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LOCATING SEVERAL SMALL INCLUSIONS IN IMPEDANCE
TOMOGRAPHY FROM BACKSCATTER DATA∗
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Abstract. This paper investigates backscatter data for the inverse obstacle problem in impedance
tomography, when the obstacles are small. It is shown that under this circumstance the backscatter
data are close approximations of a rational function that has second or fourth order poles at the
locations of the obstacles. Furthermore, a numerical method is presented to locate the obstacles
via the poles of certain Laurent–Padé approximations. Numerical experiments explore the potential
of this algorithm also for extended obstacles, taking into consideration that the problem is severely
ill-posed.
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1. Introduction. The inverse obstacle problem in impedance tomography is
concerned with the reconstruction of inclusions within a (bounded) homogeneous ob-
ject (here, the two-dimensional unit disk) that differ in their electrical properties. To
this end, potentials on the surface of the object are measured for various boundary
currents as excitations. Mostly, data sets for this purpose are discrete approximations
of the (full or local) Neumann–Dirichlet map of the associated elliptic differential op-
erator (cf. Adler, Gaburro, and Lionheart [1]), and for these data there exist versatile
reconstruction methods; cf., e.g., [14].

The situation is much more difficult if one or only a few boundary currents can
be imposed. In this case it is generally an open problem whether the inclusions are
uniquely determined by the given data; still, methods based on rational approxima-
tions have been suggested in the literature to locate the inclusions (cf., e.g., [6, 7, 13]),
and one may use those results to proceed by Newton-type schemes to determine their
exact position and shape; cf. [18].

More recently, in [16], a different set of data has been introduced for the two-
dimensional inverse obstacle problem. These data have been called backscatter data
because of an obvious resemblance to similar problem settings in inverse scattering.
Backscatter data differ from usual data sets in impedance tomography in that the
boundary excitations are dipole-type currents, and that for each excitation the mea-
surements consist of one single number, namely the induced voltage at the current
source. It has been shown in [16] that these data suffice to identify a single insulating
obstacle within the object. The theory in [16] can be turned into a reconstruction
algorithm for the case that there is only one inclusion present which is insulating;
cf. Hollborn [20]. Aside of that, another constructive inversion scheme for backscatter
data has been designed in [17] which approximates the convex hull of a collection of
inclusions of arbitrary types. Presently, these two are the only available algorithms
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for the reconstruction of obstacles from given backscatter data, and they both share
the disadvantage that they are unable to separate multiple inclusions.

Therefore, the main goal of the present work is to provide means to identify and
locate multiple inclusions from backscatter data of impedance tomography. To this
end, our starting point is an important observation from [17], namely that backscatter
data extend as analytic functions up to the (outer) boundaries of (finitely many)
inclusions. Here we further analyze the properties of this analytic function and focus
on the case that the obstacles shrink to a finite number of points, much in the spirit of
recent work on multiple signal classification (MUSIC)-type algorithms for impedance
tomography; cf. Ammari and Kang [3]. It turns out that the dominating term of the
analytic expansion of the backscatter data (with respect to the size of the inclusions)
is a rational function whose poles are precisely these limit points, as well as their
reflections at the unit circle (see Theorem 5.2). Generically, the multiplicity of these
poles is four, but may degenerate to two for certain cases, including the important
special instance of circular inclusions.

Motivated by this result we employ rational approximation methods to detect
the locations of multiple inclusions numerically. More precisely, we use so-called
(m− 2,m)-Laurent–Padé approximations for this purpose because of certain specific
properties of the analytic extension of the backscatter data; see Theorem 5.1. Numer-
ical experiments support our claim that the poles of these functions can be used to
locate the inclusions, even when they have some finite extent. However, as the prob-
lem is severely ill-posed, the quality of the reconstructions depends on the amount of
noise in the data, but some particular techniques can be incorporated to stabilize the
numerical results.

The outline of this work is as follows. In section 2 we recall the precise definition of
backscatter data for impedance tomography. Then, in section 3 we lay the groundwork
for the asymptotic analysis in section 4 of the backscatter data for small inclusions.
More precisely, we develop a new factorization (Theorem 3.1) of the difference of two
Neumann–Dirichlet operators associated with the impedance tomography problem,
and this factorization provides comparatively easy access to the asymptotic analysis of
the impedance tomography problem for small inclusions (based on potential theory for
continuous densities, rather than Sobolev spaces as in [3])—for the prize of somewhat
stronger assumptions on the smoothness of the inclusions. For our main result we have
to rephrase the forward problem in complex variables; this is done in section 5. Finally,
section 6 and an appendix briefly recall the notion of Laurent–Padé approximations
and outline our approach for the inverse problem. The details of our algorithm and
numerical results for data of different qualities are discussed in section 7.

2. Backscatter data. We denote by B the two-dimensional unit disk (the “ob-
ject”) and by

(2.1) Ω =

J⋃
j=1

Ωj ⊂ B

the union of J simply connected domains (the “inclusions”) with C2 boundaries Γj =
∂Ωj and Γ = ∪Γj ; cf. Figure 2.1. We assume that the closures of Ωj are mutually
disjoint and do not touch the unit circle T = ∂B. Finally, we denote by ν the outer
unit normals of the domains Ωj and B, respectively.

To keep matters simple we restrict the conductivity σ within the object to being



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCATING SEVERAL INCLUSIONS FROM BACKSCATTER DATA 1993

B

T

Ω1

Ω2

Ω3

Γ1

Γ2

Γ3

Fig. 2.1. Geometry and notation.

piecewise constant, i.e.,

(2.2) σ(x) =

{
κj , x ∈ Ωj ,

1 else ,

where each κj is assumed to be positive and different from 1. Then the conductivity
equation (to be interpreted in weak form) is given as

(2.3) ∇ · (σ∇u) = 0 in B ,
∂

∂ν
u = f on T ,

∫
T

u ds = 0 ,

where u is the induced electric potential when a current

f ∈ L2
�(T ) :=

{
f ∈ L2(T ) :

∫
T

f ds = 0

}
is imposed on the boundary of the object. Problem (2.3) has a classical interpretation
as a diffraction problem with jump conditions

(2.4) u+ = u− and
∂

∂ν
u+ = κj

∂

∂ν
u− on Γj , j = 1, . . . , J ;

cf. Ladyzhenskaya [24]; here we have written u+ and u− for the restrictions of u to
B \ Ω and Ω, respectively. We also need to introduce the reference potential u� for
the case that the object had no inclusions, i.e.,

(2.5) Δu� = 0 in B ,
∂

∂ν
u� = f on T ,

∫
T

u� ds = 0 .

We mention that (2.4) remains valid when we allow some of the inclusions to be
insulating, i.e., when we formally set κj = 0 for the respective conductivities. The
corresponding potential u is only determined in the exterior of the insulating cavities
and has homogeneous Neumann boundary values at their boundaries; however, u can
be extended continuously by a harmonic function in the interior of these inclusions,
such that the extension satisfies (2.4). With this understanding, all the results that we
obtain below extend to insulating inclusions by setting the corresponding parameters
to be κj = 0.
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Associated with the two boundary value problems (2.3) and (2.5) are the two
Neumann–Dirichlet operators Λ and Λ�, which map f onto the Dirichlet values of the
associated potentials, namely,

Λ :

{
L2
�(T ) → L2

�(T ) ,
f �→ u|T ,

with u of (2.3), and Λ� being defined accordingly with u� instead of u. These two
operators are known to be bounded and self-adjoint operators, and we will make use
of the associated symmetric quadratic form

(2.6) Q[f ] = 〈 f, (Λ− Λ�)f 〉 .

