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Abstract We present a new path-consistent well-balanced finite volume method
within the framework of the evolution Galerkin (FVEG) schemes. The method-
ology will be illustrated for two layer shallow water equations with source terms
modelling the bottom topography and Coriolis forces. The FVEG methods couple a
finite volume formulation with approximate evolution operators. The latter are con-
structed using the bicharacteristics of multidimensional hyperbolic systems, such
that all of the infinitely many directions of wave propagation are taken into account
explicitly. We will derive a suitable path in the phase space that is based on the evo-
lution operator and derive the corresponding path-consistent FVEG scheme. The
path-consistent FVEG scheme is well-balanced for the stationary steady states as
well as for the steady jets in the rotational frame.

1 Mathematical model

Many types of flows, not necessarily involving water, can be described as shallow
water flows. Such flows are all characterized by negligible vertical scales in compar-
ison to horizontal scales. Typical examples are rivers with their flood plains, flows
in lakes generated by wind blows, propagation of tsunamis, oceanographic, meteo-
rological and geophysical flows. For smooth flows different methods, such as finite
difference schemes, finite element methods, or spectral methods perform quite well.
Under some assumptions flows may exhibit discontinuities, such as tidal bores ob-
served in some rivers, the wave resulting from the bursting of a dam or hydraulic
jump in jets. In this situation, a moving step front develops, which is comparable to
a shock wave in aerodynamics. In this work we consider the two-layer shallow water
equations describing motion of immiscible inviscid fluids of constant density. This
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type of flow appears, typically, in oceanographic models when a warm and light
upper layer flows over a lower layer of cooler, heavier water with larger salinity.

Taking into account effects of the variable bottom topography and the Coriolis
forces due to the earth rotation the system of two-layer shallow water equations can
be formulated as follows

∂th1 +∂x(h1u1)+∂y(h1v1) = 0,
∂t(h1u1)+∂x

(
h1u2

1 + g
2 h2

1
)
+∂y(h1u1v1) = −gh1∂x(b+h2)− f h1v1,

∂t(h1v1)+∂x(h1u1v1)+∂y
(
h1v2

1 + g
2 h2

1
)

= −gh1∂y(b+h2)+ f h1u1,
∂th2 +∂x(h2u2)+∂y(h2v2) = 0,

∂t(h2u2)+∂x
(
h2u2

2 + g
2 h2

2
)
+∂y(h2u2v2) = −gh2∂x(b+ rh1)− f h2v2,

∂t(h2v2)+∂x(h2u2v2)+∂y
(
h2v2

2 + g
2 h2

2
)

= −gh2∂y(b+ rh1)+ f h2u2.

(1)

Here h1,h2 denote the height of the corresponding layer, ui and vi are the vertically
averaged velocities in the x- and y-direction, respectively, i = 1,2. Furthermore b is
the time independent bottom topography, g the gravitational constant, f the Coriolis
parameter and r = ρ1/ρ2 describes the effect of different constant densities ρ1 < ρ2.

x−direction
 

 

reference level
bottom topography
interface
water surface

h
1
(x,t)

b(x)

h
2
(x,t)

Fig. 1 Two shallow layers

Mathematically there are several challenging problems arising by numerical so-
lution of the system (1). Indeed, we have non-conservative product terms, the system
is only conditionally hyperbolic, nonstrictly hyperbolic, and its eigenstructure can-
not be obtained in explicit form. In the literature several approaches to attack these
problems [1], [2], [7] can be found.

Typically large scale flow in the ocean and the atmosphere is characterized by an
approximate balance in the vertical direction between pressure gradient and gravity
(hydrostatic balance), and in the horizontal direction between the pressure gradi-
ent and the Coriolis forces that arise due to the earth rotation (geostrophic balance).
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Numerical scheme preserving important physical equilibria are called well-balanced
schemes. In this paper the following fundamental equilibrium states will be consid-
ered

1. rest state (lake at rest):

h1 +h2 +b = const., rh1 +h2 +b = const., u1 = v1 = 0 = u2 = v2; (2)

2. geostrophic equilibrium (jet in the rotational frame):

g∂x(h1 +h2 +b) =− f v1,u1 = 0,g∂y(h1 +h2 +b) = 0,∂yv1 = 0,v1∂yh1 = 0,

g∂x(rh1 +h2 +b) =− f v2,u2 = 0,g∂y(rh1 +h2 +b) = 0,∂yv2 = 0,v2∂yh2 = 0.

