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Summary Impedance tomography seeks to recover the electrical conduc-
tivity distribution inside a body from measurements of current flows and
voltages on its surface. In its most general form impedance tomography
is quite ill-posed, but when additional a-priori information is admitted the
situation changes dramatically. In this paper we consider the case where
the goal is to find a number of small objects (inhomogeneities) inside an
otherwise known conductor. Taking advantage of the smallness of the in-
homogeneities, we can use asymptotic analysis to design a direct (i.e., non-
iterative) reconstruction algorithm for the determination of their locations.
The viability of this direct approach is documented by numerical examples.

Mathematics Subject Classification (2000): 65N21, 35R30, 35C20

1 Introduction

Techniques for recovering the conductivity distribution inside a body from
measurements of current flows and voltages on the body’s surface go under
the heading of electrical impedance tomography (EIT). The vast and grow-
ing literature reflects the many possible applications of this method, e.g.
for medical diagnosis or nondestructive evaluation of materials. For further
details we refer to the recent survey paper [8].

Since the underlying inverse problem is nonlinear and severely ill-posed
it is generally advisable to incorporate all available a-priori knowledge
�
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about the unknown conductivity. One such type of knowledge could be that
the body consists of a smooth background (of known conductivity) con-
taining a number of unknown, small inclusions with a significantly higher
or lower conductivity. This situation arises for example in mine detection,
where one tries to locate the position of buried anti-personnel mines from
electromagnetic data. The mines have a higher (metal) or lower (plastic)
conductivity than the surrounding soil and they are small relative to the
area being imaged. General purpose EIT reconstruction methods are likely
to fail: due to the smallness of the mines the associated voltage potentials
are very close to the potentials corresponding to the unperturbed medium,
so unless one knows exactly what patterns to look for, noise will largely
dominate the information contained in the measured data. Furthermore, in
this application it is often not necessary to reconstruct the precise values of
the conductivity of the mines or their shapes. The only information of real
interest is their positions.

In this work we propose a direct algorithm for determining the po-
sitions of small conductivity inhomogeneities. The algorithm makes use
of an asymptotic expansion of the voltage potentials, which has been de-
rived by Cedio-Fengya et al. [6]; see also the prior work of Friedman and
Vogelius [11] for the case of perfectly conducting or insulating inhomo-
geneities. Ammari et al. [1] have also utilized this asymptotic expansion
to design a variationally based direct reconstruction method, a method that
is quite different from the one presented here. Our algorithm is somewhat
in the spirit of a method developed in [4,5], and it also has some similari-
ties to a recent MUSIC-type method developed by Devaney [9]. A detailed
discussion of the relation between the latter (MUSIC) algorithm and the
linear sampling method in inverse scattering (cf. Kirsch [14]) is found in
Cheney [7].

This paper is organized as follows. In the next section we review the
asymptotic expansion of the voltage potentials in the presence of small in-
homogeneities, in particular we show how this leads to a similar expansion
for the associated Neumann-Dirichlet operator. The principal operator aris-
ing in the latter expansion will be examined in detail; this operator is at the
root of our algorithm for the location of the inhomogeneities as explained
in Section 3 and Section 4. In Section 5 we show how certain informa-
tion about the shape of the inhomogeneities may be recovered, once their
positions have been determined.

2 The forward problem with small inhomogeneities

Let
�������

, �	��

��� , denote a bounded domain with a smooth boundary� �
, and ������� a smooth, positive background conductivity. We consider



A direct impedance tomography algorithm 3

conductivity distributions of the form

��� ����� � �����
� ���
	 �� ������
 ������� ��� �

� � � � � ��� ����� � 	 �� � (2.1)

where 	 �� ��� ����� 	 �
. Here, the points � � indicate the positions of the

“centers” of the inhomogeneities, and the smooth sets 	 �
(with ����	 �

)
describe their relative shapes. The “average” inhomogeneity size is speci-
fied by the parameter

��� � , which is assumed to be small. We will also
assume that ��� � � �"!� ���

, so that the constant conductivity of any inhomo-
geneity is different from that of the adjacent background.

If one induces a normal current flow # , with $&%(')#+*-,��.� , on the
boundary

� �
, then this gives rise to a voltage potential / � that solves the

Neumann boundary value problem021 �3� 0 /4� ��� in
� � �3� � / ��65 ��# on

� � �
With the additional normalization condition $(%(' / � *-, �7� the solution / �
becomes unique. The relation between the applied boundary currents # and
the boundary voltages / �98 %(' defines a linear mapping : �<; #>=?@/ �98 %&' , the
so-called Neumann-Dirichlet operator. Here we consider : � as an operator
from A �B � � � � into itself, where A �B � � � � �7CD#��EA � � � � � ; $ %('F#<*-, �G�IH .
In this topology : � is compact and selfadjoint.

We are interested in the behavior of : � as
�

tends to zero, i.e., as the
inhomogeneities 	 �� shrink to the points � � , � �J
 ������� ��� . First of all, one
expects that / � 8 %(' converges to the boundary values of the potential /6K
corresponding to the background conductivity � K � � . This is indeed one
conclusion of the following much more detailed result due to Cedio-Fengya
et al. [6, Theorem 2].