The angle brackets in (2.6) refer to the standard bilinear form in L2(T ); we mention,
however, that—in view of our assumptions (2.2) on the conductivity σ—Q has a well-
defined extension to any f ∈ H−s� (T ), where H−s� (T ) is the Sobolev space of negative
order −s < 0 whose elements are restricted to having a vanishing mean; here, s may
be arbitrarily large; cf. [17, Appendix].

Backscatter data for impedance tomography have recently been introduced in
[16, 17]. Formally, these are defined as the function b given by

(2.7) b(θ) = Q[δ′xθ
] , 0 ≤ θ < 2π ,

where δ′xθ
denotes the tangential derivative of the delta distribution located in the

boundary point xθ = (cos θ, sin θ) ∈ T , i.e.,

〈 δ′xθ
, g 〉 = − ∂

∂θ
g(xθ)

for g sufficiently smooth; in fact, δ′xθ
∈ H

−3/2−ε
� (T ) for any positive number ε. Phys-

ically, the backscatter b(θ) is the first order voltage variation that is induced by the
presence of the inclusions Ω if the body is exposed to a fixed amount of current be-
tween two thin electrodes in the vicinity of xθ; see [15] for a rigorous statement of
this result.

3. Factorization of Λ − Λ�. To prepare the groundwork for our analysis we
first introduce the Neumann function associated with the Laplacian in the unit disk,
i.e.,

(3.1) N(x, z) =

⎧⎪⎨⎪⎩
− 1

2π

(
log |z − x| + log

∣∣∣ z|z| − |z|x
∣∣∣) , z �= 0 ,

− 1

2π
log |x| , z = 0 .

Then the reference potential u� of (2.5) can be represented as a single layer potential

u�(x) =

∫
T

N(x, y)f(y) ds(y) , x ∈ B ,

and its flux across Γ is given by

(3.2)
∂

∂ν
u�(x) = (Af)(x) =

∫
T

∂

∂xν
N(x, y) f(y) ds(y) , x ∈ Γ ;
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bear in mind that ν is pointing into the exterior of Ω.
Because of our assumption that Ω is C2 smooth, the expression (3.2) is a contin-

uous function of x ∈ Γ and, in view of Green’s theorem, can be considered an element
of

C�(Γ) =

{
ϕ ∈ C(Γ) :

∫
Γj

ϕ ds = 0 , j = 1, . . . , J

}
.

Moreover, A is a bounded operator from H−s� (T ) to C�(Γ), where s may be any
positive number; cf. [17, Appendix]. The Banach spaces C�(Γ) and

(3.3) C∗(Γ) =
(
C(Γ1)/R

) ⊕ (
C(Γ2)/R

) ⊕ · · · ⊕ (
C(ΓJ )/R

)
,

where an equivalence class of functions in C∗(Γ) consists of those elements of C(Γ)
that differ on each component Γj of Γ by an individual constant, define a dual sys-
tem (cf. Kress [22, Definition 4.2]) with respect to the standard L2 inner product.
Likewise, H−s

� (T ) and Hs
�(T ) also define a dual system. The associated dual (or ad-

joint) operator of A, denoted by A∗ : C∗(Γ) → Hs�(T ), provides the trace on T of an
(augmented) double layer potential w, i.e.,

(3.4) w(x) = (A∗ψ)(x) =

∫
Γ

∂

∂yν
N(x, y)ψ(y) ds(y) , x ∈ T .

We remark that a density ψ that is constant on each component Γj of Γ belongs to
the null space of the formal extension of A∗ to all of C(Γ), and vice versa; hence in
(3.3) we have factored out the null space of A∗.

We will also need the (augmented) double layer operator

(KNψ)(x) =

∫
Γ

∂

∂yν
N(x, y)ψ(y) ds(y) , x ∈ Γ .

Again note that densities that are constant on each Γj , j = 1, . . . , J , are eigenfunctions
of KN . Accordingly, KN is a well-defined compact operator from C∗(Γ) to C∗(Γ);
we refer to [3, 22] for basic properties of this operator. Finally, we introduce the
Neumann–Dirichlet operator

(3.5) λ : C�(Γ) → C∗(Γ)

of the Laplacian in Ω. Note that it follows from the material in [3, 22] that this
Neumann–Dirichlet map is a bounded operator between these topologies.

Now we can formulate our first result.
Theorem 3.1. For the difference Λ−Λ� of the two Neumann–Dirichlet operators

on B we have the factorization

(3.6) Λ− Λ� = A∗(E −KN)−1λA ,

where E : C∗(Γ) → C∗(Γ) is the “diagonal operator” defined by

(Eχ)|Γj =
1

2

1 + κj
1− κj

χ|Γj , j = 1, . . . , J ,

for χ ∈ C∗(Γ).
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Proof. Let f ∈ L2
�(T ) be a given boundary current, and let u� be given by (2.5).

It then follows from (3.2) that

(3.7) u�|Γ = λAf

in the sense of C∗(Γ). With u of (2.3) define

(3.8) w =

{
u+ − u� in B \ Ω ,
κju

− − u� in Ωj , j = 1, . . . , J .

Then w satisfies

Δw = 0 in B \ Γ , ∂

∂ν
w+ =

∂

∂ν
w− on Γ ,∫

T

w ds = 0 ,
∂

∂ν
w = 0 on T ,

and hence coincides with the (augmented) double layer potential over Γ with density

ψ = w+|Γ − w−|Γ ,
as is obvious from the jump conditions of double layer potentials; cf., e.g., [3].1 In
particular (cf. (3.4)), we have

(3.9) A∗ψ = w|T = (u− u�)|T = (Λ− Λ�)f .

We can express ψ in terms of the respective traces of u� and u+ = u− on Γj ,
j = 1, . . . , J (cf. (2.4)) as

(3.10) ψ = u+ − u� − (κju
− − u�) = u+ − κju

− = (1− κj)u
− .

Using once again the jump relations of the double layer potential, the inner trace of
w on Γ is given by

w− = KNψ − 1

2
ψ ,

and hence on Γj there holds(
(E −KN)ψ

)∣∣
Γj

=
(1
2

1 + κj
1− κj

− 1

2

)
ψ|Γj − w−|Γj .

Inserting now the definition (3.8) of w and (3.10), it follows that

(E −KN)ψ =
κj

1− κj
ψ − (κju

− − u�) = u�

on Γj , for each j = 1, . . . , J , i.e., that

(3.11) (E −KN)ψ = λAf

in the sense of C∗(Γ); cf. (3.7). Following the line of argument in the proof of [3,
Lemma 2.18] it can be seen that E − KN∗ : C�(Γ) → C�(Γ) is injective. As both

1Note that the authors of [3] employ a fundamental solution of opposite sign.
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KN and KN∗ are compact, the Riesz–Fredholm theory implies that E −KN is also
injective and does have a bounded inverse (cf., e.g., [22, Theorem 4.15]). Thus the
assertion (3.6) follows from (3.9) and (3.11).

