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1 Introduction

In [1] Calvetti and Reichel consider an implementation of Tikhonov regular-
ization for large linear problems

(1.1) Az =b, Ae R™™", zeRR", beR™,

based on a partial Lanczos bidiagonalization of A. Their implementation, which
takes up an idea of Golub and von Matt [3], computes on the fly upper and
lower bounds for the Tikhonov residual, given a certain regularization param-
eter. Numerical examples suggest that the two bounds improve monotonically
with the number of Lanczos steps, and in fact, Calvetti and Reichel prove the
monotonicity of the lower bound.

In this note we complete their analysis and show that the upper bound is
decreasing monotonically. The same technique can be used to give an alternative
proof for the monotonicity of the lower bound.

2 The complete theorem

In Tikhonov regularization (cf. e.g., Groetsch [4]), an approximate solution of
(1.1) is defined as

zo = (ATA+al) * AT,

where a > 0 is the regularization parameter. It is often recommended to choose
a regularization parameter for which the norm of the residual

b— Azq = a(AAT 4+ od) b

is close to the noise level in the right-hand side b. Therefore it is of interest to
have upper and lower bounds for

p(a) = ||b — Az, ||2 = 20T (AAT + al)~2b.
As in [1] we rewrite ¢(«) as a Stieltjes integral

(2.1) b(a) = / T ha) dw(d),  Ya(N) = a*(Ata)?

where w is an appropriate piecewise constant function determined by the singular
values of A and corresponding components of b.
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The main idea from [3] and [1] consists in using Gaufl and Gaufi-Radau quadra-
ture rules associated with the bilinear form

(2.2) (fg) = / 7OV 90N dw ()

to estimate (2.1) from below and above. In fact, as shown in [3], the ¢-point
Gaufl quadrature rule ¢,(c) is a lower bound for ¢(«) whereas the corresponding

GauB-Radau rule ¢,(a) with prescribed node in the origin is an upper bound,
i.e.

(2.3) $e(a) < ¢(a) < dy(a).

The strict inequalites hold true for ¢ up to r — 1, where r is the degree of the
minimal polynomial for b with respect to AAT (only in II, i, i.e., the space of
polynomials of degree strictly less than r, (2.2) is an inner product). For this
reason we confine ourselves to the case ¢ < r.

THEOREM . For 1 <m < { < r there holds

(2.4) $m(a) < de(@) < P(@) < @g(a) < Gy ().

Proof. Let Ry[f] and R,,[f] denote the ¢-point and m-point GauBi-Radau
quadrature rules, with prescribed nodes in the origin, for approximating the
integral

/ TP (),

We shall make use of the fact that these quadrature rules are uniquely determined
by the fact that they integrate exactly all polynomials up to degree 2¢ — 2, resp.
2m — 2, cf. Chihara [2, p. 64/65] or Krylov [5]. Following [2],

14

Ry[f] = w1 f(0) + > wif(\)

i=2
is a positive definite functional on II,_; because the nodes \;, i = 1,...,¢, with
A1 = 0, are all mutually different and the weights w;, i = 1,..., ¢, are positive.

In particular, R, can be rewritten as a Stieltjes integral

(25) R[f] = F(A) dwe(N),

07
where wy is a step function with jumps of height w; at A = X;, i =1,...,£. Now,
since

Roltl = [ o) o) = Relpl = [ pOY) dun()
0 —
for all p € Ilyy, 9, it follows that R, is at the same time the m-point Gauf}-
Radau rule associated with the integral (2.5). Therefore, the same argument
used for (2.3) establishes the inequality

52(0‘) = Rz[%] < Rm[¢a] = ¢m(a)‘
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To prove the first inequality in (2.4) we use the fact that the /-point and
m-point Gaufl quadrature rules Gy[p] and G,,[p] yield the same values for all
p € Ily,,_1, hence G,, is also the m-point Gaufl quadrature rule associated with
the positive definite functional G, on II;_y. Therefore, the argument for (2.3)
can also be used to show that

¢m(0‘) = Gmw’a] < Ge[%] = ¢€(0‘)'

This completes the proof. O

It should be pointed out that the theorem and its proof immediately extend to
ill-posed linear problems, where A is an operator between two Hilbert spaces X
and Y. In this case, however, w in (2.1) is not piecewise constant but a bounded
nondecreasing function.

3 Concluding remarks

We mention that the first inequality in (2.4) has been proved by Calvetti and
Reichel using matrix theoretic arguments; the assumption gy0441 > 0 which has
been employed in [1, Theorem 2.5] is equivalent to our restriction that £ be less
than r.

We also remark that the numbers ¢;(a) and ¢ () for ¢ = 1,2,..., can ef-
ficiently be computed if the Lanczos process is used to bidiagonalize A and to
approximate x, from certain expanding Krylov subspaces, see [3] or [1] for the
details.

The two implementations from [1, 3| only differ in the respective stopping
rules for the termination of the Lanczos process. The numerical results in [1]
impressively demonstrate the potential of these algorithms for large problems.
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