Theorem 2.1 Assume the points � � , � �2
 ������� ��� , satisfyLNMPORQ �S��T �U� � �WVX* K for YZ!�[� and
LNMPORQ � � � � � � �\V]* K (2.2)

for some constant * K � � . Let ^ � � �`_ � denote the Neumann function for
the differential operator

0a1 � 0 in the domain
�

. Then, for ��� � � one
has the asymptotic expansion

/4� �S� � �b/ K � � � �c� �edf�hg
�
��� � � � � �S� � �ji ������ 0lk ^ � � � �U� � 1&m � 0 / K � � � ��]n

�
� �po �rq�� � (2.3)

as
� ?s� . The symmetric positive definite �ut � -matrix

m �
is the so-called

polarization tensor corresponding to the � -th inhomogeneity.
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The Neumann function ^ ��� �`_ � is the unique solution to0lk 1 � � � � 0lk ^ ��� �`_ � ��i ��� in
� � � � � �

� ^ � � �`_ ��65 k �7i 
8 � � 8 on
� � �

with the normalization $(%&' ^ ��� �`_ �-*-, k �@� . It is easy to see that ^ is
symmetric, i.e., ^ ��� �`_ � �G^ ��_ � � � for � � �`_ �\� � t �u� LNM���� � � t � � . This
symmetry yields a smooth extension of ^ to � � t �	� � t � � � LNM���� � � t � �
satisfying

0lk ^ �S� ��
� � � 0 � ^ ��
� �U� � .
The polarization tensor

m �
is a symmetric positive definite matrix, that

depends on the relative shape of the � -th inhomogeneity 	 �
and the con-

ductivity contrast ��� � � �
� ���
. For its exact definition we refer to [6] (see also

Appendix A of the present paper). In [11] and [6] it is assumed that the sets	 �
are star-shaped, but as evidenced by [17] and [2] one may dispense with

this condition in case the
� �

are strictly positive.
For the case of constant background conductivity there is a slight vari-

ation of Theorem 2.1, that for many practical applications is more useful,
since it relies on an explicit fundamental solution. Let � ��� �`_ � denote the
function

� ��� �`_ � � ��� �
��������� � 8 �)i
_ 8 � � � 

�
������ 8 �)i
_ 8 � � � � � �-�

Theorem 2.2 Assume the background conductivity � is constant and that
the points � � , � � 
 ������� ��� , satisfy condition (2.2). Then, for ��� � � one
has the asymptotic expansion

/4� � � �ji
/ K �S� � � 
 � %(' ��/4� � � � i
/ K � � � � � � ��65 k � � �U� �-*-, k
� 


� � df�hg
�
� �Fi � ���� 0lk � � � � �U� � 1&m � 0 / K �S� � � �]n

�
� �po �rq�� � (2.4)

as
� ? � with

m �
as in Theorem 2.1.

We note that for #E��A �B � � � � the functions / � and /�K are not necessarily
smooth up to the boundary

� �
. However, due to elliptic regularity results,

the difference / � �S� � il/ K �S� � is smooth (near) and up to the boundary
� �

. It
is proved in [6] that the remainder terms in (2.3) and (2.4) are bounded by� � �9o � q��

, uniformly for � � � � , however, numerical experiments suggest
it is even smaller, namely of the order

n
�
� � � � . The constant

�
in the bounds

for the remainder terms depends on the domains 	 �
,
�

, the background
conductivity � , the constant * K and the normal current # . The dependence
on # manifests itself through the need for an energy estimate and the need
for pointwise bounds on the values and the derivatives of /6K near the posi-
tions � � — all of which only requires a bound on � #����� �"! �$# %('&% . In other
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words, the dependence of
�

on # is only a dependence on � # ���  �"! � # %('&% .
The details of this argument are found in [17] and [2] for the case of the
Maxwell equations.

Let us now introduce the operator
� ; A �B � � � � ? A �B � � � � defined by

� # � df�hg
�
��� � � � � �S� � �ji ���� � 0 � ^ � 1 �U� � � 1&m � 0 / K �S� � � � (2.5)

Since / K depends linearly on # this operator is linear, and from Theorem 2.1
(and the remark about the constant of the remainder term) it follows that

: �Wi : K � � � � �]n
�
� �9o � q�� � � (2.6)

where the remainder term
n
�
� �9o � q � � is bounded by

� � �9o � q �
in the op-

erator norm of � ��� � � q �B � � � � �UA �B � � � � � (and thus in the operator norm
of � �SA �B � � � � �UA �B � � � � � ). Here we also used the fact that

0 k ^ � � � �U� � �0 � ^ � � �U� � � for �E� � . The operator
�

is selfadjoint on A �B � � � � , since it
is the limit of the selfadjoint operators

� � � �S: � i
:WK � .
In the rest of this section we will point out some additional properties

of the operator
�

, which turn out to be crucial for our approach to de-
termine the positions � � . We begin by introducing another linear operator� ; A �B � � � � ? � ��� d � # � � 0 / K � � � � ������� � 0 / K �S� d � �h�
Here the potential /�K corresponds to the input current # and can thus be
represented as / K � _ � � $ %(' ^ � � �`_ � # �����-*-, k for _E� � . Endowing

����� d
with the standard Euclidean inner product,

�
	 ����
�������� � df�hg
�

	 � 1 � �
for

	 � � 	 � ������� � 	 d � ��� � ��� � ������� ��� d �\� � ��� d � 	 � ��� � � � � �
we then obtain

� � # � 	 
 � ����� � df�hg
�

	 � 1 0 / K � � � �
� df�hg

�

	 � 1 � %&' 0 � ^ � � �U� � �`#�� � �I*-, k
��� df�hg

�

	 � 1&0 � ^ � 1 �U� � � �h#���� � # %('&%
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for arbitrary
	 ��� 	 � ������� � 	 d �Z� ����� d . Therefore

��� ; ����� d ? A �B � � � �
is given by � � 	 � df�hg

�

	 � 1 0 � ^ � 1 �U� � �h� (2.7)

Lemma 2.1
� �

is injective.