There is a similar factorization of Λ − Λ�, in which A and A∗ are replaced by
single layer operators S and S∗, respectively:

(3.12) Λ− Λ� = S∗(E∗ −KN∗)−1
λ−1S .

This factorization (somewhat less specific though, as the assumptions on σ were more
general) has been utilized in [17] and also appears in the work of Kress and Kühn [23,
Theorem 3.1]. The particular form (3.12) is also implicit in [3, p. 135].

4. Asymptotic behavior of the backscatter data for small inclusions.
From now on we assume that the inclusions are given by

(4.1) Ωj = xj + εOj , j = 1, . . . , J ,

where ε is a positive number, xj , j = 1, . . . , J , are distinct points in B, and each
of the simply connected domains Oj contains the origin in its convex hull and has a
C2 boundary; note that ε must be sufficiently small so as to fulfill the requirements
on Ωj from section 2; cf. (2.1). We refer to xj as the “location” of Ωj and to Oj

as its “shape.” Our plan is to investigate the backscatter data b : [0, 2π) → R as ε
goes to zero. Considerations of this sort go back to the seminal paper by Friedman
and Vogelius [10] and have since been popularized by the extensive work of Ammari,
Kang, and coauthors; cf., e.g., [3, 4] and the references therein. To facilitate the
presentation, we refrain from augmenting subscripts ε to all relevant symbols.

We start by investigating the operator E − KN which appears in the center of
the factorization of Theorem 3.1. As in [2, sect. 6] we consider E −KN as a J × J
matrix of integral operators acting from C(Γi)/R to C(Γj)/R, and whose “diagonal”
is the operator DN : C∗(Γ) → C∗(Γ) defined by

(4.2)
(
DNϕ

)∣∣
Γj

=
( 1

2

1 + κj
1− κj

I −KN
j

)
ϕ|Γj , j = 1, . . . , J ,

where

(KN
j ϕj)(x) =

∫
Γj

∂

∂yν
N(x, y)ϕj(y) ds(y) , x ∈ Γj ,

is the (augmented) double layer operator over the boundary Γj , and I always denotes
the respective identity operator. Recall (cf. (3.1)) that the Neumann function N(x, y)
differs from the fundamental solution Φ(x, y) = − 1

2π log |x − y| of the Laplacian by
a function that is smooth and bounded for y strictly separated from T ; accordingly,
the difference between KN

j and the (standard) double layer operator

(Kjϕj)(x) =
1

2π

∫
Γj

(x − y) · ν(y)
|x− y|2 ϕj(y) ds(y) , x ∈ Γj ,

is an operator from C∗(Γ) to C∗(Γ) whose operator norm can be bounded by some
constant times the length |Γj | of the boundary. Using also the fact that the “off-
diagonal entries” of E−KN consist of integral operators with smooth kernel functions
over the boundaries Γj, it follows from (4.2) that

(4.3) E −KN = D +R ,
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where the diagonal operator D : C∗(Γ) → C∗(Γ) is given by

(4.4)
(
Dϕ

)∣∣
Γj

=
( 1

2

1 + κj
1− κj

I −Kj

)
ϕ|Γj =: Djϕ|Γj , j = 1, . . . , J ,

and the remainder R satisfies

(4.5) ‖R‖L(C∗(Γ),C∗(Γ)) ≤ Cε ,

where the constant C does not depend on ε.2

Note that the restriction of Dj : C(Γj)/R → C(Γj)/R is well defined, as the
constant functions are eigenfunctions of Dj . Furthermore, for each j = 1, . . . , J the
operator Dj is invertible on C(Γj)/R according to [3, Lemma 2.18]; in fact, from [2,
Lemma 4.2] we even deduce that the operator norms of Dj and D−1

j are independent
of ε. We therefore conclude from (4.3) and (4.5) that

(4.6) (E −KN)−1 = D−1 +R′

for some operator R′ : C∗(Γ) → C∗(Γ) with

(4.7) ‖R′‖L(C∗(Γ),C∗(Γ)) ≤ Cε .

Inserting the factorization of Theorem 3.1, we can rewrite the quadratic form (2.6)
as

(4.8) Q[f ] = 〈Af, (E −KN )−1λAf 〉 ,
and hence (4.6) yields

(4.9) Q[f ] =

m∑
j=1

∫
Γj

(Af)(x)ψj(x) ds + 〈Af,R′λAf 〉 ,

where

(4.10) ψj = D−1
j

(
λAf

)∣∣
Γj
.

We therefore turn next to investigating Af and λAf , respectively. As all points
x ∈ Γj converge to xj as ε→ 0, with |x− xj | = O(ε), it follows that

(4.11) (Af)(x) = ν(x) · ∇u�(x) = ν(x) · ∇u�(xj) + r(x) , x ∈ Γj ,

where the Taylor remainder r ∈ C�(Γ) is uniformly bounded by

|r(x)| ≤ ‖u�‖C2(Ωj)
ε , x ∈ Γj .

This can be further estimated by using the smoothing properties of A, i.e.,

(4.12) ‖r‖C(Γ) ≤ Cε‖f‖H−s(T )

(cf., e.g., [17, Appendix]); the constant in (4.12) depends on s, but here we consider
only fixed values of s. Accordingly, if we denote

(4.13) ϕj(x) = (x− xj) · ∇u�(xj) , x ∈ Γj ,

2Throughout, we use the letter C to denote a generic positive constant that is independent of ε,
but may take different values at different occasions.
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then

(4.14) ‖(λAf)∣∣
Γj

− ϕj‖C(Γj)/R ≤ ‖λ‖L(C�(Γ),C∗(Γ))‖r‖C(Γ) .

(Note that ϕj can be shifted by any additive constant, as this is factored out in
C∗(Γ); hence we included xj in the definition of ϕj mostly for a matter of taste—and
to simplify the arguments below.)

It is fairly easy to see how λ is connected to the Neumann–Dirichlet operators

λj : C�(∂Oj) → C(∂Oj)/R

of the Laplacian in the reference domains Oj , j = 1, . . . , J , where

C�(∂Oj) =

{
χ ∈ C(∂Oj) :

∫
∂Oj

χ ds = 0

}
,

and that

(4.15) ‖λ‖L(C�(Γ),C∗(Γ)) = ε max
j=1,...,J

‖λj‖L(C�(∂Oj),C(∂Oj)/R) .

We therefore conclude from (4.14), (4.12), and (4.15) that

(4.16) (λAf)
∣∣
Γj

= ϕj + O(ε2) ,

where the constant in the O( · )-term depends only on the norm of f in H−s(T ).
Moreover, taking (4.13) into account, there holds

(4.17) ‖λAf‖C∗(Γ) ≤ Cε‖f‖H−s(T ) ,

as the gradient of u� in the points xj , j = 1, . . . , J , can again be estimated by the
Neumann boundary values of u� on T .