(3)

Note that the condition (3) actually states the balance between the Coriolis forces
and the pressure gradient in each layer; we assume here additionally that the flow is
quasi one-dimensional, thus the y-derivatives are set to zero.

In our previous works [9], [10] we have developed the so-called well-balanced
finite volume evolution Galerkin scheme for the one-layer shallow water system
with bottom topography and the Coriolis forces. The scheme has been shown to
be simple, accurate and surprisingly efficient. The finite volume evolution Galerkin
schemes can be formulated as two-step predictor-corrector scheme. The first step,
called predictor step, evolves the value at a quadrature node to the half-timestep.
This has been done by fully multidimensional bicharacteristic theory, cf. [10]. The
second step is the standard finite volume update. It approximates the flux integral
across the interfaces by a quadrature of the fluxes evaluated at the predicted states
at the half time step. Now in order to preserve equilibrium states, it is necessary
to satisfy equilibrium conditions at both time steps. Let us note that in [10] we
have approximated the right-hand-side source terms by the so-called cell-interface
approach that exactly balances flux integrals.

On the other hand, there have been several interesting results presented recently
in the literature where the non-conservative character of the right-hand-side source
terms of (1) was taken into account. In order to define the concept of the weak
solutions the theory developed by Dal Maso et al. [3] has been used. The most
important point is to give an interpretation to the nonconservative products as Borel
measures that are based on the choice of a family of paths drawn in the phase space.
The concept of path-conservative or path-consistent numerical schemes has been
introduced by Pares and Castro in [12], see also [11, 4, 6] and the references therein.

The goal of the present paper is two-fold: firstly we will derive a new well-
balanced path-consistent finite volume evolution Galerkin method and secondly we
apply this method for the two-layer shallow water equations.
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2 Operator splitting technique

Let us firstly rewrite (1) in the quasi-linear form. Setting W = (w1,w2,b,x,y)T and
denoting conservative variables of the corresponding layer by wi = (hi,hiui,hivi)T ,
i = 1,2, we obtain

Wt + Ã1(W)Wx + Ã2(W)Wy = 0, (4)

where

Ã1 =


A1(w1) C1(w1) −S1(w1) −S3(w1) 0
C̃1(w2) A1(w2) −S1(w2) −S3(w2) 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Ã2 =


A2(w1) C2(w1) −S2(w1) 0 −S4(w1)
C̃2(w2) A2(w2) −S2(w2) 0 −S4(w2)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

S1(wi) =

 0
−ghi

0

 ,S2(wi) =

 0
0
−ghi

 ,S3(wi) =

 0
f hivi

0

 ,S4(wi) =

 0
0

− f hiui

 .

Further, A1, A2 are the usual Jacobian matrices of conservative fluxes in x−,y− di-
rections, respectively, and C1,C2, C̃1, C̃2 the corresponding coupling matrices con-
taining the non-conservative terms. For example, we have

C1(w1) =

 0 0 0
c2

1 0 0
0 0 0

 , C̃2(w2) =

 0 0 0
0 0 0

rc2
2 0 0

 .

The difficulty of the two-layer system lies in the coupling matrices Ci, C̃i. Indeed,
the matrix pencil(

A1(w1) C1(w1)
C̃1(w2) A1(w2)

)
cosθ +

(
A2(w1) C2(w1)
C̃2(w2) A2(w2)

)
sinθ , θ ∈ (0,2π)

may have complex eingenvalues and the hyperbolicity of the system is lost. Even
if we would be able to approximate eigenvalues at least in the case when they are
real it is too expensive to construct the corresponding eigenvectors. The latter are
however necessary in order to apply the characteristic (or bicharacteristic) decompo-
sition needed for the evolution operator in the predictor step of the FVEG scheme.
These considerations lead us to a construction of a suitable decomposition of the
system (4) into a set of subsystems for which the corresponding eigenstructure is
readily available. In the present paper we apply a natural operator splitting that sep-
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arates each layer, see also [2] for similar approach. Note however, that other splitting
techniques are possible [7] and will be reported in our future work.

