Ω starting at the boundary ∂Ω of Ω.
In the original paper [63] these curves are called needles. We keep this notation but mention
that - perhaps in contrast to the colloquial meaning - these needles don‘t need to be straight
segments but can be curved in general. By choosing a family of needles the Probe Method
determines the first point on the needle which intersects the boundary ∂D (see Theorem 1.4.8
below). Therefore, in contrast to the Factorization Method and the Linear Sampling Method
the Probe Method tests on curves instead on points.

Definition 1.4.7 A needle16 C is the image of a continuously differentiable function η : [0, 1]→
Ω such that η(0) ∈ ∂Ω and η(t) ∈ Ω for all t ∈ (0, 1] and η′(t) 6= 0 for all t ∈ [0, 1] and
η(t) 6= η(s) for t 6= s. We call η a parameterization of the needle.

The following monotonicity property is the basic ingredient for the Probe Method.

Under the above assumptions on σ ∈ L∞(Ω) there exists c > 1 such that

1
c

∫
D
| gradu1|2 dx ≤ Re〈f, (Λ1 − Λ)f〉 ≤ c

∫
D
| gradu1|2 dx (1.4.18)

for every f ∈ L2
�(∂Ω). Here, u1 ∈ H1

� (Ω) denotes the unique solution of (1.4.16) for the constant
background case σ1 = 1.

Let η : [0, 1] → Ω be the parameterization of a given needle, t ∈ (0, 1] a fixed parameter, and
Ct =

{
η(s) : 0 ≤ s ≤ t

}
the part of the needle from s = 0 to s = t. Let Φ(x, y) denote the

fundamental solution of the Laplace equation, e.g.

Φ(x, y) =
1

4π|x− y|
, x 6= y ,

in R3. The Approximation Theorem of Runge (see, e.g., [74]) yields the existence of a sequence
wn ∈ H1(Ω) of harmonic functions in Ω such that∥∥wn − Φ

(
·, η(t)

)∥∥
H1(U)

→ 0 , n→∞ , (1.4.19)

for every subset U with U ⊂ Ω \ Ct. We set fn = ∂wn/∂ν on ∂Ω and note that fn depends on
Ct but not on the unknown domain D. The dependence on Ct is denoted by writing fn(Ct). It
can – at least in principle – be computed beforehand.

Theorem 1.4.8 Let the above assumptions on σ hold and fix a needle with parameterization
η : [0, 1]→ Ω. Define the set T ⊂ [0, 1] by

T =
{
t ∈ [0, 1] : sup

n∈N

{∣∣Re
〈
fn(Ct), (Λ− Λ1)fn(Ct)

〉∣∣ <∞} . (1.4.20)

Here, fn(Ct) = ∂wn/∂ν ∈ H−1/2(∂Ω) is determined from (1.4.19)17. Then T 6= ∅, and one can
define t∗ = sup

{
t ∈ [0, 1] : [0, t] ∈ T

}
, which satisfies

t∗ =
{

min
{
t ∈ [0, 1] : η(t) ∈ ∂D

}
, if C1 ∩D 6= ∅ ,

1 , if C1 ∩D = ∅ . (1.4.21)

We recall that C1 = C =
{
η(t) : t ∈ [0, 1]

}
.

16This notation is taken from the original paper [63].
17So far, we have chosen the boundary current f in (1.4.16) from L2

�(∂Ω) for convenience; however, the quadratic
form in (1.4.20) extends as dual pairing 〈H−1/2(∂Ω), H1/2(∂Ω)〉 to f ∈ H−1/2(∂Ω) with vanishing mean.
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For a proof we refer to [63, 74].

Note that for every needle the set T of the form (1.4.20) is determined by the given data: It
depends on η and the approximating functions wn. Formula (1.4.21) provides a constructive
way to determine ∂D from Λ−Λ1: One has to choose a family of needles which cover the domain
Ω, and for each needle one computes t∗ as the largest point of T ; if t∗ < 1 then η(t∗) ∈ ∂D.
Obviously, this procedure is very expensive from a computational point of view. However, if
one samples with “linear” needles only, i.e. rays of the form C =

{
z + tp : t ≥ 0

}
∩Ω for z ∈ Ω

and unit vectors p ∈ S2 then the computational effort can be reduced considerably since the
approximating sequence (1.4.19) has to be computed only once for a reference needle. However,
by using only rays as needles one can not expect to detect the boundary of D completely. Only
the “visible points” of ∂D can be detected, i.e., those which can be connected completely in
Ω \D by straight lines to ∂Ω.

In an implementation of the definition of T of (1.4.20) one has to decide whether a supremum
is finite or infinite. Numerically, this is certainly not an easy task. In [63] it has been suggested
to replace T of (1.4.20) by

TM =
{
t ∈ [0, 1] : sup

n∈N

{∣∣Re
〈
fn(Ct), (Λ− Λ1)fn(Ct)

〉∣∣ ≤M}
for some M > 0, for which a result analogously to the one in Theorem 1.4.8 can be established.
We refer to [63] for more details.