Inserting (4.10) and (4.16), as well as (4.7) and (4.17), into (4.9) we arrive at

Q[f ] =

J∑
j=1

∫
Γj

(Af)(x)(D−1
j ϕj)(x) ds + O(ε3) ,

where we have used the facts that the lengths of the boundaries Γj , j = 1, . . . , J , are
of the order of ε, and that ‖D−1

j ‖ as well as Af remain bounded as ε→ 0; cf. (4.11).
Inserting (4.11) and (4.13) in the leading order term, we thus obtain

(4.18) Q[f ] =

J∑
j=1

∇u�(xj) ·
(∫

Γj

ν(x)D−1
j (x− xj) ds

)
∇u�(xj) + O(ε3) ,

because the remainder r in (4.11) satisfies (4.12) and ϕj is also bounded by some
multiple of ε (cf. (4.13)), and because |Γj | = O(ε). In (4.18) we take the gradient and
the normal to be column vectors, whereas the variable x is considered to be a row
vector; the term in big parentheses is then a two-by-two matrix, and the action of D−1

j

as well as the integration over Γj at the very end are to be taken componentwise.3

3Take note that there is also some abuse of notation in (4.18), as D−1
j (x−xj) means that D−1

j is
applied to the function · − xj , the result of which is to be evaluated at x, followed by multiplication
with ν(x) in (4.18). A similar comment applies to (4.19) and (4.20) below.
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Transforming the integrals in (4.18) into integrals over ∂Oj by substituting the
variables via

x̂ =
1

ε
(x − xj) , x ∈ Γj ,

and using [2, Lemma 4.2] for the transformation of the double layer operators in (4.4),
we obtain

(4.19)

∫
Γj

ν(x)D−1
j (x− xj) ds = ε2

∫
∂Oj

ν(x̂)
(1
2

1 + κj
1− κj

I − K̂j

)−1

x̂ dŝ ,

where we have introduced the double layer operators

(K̂jχj)(x̂) =
1

2π

∫
∂Oj

(x̂− ŷ) · ν(ŷ)
|x̂− ŷ|2 χj(ŷ) dŝ(ŷ) , x̂ ∈ ∂Oj ,

over ∂Oj , j = 1, . . . , J . The two-by-two matrix

(4.20)

∫
∂Oj

ν(x̂)
(1
2

1 + κj
1− κj

I − K̂j

)−1

x̂ dŝ =: M(κj , Oj) =

[
aj cj
cj bj

]
appearing in (4.19) is the so-called polarization tensor of Polya and Szegö; this matrix
is symmetric and positive (resp., negative definite), depending on the sign of 1− κj ;
cf. [3] for its properties. For later use we also introduce two linear functionals of
M(κj , Oj), namely,

(4.21) αj = aj + bj and δj = bj − aj − 2icj .

Inserting (4.19) and (4.20) into (4.18), we finally conclude that

(4.22) Q[f ] = ε2
J∑

j=1

∇u�(xj) ·M(κj , Oj)∇u�(xj) + O(ε3) ,

where the constant in the O( · )-term depends only on the norm of f in H−s(T ).
We mention that we can also estimate the bilinear form 〈 g, (Λ−Λ�)f 〉 for general

f, g ∈ H−s
� (T ) in much the same way.

Concerning the backscatter data, we can now summarize our findings as follows.
Theorem 4.1. Let the inclusions Ωj, j = 1, . . . , J , of section 2 have the form

Ωj = xj + εOj as in (4.1). Then the backscatter data (2.7) have a uniform expansion
of the form

b(θ) = ε2
J∑

j=1

v(xj , xθ)M(κj , Oj)v(xj , xθ)
T + O(ε3) , 0 ≤ θ < 2π ,

as ε → 0, where M(κj , Oj) is the polarization tensor of Polya and Szegö given by
(4.20), and

(4.23) v(xj , xθ) = − 1

π

( |xj − xθ|2x⊥θ − 2(xj · x⊥θ )(xj − xθ)

|xj − xθ|4
)

with x⊥θ = (− sin θ, cos θ).
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Proof. Starting from (4.22), all we need to do is evaluate v(xj , xθ) = ∇u�(xj)T ,
where u� is the reference potential corresponding to the input current f = δ′xθ

. To
this end, we recall from [16] that this reference potential is given by

u�(x) = − 1

π

x · x⊥θ
|x− xθ|2 ,

and hence, it follows straightaway that

(4.24) ∇u�(x)T = − 1

π

( |x− xθ|2x⊥θ − 2(x · x⊥θ )(x− xθ)

|x− xθ|4
)
.

This yields the desired result.

We mention that the fundamental formula (4.22)—or the corresponding result for
〈 g, (Λ − Λ�)f 〉—is known; cf., e.g., [4, Theorem 1]. For f, g ∈ L2�(T ) the assertion
follows from the results in [3], and the analysis there can be extended to the reduced
regularity of f and g that is relevant for our Theorem 4.1. Nonetheless, we have
preferred to include the above derivation to remain self-contained, partly also because
we feel that this setting within the space of continuous functions on the boundaries of
the inclusions allows for a somewhat simpler argument than within the Sobolev space
context that is utilized in [3].

5. The holomorphic extension of the backscatter data. In this section we
consider the backscatter data as a function of a complex variable on the unit circle,
and hence, by some abuse of notation, we will further write b(eiθ) instead of b(θ) as in
(2.7). With this agreement it has been shown in [17] that the backscatter data extend
as a holomorphic function to a certain subset of the complex plane.

Theorem 5.1. Let ζ∗ = 1/ζ be the reflection of ζ at the unit circle, and likewise,
let

Ω∗ = { ζ ∈ C : 1/ζ ∈ Ω }

be the reflection of Ω. Then the backscatter data extend to a holomorphic function
b : C \ (Ω ∪ Ω

∗
) → C with

(5.1) b(ζ∗) = b(ζ) , ζ ∈ B \ Ω .

Moreover, if 0 /∈ Ω, then b has a double root in ζ = 0.

Proof. The fact that b has a holomorphic extension to B \ Ω has been proved
in [17], and this extension can be defined as follows. We identify ξ ∈ C with x =
(Re ξ, Im ξ) ∈ Γ, and ζ ∈ C with xθ ∈ T , respectively. Next we rewrite the gradient
of the reference potential corresponding to f = δ′xθ

as

v(x, xθ) = ∇u�(x)T = (v1, v2) , x ∈ Γ ,

where we omit the dependency of v1 and v2 on x and xθ to simplify the notation.
From (4.24) we conclude that v(x, xθ) corresponds to the complex number

v1 + iv2 = − 1

π

|ξ − ζ|2iζ − 2 Im(ξζ)(ξ − ζ)

|ξ − ζ|4 ,
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the real part of which is

v1 = − i

2π

|ξ − ζ|2(ζ − ζ) + 2i Im(ξζ)(ξ + ξ − ζ − ζ)

|ξ − ζ|4

= − i

2π

(ξ − ζ)(ξ − ζ)(ζ − ζ) + (ξζ − ξζ)(ξ + ξ − ζ − ζ)

(ξ − ζ)2(ξ − ζ)2
.