Proof Suppose that
� � 	 � � for

	 � � 	 � ������� � 	 d �)� � ��� d , or in other
words, df�hg

�

	 � 1&0 � ^ � � �U� � � �G� for ��� � � �
Then the function � � � � � � d �hg �

	 � 1 0 � ^ ��� �U� � � solves the Cauchy prob-
lem

0�1 � 0 � �G� in
��� d��hg

�
CD� � H � � 8 %(' �G�
� �

� �
�65���� %&' �G� �

and from the uniqueness of this problem (see for example [15, Theo-
rem 19.II]) we deduce that ��� � . If 	�
 denotes the � -th unit vector in

� �
,

then in particular we have � M�
���� K � �S� � ��� 	�
 � � � , and thus 	�
 1 	 � � � .
Indeed, otherwise the dipole singularity of

0 � ^ ��� �U� � � at � � would imply� M�
 ��� K 8 � � � � ��� 	�
 � 8 ��� . This proves that
	 � �G� , and thus the assertion

of this lemma.

Corollary 2.1
�

is surjective.

Proof This follows from Lemma 2.1 and the well-known relation �	� � � �� � � � ��� between the ranges and null spaces of adjoint operators with finite
rank.

Using the above formulae for
�

and
� �

and the definition (2.5) of
�

,
we see that these operators are related by� � � � m � � (2.8)

where operator
m ; � ��� d ? � ��� d is given by

m 	 ��� ��� � � � � �S� � �ji �
��

�

m
�
	
� ������� � � �S� d � ��� � d � i � d� d

m d 	 d! 
for

	 ��� 	 � ������� � 	 d ��� � ��� d . From the positive definiteness of the matri-
ces

m �
we conclude that

�
is positive (respectively negative) semidefinite,

if
���#"

� �S� � � (respectively
� ���

��� � � � ) for all � �2
 ������� ��� .
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Let us take a closer look at the range of
�

. First we observe that �	� � �
is finite dimensional with dimension at most � � ; more precisely we have� � � � � O�� ����� 	�
 1&0 � ^ � 1 �U� � � �� %(' ; � ��
 ������� � ��� ����
 ������� ���	� �
Next we show that this inclusion is actually an equality.

Proposition 2.1 The range of
�

has dimension � � and is given by� � � � � O�� ����� 	�
 1&0 � ^ � 1 �U� � � �� %(' ; � ��
 ������� � ��� ����
 ������� ���	� �
Proof The surjectivity of

�
and

m
implies � � � � � �	� � � m � � ��	� ��� � . This proposition is then an immediate consequence of the for-

mula (2.7) for
� �

.

Now we present the main tool for the identificaton of the positions � � .

Proposition 2.2 Let *E� � � � C �IH , �>� � , and 
���
 � �2* 1 0 � ^ � 1 �U� � 8 %(' .
Then, 
���
 ��� �	� � � if and only if �"��CD� � ; � ��
 ������� ��� H .

Proof Assume that 
���
 � � �	� � � . As a consequence of Proposition 2.1,
���
 � may be represented as


���
 � � � � � df�hg
�

	 � 1&0 � ^ ��� �U� � � for �E� � � �
But then both ��� � � � � d �hg �

	 � 1D0 � ^ � � �U� � � , and * 1D0 � ^ ��� �U� � are solu-
tions to the Cauchy problem0>1 � 0 � �G� in

�l���r� � C � � H � C �IH�� � � 8 %(' ��
���
 � � �
� �
�65���� %&' �G� �

and from the uniqueness of solutions to this problem we conclude that������� � * 1-0 � ^ ��� �U� � for ��� � ���r� � C � � H � C �-H�� . This is only pos-
sible if �E� C � � ; � �J
 ������� ��� H , and so we have established the necessity
of this condition. The sufficiency follows directly from Proposition 2.1.

Since the operator : � iG: K is selfadjoint and compact on A �B � � � � it
admits a spectral decomposition

:W� i : K � �f
T g ��� �T � �T ��� �T � � � ��� �T � � �$# %('&% �2
 �

with eigenvalues � �T decaying to zero. Similarly, the finite-dimensional self-
adjoint operator

�
can be decomposed as

� � d �f
T g ��� T�� T�� �T � ���DT � � �$# %('&% �2
 �
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Fig. 2.1. Unit disk with three inhomogeneities.