In what follows the following decomposition will be used:
operator T 1

∂tw1 +A1(w1)∂xw1 +A2(w1)∂yw1 = (5)
−C1(w1)∂xw2−C2(w1)∂yw2 +S1(w1)∂xb+S2(w1)∂yb+S3(w1)+S4(w1)

operator T 2

∂tw2 +A1(w2)∂xw2 +A2(w2)∂yw2 = (6)

−C̃1(w2)∂xw1− C̃2(w2)∂yw1 +S1(w2)∂xb+S2(w2)∂yb+S3(w2)+S4(w2)

Thus, instead of solving a complex system (4) the second order Strang splitting
approach is applied using the operators T 1 and T 2

Wn+1 = T 1
∆ t/2T 2

∆ tT
1

∆ t/2Wn. (7)

Note that the operators T 1, T 2 can be easily rewritten in the form (4) by setting,
respectively, the second and first row in the matrices Ã1 and Ã2 to zero. In fact, we
have for the operator T 1

Wt + Ã1
1(W)Wx + Ã1

2(W)Wy = 0,

Ã1
1 =


A1(w1) C1(w1) −S1(w1) −S3(w1) 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



Ã1
2 =


A2(w1) C2(w1) −S2(w1) 0 −S4(w1)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

The analogous equations hold for the operator T 2. Clearly, each system (5), (6)
now reduces to the one-layer shallow water equations with a generalized bottom
topography h2 + b or rh1 + b. These are known for a given time step using the
values from the previous time step. Our next aim is to derive a well-balanced path-
consistent FVEG scheme for each layer separately.
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3 Path-consistent FVEG scheme

Let us discretize a computational domain Ω by a regular rectangular mesh consist-
ing of finite volumes Ωk` = (xk − h̄/2,xk + h̄/2)× (y` − h̄/2,y` + h̄/2), k, ` ∈ Z
and denote by h̄ the mesh step and by ∆ t time step. For each layer the path-
consistent FVEG scheme is a predictor-corrector method. The corrector step is a
path-consistent FV update, in the predictor step an intermediate solution W∗ on cell
interfaces and cell centers is computed using an approximate evolution operator for
the related layer, cf. Section 4.

In order to derive a path-consistent FV update we need to construct a suitable
path in the phase space

Φ̃(s,W∗
k,`′ ,W

∗
k+1,`′) :=

{ Φ(2s,W∗
k,`′ ,W

∗
k+1/2,`′) 0≤ s≤ 1/2,

Φ(2s−1,W∗
k+1/2,`′ ,W

∗
k+1,`′) 1/2≤ s≤ 1,

here Φ(s,W∗
a,W∗

b) is a straight path connecting W∗
a and W∗

b, W∗ is obtained by the
evolution Galerkin operator in the predictor step.

The path-consistent finite volume update reads for each operator T i, i = 1,2

Wnew
k,` = Wold

k,` −
τ

h̄ ∑
`′∈L

α`′

(
Di,−

k+1/2,`′ +Di,+
k−1/2,`′

)
− τ

h̄ ∑
k′∈K

βk′
(

Di,−
k′,`+1/2 +Di,+

k′,`−1/2

)
, (8)

where τ = ∆ t or τ = ∆ t/2, L := {`−1/2, `, `+1/2} and K := {k−1/2,k,k+1/2}
are the index sets and α`′ , βk′ the weights of the Simpson quadrature applied for
flux integration along cell interfaces. Now let us define the D matrices for each
k, ` ∈ Z,k′ ∈ K, `′ ∈ L

Di,−
k+1/2,`′ :=

∫ 1

0
Ãi

1(Φ(s;W∗
k,`′ ,W

∗
k+1/2,`′))

∂Φ

∂ s
(s;W∗

k,`′ ,W
∗
k+1/2,`′)ds, (9)

Di,+
k+1/2,`′ :=

∫ 1

0
Ãi

1(Φ(s;W∗
k+1/2,`′ ,W

∗
k+1,`′))

∂Φ

∂ s
(s;W∗

k+1/2,`′ ,W
∗
k,`′)ds, (10)

matrices Di,+
k′,`+1/2,D

i,−
k′,`+1/2 are defined using Ãi

2 in an analogous way, i = 1,2.
After a short calculation we obtain for each layer, i = 1,2, the following repre-

sentation of source terms
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(S1(w∗i )∂xb)k+1/2,`′ =

g
2

 0
((h∗i )k,`′ +(h∗i )k+1/2,`′)(b∗k,`′ −b∗k+1/2,`′)+((h∗i )k−1/2,`′ +(h∗i )k,`′)(b∗k−1/2,`′ −b∗k,`′)

0

 ,

(S2(w∗i )∂yb)k′,`+1/2 =

g
2

 0
0

((h∗i )k′,` +(h∗i )k′,`+1/2)(b∗k′,`′ −b∗k′,`+1/2)+((h∗i )k′,`−1/2 +(h∗i )k′,`)(b∗k′,`−1/2−b∗k′,`)

