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1 Introduction

Propagation of a curved nonlinear wavefront or a shock feahibits a very com-
plex phenomenon of possessing curves of discontinuitgsaarhich the normal to
the frontand the amplitude distribution on it are discomtins. Some of these curves
of discontinuity are called kinks. A kink is a shock in a c@pending ray coordinate
system in which a physically realistic system of conseorataws has been formu-
lated. The conservation form of the system of evolution équoa of a curve in two
space dimensions was first derived by Morton et al. [8] arglribiv set of conserva-
tion laws is termed as kinematical conservation laws (KQlhe KCL being a pure
geometrical result, does not take into consideration amadhcs of the propagating
front. This makes the KCL an incomplete system. The closguaton for KCL can
be derived by considering the dynamical conditions of tleppgating front. Prasad
and collaborators have used the KCL along with some closyat®ns derived on
physical considerations to solve several interestinglprob, see the review paper
[10] and the references therein. The KCL for a surface euglin three space di-
mensions, called 3-D KCL, a system of six conservation lavesge first derived by
Giles et al. [5]. The 3-D KCL system also contains three djeeice-free type sta-
tionary constraints, all three together termed as ‘gedmstilenoidal constraint’.
Later, the analysis of the 3-D KCL system, with the closureagipn from a weakly
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nonlinear ray theory (WNLRT) [9] was completed by Arun and$d [3, 4]. It
has been shown in [3] that the resulting system of consenvddiws, the so called
conservation laws of 3-D WNLRT give rise to a weakly hyperbslystem; in the
sense that the system has zero as a repeated eigenvaluewlifliaity five, but
the associated eigenspace is only four-dimensional.

Despite the 3-D WNLRT being a weakly hyperbolic system, inJJlwe have
been able to develop efficient numerical approximationsitfaising simple, but
robust central schemes. It is well known that the solutiothts Cauchy problem
for a weakly hyperbolic system (with deficiency in dimensinthe eigenspace
by one) typically contains a mode which grows linearly in éinThis mode, the
so-called ‘Jordan mode’, is in the direction of a generdlisigenvector and which
can cause severe difficulties in the numerical approximaifeuch systems. It has
been proved in [1] that when the geometric solenoidal caimdtis satisfied initially,
the solution to the Cauchy problem for linearised 3-D WNLRTaay time does
not exhibit the Jordan mode. Motivated by this, a constinansport technique
has been employed to enforce the geometric solenoidalredmisin the numerical
solution of 3-D WNLRT, see [1] for more details.

The aim of the present paper is to give a brief overview of duent results ob-
tained with 3-D WNLRT and to show its efficacy to model propagawavefronts.
The layout of the paper is as follows. In section 2 we intraglihe governing equa-
tions of 3-D WNLRT. The numerical approximation and the doaiged transport
strategy are outlined in section 3. In section 4 we presentdgbults of a numerical
experiment, showing the efficiency and robustness of theeptemethod. Finally,
we close this article with some concluding remarks in secsio

2 Governing equations

Consider a one parameter family of surface$xn x,x3)-space such that it rep-
resents the successive positions of a moving surfacas time varies. Associated
with the family, we have a ray velocity at any point(xy,x2,x3) on the surface
Q:. We consider only the isotropic evolution &% so that we takey to be in the
direction of the unit normat to Q, i.e. x = mn, wheremis the normal velocity of
propagation of2;. Hence, the evolution a®; is governed by

o _
b _

We introduce a ray coordinate systeiy, &»,t) such that fort = const, we get
(é1,&2) as the surface coordinates 0. Further,§; = consté, = const represent
the rays, a two parameter family of curves orthogona®toLet u andv be respec-
tively the unit tangent vectors to the cunégs= const and; = const onQ; and let
n be a unit normal td2;. Then we have

mn. (1)
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uxyv

n=——. (2)
uxv]
Let an element of distance along a cufée = constt = cons} be g;dé;. Anal-
ogously, denote bg,dé», the element of distance along a curég £ constt =
consy. The element of distance along a ri@dy = consté, = cons} is mdt. Based
on geometrical considerations we can derive the 3-D KCL]3, 5

(gaU)t — (mMn)g, =0, (3)

(G2v)t — (Mn)g, =0 (4)
subject to the condition

(G1u)g, — (92v)g, = 0. (5)