(say with 8 � � 8 V 8 � � 8 V 1�1�1 V 8 � d � 8 � � ). Using (2.6) and standard argu-
ments from perturbation theory for linear operators [13], we get (by appro-
priate enumeration of the eigenvalues of : � i :WK ) the following asymptotic
formulae as

� ?s� ,

� �T � � �
� T �]n

�
� �po �rq�� � � Y���
 � 
 ������� (2.9)

Here we have set � T � � for Y � � � . Let � �� ; A �B � � � �s?O�� � � C�� �� ������� ��� �� H and � � ; A �B � � � � ? O�� ��� C � � ������� ��� � H denote the or-
thogonal projectors

� �� � �f
T g �

� �T � � �T � � and � � �
�f
T g �

�DT�� �T �
respectively. Suppose for simplicity the eigenvalues of

�
are simple; the

limiting relationship (2.6) together with standard arguments from perturba-
tion theory for linear operators [13] then gives

� �� ��� � �]n
�
� � q � � for ����� � �

The same statement holds even if the eigenvalues are not simple, pro-
vided one makes “appropriate choices of eigenvectors” � �T and �DT , Y �
 � 
 ������� � �I� �

We illustrate the asymptotic behaviour of the eigenvalues by means of
a numerical example. In the unit disk

� � � �

we choose � ��� circular
inhomogeneities, which are shown for

�
��
(� � �

in Figure 2.1. The con-
ductivity within each inhomogeneity is

�
� �I��� whereas � � 
 is the the

homogeneous background conductivity. The eigenvalues � �T of : � i�:WK for
three different values of

�
are shown in Figure 2.2. According to (2.9) we

expect to see � � �	� eigenvalues of order
n
�
� � � while all the the remain-

ing eigenvalues have smaller magnitude (no bigger than the remainder term
in Theorem 2.1). In line with what we mentioned earlier this example sug-
gests that the remainder term in Theorem 2.1 is indeed

n
�
� � � � , and not just

the
n
�
� �po � q � � asserted by our estimate.
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Fig. 2.2. Eigenvalues of ������� � for ��� ���  � , ��� ���  � , and ��� ���  �� (from left to
right) for the example from Figure 2.1.

3 Determining the locations of the inhomogeneities based on the
expansion from Theorem 2.1

Before we present our approach to determine the positions � � we briefly
recall the explicit characterization of the inclusions 	 �� which has been de-
rived in [4,5]. There it has been shown (provided : � i�:WK is semidefinite)
that the parameter point � lies within one of the inclusions 	 �� if and only
if the series

� �T g �
� � �T � 
���
 � 
 �� � # %('&% � � �T converges. This is tested numerically

by first estimating and then comparing the decay of the squared Fourier co-
efficients

� � �T � 
���
 � 
 �� �$# %&' % with the decay of the eigenvalues � �T . In order to
apply such an algorithm, it is necessary to compute at least a few of these
terms in a stable manner.

While the order of the Fourier coefficients is essentially independent
of

�
, the size of the largest eigenvalues decreases at least like

n
�
� � � as

�
tends to � . Consequently, in the presence of data errors, the estimation of
the decay rate of the eigenvalues will be impossible when the size

�
of the

unknown objects gets small.
The reconstruction method we propose here involves only the actual

size of the Fourier coefficients
� � �T � 
���
 � 
 � � # %('&% (and to some extent the size

of the eigenvalues) but not their decay rate. The present method is thus
much less sensitive to noise. The eigenvalues are only used to identify the
subspace corresponding to the � � largest eigenvalues. This is possible if
these eigenvalues exceed the noise level.

In Proposition 2.2 we have seen that a test point � coincides with one
of the positions � � if and only if 
���
 � � * 1-0 � ^ � 1 �U� � 8 %(' � �	� � � , or
equivalently, if ��� i � d � � 
���
 � � � . In other words, if we decompose the
test function orthogonally as 
���
 � � � d � 
���
 � �

����i � d � � 
���
 � and define the
angle � � � �\��� � ��� � 
 � by

! � Q � �S� � � � � d � 
���
 � �� ��� i � d � � 
���
 � � �
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Fig. 3.1. Definition of the angle
�
.

cf. Figure 3.1, then we have that�l�
C � � ; � ��
 ������� ��� H ��� � � � � �G� ��� ! � Q � � � � � �b�
Unfortunately, we cannot compute � � � � , because � d � depends on the un-
known positions � � . However, for small sizes

�
the projected test function

� � d 
���
 � is well approximated by � �d � 
���
 � , and the projections � �� can be
computed for each � by means of the eigenfunctions of the measured op-
erator : � i : K .

This may serve as a motivation for the following definition of the angle
� �� �S� � by

! � Q �D�� �S� � � � � �� 
���
 � �� � � i � �� � 
���
 � � �
��
�
�T�� � � � �T � 
���
 � 
 �� �$# %('&%�T�� � � � �T � 
���
 � 
 �� � # %('&%

���
�

� q �
�

For ���bC � � ; � � 
 ������� ��� H all terms in the denominator are of order �R
 � as
� ? � if � is chosen equal to � � . The numerical value of � � may

be estimated by looking for a “gap” in the set of eigenvalues of : � i :WK .
If we plot ! � Q � �d � � � � as a function of � , we thus expect to see large values
for points � which are close to the actual positions � � . Since none of the
eigenvectors of : � i : K corresponding to eigenvalues � �T , Y �

�-� , are
exactly of the form 
���
 � , � �� CD� � ; ����
 ������� ��� H , we expect the same to be
true if we plot ! � Q � �� � � � for moderate size �

� � � .
The calculation of ! � Q � �� � � � requires the calculation of 
���
 ��� * 10 � ^ � 1 �U� � 8 %&' , something that in most cases will be quite expensive. One

notable exception occurs when � � 
 , the background medium has con-
stant conductivity, and

�
is a disk (for example

� � C � ; 8 � 8 " 
 H ). In
this case the Neumann function has an explicit expression, that we may use
to calculate the boundary values of its gradient. This calculation yields the
simple formula0 � ^ � � �U� � � 


� �
� i��8 �)i�� 8 � for ��� � � �W�"� � �
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Fig. 3.2. Example with three inclusions: ����� � �
 
 	 � for � � ���  � , � � ���  � , and � � ���  �� .

