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1 Introduction

Propagation of a curved nonlinear wavefront or a shock frontexhibits a very com-
plex phenomenon of possessing curves of discontinuity, across which the normal to
the front and the amplitude distribution on it are discontinuous. Some of these curves
of discontinuity are called kinks. A kink is a shock in a corresponding ray coordinate
system in which a physically realistic system of conservation laws has been formu-
lated. The conservation form of the system of evolution equations of a curve in two
space dimensions was first derived by Morton et al. [8] and this new set of conserva-
tion laws is termed as kinematical conservation laws (KCL).The KCL being a pure
geometrical result, does not take into consideration any dynamics of the propagating
front. This makes the KCL an incomplete system. The closure equation for KCL can
be derived by considering the dynamical conditions of the propagating front. Prasad
and collaborators have used the KCL along with some closure equations derived on
physical considerations to solve several interesting problems, see the review paper
[10] and the references therein. The KCL for a surface evolving in three space di-
mensions, called 3-D KCL, a system of six conservation laws,were first derived by
Giles et al. [5]. The 3-D KCL system also contains three divergence-free type sta-
tionary constraints, all three together termed as ‘geometric solenoidal constraint’.
Later, the analysis of the 3-D KCL system, with the closure equation from a weakly
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nonlinear ray theory (WNLRT) [9] was completed by Arun and Prasad [3, 4]. It
has been shown in [3] that the resulting system of conservation laws, the so called
conservation laws of 3-D WNLRT give rise to a weakly hyperbolic system; in the
sense that the system has zero as a repeated eigenvalue with multiplicity five, but
the associated eigenspace is only four-dimensional.

Despite the 3-D WNLRT being a weakly hyperbolic system, in [1, 2] we have
been able to develop efficient numerical approximations forit using simple, but
robust central schemes. It is well known that the solution tothe Cauchy problem
for a weakly hyperbolic system (with deficiency in dimensionof the eigenspace
by one) typically contains a mode which grows linearly in time. This mode, the
so-called ‘Jordan mode’, is in the direction of a generalised eigenvector and which
can cause severe difficulties in the numerical approximation of such systems. It has
been proved in [1] that when the geometric solenoidal constraint is satisfied initially,
the solution to the Cauchy problem for linearised 3-D WNLRT at any time does
not exhibit the Jordan mode. Motivated by this, a constrained transport technique
has been employed to enforce the geometric solenoidal constraint in the numerical
solution of 3-D WNLRT, see [1] for more details.

The aim of the present paper is to give a brief overview of the recent results ob-
tained with 3-D WNLRT and to show its efficacy to model propagating wavefronts.
The layout of the paper is as follows. In section 2 we introduce the governing equa-
tions of 3-D WNLRT. The numerical approximation and the constrained transport
strategy are outlined in section 3. In section 4 we present the results of a numerical
experiment, showing the efficiency and robustness of the present method. Finally,
we close this article with some concluding remarks in section 5.

2 Governing equations

Consider a one parameter family of surfaces in(x1,x2,x3)-space such that it rep-
resents the successive positions of a moving surfaceΩt as time varies. Associated
with the family, we have a ray velocityχχχ at any point(x1,x2,x3) on the surface
Ωt . We consider only the isotropic evolution ofΩt so that we takeχχχ to be in the
direction of the unit normaln to Ωt , i.e. χχχ = mn, wherem is the normal velocity of
propagation ofΩt . Hence, the evolution ofΩt is governed by

dx
dt

= mn. (1)

We introduce a ray coordinate system(ξ1,ξ2, t) such that fort = const, we get
(ξ1,ξ2) as the surface coordinates onΩt . Further,ξ1 = const,ξ2 = const represent
the rays, a two parameter family of curves orthogonal toΩt . Let u andv be respec-
tively the unit tangent vectors to the curvesξ2 = const andξ1 = const onΩt and let
n be a unit normal toΩt . Then we have
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n =
u× v

‖u× v‖
. (2)

Let an element of distance along a curve(ξ2 = const, t = const) be g1dξ1. Anal-
ogously, denote byg2dξ2, the element of distance along a curve (ξ1 = const, t =
const). The element of distance along a ray(ξ1 = const,ξ2 = const) is mdt. Based
on geometrical considerations we can derive the 3-D KCL [3, 5],

(g1u)t − (mn)ξ1
= 0, (3)

(g2v)t − (mn)ξ2
= 0 (4)

subject to the condition
(g1u)ξ1

− (g2v)ξ2
= 0. (5)