Expanding this fraction by ζ2, and using the fact that |ζ|2 = 1, we finally arrive at

v1 =
i

2π

(ξ
2 − 1)ζ3 + 2(ξ − ξ)ζ2 + (1− ξ2)ζ

(ξ − ζ)2(ξζ − 1)2

=
i

2π
ζ

(
1

(ζ − ξ)2
− 1

(ξζ − 1)2

)
.(5.2)

In a similar fashion we rewrite the imaginary part v2 as

v2 = − 1

2π
ζ

(
1

(ζ − ξ)2
+

1

(ξζ − 1)2

)
.(5.3)

Accordingly, if ν(x) is the outer normal at x ∈ Γ, we obtain

(5.4) h(ζ, x) := ν(x) · (v1, v2) = (Aδ′xθ
)(x)

in (3.2). In (5.2)–(5.4) we still identify x ∈ Γ with ξ ∈ C and have ζ = eiθ. Take note,

however, that h extends as a holomorphic function of the variable ζ to C \ (Ω ∪ Ω
∗
),

as long as x ∈ Γ is kept fixed; in what follows we will occasionally write h(ζ) instead
of h(ζ, · ).

Inserting (5.4) into (4.8), we finally arrive at the representation

(5.5) b(ζ) = 〈h(ζ), (E −KN)−1λh(ζ) 〉
of the backscatter data, which provides the analytic extension of this function to
ζ ∈ C\(Ω∪Ω

∗
). As h satisfies the symmetry property (5.1), this property also carries

over to b. Alternatively, (5.1) can be deduced from the reflection principle, as b is real
valued on T .

From (5.5) it follows that

|b(ζ)| ≤ ‖(E −KN )−1λ‖L(C�(Γ),C∗(Γ))‖h(ζ, · )‖2C�(Γ) .

By virtue of (5.2)–(5.4),

‖h(ζ, · )‖C�(Γ) = O(ζ) , ζ → 0 ,

provided that 0 /∈ Ω, and hence b(ζ) = O(ζ2) as ζ → 0 in this case; i.e., b has a double
root in ζ = 0.

In view of Theorem 5.1 it is illuminating to reinterpret Theorem 4.1 in complex
variables.

Theorem 5.2. Let the inclusions Ωj, j = 1, . . . , J , of section 2 have the form
Ωj = xj + εOj as in (4.1), where we identify xj = (x1j , x2j) with the corresponding
complex numbers ξj = x1j + ix2j , j = 1, . . . , J . Further, we denote for a fixed value
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of ε > 0 the associated holomorphic extension of the backscatter data by bε. Then the
rescaled functions bε/ε

2 converge to the rational function

(5.6) F (ζ) =
1

4π2
ζ2

J∑
j=1

(
δj

(ζ − ξj)4
+

δj

(ξjζ − 1)4
+

2αj

(ζ − ξj)2(ξjζ − 1)2

)

as ε → 0, uniformly on every compact subset of C \ {ξj , ξ∗j : j = 1, . . . , J}, where
αj and δj are given by (4.21) and depend on the Polya–Szegö polarization tensor
M(κj , Oj) of (4.20).

Proof. We first observe that—for ζ ∈ C, and x ∈ R
2 with associated ξ ∈ C \

{ζ, ζ∗}—the vector (v1, v2)
T of (5.4) is the gradient (with respect to x) of the complex-

valued function

g(ζ, x) =
i

2π

ξζ2 − ξ

(ζ − ξ)(ξζ − 1)
, ξ /∈ {ζ, ζ∗} .

It follows that we can rewrite (5.5) as

bε(ζ) =

〈
∂

∂xν
g(ζ, x), (E −KN )−1λ

∂

∂xν
g(ζ, x)

〉
,

and as in section 4 we can thus conclude that

bε(ζ) = ε2
J∑

j=1

∇xg(ζ, xj) ·M(κj , Oj)∇xg(ζ, xj) + O(ε3) ,

uniformly for ζ from any compact subset of C \ (Ω ∪ Ω
∗
), and hence

bε(ζ)

ε2
→ F (ζ) =

J∑
j=1

∇xg(ζ, xj) ·M(κj , Oj)∇xg(ζ, xj) , ε→ 0 .

By virtue of (5.2), (5.3) we have

∇xg(ζ, xj) =

[
v1
v2

]
=

1

2π

(
ζ

(ζ − ξj)2

[
i

−1

]
− ζ

(ξjζ − 1)2

[
i
1

])
,

and hence the result follows at once from Theorem 4.1, since

δj =

[
i

−1

]T
M(κj , Oj)

[
i

−1

]
, δj =

[
i
1

]T
M(κj , Oj)

[
i
1

]
,

and

αj = −
[
i
1

]T
M(κj , Oj)

[
i

−1

]
.

We remark that the poles of F are precisely the locations ξj of the inclusions, as
well as their reflections at the unit circle.

Remark 5.3. It is interesting to note that each location ξj gives rise to a fourth
order pole of F , except for the case when the polarization tensor M(κj , Oj) is a
multiple of the identity matrix—the latter being true, e.g., for circular inclusions. In
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that special instance, the parameter δj of (4.21) vanishes, and hence F has only a
second order pole in ξj .

Remark 5.4. Another important aspect of Theorem 5.2 concerns circular inclu-
sions that are located in the center of the unit disk. For those inclusions we not only
have that δj = 0 in (5.6) but also that the second order pole in ξj = 0 cancels with
the factor ζ2 in front of the sum in (5.6). In other words, circular inclusions in the
origin do not appear as poles of F . This reflects the fact that the backscatter of a
single circular inclusion is constant.

6. Locating small inclusions from backscatter data. According to Theo-
rem 5.2 the backscatter data can be well approximated by rational functions when
the inclusions are reasonably small. It is tempting to use this as the basis for a nu-
merical algorithm to locate the inclusions, even when they have finite extent. Similar
algorithms have been used before in impedance tomography, e.g., in [6, 7, 13, 21], or
for inverse source problems for the Poisson equation; cf. [8, 18].

We are therefore looking for a rational function r : C → C that approximates the
given backscatter data on the unit circle; moreover, motivated by the fact that the
backscatter is real-valued, and by (5.6), we impose that r be symmetric with respect
to the unit circle, i.e.,

(6.1) r(ζ∗) = r(ζ) , ζ ∈ C ,

and has a double root at ζ = 0 (and hence at infinity as well). An appropriate concept
for the design of such rational functions are the so-called Laurent–Padé approxima-
tions that have been introduced by Gragg and Johnson [11].4

Let us assume that the backscatter function is given as a Laurent series,

(6.2) b(ζ) =
∞∑

ν=−∞
βνζ

ν ,

which converges in a neighborhood of the unit circle. Then, form ≥ 2, the (m−2,m)-
Laurent–Padé approximation rm of b, if it exists, is a fraction of two finite Laurent
series of Laurent degreesm−2 and m, respectively, or, in other words, rm is a rational
function with (polynomial) denominator degree 2m and numerator degree 2m− 2. In
particular, rm has a double zero at the origin and at infinity, the same property that
the rational function F of Theorem 5.2 has. Moreover, as b is symmetric with respect
to the unit circle, i.e., as

(6.3) β−ν = βν , ν ∈ Z ,

it follows that rm is symmetric, too; i.e., r = rm satisfies (6.1). Finally, among all
these rational functions, rm is the only one whose Laurent coefficients are chosen so
as to match those of b for ν = −2m+ 2, . . . , 2m− 2.