When the background medium has constant conductivity, but the domain�
is not a disk, one may utilize the formula


���
 � ��* 1 0 � ^ � 1 �U� � 8 %&' ��
 �
� ��
 � 8 %(' �ji : K � � � ��
 ��35 8 %(' �
with

� ��
 � ����� ��* 1&0 � � ��� �U� � � ��� �G� CD�IH �
and 
 denoting the projection operator from A � � � � � onto A �B � � � � ,


 # � # i 
8 � � 8
� %(' # �����-*-, k � (3.1)

The presence of the operator :\K renders the computation of 
 ��
 � somewhat
expensive, and since this computation typically has to be carried out for a
very large number of test points � , one may, for non-circular

�
, prefer to

use the approach we describe in Section 4.
For the two-dimensional example from Figure 2.1, using synthetic data

without noise, we show plots of ! � Q � �� � � � in Figure 3.2 for three values of
�
.

The centers of the three circular inhomogeneities are clearly determined in
each case. Note that a-priori knowledge of

�
is not required for the compu-

tation of � �� � � � ; only the spectral decomposition of the measured operator: � i :WK is involved.
In Figure 3.3 we consider an example with � ��� circular inhomo-

geneities with radius
�
� 
&� � � (still inside the two-dimensional unit disk)

and we plot ! � Q � �� � � � for different values of � .
Indeed, for � V � � � 
�� the seven centers are well reconstructed,

whereas for smaller � the plots give misleading results. This easily com-
putable sequence of plots yields remarkably good information on both the
number of inhomogeneities as well as on their location. When compar-
ing the method proposed here to other methods that have been designed
for imaging small inhomogeneities, it is fair to point out that it uses infor-
mation about the entire Neumann-Dirichlet map. In contrast, the iterative
approach taken in [6] only relies on a single set of Cauchy data (a single
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Fig. 3.3. Actual positions (upper left picture) of seven inclusions and ����� � �� 
 	 � for � ������������ ���
.

point on the graph of the Neumann-Dirichlet map) and not surprisingly, it
is more limited in its ability to effectively locate a high number of inho-
mogeneities. At this point it also seems relevant to point out that the use
of spectral data from the (Neumann-Dirichlet) boundary map is not new
in impedance imaging. It was for instance very early noticed, that the use
of imposed boundary currents closely approximating eigenvectors is very
advantageous [12].

4 Determining the locations of the inhomogeneities based on the
expansion from Theorem 2.2

As mentioned in the last section the required calculation of the gradient of
the Neumann function is often quite costly. If the background medium is
truly inhomogeneous (non-constant) then there is not much that can be done
about this. However, if the background medium has constant conductivity,
then it is possible to slightly change the algorithm we have developed so
far, such as to lower this cost significantly. For that purpose we rely on the
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asymptotic formula of Theorem 2.2. This formula asserts that

���
���

� ��:W� i�: K � � � ��� �]n
�
� �9o � q � � � (4.1)

where
�

is the finite rank operator A �B � � � � ?sA � � � � � defined by

� # � df�hg
�

 � �Fi ���� � 0 � � � 1 �U� � � 1 m � 0 / K � � � � � (4.2)

and
�

is the compact operator A � � � � � ?sA � � � � � defined by
� # � 
 � � %&' � ��65 k � � � 1 � # �����-*-, k �

The remainder is bounded by
� � �9o � q��

in the operator norm on� � A �B � � � � �UA � � � � � � . The adjoint
� � ; A � � � � � ? A � � � � � of the op-

erator
�

has the representation
� � # � 
 � � %(' � ��65�� � � � 1 � # �����-*-, k �

A simple calculation shows that $ %(' � � # ��_ �-*-, � � i $ %(' # �����-*-, k , from
which it follows that

� �
maps A �B � � � � into itself. Furthermore, �

��� �
is one-to-one and onto as an operator A �B � � � �Z? A �B � � � � — this follows
from its direct relationship to the solution of the interior Neumann prob-
lem (see for example [10, Proposition 3.37]). By appropriate multiplication
of (4.1) by �

��� �
and by the projector 
 from (3.1) we obtain


 � � ���
� ��:W� iE: K � ��� ��� � � 
 � � � 
 � ��� ��� � � 
 �
n

�
� �po �rq�� � � (4.3)

The operators 
 � � ���
� �S: � i�:WK � ��� ��� � � 
 and 
 � ��� ��� � � 
 are

selfadjoint on A � � � � � , and just as in the previous section we may now
use the measured data �S: � i :WK � to approximately calculate the range of

 � ��� ��� � � 
 . If

�
is a disk (in two dimensions) then �

�	�
� �

��� � � �
on A �B � � � � and 
 � � �

, and the formula (4.3) is thus identical with (2.6).
In the general case we have a result similar to Proposition 2.1.