Note that the constraint (5) is an involution, i.e. if it is satisfied at timet = 0, then
the equations (3)-(4) imply that it is satisfied for every time. Since each of the com-
ponents of (5) is a divergence-free type condition, the vector constraint (5) has
been designated as geometric solenoidal constraint. The 3-D KCL (3)-(4), being
six evolution equations in seven unknownsu1,u2,v1,v2,m,g1 andg2, is an under-
determined system. We use the closure equation by considering the energy propaga-
tion along the rays of a WNLRT, c.f. [9]. The energy transportequation of WNLRT
for a polytropic gas initially at rest and in uniform state can be written in a conser-
vation form [3]

(

(m−1)2e2(m−1)g1g2sinχ
)

t
= 0, (6)

whereχ is the angle between the vectorsu andv. The system of equations (3)-
(4) and (6), hereafter designated as the conservation laws of 3-D WNLRT, is the
complete set of equations describing the evolution of the nonlinear wavefrontΩt .

Remark 1. It has been proved in [4] that the eigenvalues of 3-D WNLRT are
λ1,λ2(=−λ1),λ3 = · · ·= λ7 = 0, whereλ1 is given by

λ1 =

{

m−1

2sin2 χ

(

e2
1

g2
1

−
2e1e2

g1g2
cosχ +

e2
2

g2
2

)}1/2

. (7)

Here,(e1,e2) ∈R
2 with e2

1+e2
2 = 1. Further, there are only four independent eigen-

vectors for the eigenvalue zero. Note thatλ1 is real form > 1 and purely imaginary
for m < 1. Hence, the 3-D WNLRT forms a weakly hyperbolic system whenm > 1.
In this article we consider only the case whenm > 1.

3 Numerical approximation

In this section we present a numerical approximation of the conservation laws of
3-D WNLRT to study evolution of a weakly nonlinear wavefrontΩt and formation
and propagation of kink curves on it. Note that the system of conservation laws of
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3-D WNLRT can be recast in the usual divergence form

Wt +F1(W )ξ1
+F2(W )ξ2

= 0, (8)

where the vector of conserved variablesW and the flux-vectorsF1(W ) andF2(W )
in theξ1- andξ2-directions respectively, are given by

W =
(

g1u,g2v,(m−1)2e2(m−1)g1g2sinχ
)T

,

F1(W ) = (mn,0,0)T ,

F2(W ) = (0,mn,0)T .

(9)

In what follows we briefly summarise the central finite volumescheme for (8), first
employed in [1].

1. The cell integral averages ofW are used in the discretisation of the system of
conservation laws (8).

2. A second order TVD Runge-Kutta method [12] is used for timeintegration. The
time-step is chosen to be inversely proportional to the maximum of the nonzero
eigenvalueλ1, c.f. (7), taken over the entire computational domain.

3. A nonlinear iterative solver is employed to recover the values ofu,v,g1,g2 and
m from the computed values ofW .

4. A second order MUSCL reconstruction with a central weighted essentially non-
oscillatory (CWENO) limiter [6] is used to reconstruct the variables at the cell
interfaces.

5. The Kurganov-Tadmor high resolution flux [7] is used as thenumerical flux at a
cell interface, for example at a right hand vertical edge

Fi+ 1
2 , j

(

W R
i, j,W

L
i+1, j

)

=
1
2

(

F1
(

W L
i+1, j

)

+F1
(

W R
i, j

))

−
ai+ 1

2 , j

2

(

W L
i+1, j −WR

i, j

)

,

(10)
whereW L(R)

i, j denote respectively the left and right interpolated states. Here,
ai+1/2, j is the maximal wave-speed, which can be computed with the help of
the maximum of eigenvalues, c.f. [7]. The numerical flux at a horizontal edge
can be computed in an analogous manner.

6. In order that the numerical solution satisfy a discrete version of the geometric
solenoidal constraint (5), we use a constrained transport algorithm [11]. We em-
ploy three potentialsA1,A2,A3, corresponding to the three components of the
vectorsg1u andg2v. Note that the geometric solenoidal constraint (5) implies
the conditions

g1uk = Akξ1
, g2vk = Akξ2

, k = 1,2,3. (11)

The use of (11) in the 3-D KCL system (3)-(5) immediately yields the evolution
equations

Akt −mnk = 0. (12)
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We numerically solve (12) to get the updated values of the potentialsAk. The
resulting values ofAk are used to suitably discretise (11) to yield the corrected
values ofg1u andg2v. It is these updated values, which satisfy a discrete version
of (5), see [1] for more details.

At any time t, we approximate the wavefrontΩt by a discrete set of points
xi, j(t) := x(ξ1i,ξ2 j, t). To get the successive positions ofΩt , we numerically solve
the system of ODEs (1) in the discretised form

dxi, j(t)

dt
= mi, j(t)ni, j(t), (13)

wheremi, j(t) andni, j(t) are the corresponding values ofm andn obtained from
W i, j(t).

