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1 Introdu
tion

In [1℄ Calvetti and Rei
hel 
onsider an implementation of Tikhonov regular-

ization for large linear problems

(1.1) Ax = b; A 2 IR

m�n

; x 2 IR

n

; b 2 IR

m

;

based on a partial Lan
zos bidiagonalization of A. Their implementation, whi
h

takes up an idea of Golub and von Matt [3℄, 
omputes on the 
y upper and

lower bounds for the Tikhonov residual, given a 
ertain regularization param-

eter. Numeri
al examples suggest that the two bounds improve monotoni
ally

with the number of Lan
zos steps, and in fa
t, Calvetti and Rei
hel prove the

monotoni
ity of the lower bound.

In this note we 
omplete their analysis and show that the upper bound is

de
reasing monotoni
ally. The same te
hnique 
an be used to give an alternative

proof for the monotoni
ity of the lower bound.

2 The 
omplete theorem

In Tikhonov regularization (
f. e.g., Groets
h [4℄), an approximate solution of

(1.1) is de�ned as

x

�

= (A

T

A+ �I)

�1

A

T

b;

where � > 0 is the regularization parameter. It is often re
ommended to 
hoose

a regularization parameter for whi
h the norm of the residual

b�Ax

�

= �(AA

T

+ �I)

�1

b

is 
lose to the noise level in the right-hand side b. Therefore it is of interest to

have upper and lower bounds for

�(�) = kb�Ax

�

k

2

2

= �

2

b

T

(AA

T

+ �I)

�2

b:

As in [1℄ we rewrite �(�) as a Stieltjes integral

(2.1) �(�) =

Z

1

0

 

�

(�) d!(�);  

�

(�) = �

2

(�+ �)

�2

;

where ! is an appropriate pie
ewise 
onstant fun
tion determined by the singular

values of A and 
orresponding 
omponents of b.
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The main idea from [3℄ and [1℄ 
onsists in using Gau� and Gau�-Radau quadra-

ture rules asso
iated with the bilinear form

(2.2) hf; gi =

Z

1

0

f(�) g(�) d!(�)

to estimate (2.1) from below and above. In fa
t, as shown in [3℄, the `-point

Gau� quadrature rule �

`

(�) is a lower bound for �(�) whereas the 
orresponding

Gau�-Radau rule �

`

(�) with pres
ribed node in the origin is an upper bound,

i.e.

(2.3) �

`

(�) < �(�) < �

`

(�):

The stri
t inequalites hold true for ` up to r � 1, where r is the degree of the

minimal polynomial for b with respe
t to AA

T

(only in �

r�1

, i.e., the spa
e of

polynomials of degree stri
tly less than r, (2.2) is an inner produ
t). For this

reason we 
on�ne ourselves to the 
ase ` < r.

Theorem . For 1 � m < ` < r there holds

(2.4) �

m

(�) < �

`

(�) < �(�) < �

`

(�) < �

m

(�):

Proof. Let R

`

[f ℄ and R

m

[f ℄ denote the `-point and m-point Gau�-Radau

quadrature rules, with pres
ribed nodes in the origin, for approximating the

integral

Z

1

0

f(�) d!(�):

We shall make use of the fa
t that these quadrature rules are uniquely determined

by the fa
t that they integrate exa
tly all polynomials up to degree 2`� 2, resp.

2m� 2, 
f. Chihara [2, p. 64/65℄ or Krylov [5℄. Following [2℄,

R

`

[f ℄ = w

1

f(0) +

`

X

i=2

w

i

f(�

i

)

is a positive de�nite fun
tional on �

`�1

be
ause the nodes �

i

; i = 1; : : : ; `, with

�

1

= 0, are all mutually di�erent and the weights w

i

, i = 1; : : : ; `, are positive.

In parti
ular, R

`


an be rewritten as a Stieltjes integral

(2.5) R

`

[f ℄ =

Z

1

0�

f(�) d!

`

(�);

where !

`

is a step fun
tion with jumps of height w

i

at � = �

i

, i = 1; : : : ; `. Now,

sin
e

R

m

[p℄ =

Z

1

0

p(�) d!(�) = R

`

[p℄ =

Z

1

0�

p(�) d!

`

(�)

for all p 2 �

2m�2

, it follows that R

m

is at the same time the m-point Gau�-

Radau rule asso
iated with the integral (2.5). Therefore, the same argument

used for (2.3) establishes the inequality

�

`

(�) = R

`

[ 

�

℄ < R

m

[ 

�

℄ = �

m

(�):
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To prove the �rst inequality in (2.4) we use the fa
t that the `-point and

m-point Gau� quadrature rules G

`

[p℄ and G

m

[p℄ yield the same values for all

p 2 �

2m�1

, hen
e G

m

is also the m-point Gau� quadrature rule asso
iated with

the positive de�nite fun
tional G

`

on �

`�1

. Therefore, the argument for (2.3)


an also be used to show that

�

m

(�) = G

m

[ 

�

℄ < G

`

[ 

�

℄ = �

`

(�):

This 
ompletes the proof. �

It should be pointed out that the theorem and its proof immediately extend to

ill-posed linear problems, where A is an operator between two Hilbert spa
es X

and Y . In this 
ase, however, ! in (2.1) is not pie
ewise 
onstant but a bounded

nonde
reasing fun
tion.

3 Con
luding remarks

We mention that the �rst inequality in (2.4) has been proved by Calvetti and

Rei
hel using matrix theoreti
 arguments; the assumption %

`

�

`+1

> 0 whi
h has

been employed in [1, Theorem 2.5℄ is equivalent to our restri
tion that ` be less

than r.

We also remark that the numbers �

`

(�) and �

`

(�) for ` = 1; 2; : : : ; 
an ef-

�
iently be 
omputed if the Lan
zos pro
ess is used to bidiagonalize A and to

approximate x

�

from 
ertain expanding Krylov subspa
es, see [3℄ or [1℄ for the

details.

The two implementations from [1, 3℄ only di�er in the respe
tive stopping

rules for the termination of the Lan
zos pro
ess. The numeri
al results in [1℄

impressively demonstrate the potential of these algorithms for large problems.
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