Proposition 4.1 The range of 
 � ��� ��� � � 
 is given by

�	� 
 � � � ��� � � 
 � � �	� 
 � �
� O�� � ��� 
 � 	�
 1&0 � � � 1 �U� � � �� %(' � ; � ��
 ������� � ��� � �2
 ������� ���	� �

Proof The fact that � �
�
� � � 
 maps A � � � � � onto A �B � � � � yields that�	� 
 � ��� ��� � � 
 � � � � 
 � � . As in Section 2, the operatorm � ; # ? � � �Fi �

��
�

m
�
0 / K �S� � � ������� � � �>i � d� d

m d 0 / K � � d �  
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maps A �B � � � � onto
� ��� d . It is now obvious from the definition of

�
,

cf. (4.2), that

� � � � � O�� ��� � 	�
 1 0 � � � 1 �U� � � �� %(' ; � ��
 ������� � �	� ����
 ������� ��� � �
from which the assertion follows.

To obtain an equivalent of Proposition 2.2 we must insist that

Assumption I

For any set of � � 
 distinct points CD� � H d o ��hg
� in

� � the � � � 
 � �
functions C 
 � 	�
 1&0 � � � 1 �U� � � �� %&' � H � 
 d o �
 g � 
 �hg � are linearly independent �

Proposition 4.2 Suppose Assumption I is satisfied. Let *u� � � � C �IH , �>��
, and let � ��
 ����A �B � � � � denote the function � ��
 � � 
 � * 1 0 � � � 1 �U� � 8 %(' � .

Then � ��
 � � � � 
 � � if and only if �l��CD� � ; � ��
 ������� ��� H .

Proof This is an immediate consequence of the linear independency as-
sumption (Assumption I) applied to the � � 
 points CD�IH � CD� � H d �hg � , and the
characterization of �	� 
 � � obtained in Proposition 4.1.

As we have seen earlier a two-dimensional disk satisfies the Assump-
tion I (this is verified in the proof of Proposition 2.2) but there are many
other such domains, as witnessed by the following result.

Proposition 4.3 Assumption I is satisfied for any bounded, convex, two-
dimensional domain

�
, the boundary of which contains a straight line seg-

ment.

Proof Pick a coordinate system � , � � � such that the boundary of
�

shares a
line segment with the , -axis and such that

�
lies in the half-plane

� � � .
Let � , � � �S� � denote the coordinates of the points � � , ����
 ������� ��� � 
 . In the

� , � � � coordinate system the function
	 � 1p0 � � � 1 �U� � � � �

� � ������� # k � � � %� k � � � � � has
the expression

	 � 1&0 � � � 1 �U� � � � 


 � �

	 # � %� � , i , � � � 	 # � %� �
� i ��� �

� ,�i�, � � � �
�
� i ��� � � �

where � 	 # � %� � 	 # � %� ��� � �

are the � , � � � coordinates of the vector
	 �

. There-
fore


 � 	 � 1&0 � � � 1 �U� � � �� %&' � � 


 � �

	 # � %� � ,�ic, � �ji 	 # � %� � �
� , ic, � � � � � �� ���`�
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on the common line segment (say � " , "��
) that

� �
shares with the, -axis. In order to verify this lemma we have to show that

d o �f�hg
�

 � 	 � 1&0 � � � 1 �U� � � �� %&' � �G�

for some set of vectors
	 � � � �

, implies that
	 � �G� for all � �2
 ������� ��� � 
 .

We do this by showing that

d o �f�hg
�

� 	 # � %� � , ic, � �ji 	 # � %� � �
� , i , � � � � � �� ���`���

�G�
� � " , "�� � (4.4)

implies
	 # � %� � 	 # � %� � � for all � � 
 ������� ��� � 
 . The expression that

appears on the left hand side of (4.4) is a meromorphic function (of ,���� )
and if either

	 # � %� � � or
	 # � %� � � is not zero then it has proper poles at, ��, �	� Y ��� . Here we use that C , �	� Y ��� H d o ��hg

� are 
 � � � 
 � distinct complex

numbers, as follows from the fact that the points CD� � H d o ��hg
� � C
� , � � �S� �UH d o ��hg

�

are distinct and the fact that each
� �

is positive. The presence of these proper
poles, however, would contradict the fact that the left hand side of (4.4)
identically vanishes on the real interval � " , "
�

. We conclude that	 # � %� � 	 # � %� �G� , � ��
 ������� ��� � 
 , as desired.

The modified reconstruction algorithm proceeds just as in Section 3,
using the spectral decomposition of the operator 
 ��� ���

� �S: � i : K � � � �
� � � 
 in place of that of : � ic: K , and using the explicit functions � ��
 � in
place of 
���
 � .

5 Recovering other geometric information

In this section we presume for the moment that the positions, � � , of the
inhomogeneities have already been reconstructed, and that we now seek to
recover information about their shape.