Again, the probe method is general enough to have extensions to a number of related inverse
problems in elasticity (see [64]) and scattering theory (see [62]). For numerical reconstructions
we refer to [88].

1.5 Appendix

In this appendix we collect some functional analytic results on range identities. The Factor-
ization Method makes use of the fact that the unknown domain D can be characterized by
the range of some compact operator A : X → Y , where A is related to the known operator
M : Y → Y through the factorization

M = AGA∗ . (1.5.1)

Throughout this whole chapter we assume that Y is a Hilbert space and X a reflexive Banach
space with dual X∗. We denote by A∗ : Y → X∗ the adjoint of A, where Y is identified with
its dual.

For a computable characterization of D the range of the operator A has to be expressed by the
operator M which is the goal of the range identity.

In the simplest case where also X is a Hilbert space and G is the identity I, the range identity
is easily obtained via the singular system of A and the Theorem of Picard. We recall that
{σj , xj , yj : j ∈ J} is a singular system of a linear and compact operator T : X → Y between
Hilbert spaces X and Y if {xj : j ∈ J} and {yj : j ∈ J} are complete countable orthonormal
systems in the subspaces N (T )⊥ ⊂ X and N (T ∗)⊥ ⊂ Y , respectively, and σj ∈ R>0 such that
Txj = σjyj and T ∗yj = σjxj for all j ∈ J .



42

We note that {σ2
j , xj : j ∈ J}, together with a basis of the null space N (T ) of T and associated

eigenvalue 0, is an eigensystem of the self adjoint and non-negative operator T ∗T . Furthermore,

Tx =
∑
j∈J

σj(x, xj)X yj , x ∈ X ,

T ∗y =
∑
j∈J

σj(y, yj)Y xj , y ∈ Y .

Theorem 1.5.1 (Picard) Let X, Y be Hilbert spaces and T : X → Y be a compact operator
with singular system {σj , xj , yj : j ∈ J}. Then there holds: An element y ∈ Y belongs to the
range R(T ) of T , if and only if,

y ∈ N (T ∗)⊥ and
∑
j∈J

∣∣(y, yj)Y ∣∣2
σ2
j

< ∞ .

For a proof we refer to, e.g., [40]. Applying this theorem to the factorization (1.5.1) with G = I,
and when X∗ is identified with X, one obtains:

Corollary 1.5.2 Let A : X → Y be a compact operator between Hilbert spaces X and Y with
dense range and M = AA∗ : Y → Y . Then the ranges of A and M1/2 coincide. Here, the self
adjoint and non-negative operator M1/2 : Y → Y is given by

M1/2y =
∑
j∈J

√
λj (y, yj)Y yj , y ∈ Y ,

where {yj : j ∈ J} are the orthonormal eigenelements of the self adjoint, compact, and non-
negative operator M corresponding to the positive eigenvalues λj. It follows that

y ∈ R(A) ⇐⇒
∑
j∈J

∣∣(y, yj)Y ∣∣2
λj

< ∞ .

For more general factorizations of the form M = AGA∗ the following (preliminary) characteri-
zation is useful (see [69]; for an equivalent formulation see Theorem 3 of [83]).

Theorem 1.5.3 Let X be a reflexive Banach space with dual X∗ and dual form 〈·, ·〉 in 〈X∗, X〉.
Furthermore, let Y be a Hilbert space and M : Y → Y and A : X → Y be linear bounded
operators such that the factorization (1.5.1) holds for some linear and bounded operator G :
X∗ → X, which satisfies a coercivity condition of the form: There exists c > 0 with∣∣〈ϕ,Gϕ〉∣∣ ≥ c‖ϕ‖2X∗ for all ϕ ∈ R(A∗) ⊂ X∗ . (1.5.2)

Then, for any φ ∈ Y , φ 6= 0,

φ ∈ R(A) ⇐⇒ inf
{∣∣(ψ,Mψ)Y

∣∣ : ψ ∈ Y, (ψ, φ)Y = 1
}
> 0 . (1.5.3)

Proof: The form
∣∣(ψ,Mψ)Y

∣∣ can be estimated by∣∣(ψ,Mψ)Y
∣∣ =

∣∣〈A∗ψ,GA∗ψ〉∣∣ ≥ c‖A∗ψ‖2X∗ for all ψ ∈ Y . (1.5.4)
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Let first φ = Aϕ0 for some ϕ0 ∈ X. For ψ ∈ Y with (ψ, φ)Y = 1 there holds that∣∣(ψ,Mψ)Y
∣∣ ≥ c‖A∗ψ‖2X∗ =

c

‖ϕ0‖2X
‖A∗ψ‖2X∗ ‖ϕ0‖2X

≥ c

‖ϕ0‖2X

∣∣〈A∗ψ,ϕ0〉
∣∣2 =

c

‖ϕ0‖2X

∣∣(ψ,Aϕ0︸︷︷︸
=φ

)Y
∣∣2 =

c

‖ϕ0‖2X
.