The computation of rm is fairly easy: essentially, it boils down to solving one single
m×m Hankel system of linear equations; see the appendix or [5, 11] for details. As
in all Padé approximations, however, rm may not exist for certain m ≥ 2. Even when
it exists, there may be a catch that—despite its construction—its Laurent coefficients
fail to match those of b. This latter failure is connected to the notion of stable

4Here we follow the original terminology from Gragg and Johnson; beware of the fact that Baker
and Graves-Morris in their commendable reference work [5] refer to these approximations as Padé–
Laurent approximations and reserve the name Laurent–Padé for something different.
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Padé approximations introduced by Trefethen and Gutknecht [26] and can easily be
detected at runtime.

Take note that the symmetry of rm and b is equivalent to the fact that these
functions are real-valued along the unit circle. Also observe that the Laurent coeffi-
cients βν of (6.2) are nothing else than the Fourier coefficients of the given data b(eiθ),
considered as a periodic function of θ ∈ [0, 2π]. In other words, the rational function
rm is designed to be a low-frequency approximation of b along the unit circle, and
hence the computation of rm has some inherent regularizing effect for moderate val-
ues of m; reasonable choices of m can be determined visually by counting the Fourier
coefficients above the noise level; cf. subsection 7.4.

The rational function rm is a good candidate for approximating b, not only on T ,
but also in compact subsets of C \ (Ω ∪ Ω

∗
). It has to be emphasized, though, that

the number of corresponding analytical results is rather scarce. Still, one may hope
that most of the poles of rm will happen to lie within or nearby the inclusions. We
emphasize that the symmetry of rm implies that its poles come in pairs, symmetrically
reflected at the unit circle; accordingly, exactly m poles of rm will lie within the unit
circle. More precisely, as long as there occur no multiple poles (which is the generic
case in a real computation), rm admits a partial fraction expansion of the form

(6.4) rm(ζ) = λ0 +

m∑
k=1

( λk
ζ − ζk

+
λkζ

1− ζζk

)
,

with poles ζk and ζ∗k , where we enumerate the poles in such a way that ζk, k =
1, . . . ,m, are the ones within the unit disk. Some of these can have very small residues
λk ∈ C, though, in which case they may well be considered spurious and should be
discarded eventually. We consider the remaining poles as approximate locations of
the inclusions, and in view of Theorem 5.2, we expect that, the smaller the inclusions,
the more accurate the approximations.

7. Numerical results. In the following we present numerical case studies using
several phantoms with a variety of inclusions of different shapes, sizes, and conduc-
tivities. For these examples backscatter data at 768 equidistant grid points on the
unit circle have been generated by solving the boundary value problems (2.3) with a
boundary element code. Numerical results will be presented under different assump-
tions on the number and the quality of data that are used: In fact, each reconstruction
is computed from n values b(eiθ�) of the backscatter at equidistant boundary angles
θ� = 2�π/n, but n will vary considerably in what follows. As we discuss in more detail

in subsection 7.2, an FFT of the given data provides accurate approximations β̂ν of
the Laurent coefficients βν of (6.2), at least for moderate values |ν| ≤ ν∗, where the
appropriate bound ν∗ � n/2 depends on various parameters, and will be estimated
below; cf. (7.2).

We start with an idealistic setting, where we use “almost continuous” noiseless
data; that is, n is very large; subsequently, we turn to more discrete data sets, both
with and without noise.

7.1. Idealistic setting. To begin with we illustrate the potential of our method
for a first example with inclusions of considerable extent, utilizing for the reconstruc-
tion all n = 768 boundary angles for which backscatter data have been simulated.
Figure 7.1 shows the backscatter on the left and the poles of the corresponding
(m − 2,m)-Laurent–Padé approximation rm for m = 64 on the right. Only those
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0 π/2 π 3π/2 2π
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

m = 64
26 poles

τ = 0.001 0
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1

Fig. 7.1. Backscatter data (left) as a function of θ, and reconstructed poles (right) in the unit
disk; no noise, m = 64.

26 poles in the unit disk are shown (as spots), whose residues (relative to the maxi-
mal residue) are above a threshold τ = 10−3. These spots are color coded to visualize
the relative magnitudes of the corresponding residues; the darker the spot, the more
pronounced the pole is on a scale between zero and one, as indicated by the color bar.
Note that some of these poles are almost multiple poles, as the corresponding spots
overlap.

The reconstruction shows two well-separated clusters in the NE and SW parts
of the disk, obviously corresponding to the significant negative deflections of the
backscatter data near θ = π/4 and 5π/4, respectively; these two clusters most likely
correspond to one inclusion each, with conductivities greater than one. The somewhat
C-shaped arrangement of poles in the NNW part of the disk is due to the positive
peak of the backscatter data near θ = 2π/3. The remaining four poles between the
center, and the east of the disk indicate that there may be another inclusion over
there—in fact, as the backscatter changes sign twice between 3π/2 and π/6, there is
some evidence of another inclusion in that part of the disk with conductivity below
the background conductivity.

Figure 7.2 resolves this little puzzle by showing the true inclusions (as solid lines)
in the right-hand side plot. It is fascinating to see that the poles not only locate
the inclusions, but also provide very decent shape information. For this example
we have fixed the conductivities to be κj = 2, 0.5, 10, and 0.5, respectively (in
counter clockwise orientation, starting with the inclusion in the NE); except for the
sign of κ − 1, however, we see no obvious possibility yet of extracting more detailed
information about the conductivities with our approach.

On the left-hand side of Figure 7.2 one can see that the approximation rm on the
unit circle (the dashed line, as compared to the solid backscatter line) is a perfect
match of the given data, as it is almost impossible to distinguish the two curves
visually; in fact, the relative error between these two functions has about the order
of machine precision.

Strictly speaking, this experiment goes far beyond the theory that has been de-
veloped in the previous paragraphs, as the inclusions are not really small, at least not
in the sense considered in Theorem 5.2. We therefore provide the result of a second
experiment, for which we have scaled down the inclusions by a factor of four; the
corresponding phantom, backscatter, and reconstruction are shown in Figure 7.3. We
emphasize the different scale of the vertical axis in the backscatter plot: As predicted



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCATING SEVERAL INCLUSIONS FROM BACKSCATTER DATA 2007
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Fig. 7.2. Same as Figure 7.1, but including the approximation r64 on the left (dashed line),
and the true inclusions on the right.

0 π/2 π 3π/2 2π
−0.03

−0.02

−0.01

0

0.01

m = 64
21 poles

τ = 0.001 0

0.2

0.4

0.6

0.8

1

Fig. 7.3. Similar to Figure 7.2, but with inclusions that have been reduced by a factor of four.

by Theorem 5.2, the backscatter in Figure 7.3 (left) is, roughly, by a factor of 16
smaller than the one in Figure 7.2 (left). To facilitate the appreciation of the recon-
struction in the right-hand side plot of Figure 7.3, this time the inclusions are plotted
on top of the poles, the latter providing very well the locations of all four inclusions.