First, let us make the simplifying assumption that
�

is the unit disk in� �

, and that the background conductivity � is constant. In this case the
approach based on the expansion from Theorem 2.1 is quite simple, since
the function

0 � ^ � 1 �U� � �� %(' is known explicitly; as mentioned earlier it is
given by 0 � ^ � � �U� � � 


� �
� i��8 �)i�� 8 � for ��� � � �W�"� � �

We shall consider the two input currents #�� � 5 ����	
� 1 5 , � ��
 � 
 , for which/ K� � � � � �� ��� are the resulting harmonic potentials, and so
0 / K� ����� � �� 	
� .
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�
�������

���	�
��
Fig. 5.1. Selection of the points ��
 ��� and ��
 �
� .

We assume for simplicity that only one inhomogeneity is present in
�

having center � , and polarization tensor
m

. We choose the two points � # � %
and � # � % on the boundary

� �
so that � # 
 % ic� � 8 � # 
 % ic� 8 	�
 , � �2
 � 
 , cf.

Figure 5.1. Then we have

� # � � � # 
 % � � � �Fi �� 	�

� � 8 � # 
 % i�� 8 1&m 	
�

� �
�)i ��

� � 8 � # 
 % i�� 8 � 
 � � (5.1)

From our data we have available the voltage differences

�S:W� i : K � # � � � # 
 % ��� � � � # � � � # 
 % � � � � � ��
 � 

�
and we may thus approximately recover the scaled polarization tensor


m �
� � �Fi �

�
� m �

We now discuss the kind of information about the unknown object that can
be gained from this data.

Suppose the inhomogeneity has the form � �[���
where

�
is the ellipse

given by
�
� C � ; � ��� � � 
 H (here

�
is a symmetric positive definite


Ft 
 -matrix). Let � � ��� ���� � � with
�
� ! � O�� , , � O`M ���

, � � � "
� ,

be the rotation matrix, for which the focal interval of the rotated ellipse� �
�!� � � lies on the � � -axis, i.e., for which� �
� C � ; � � � � � � 
DH with

� � �"� � � � � � 
�� 	 � �� 
�� � � � �
Here

	 ��� , 	 V � , denote the lengths of the two semi axes of the ellipse.
In Appendix A we sketch how the associated polarization tensor

m �
of
� �

may be calculated explicitly. The resulting formula is


m �
�

� � �Fi �
�
� m �

�
� � 8 � 8
� �$# i]
 � �R
 �&%

�
' �( o*) �� �

� o ( ),+ �
�
� � �� � �

�
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with

� � � 8 ��� 8
�
��# i]
 � �`
 �&%

�# � % and � � �
8 ��� 8
�
��# i]
 � �`
 �&%

�
 � # % � (5.2)

Here
%
� � � 	 ��� �
�(
 � and # � � � � � � �
� ��� � C�
 H denote the aspect

ratio of the semi axes of the ellipse and the contrast of the conductivities,
respectively. Note that � � � � � for all admissible values of

%
and # . The

scaled polarization tensor of the original ellipse
�

is then given by 
m �� 
m � � � .
We note that the matrix

�
describing the geometry of the ellipse and the

scaled polarization tensor 
m are diagonalized by the same rotation matrix� ; to be more precise, the common set of eigenvectors is specified by the
semi axes of the ellipse

�
. Consequently, the orientation of the ellipse can

be recovered from knowledge of the eigenvectors of 
m .
The four remaining unknown quantities are the conductivities � ,

�
, and

the lengths
� 	

and
� � of the semi axes of the ellipse. An equivalent set of

parameters are � , # ,
%
, and 8 ��� 8 .

The background conductivity � is in practice either a-priori known, or
can easily be estimated from the homogeneous potential data for the in-
duced input current # � 5 � . Indeed, in this case /3K ����� � �� ��� is the associ-
ated voltage measurement, from which one can estimate � .

This means that actually three quantities remain to be identified, namely%
, # , and the area 8 ��� 8 of the unknown ellipse. However, the eigenvalues of
m give only two pieces of data. Therefore, we need further information

about the inhomogeneities, in the form of a-priori knowledge about their
shape, size, or conductivity. For example, if # is known, then from (5.2) we
can compute

%
and 8 ��� 8 by%

� � � i # � �
� � i # � � and 8 ��� 8 � � # � 
# i]


� 

� �

� 

� �
� � � � (5.3)

In many practically relevant situations the conductivity contrast will be
rather high, i.e., we will have # � 
 or #�� 
 . As a simplification we
might assume that # � � , if 
m is positive definite, and we might assume
that # �a� , if 
m is negative definite. Using these extreme values in (5.3)
we obtain%

� 
"M � � � �
� �
� � �
� �

�
and 8 ��� 8 ��� ����



� �

� 

� �
����
� � � (5.4)

The lengths of the semi axes of the ellipse can then be expressed as follows,� 	 � 8 ��� 8
�
% and

� � � 8 ��� 8 %
� � (5.5)
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phantom data reconstructed data

background conductivity � � ��� � � � �
position 	 
 � � � � � � � � ����� � 
 � � � � � � � � ����� �
scaled polarization tensor

��� �����	 
 � � � � � � � � � �
� � � � � � � � � ��� 
 � � � �
� � � � � �

� � � � � � � � � ���
eigenvalues

��� � � 
�� � � � � � 
 ��� � � � � ��� � ��� � 
 ��� � � � � ��� � ��� �
rotation angle � � ��� � � � �����
lengths of semi axes

��� � � 
 ��� � ��� � 
 � � � � 
 � � � � � � � � � �
conductivity in ellipse � � � � �

(assumption)

Table 5.1. Reconstruction of an ellipse.