This provides the lower bound of the infimum.
Second, assume that φ /∈ R(A). Define the closed subspace V :=

{
ψ ∈ Y : (ψ, φ)Y = 0

}
. Then

A∗(V ) is dense in R(A∗) ⊂ X∗. Indeed, this is equivalent to the statement that the annihilators[
A∗(V )

]⊥ and
[
R(A∗)

]⊥ = N (A) coincide. Therefore, let ϕ ∈
[
A∗(V )

]⊥, i.e. 〈A∗ψ,ϕ〉 = 0 for
all ψ ∈ V , i.e. (ψ,Aϕ)Y = 0 for all ψ ∈ V , i.e. Aϕ ∈ V ⊥ = span {φ}. Since φ /∈ R(A) this
implies Aϕ = 0, i.e. ϕ ∈ N (A). Therefore, A∗(V ) is dense in R(A∗).
Choose a sequence {ψ̂n} in V such that A∗ψ̂n → − 1

‖φ‖2Y
A∗φ as n tends to infinity and set

ψn = ψ̂n + φ/‖φ‖2Y . Then (ψn, φ)Y = 1 and A∗ψn → 0. The first equation of (1.5.4) yields∣∣(ψn,Mψn)Y
∣∣ ≤ ‖G‖ ‖A∗ψn‖2X∗

and thus (ψn,Mψn)Y → 0, n→∞, which proves that inf
{∣∣(ψ,Mψ)Y

∣∣ : ψ ∈ Y, (ψ, φ)Y = 1
}

=
0. �

We note that the inf-condition only depends on M and not on the factorization. Therefore,
we have as a corollary:

Corollary 1.5.4 Let Y be a Hilbert space and X1 and X2 be reflexive Banach spaces with
duals X∗1 and X∗2 , respectively. Furthermore, let M : Y → Y have two factorizations of the
form M = A1G1A

∗
1 = A2G2A

∗
2 as in (1.5.1) with compact operators Aj : Xj → Y and bounded

operators Gj : X∗j → Xj, which both satisfy the coercivity condition (1.5.2). Then the ranges of
A1 and A2 coincide.

Corollary 1.5.4 is useful for the analysis of the Factorization Method as long as M is normal.
However, there are many scattering problems for which the corresponding far field operator
fails to be normal, e.g. in the case of absorbing media. For these problems one can utilize the
self adjoint operator

M# = |ReM |+ ImM , (1.5.5)

that can be computed from M . Note that ReM = 1
2 (M +M∗) and ImM = 1

2i (M −M∗) are
again self adjoint and compact, and the absolute value |ReM | of ReM is defined to be

|ReM |ψ =
∑
j∈J
|λj | (ψ,ψj)Y ψj , ψ ∈ Y ,

where {λj , ψj : j ∈ J} denotes the spectral system of ReM .
Now we can apply Corollary 1.5.4 to obtain the following result (see [74] for the lengthy

proof, and [77] for a weaker form of assumption (d)).

Theorem 1.5.5 Let X be a reflexive Banach space with dual X∗ and dual form 〈·, ·〉 in 〈X∗, X〉.
Furthermore, let Y be a Hilbert space and M : Y → Y and A : X → Y be linear bounded
operators such that the factorization (1.5.1) holds true for some linear and bounded operator
G : X∗ → X. Furthermore, let the following conditions be satisfied:
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(a) The range of A is dense in Y .

(b) There holds ReG = G0 +G1, where G0 satisfies (1.5.2) and G1 : X∗ → X is compact.

(c) The imaginary part ImG of G is non-negative, i.e. Im〈ϕ,Gϕ〉 ≥ 0 for all ϕ ∈ X∗.

(d) G is injective or ImG is positive on the nullspace of ReG.

Then the self adjoint operator M# of (1.5.5) is positive and the ranges of A and M1/2
# coincide.

As an immediate corollary we have

Corollary 1.5.6 Let M : Y → Y and A : X → Y and G : X∗ → X be as in Theorem 1.5.5,
and let G be self adjoint, i.e. G∗ = G, and satisfy (1.5.2). Then the ranges of A and M1/2

coincide, and

y ∈ R(A) ⇐⇒
∑
j∈J

∣∣(y, yj)Y ∣∣2
λj

< ∞ ,

where {λj , yj : j ∈ J} denotes a spectral system of the self adjoint and compact operator
M = AGA∗.
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