7.2. Discrete data, no noise. The setting from subsection 7.1 is unrealistic
in that real data will hardly have that many high-frequency information. Instead, a
realistic setting may consist of n = 32, or at best, n = 64 equidistant data points.
A rough calculation based on the assumption that the coefficients of the Laurent
series (6.2) behave like

(7.1) |βν | ≈ cρ|ν| , ν ∈ Z ,

where c > 0 and ρ = sup{|ζ| : ζ ∈ Ω} (cf. [20]), indicates that the discrete Fourier

coefficients β̂ν approximate the Laurent coefficients βν with a relative error of about

|β̂ν − βν |
|βν | � ρn−2|ν| , |ν| ≤ n/2 ;

cf., e.g., Henrici [19, p. 20]. If we refrain from using Fourier coefficients whose relative
error is above some tolerance ω, then the above rule of thumb constrains us to using
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Fig. 7.4. Numerical results with only n = 32 data samples and Laurent degree m = 6.
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Fig. 7.5. Numerical results with n = 64 data samples and Laurent degree m = 14.

only those coefficients with indices |ν| ≤ ν∗ = (n− d)/2, where d = logω/ log ρ, and
it thus follows that the parameter m of the (m− 2,m)-Laurent–Padé approximation
should satisfy 2m− 2 ≤ ν∗ (cf. section 6), i.e.,

(7.2) m ≤ ν∗

2
+ 1 =

n− d

4
+ 1 .

The parameter ρ can be estimated by replacing βν by β̂ν in (7.1), and in the example
of Figure 7.1 this yields ρ ≈ 0.8, and hence d ≈ 10 for ω = 0.1.

We therefore should not drive m above six in that example, when n = 32 data
samples are to be used, which in turn means that only four to six poles will carry
realistic information. Figure 7.4 shows the corresponding result for the (m − 2,m)-
Laurent–Padé approximation rm with m = 6. Note that we have increased the value
of τ to 0.1 for this reduced data set, and two poles have been eliminated because of
that, since their residues failed to pass the nonnegligibility test. The four remaining
poles pick one inclusion each—although the one in the east has barely been localized.

The left-hand side plot of Figure 7.4 shows the full backscatter data as solid
line, whereas the discrete backscatter samples that are used for the reconstruction are
highlighted as small circles. The rational approximation of the data is again included
as a dashed line. As can be seen, this approximation slightly overshoots the global
minimum of the backscatter near θ = 5π/4, and that is why the corresponding pole
is somewhat too close to the boundary of the disk.
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Fig. 7.6. Numerical results with n = 64 data samples for the example with small inclusions.

Concerning n = 64 equidistant backscatter samples, we refer to Figure 7.5 for the
corresponding reconstruction. Here, we choosem = 14 according to the estimate (7.2),
using the same value d as before. In this case 9 out of 14 poles pass our residue filter,
and all poles provide fair approximations of the true locations. We hasten to remark,
though, that there is a chance that reasonable choices of m yield misleading results;
for this data set, for example, we obtain a relevant pole right in the center of the
three inclusions in the NE part of the disk when we select m = 13 instead of m = 14.
Accordingly, care has to be taken when interpreting these numerical results. In a real
computation, one should try various Laurent degrees when appropriate to observe
“stable” clusters of poles over a certain range of admissible values for m.

Again, we also investigate the impact of the size of the inclusions on the outcome
of the method, and we reconsider the example from Figure 7.3 with the tiny inclusions.
Figure 7.6 presents the corresponding numerical result for n = 64 backscatter samples.
In view of Theorem 5.2, the estimate for ρ in (7.1) should roughly be the same as
before so that we can use the same degree m = 14 for the rational approximation
as in the previous case. A comparison of Figure 7.6 with Figure 7.3 reveals that the
poles are affected quite a bit by the reduced number of data, and that the localization
of the inclusions is no more better than for the larger ones.

Again, we have triggered the quality of the reconstruction by choosing the thresh-
old τ = 10−2 somewhat smaller than before; with τ = 0.1, as in the previous example,
all three poles in the eastern half of the disk would have been eliminated, with the
effect that the rational approximation rm(eiθ) would have been almost constant for
θ ∈ (−π/2, π/2), thus failing to approximate the two local extrema of the backscatter
on that part of the circle.

We omit the corresponding result for n = 32 data points; the reconstruction is
somewhat worse in that case, but still useful.

7.3. The impact of the conductivity. As another test case we consider an
example with two identical inclusions, having the same distance to the boundary,
but differing in their conductivities. For this setup we have run two experiments,
where one of the conductivities, κ = 0.5, has been kept fixed, while two different
conductivities, namely κ = 0.8 in the first run (Figure 7.7) and κ = 0.95 in the second
one (Figure 7.8), have been assigned to the other inclusion; recall that σ = 1 is the
background conductivity, so that the second inclusion has a reduced contrast in the
second test case.
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Fig. 7.7. Two inclusions with conductivities κ = 0.5 (top) and κ = 0.8 (bottom), respectively;
n = 64 data samples.
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Fig. 7.8. Two inclusions with conductivities κ = 0.5 (top) and κ = 0.95 (bottom), respectively;
n = 64 data samples.

As expected, the second peak of the backscatter—corresponding to the inclusion
in the SW—is disappearing with diminishing contrast in the conductivity; however,
it can be seen from the good quality of the approximation rm ≈ b, as well as from the
computed poles in the right-hand side plots, that the rational approximation can still
take care of that peak, as long as it is discernible. Of course, with reduced contrast,
the absolute values of the associated residuals λk in the partial fraction expansion (6.4)
of rm drop down, as can be seen from the intensity of the spots in the right-hand side
plots. Accordingly, if we would increase our threshold to τ = 0.1, only three of the
SW poles would have survived in the first test case, while none of them would have
jumped over this threshold in the second test case, where κ = 0.95. (Again, a plot of
rm would then reveal that the rational approximation fails to trace the second bump
of the backscatter data, calling for a smaller threshold parameter instead.)

7.4. Discrete data with noise. As our problem is extremely ill-posed, it
doesn’t come as a surprise that the situation changes for the worse when the data
are perturbed by “noise”; for our experiments we choose uniformly distributed entries
with absolute values below some parameter δ as a realistic noise model. In what
follows we describe how we regularize our code for noisy data.

In the presence of noise, less Fourier coefficients carry relevant information, and
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Fig. 7.9. Discrete Fourier coefficients in the presence of noise (δ = 10−3); see text for expla-
nations.

we therefore incorporate a first regularization of the problem by reducing the number
ν∗ of discrete Fourier coefficients to be used for the Padé approximation. We illustrate
this procedure for the example of Figure 7.7, where the two identical inclusions have
conductivities κ = 0.5 and κ = 0.8, respectively. We use the same number of n = 64
data points and simulate noise with noise level δ = 10−3, which is a few permille of
the maximal backscatter, but just slightly below the minimal backscatter, which is
about 1.5 · 10−3; cf. the left-hand plot of Figure 7.7.