We illustrate the reconstruction procedure by a numerical example. As
a phantom we choose a small ellipse within the unit disk, with a much
lower conductivity than that of the background. The geometry of this ellipse
is specified in Table 5.1. Synthetic measurements are generated using a
standard boundary element method.

In the first step we locate the position of the inhomogeneity by employ-
ing the technique introduced in Section 3. The position � is found as the
point, where ! � Q � �� �S� � attains its maximum. Afterwards the scaled polar-
ization tensor 
m is recovered from (5.1). A spectral decomposition of 
m
yields the orientation of the ellipse. Finally, the lengths of the semi axes are
obtained from (5.4) and (5.5).

In two further numerical experiments we choose phantoms of different
shape. The same algorithm as before yields an ellipse with a scaled po-
larization tensor as given by the data (that ellipses are sufficient to fit the
data is a well known fact, see [16]). If the original shape is close to an
ellipse then we can hope that this reconstruction provides a good approxi-
mation. This is illustrated in Figure 5.2, where we have chosen phantoms
in the shape of a kidney (left) and a boomerang (right); the conductivity
contrast for the calculation of the synthetic data was taken to be # � 
&�9�
in both cases. The original phantom is drawn with a thick solid line, and a
thin solid line is used for the reconstructed ellipse in the absence of noise.
The adjacent boxes zoom in on the region of interest. We also performed
experiments with noisy data, where the measurements were perturbed by
adding �I����� relative noise. The corresponding reconstructions are shown
in dashed lines.

A Polarization tensor for an ellipse

According to [6] the entries of the polarization tensor
m � � � 
 � � corre-

sponding to a small inclusion “centered” at � K , of relative shape 	 , and
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Fig. 5.2. Reconstruction of non-elliptic objects without noise (solid ellipse) and with
� � ���

noise (dashed ellipse).

with conductivity
�

are given by

� 
 � � 8 	 8 � 
 ��i � %�� _ 
 ��� o��65 *-, � � � � � �2
 ������� � � �
Here, the functions

� � ��_ � are the solutions to the following problem:

��� ���G� in 	 and in
� � � 	�� (A.1a)

� o� � � �� on
� 	�� (A.1b)

��� � K � ���
o��65 i � ��� ���65 � � ��� � K �ji �

� 5 � on
� 	 � (A.1c)

� M�
� � � � � � � ��_ � �G� � (A.1d)

where the
�

and i superscripts denote the limits on
� 	 from the exterior

and interior of 	 , respectively. It is not difficult to calculate that if 	 is a
two-dimensional disk, then the associated polarization tensor is a multiple
of the identity matrix, namely

m � 8 	 8 ' �	�� o � �� �
�� o � + � (A.2)

Here we will calculate
m

in the case 	 equals
� �

, an ellipse with focal
interval � i � � � � on the � � -axis and eccentricity 
�� ! � O	�
� , or in other words,
an ellipse whose semi-major axis is of length

	 � � ! � O
��� and lies on the
� � -axis, and whose semi-minor axis is of length � � � O`M �����

and lies on
the � � -axis.

First we have to solve the boundary value problems (A.1) in order to
determine the functions

�
� and

�
� . In order to do this, we introduce elliptic

coordinates ��� ��� � ,
� � �

� ! � O � ! � O	� � � � � �
� O M � � O`M ��� � � ��� VX� �W� ���

"

�� � �
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in which the ellipse is given by
� �
�.C ��� ��� � ; � " � H . Separation of

variables yields a general solution of the Laplace equation of the form

� ��� ��� � � � K � �f
�

g
�
� � � ! � O � � 	 � ��� � � � O`M � � � 	 � ���� � � ! � O � � 	 ��� � � � O M � � � 	 ��� �

in
� � � � i � � � � and in the exterior of

� �
(with different sets of coefficients).

For the solution in
� � � � i � � � � to extend to a harmonic function in

� �
we

must furthermore require that

� � �
��� � � � � � ��i � � and

� �
� � �S� ��� � ��i ���� � � �
��i�� � � � ��� �
� 
�� �h�

(A.3)
The coefficients of the specific solutions

�
� and

�
� are now determined by

the conditions (A.3) and the boundary conditions (A.1b)–(A.1d). The result
is
�
� ��� ��� � �

# � � � % � �� � o � � � � ��� � ! � O � and
�
� ��� ��� � �

# � � � % � �� � o � � � � ��� � O`M � �
with� � ��� � �

�����	��
 ����	��

� for �
" � �

�  ��
�  �� for �

� � � and � � ��� � �
��������
 �������
�� for �

" � �
�  ��
�  �� for �

� � �
Using this it turns out that the polarization tensor

m �
takes diagonal form,

namely m �
� 8 � � 8 ' � # � o � %� � o � � �� � # � o � %� � o � � + � (A.4)

where 8 � � 8 � � 	 � is the area of the ellipse. Note that for the special case of
a disk we have

	 � � and then (A.4) reduces to (A.2).
For an arbitrary ellipse

�
whose semi axes are not aligned with the

coordinate axes, one can find an orthogonal transformation � such that�
� � � � , where

� �
is of the above form. The polarization tensor

m
corre-

sponding to
�

is then given by
m �"� m � � � , cf. [11, Section 6].
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