Note that the constraint (5) is an involution, i.e. if it idiséed at timet = 0, then
the equations (3)-(4) imply that it is satisfied for everyeinsince each of the com-
ponents of (5) is a divergence-free type condition, the areconstraint (5) has
been designated as geometric solenoidal constraint. TDEK&L (3)-(4), being
six evolution equations in seven unknownsus, v, Vo, m g1 andgp, is an under-
determined system. We use the closure equation by consigtbe energy propaga-
tion along the rays of a WNLRT, c.f. [9]. The energy transgamtiation of WNLRT
for a polytropic gas initially at rest and in uniform statendze written in a conser-
vation form [3]

((m— 1)2M™ Vg0, sinx)t =0, (6)

where x is the angle between the vectarsaandv. The system of equations (3)-
(4) and (6), hereafter designated as the conservation [&@<DoWNLRT, is the
complete set of equations describing the evolution of th@inear wavefront;.

Remark 1. It has been proved in [4] that the eigenvalues of 3-D WNLRT are

)\1,)\2(2 —)\1),)\3 =...=A7=0, whereAq is given by
m-1 /& 2 12
)\1:{ : (—%— elezcosx+é2)} . (7)
2sifx \gZ % 9%

Here, (e, &) € R? with € + € = 1. Further, there are only four independent eigen-
vectors for the eigenvalue zero. Note thats real form > 1 and purely imaginary
form< 1. Hence, the 3-D WNLRT forms a weakly hyperbolic system wimen 1.

In this article we consider only the case wian- 1.

3 Numerical approximation

In this section we present a numerical approximation of threservation laws of
3-D WNLRT to study evolution of a weakly nonlinear wavefr@atand formation
and propagation of kink curves on it. Note that the systenookervation laws of



4 K. R. Arun, M. Lukatova-Medwiova and P. Prasad
3-D WNLRT can be recast in the usual divergence form
W+ FL(W)g, +Fa(W)g, =0, (8)

where the vector of conserved variabWsand the flux-vector§; (W) and (W)
in the é1- and&,-directions respectively, are given by

W= (91u7 gV, (m—1)%#™ Vg, g, sinx)T :
F1i(W) = (mn,0,0)" ©)
Fo(W) = (0,mn,0)" .

In what follows we briefly summarise the central finite voluszdieme for (8), first
employed in [1].

1. The cell integral averages W are used in the discretisation of the system of
conservation laws (8).

2. A second order TVD Runge-Kutta method [12] is used for tintegration. The
time-step is chosen to be inversely proportional to the maxn of the nonzero
eigenvalue\,, c.f. (7), taken over the entire computational domain.

3. A nonlinear iterative solver is employed to recover thii@a ofu, v, g1, g, and
mfrom the computed values &Y.

4. A second order MUSCL reconstruction with a central wesgtgssentially non-
oscillatory (CWENO) limiter [6] is used to reconstruct thariables at the cell
interfaces.

5. The Kurganov-Tadmor high resolution flux [7] is used asrtherical flux at a
cell interface, for example at a right hand vertical edge

B 31+%7j
2

1

iz W WL ) = 5 (F (W) +Fa (W) (W1 — W),

(10)
Wherevwh(R) denote respectively the left and right interpolated staktésre,
3i;1/2,j Is the maximal wave-speed, which can be computed with the bl
the maximum of eigenvalues, c.f. [7]. The numerical flux atoaizontal edge
can be computed in an analogous manner.

6. In order that the numerical solution satisfy a discretesioa of the geometric
solenoidal constraint (5), we use a constrained transpgwtithm [11]. We em-
ploy three potentialg\1, Ay, A3z, corresponding to the three components of the
vectorsgiu andgov. Note that the geometric solenoidal constraint (5) implies
the conditions

iUk = Akfl’ OoVk = Akfz’ k= 1, 27 3. (11)

The use of (11) in the 3-D KCL system (3)-(5) immediately gtiethe evolution
equations
Ay —mn = 0. (12)
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We numerically solve (12) to get the updated values of them@lsAy. The
resulting values of\x are used to suitably discretise (11) to yield the corrected
values ofgi1u andgyv. It is these updated values, which satisfy a discrete versio
of (5), see [1] for more details.