Figure 7.9 shows—as a function of ν—the squared (absolute) Laurent coefficients

|βν |2 and their approximations |β̂ν |2 as filled dots, and open circles, respectively. The
horizontal solid line indicates the expected squared Euclidean norm of the noise, which
is (n/3)δ2 ≈ 2 ·10−5. Fourier coefficients corresponding to circles below that line may
be largely corrupted by noise, and for this reason should not be considered reliable. As
can be seen from that, only the Laurent coefficients βν with |ν| ≤ 15 can be retrieved
with sufficient accuracy for this particular noise sample.

Fixing the cut-off to be ν∗ = 14 we go on to choose m = 8 for the Laurent–
Padé approximation according to the left-hand equation in (7.2). Still, we need to
modify our criterion according to which we keep or delete terms in the partial fraction
expansion (6.4) of rm. Remember that, so far, we have neglected only poles whose
residues have been relatively small. The magnitude of a residue, however, is difficult
to link to the noise level in the data, and so this criterion may not be sufficient for
noisy data. Therefore, we also evaluate each individual term of the partial fraction
expansion (6.4) at the n boundary points and remove those terms whose boundary
values are below the expected value of the squared norm of the noise, i.e.,

n∑
�=1

(
2Re

λk
eiθ� − ζk

)2
<

n

3
δ2 , k ∈ {1, . . . ,m} .

Note that this approach resembles the well-known discrepancy principle from the ill-
posed problems literature (cf., e.g., [9]), which states that approximate solutions are
to be improved just until the data fit is within the level of the noise. This modification
of our code provides a second regularization of the problem.

Figure 7.10 displays the computed locations of the inclusions, together with the
noisy input data; as can be seen from the circles in the left-hand side plots, i.e., the
given data, the noise affects the data mostly in that part of the circle that is far from
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Fig. 7.10. Numerical results for n = 64 noisy data samples; δ = 10−3.
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Fig. 7.11. Numerical results for n = 64 noisy data samples; δ = 5 · 10−3.

the inclusions, and our regularization techniques successfully prevent the appearance
of spurious poles in that area.

When we increase the noise level by a factor of five, i.e., δ = 5 · 10−3, then
the n = 64 data points exhibit more serious oscillations; see the left-hand plot in
Figure 7.11. In particular, wiggles in the backscatter data do also show up in that
part of the circle that is between the two inclusions. These perturbations affect
the rational approximations more severely than the oscillations at the opposite part
of the boundary. To compensate for that, we have increased the residue threshold
somewhat further to τ = 0.1, accepting that this reduces the ability to detect objects
with lower contrast; cf. subsection 7.3. Finally, because the noise is stronger, less
Fourier coefficients are sufficiently accurate, and therefore we have to decrease the
degree of the Pade approximations to m = 5, or m = 6 at most. As can be seen in
Figure 7.11 this leaves us with only three poles that satisfy all our safeguards—but
these poles suffice to locate the two inclusions fairly well.

Taking the strong perturbations of the noisy backscatter data in Figure 7.11 into
account, it is evident that different noise samples may affect the reconstructions in
various ways. We therefore conclude by showing in Figure 7.12 reconstructions for
eight different noise samples, using the same noise level as before, i.e., δ = 0.5 · 10−3.
We observe that two out of the three poles shown in Figure 7.11 are fairly robust,
one for each of the inclusions. The third pole meanders between the two inclusions or
may split into another pair of poles.
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Fig. 7.12. Numerical results for different noisy data samples, each with noise level δ = 5 · 10−3.
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8. Concluding remarks. We have shown that the backscatter of a finite union
of small inclusions within a homogeneous disk can be well approximated by rational
functions, and that the poles of these functions can be used to locate the inclusions.
We also have presented a corresponding algorithm using Laurent–Padé approxima-
tions and developed safeguards to stabilize (regularize) the algorithm in the presence
of noise. Our numerical results demonstrate that the method is not limited to very
small inclusions but is applicable also when the inclusions have nonnegligible size.

In our numerical examples we have restricted ourselves to (�,m)-Laurent–Padé
approximations with � = m− 2 because of their double root near zero (and infinity).
However, numerical test runs with � = m gave similar results; we mention, though,
that when � = m, the Padé algorithm requires 2 × 2 further Fourier coefficients,
namely β±(2m−1) and β±2m. Other rational approximation schemes, such as those
based on the rational Carathéodory–Fejér method (resp., the Adamjan–Arov–Krĕın
theory; cf. [6, 7, 12, 25]), may have further advantages.

The stability of the algorithm with respect to noise has been exemplified for a
test problem with two inclusions. Since backscatter data are relative data, the impact
of noise may be disastrous when an inclusion has little influence on the data, be it
because (i) the contrast in conductivity is low, (ii) the inclusion is small, or (iii) the
inclusion is near the center of the object. This, of course, reflects the ill-posedness of
the problem.

Finally we mention that, in principle, it should also be possible to extend the tech-
niques from [18] to extract shape information about the inclusions from the residues
of the poles and to refine such a first guess by some Newton iteration afterwards. This
is left for future research.

Appendix. Computation of the Laurent–Padé approximation. We con-
clude with a brief description of the computation of the (m − 2,m)-Laurent–Padé
approximation rm of the backscatter. For the theoretical background we refer to [5,
sect. 7.4].

As the backscatter is real-valued over T , the Laurent–Padé approximation rm
assumes the form

(A.1) rm(ζ) =
p(ζ)q(1/ζ) + p(1/ζ)q(ζ)

q(ζ)q(1/ζ)
,

where the polynomials p and q are given by

(A.2) p(ζ) =

m∑
ν=0

pνζ
ν and q(ζ) =

m∑
ν=0

qνζ
ν ,

and the polynomials p and q are obtained from p and q by taking the complex conju-
gates of their respective expansion coefficients.

Given the Laurent coefficients βν of the backscatter (cf. (6.2)), the coefficients qν ,
1 ≤ ν ≤ m, of q are obtained from the linear system

(A.3)

⎡⎢⎢⎢⎢⎣
β−1 β0 . . . βm−2

β0 β1
...

...
. . .

βm−2 . . . β2m−3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
qm

qm−1

...
q1

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎣
βm−1

βm
...

β2m−2

⎤⎥⎥⎥⎥⎦ ,
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and q0 is set to be q0 = 1. Subsequently, the coefficients pν are given by

(A.4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm

pm−1

...

p1

p0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0/2 β1 · · · · · · βm

0 β0/2
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . β1

0 0 · · · 0 β0/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qm

qm−1

...

q1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In effect, the computation of rm requires all Laurent coefficients βν with |ν| ≤ 2m−2;
Laurent coefficients with negative indices are redundant, though; cf. (6.3).

We mention that it is obvious from (A.2) that the denominator in (A.1) is a
Laurent polynomial of degreem, whereas it is less obvious that the numerator Laurent
polynomial in (A.1) has a reduced degreem−2; see [5] for a proof. Finally, we remark
that rm fails to be well defined when the Hankel matrix in (A.3) is singular.
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