In order to start the algorithm, the conserved variableW has to be initialised at
each mesh point. Here, some care has to be taken, so that (11) is satisfied by the
initial values. Let us assume that the initial wavefrontΩ0 is given a parametric form
x = x0(ξ1,ξ2), with some appropriate choice of surface coordinatesξ1 andξ2. The
initial values forg1u andg2v and the potentialsA1,A2,A3 can be chosen to be

g1u(ξ1,ξ2,0) = x0ξ1
(ξ1,ξ2), g2v(ξ1,ξ2,0) = x0ξ2

(ξ1,ξ2), (14)

Ak(ξ1,ξ2,0) = xk(ξ1,ξ2), k = 1,2,3. (15)

Note that (5) and (11) are satisfied by the above choice of initial values. In the
numerical test problem considered here, the normal velocity m on Ω0 has been as-
signed a constant valuem0 = 1.2. For more details of the numerical scheme and its
implementation, we refer the reader to [1].

4 Numerical test problem

We choose initial wavefrontΩ0 in a such a way that it is not axisymmetric. The
front Ω0 has a single smooth dip. The initial shape of the wavefront isgiven by

Ω0 : x3 =
−κ

1+
x2
1

α2 +
x2
2

β 2

, (16)

where the parameter values are set to beκ = 1/2,α = 3/2,β = 3. The ray coordi-
nates(ξ1,ξ2) are chosen initially asξ1 = x1 andξ2 = x2. The computational domain
[−20,20]× [−20,20] is divided into 401× 401 mesh points. The simulations are
done up tot = 2.0,6.0,10.0. We have set non-reflecting boundary conditions for all
the variables.

In Figure 1 we plot the initial wavefrontΩ0 and the successive positions of
the wavefrontΩt at timest = 2.0,6.0,10.0. It can be seen that the wavefront has
moved up in thex3-direction and the dip has spread over a larger area inx1- and
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Fig. 1 The successive positions of the nonlinear wavefrontΩt with an initial smooth dip which is
not axisymmetric.

x2-directions. The lower part of the front moves up leading to achange in shape of
the initial frontΩ0. It is very interesting to note that two dips appear in the central
part of the wavefront, which are clearly visible att = 6.0 andt = 10.0. These two
dips are separated by an elevation almost like a wall parallel to thex2-axis. There is
a pair of kink lines, which are also parallel to thex2-axis and are more clearly seen
in Figure 2.

To explain the results of convergence of the rays we also givein Figure 2 the
slices of the wavefront inx2 = 0 section andx1 = 0 section from timet = 0.0 to
t = 10.0. Due to the particular choice of the parametersα andβ in the initial data
(16), the section of the frontΩ0 in x2 = 0 plane has a smaller radius of curvature
than that of the section inx1 = 0 plane. This results in a stronger convergence of the
rays inx2 = 0 plane compared to those inx1 = 0 plane as evident from Figure 2. In
the diagram on the top in Figure 2, we clearly note a pair of kinks at timest = 3.0
onwards in thex2 = 0 section. However, there are no kinks in the bottom diagram
in Figure 2 inx1 = 0 section.

We give now the plots of the normal velocitym in (ξ1,ξ2) plane alongξ1- andξ2-
directions in Figure 3. It is observed thatm has two shocks in theξ1-direction which
correspond to the two kinks in thex1-direction. We have also plotted the numerical
values of the divergence ofB1 at timet = 10.0 in Figure 4. It is evident that the
geometric solenoidal condition is satisfied with an error of10−15. The divergences
of B2 andB3 also show the same trend.
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Fig. 2 The sections of the nonlinear wavefront at timest = 0.0, . . .,10.0 with a time step 0.5. On
the top: inx2 = 0 plane. Bottom: inx1 = 0 plane.
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Fig. 3 The time evolution of the normal velocitym. (a): alongξ1-direction in the sectionξ2 = 0.
(b): alongξ2-direction in the sectionξ1 = 0.

5 Concluding remarks

An efficient central finite volume scheme for the weakly hyperbolic system of con-
servation laws of 3-D WNLRT has been described and tested. Reconstruction is
achieved component-wise and a simple central flux is employed in the numerical
flux evaluation. Based on our numerical experiment and the ones reported in [1],
the solenoidal condition is preserved up to machine accuracy if the present finite
volume scheme with a constrained transport technique is used. Moreover, none of
the the solution components exhibits any linearly growing Jordan mode.
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Fig. 4 The divergence ofB1 at t = 10.0. The error is of the order of 10−15.
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