 ,

(S3(w∗i )∂xx)k+1/2,`′ =

f
h̄
4

 0
(h∗i )k−1/2,`′(v∗i )k−1/2,`′ +2(h∗i )k,`′(v∗i )k,`′ +(h∗i )k+1/2,`′(v∗i )k+1/2,`′

0

 ,

(S4(w∗i )∂yy)k′,`+1/2 =

− f
h̄
4

 0
0

(h∗i )k′,`−1/2(u∗i )k′,`−1/2 +2(h∗i )k′,`(u∗i )k′,` +(h∗i )k′,`+1/2(u∗i )k′,`+1/2

 .

Let us point out that the discretization of source terms obtained above using the
path-consistent approach and those derived in [10] are different. Nevertheless both
approaches yield well-balanced approximations, cf. [10] and Theorem 1 below.

4 Approximate evolution operators

In order to keep the paper self-contained we present the first order approximate
evolution operator T 1, the approximate evolution operator T 2 can be written in an
analogous way. For the second order version and for the detailed derivation of ap-
proximate evolution operators the reader is referred to [10]. The approximate evo-
lution operator W∗ = EG1

τ/2Wold for the operator T 1
τ reads

h1 (P) =−b(P)−h2(P)+
1

2π

∫ 2π

0

[
(h1 (Q)+b(Q)+h2(Q))− c̃1

g
(u1 (Q)sgn(cosθ)+ v1 (Q)sgn(sinθ))

]
dθ

+
τ

4π

∫ 2π

0
(ũ1(bx(Q)+(h2)x(Q))+ ṽ1(by(Q)+(h2)y(Q)))dθ
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u1 (P) =
1

2π

∫ 2π

0

[
− 1

c̃1
K1 (Q)sgn(cosθ)+u1 (Q)

(
cos2

θ +
1
2

)
+ v1 (Q)sinθ cosθ

]
dθ

v1 (P) =
1

2π

∫ 2π

0

[
− 1

c̃1
L1 (Q)sgn(sinθ)+u1 (Q)sinθ cosθ

+ v1 (Q)
(

sin2
θ +

1
2

)]
dθ

h2(P) =
1

2π

∫ 2π

0
h2 (Q)dθ , b(P) =

1
2π

∫ 2π

0
b(Q)dθ (11)

u2(P) =
1

2π

∫ 2π

0
u2 (Q)dθ , v2(P) =

1
2π

∫ 2π

0
v2 (Q)dθ

Here τ = ∆ t/2, due to the Strang splitting (7) we have τ = ∆ t for the T 2 op-
erator. Further, K1 and L1 are the potential energies in the x− and y− directions
defined as K1 := g(h1 + h2 + b−V1), L1 := g(h1 + h2 + b + U1), where V1,U1

are the primitives to the Coriolis forces, i.e. ∂x(V1) = f
g v1, ∂y(U1) = f

g u1. In the
equations (11) the evolution takes place along the so-called bicharacteristic cone
having the peak at P = (x,y, told + τ/2) and footpoints Q on the sonic circle, i.e.
Q = (x− ũ1τ/2− c̃1τ/2cosθ ,y− ṽ1τ/2− c̃1τ/2sinθ , told), θ ∈ (0,2π); ũ1, ṽ1, c̃1
are the constant states obtained by a local linearization (e.g. local averaging).

5 Well-balancing of the path-consistent FVEG scheme

The aim of this section is to verify the well-balanced property of the path-consistent
FVEG scheme (7), (8).

Theorem 1. Suppose that the solution at time tn satisfy for all (x,y) the equilibrium
conditions (2) and (3). Then the path-consistent FVEG scheme satisfies the same
well-balanced conditions for the new time level tn+1. More precisely, the rest at
state condition (2) is preserved exactly and the geostrophic equilibrium condition
(3) is satisfied for smooth solutions up to at least third order accuracy.

Proof. i) First, it is clear that if the operators T 1 and T 2 are well-balanced the com-
plete path-consistent scheme (7) will be well-balanced as well.

Further, we have shown in [10] that the approximate evolution operator (11) sat-
isfies these conditions exactly for the corresponding generalized bottom topography
h2 +b; the same is true for the second layer with the generalized topography rh1 +b.

