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1 Introdution

In [1℄ Calvetti and Reihel onsider an implementation of Tikhonov regular-

ization for large linear problems

(1.1) Ax = b; A 2 IR

m�n

; x 2 IR

n

; b 2 IR

m

;

based on a partial Lanzos bidiagonalization of A. Their implementation, whih

takes up an idea of Golub and von Matt [3℄, omputes on the y upper and

lower bounds for the Tikhonov residual, given a ertain regularization param-

eter. Numerial examples suggest that the two bounds improve monotonially

with the number of Lanzos steps, and in fat, Calvetti and Reihel prove the

monotoniity of the lower bound.

In this note we omplete their analysis and show that the upper bound is

dereasing monotonially. The same tehnique an be used to give an alternative

proof for the monotoniity of the lower bound.

2 The omplete theorem

In Tikhonov regularization (f. e.g., Groetsh [4℄), an approximate solution of

(1.1) is de�ned as

x

�

= (A

T

A+ �I)

�1

A

T

b;

where � > 0 is the regularization parameter. It is often reommended to hoose

a regularization parameter for whih the norm of the residual

b�Ax

�

= �(AA

T

+ �I)

�1

b

is lose to the noise level in the right-hand side b. Therefore it is of interest to

have upper and lower bounds for

�(�) = kb�Ax

�

k

2

2

= �

2

b

T

(AA

T

+ �I)

�2

b:

As in [1℄ we rewrite �(�) as a Stieltjes integral

(2.1) �(�) =

Z

1

0

 

�

(�) d!(�);  

�

(�) = �

2

(�+ �)

�2

;

where ! is an appropriate pieewise onstant funtion determined by the singular

values of A and orresponding omponents of b.
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The main idea from [3℄ and [1℄ onsists in using Gau� and Gau�-Radau quadra-

ture rules assoiated with the bilinear form

(2.2) hf; gi =

Z

1

0

f(�) g(�) d!(�)

to estimate (2.1) from below and above. In fat, as shown in [3℄, the `-point

Gau� quadrature rule �

`

(�) is a lower bound for �(�) whereas the orresponding

Gau�-Radau rule �

`

(�) with presribed node in the origin is an upper bound,

i.e.

(2.3) �

`

(�) < �(�) < �

`

(�):

The strit inequalites hold true for ` up to r � 1, where r is the degree of the

minimal polynomial for b with respet to AA

T

(only in �

r�1

, i.e., the spae of

polynomials of degree stritly less than r, (2.2) is an inner produt). For this

reason we on�ne ourselves to the ase ` < r.

Theorem . For 1 � m < ` < r there holds

(2.4) �

m

(�) < �

`

(�) < �(�) < �

`

(�) < �

m

(�):

Proof. Let R

`

[f ℄ and R

m

[f ℄ denote the `-point and m-point Gau�-Radau

quadrature rules, with presribed nodes in the origin, for approximating the

integral

Z

1

0

f(�) d!(�):

We shall make use of the fat that these quadrature rules are uniquely determined

by the fat that they integrate exatly all polynomials up to degree 2`� 2, resp.

2m� 2, f. Chihara [2, p. 64/65℄ or Krylov [5℄. Following [2℄,

R

`

[f ℄ = w

1

f(0) +

`

X

i=2

w

i

f(�

i

)

is a positive de�nite funtional on �

`�1

beause the nodes �

i

; i = 1; : : : ; `, with

�

1

= 0, are all mutually di�erent and the weights w

i

, i = 1; : : : ; `, are positive.

In partiular, R

`

an be rewritten as a Stieltjes integral

(2.5) R

`

[f ℄ =

Z

1

0�

f(�) d!

`

(�);

where !

`

is a step funtion with jumps of height w

i

at � = �

i

, i = 1; : : : ; `. Now,

sine

R

m

[p℄ =

Z

1

0

p(�) d!(�) = R

`

[p℄ =

Z

1

0�

p(�) d!

`

(�)

for all p 2 �

2m�2

, it follows that R

m

is at the same time the m-point Gau�-

Radau rule assoiated with the integral (2.5). Therefore, the same argument

used for (2.3) establishes the inequality

�

`

(�) = R

`

[ 

�

℄ < R

m

[ 

�

℄ = �

m

(�):
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To prove the �rst inequality in (2.4) we use the fat that the `-point and

m-point Gau� quadrature rules G

`

[p℄ and G

m

[p℄ yield the same values for all

p 2 �

2m�1

, hene G

m

is also the m-point Gau� quadrature rule assoiated with

the positive de�nite funtional G

`

on �

`�1

. Therefore, the argument for (2.3)

an also be used to show that

�

m

(�) = G

m

[ 

�

℄ < G

`

[ 

�

℄ = �

`

(�):

This ompletes the proof. �

It should be pointed out that the theorem and its proof immediately extend to

ill-posed linear problems, where A is an operator between two Hilbert spaes X

and Y . In this ase, however, ! in (2.1) is not pieewise onstant but a bounded

nondereasing funtion.

3 Conluding remarks

We mention that the �rst inequality in (2.4) has been proved by Calvetti and

Reihel using matrix theoreti arguments; the assumption %

`

�

`+1

> 0 whih has

been employed in [1, Theorem 2.5℄ is equivalent to our restrition that ` be less

than r.

We also remark that the numbers �

`

(�) and �

`

(�) for ` = 1; 2; : : : ; an ef-

�iently be omputed if the Lanzos proess is used to bidiagonalize A and to

approximate x

�

from ertain expanding Krylov subspaes, see [3℄ or [1℄ for the

details.

The two implementations from [1, 3℄ only di�er in the respetive stopping

rules for the termination of the Lanzos proess. The numerial results in [1℄

impressively demonstrate the potential of these algorithms for large problems.
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