At any timet, we approximate the wavefror®; by a discrete set of points
X j(t) = X(fli,fzj ,t). To get the successive positions®@f, we numerically solve
the system of ODEs (1) in the discretised form

dXi.j(t)
dt

wherem j(t) andn; j(t) are the corresponding values mfandn obtained from
Wi j(t).

In order to start the algorithm, the conserved varidldas to be initialised at
each mesh point. Here, some care has to be taken, so thas(44fjsfied by the
initial values. Let us assume that the initial wavefr@atis given a parametric form
x = Xo(&1,&2), with some appropriate choice of surface coordingiesmnd&,. The
initial values forg;u andgyv and the potentialéd.1, Ay, Az can be chosen to be

91u(&1,&2,0) = Xog, (€1, €2), 92V(€1,¢€2,0) = Xog, (€1, €2), (14)
Ay (&1,62,0) = x(é1,82), k=1,2,3. (15)

Note that (5) and (11) are satisfied by the above choice afinmalues. In the
numerical test problem considered here, the normal vglotibn Qg has been as-
signed a constant valumy = 1.2. For more details of the numerical scheme and its
implementation, we refer the reader to [1].

=mj(t)nij(t), (13)

4 Numerical test problem

We choose initial wavefron®q in a such a way that it is not axisymmetric. The
front Qg has a single smooth dip. The initial shape of the wavefrogivisn by
—K

I+5+8
where the parameter values are set taxbe 1/2,a = 3/2, 3 = 3. The ray coordi-
nates(&1, &,) are chosen initially ag; = x; andé, = Xo. The computational domain
[—20,20] x [—20,20] is divided into 401x 401 mesh points. The simulations are
done up td = 2.0,6.0,10.0. We have set non-reflecting boundary conditions for all
the variables.

In Figure 1 we plot the initial wavefron@y and the successive positions of

the wavefront; at timest = 2.0,6.0,10.0. It can be seen that the wavefront has
moved up in thexz-direction and the dip has spread over a larger areq-irand
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Fig. 1 The successive positions of the nonlinear wavef@nwith an initial smooth dip which is
not axisymmetric.

Xo-directions. The lower part of the front moves up leading thhange in shape of
the initial frontQy. It is very interesting to note that two dips appear in thetian
part of the wavefront, which are clearly visibletat 6.0 andt = 10.0. These two
dips are separated by an elevation almost like a wall pataltbe x,-axis. There is
a pair of kink lines, which are also parallel to tkeaxis and are more clearly seen
in Figure 2.

To explain the results of convergence of the rays we also igiiigure 2 the
slices of the wavefront ix, = 0 section and; = 0 section from timé& = 0.0 to
t = 10.0. Due to the particular choice of the parameterandf in the initial data
(16), the section of the fron®q in x, = 0 plane has a smaller radius of curvature
than that of the section ixy = 0 plane. This results in a stronger convergence of the
rays inx, = 0 plane compared to thosexn = 0 plane as evident from Figure 2. In
the diagram on the top in Figure 2, we clearly note a pair okiat times = 3.0
onwards in thex; = 0 section. However, there are no kinks in the bottom diagram
in Figure 2 inx; = 0 section.

We give now the plots of the normal velocityin (&1, &2) plane alondg:- andé,-
directions in Figure 3. It is observed thathas two shocks in th& -direction which
correspond to the two kinks in thg-direction. We have also plotted the numerical
values of the divergence @, at timet = 10.0 in Figure 4. It is evident that the
geometric solenoidal condition is satisfied with an errot@f1°. The divergences
of B, andB3 also show the same trend.
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Fig. 2 The sections of the nonlinear wavefront at tinhes 0.0, ...,10.0 with a time step 0.5. On
the top: inx, = 0 plane. Bottom: irx; = O plane.
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Fig. 3 The time evolution of the normal velocity. (a): alongé;-direction in the sectio, = 0.
(b): alongé,-direction in the sectiog; = 0.

5 Concluding remarks

An efficient central finite volume scheme for the weakly hyjmdic system of con-
servation laws of 3-D WNLRT has been described and testecor®truction is
achieved component-wise and a simple central flux is emglayehe numerical
flux evaluation. Based on our numerical experiment and thess eaported in [1],
the solenoidal condition is preserved up to machine acgufabe present finite
volume scheme with a constrained transport technique is. Mereover, none of
the the solution components exhibits any linearly growioigldn mode.
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Fig. 4 The divergence of3; att = 10.0. The error is of the order of 16°.
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