Thus for each layer, the predicted solutions W∗ satisfy the above conditions (2),
(3) exactly.

ii) Now, we need to show that the finite volume update (8) preserves these con-
ditions as well. We will first consider the rest state conditions: using u∗i = 0, v∗i = 0,
for i = 1,2, and h∗1 +h∗2 +b = c1, rh∗1 +h∗2 +b = c2, c1 = const., c2 = const. we get
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for the first layer for each k, `

(h1)
new
k,` = (h1)

old
k,`

(h1u1)
new
k,` = − ∆ t

h̄ ∑
`′∈L

α`′
g
2

[(
(h∗1)

2
k+1/2,`′ − (h∗1)

2
k−1/2,`′

)
(12)

+
(
(h∗1)k−1/2,`′ +(h∗1)k,`′

)(
B∗k,`′ −B∗k−1/2,`′

)
+
(
(h∗1)k+1/2,`′ +(h∗1)k,`′

)(
B∗k+1/2,`′ −B∗k,`′

)]
,

where we set B = b+h2. Now we have on the right hand side of (12)

(h∗1)
2
k+1/2,`′ − (h∗1)

2
k−1/2,`′ +

(
(h∗1)k−1/2,`′ +(h∗1)

2
k,`′

)(
B∗k,`′ −Bk−1/2,`′

)
+
(
(h∗1)k+1/2,`′ +(h∗1)k,`′

)(
B∗k+1/2,`′ −B∗k,`′

)
= (h∗1)k+1/2,`′c1− (h∗1)k−1/2,`′c1 +

(
(h∗1)k−1/2,`′ − (h∗1)k+1/2,`′

)
B∗k,`′

+(h∗1)k,`′
(

B∗k+1/2,`′ −B∗k−1/2,`′

)
=
(
(h∗1)k+1/2,`′ − (h∗1)k−1/2,`′

)(
c1−B∗k,`′

)
+(h∗1)k,`′

(
B∗k+1/2,`′ −B∗k−1/2,`′

)
= (h∗1)k,`′(c1− c1) = 0.

The analogous equations hold for the momentum equation in the y-direction. Al-
together these imply that hnew

1 = hold
1 , unew

1 = 0 = vnew
1 . The same relations hold

analogously for the second layer hnew
2 = hold

2 , unew
2 = 0 = vnew

2 , so that together with
the results from i) we have hn+1

1 +hn+1
2 +b = c1 and rhn+1

1 +hn+1
2 +b = c2.

iii) The proof for the geostrophic equilibrium (3) is analogous. The first equation
for the conservation of momentum yields (h1)n+1

k` = 0 and (h2)n+1
k` = 0. However,

the momentum equation in the x− direction yields only un+1
i = O(h̄3), i = 1,2.

Indeed,

(h1u1)new
k` = −∆ t

h̄ ∑
`′∈L

α`′

[g
2

(
(h∗1)

2
k+1/2,`′ − (h∗1)

2
k−1/2,`′

)
(13)

+ f
h̄
4

(
(h∗1)k−1/2,`′(v

∗
1)k−1/2,`′ +2(h∗1)k`′(v

∗
1)k`′ +(h∗1)k+1/2,`′(v

∗
1)k+1/2,`′

)]
=

−∆ t
h̄ ∑

`′∈L
α`′

[g
2
(
(h∗1)k+1/2,`′ +(h∗1)k−1/2,`′

)(
(K∗1 )k+1/2,`′ − (K∗1 )k−1/2,`′

)
+E

]
,

here E is the error term and K1 is the potential energy, thus setting for simplicity
of the presentation K1 = h1 +V1. Then (K∗1 )k+1/2,`′ − (K∗1 )k−1/2,`′ = (h∗1)k+1/2,`′ −
(h∗1)k−1/2,`′ + f h̄

2 ((v∗1)k+1/2,`′ +(v∗1)k−1/2,`′) = 0. The error term gives
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E =
f h̄
4
(
(h∗1)k+1/2,`′(v

∗
1)k−1/2,`′ +(h∗1)k−1/2,`′(v

∗
1)k+1/2,`′ −2(h∗1)k,`′(v

∗
1)k,`′

)
=O(h̄3),

which together with an analogous equation for the second layer concludes the proof.

6 Numerical experiments

In this section we want to demonstrate the behaviour of new path-consistent FVEG
scheme through some numerical experiments.

Problem 1
First, we test accuracy of the path-consistent FVEG scheme. The initial data are

as follows

b(x,y) =−1
2

exp(sin2(πx)),

h1(0,x,y) = 5+ exp(cos(2πx)),

h2(0,x,y) = 5+ sin2(πx)−b(x),
u1(0,x,y) = sin(cos(2πx))/h1(x,0)
u2(0,x,y) = 0.

We apply periodic boundary conditions and set r = 0.98, g = 9.812. The computa-
tional domain [0,1]× [0,1] is divided into N×N mesh cells, N = 20, . . . ,160. In the
following table we present behaviour of the relative global L1 error of the second or-
der well-balanced path-consistent FVEG scheme. The solution was computed until
T = 0.1 and no limiter has been used in this experiment. The CFL number is chosen
to be CFL = 0.9.

FVEG
N h1 EOC h2 EOC
20 2.31e-03 1.45e-03
40 4.28e-04 2.43 4.02e-04 1.85
80 7.73e-05 2.47 8.36e-05 2.27
160 1.59e-05 2.28 1.92e-05 2.12

FVEG
N q1 EOC q2 EOC
20 6.87e-02 9.48e-02
40 1.32e-02 2.39 1.97e-02 2.27
80 2.29e-03 2.52 3.70e-03 2.41
160 4.61e-04 2.32 7.82e-04 2.24

Table 1 L1 errors of the well-balanced path-consistent FVEG method

Table 1 clearly demonstrates the second order accuracy of the FVEG method.
Interestingly, we can notice very accurate behaviour of our path-consistent FVEG
scheme, for example, in comparison with the well-balanced higher order FV WENO
scheme that uses fourth order Runge-Kutta method for time evolution. The latter has
been developed by Frings in [5].



Path-consistent FVEG schemes 11

Problem 2
This is an internal dam-break problem. We have imposed initially a jump at the

interface, while still having the total water height constant.

h1(0,x) =

{
0.2, if x < 5,

1.8, if x > 5,

h2(0,x) =

{
1.8, if x < 5,

0.2, if x > 5,

u1(0,x) = u2(0,x) = 0, b(x) = 0, x ∈ (0,10).

In the following figures solution obtained by the path-consistent second order
FVEG scheme for the case r = 0.7 at time t = 0.1 and r = 0.98 at t = 5 is plotted, see
Figures 2,3. We can nicely recognize the structure of the solution consisting of three
constant states connected by two rarefaction waves and two shocks. No oscillations
or smearing of shocks can be seen, that was a problem reported by other authors,
cf. [2]. The minmod limiter has been used in the second order reconstruction.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

height,t=1.00
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−0.5

0

0.5

1
x−velocity

 

 

water surface
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upper layer
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Fig. 2 Solution obtained by the path-consistent FVEG scheme at time t = 1.0, ρ1
ρ2

= 0.7

Problem 3
The last problem is a geostrophic adjustment simulation for two-layer shallow

water model, analogous problem for the one-layer shallow water has been consid-
ered in [6]. The initial conditions are

h1(x,y,0) = 1+
A0

2

1− tanh


√

(
√

λx)2 +(y/
√

λ )2−Ri

RE

 ,

h2(x,y,0) = 1, u1(x,y,0) = v1(x,y,0) = u2(x,y,0) = v2(x,y,0) = 0,

where the parameters are A0 = 0.5, λ = 2.5, RE = 0.1, and Ri = 1. The gravity
and the Coriolis forces parameters are set to g = 1, f = 1, fraction of layers den-
sity is r = 0.98. No bottom topography is considered. The computational domain
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Fig. 3 Solution obtained by the path-consistent FVEG scheme at time t = 5.0, ρ1
ρ2

= 0.98

[−10,10]× [−10,10] has been divided into 400×400 mesh cells. The CFL number
was set to 0.6. In Figure 4 we see results of time evolution of initial perturbation
of top surface. Results were obtained by the second order path-consistent FVEG
scheme using bilinear recovery with minmod limiter. Two circular shock waves
propagating in the top surface h1 + h2 and in the second layer h2 can be recog-
nized nicely. Behind the shocks there is elevation rotating anti-clockwise. In order
to represent absorbing boundary conditions extrapolation has been implemented on
the boundary of computational domain.
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9. Lukáčová-Medvid’ová M., Vlk Z.: Well-balanced Finite Volume Evolution Galerkin Methods
for the Shallow Water Equations with Source Terms. Int. J. Num. Fluids. 47(10-11), 1165–
1171 (2005)
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Fig. 4 Effects of Coriolis forces in the two-layer model at t = 0,4,8,12,16,20


