
Large time step finite volume evolution Galerkin
methods 1

A. Hundertmark-Zaušková2, M. Lukáčová - Medvid’ová2 and F. Prill2

Abstract

We present two new large time step methods within the framework of the well-
balanced finite volume evolution Galerkin (FVEG) schemes. The methodology will
be illustrated for low Froude number shallow water flows with source terms mod-
eling the bottom topography and Coriolis forces, but results can be generalized to
more complex systems of balance laws. The FVEG methods couple a finite vol-
ume formulation with approximate evolution operators. The latter are constructed
using the bicharacteristics of multidimensional hyperbolic systems, such that all of
the infinitely many directions of wave propagation are taken into account explicitly.
We present two variants of large time step FVEG method: a semi-implicit time ap-
proximation and an explicit time approximation using several evolution steps along
bicharacteristic cones.

Key words: well-balanced schemes, steady states, systems of hyperbolic balance laws,
shallow water equations, large time step, semi-implicit approximation, evolution Galerkin
schemes

AMS Subject Classification: 65L05, 65M06, 35L45, 35L65, 65M25, 65M15

1 Introduction

Many problems arising in geophysics, engineering or natural sciences lead to hyperbolic
balance laws. An interesting example are the shallow water equations with the source term
modeling the bottom topography and/or Coriolis forces, which arise in oceanography and
atmospheric sciences

ut + f 1(u)x + f 2(u)y = b(u), (1.1)

where u = (h, hu, hv)T are conservative variables. Fluxes and source term are given as

f1(u) =





hu
hu2 + 1

2
gh2

huv



 , f2(u) =





hv
huv

hv2 + 1
2
gh2



 , b(u) =





0
−ghbx + fhv
−ghby − fhu



 .(1.2)

1This research has been supported by the German Research Foundation DFG under the grant LU
1470/2-1.

2Institute of Mathematics, University of Mainz, Staudingerweg 9, 55099 Mainz Germany, emails:
{hundertm,lukacova,prill}@uni-mainz.de

Here h denotes the water height, u, v are vertically averaged velocity components in x-
and y-direction, g stands for the gravitational constant, f is the Coriolis parameter, and
b(x, y) denotes the bottom topography. Shallow flows are characterized by the Froude
number Fr =

√
u2 + v2/c, where c =

√
gh denotes the wave speed. For Fr < 1, Fr = 1

and Fr > 1 the flow is called subcritical, critical and supercritical, respectively. We are
interested in problems when bores or hydraulic jumps may develop and thus a suitable
numerical method has to take the hyperbolic character of the system into account.

Since many geophysical flows are close to some fundamental equilibrium states, a suitable
numerical method has to preserve these states, too. We consider states which are both
stationary, (h, u, v)t = 0, and constant along streamlines, (ḣ, u̇, v̇) = 0. Then the desired
solution has to satisfy several conditions

u = 0, vy = 0, vhy = 0, g(h+ b)x = fv, g(h+ b)y = 0.

In the region {(x, y)| v(x, y) = 0} we obtain the lake at rest solution, where the water
level h + b is flat. When v(x, y) 6= 0 we get a balance between a raise in the water level
g(h + b)x and the sidewards pressure due to the earth rotation fv. In meteorological
literature this state is called the geostrophic equilibrium.

In this paper we will deal with the well-balanced finite volume evolution Galerkin (FVEG)
method developed in [4] by Lukáčová, Noelle and Kraft. The FVEG method couples a
finite volume formulation with approximate evolution operators which are based on the
theory of bicharacteristics for first order systems [3]. As a result exact integral represen-
tations for solutions of linear or linearized hyperbolic conservation laws can be derived,
which take into account all of the infinitely many directions of wave propagation. The well-
balanced FVEG methods preserve exactly the lake at rest solution as well as geostrophic
equilibrium [4].

Another typical characteristic of geophysical flows is their multiscale behavior with wave
speeds differing by orders of magnitude. If the Froude number is small the gravitational
waves are much faster than advection waves. The main goal of the present paper is to
improve well-balanced FVEG scheme by alleviating the severe CFL time step restriction
for the case of small Froude number problems, i.e. Fr << 1. Indeed, the CFL stability
condition for explicit schemes reads

max(|u|+ c, |v|+ c)∆t

~
≤ 1, (1.3)

here ∆t is the time step and ~ denotes the mesh size. Inserting the Froude number, we
obtain the sufficient condition

max c (1 + Fr)
∆t

~
≤ 1. (1.4)

Now if the Froude number is small then the time step is dictated essentially by the
velocity c of gravitational waves. This leads to a classical computational challenge: If one
is interested in the effect of advection, which moves with the flow velocity (u, v), then
a wave requires (1 + 1/Fr) time steps to pass a single cell. For example, if the Froude
number is O(10−2), a vortex would need about 102 time steps to pass a single cell. This
can be seen by rewriting the CFL condition as

max

((

1 +
1

Fr

) √
u2 + v2

)
∆t

~
≤ 1. (1.5)

2

As a consequence, the numerical solution is very dissipative and computationally expen-
sive. The present paper, as many previous works on low Froude number flows, tries
to reduce the adverse effect of the factor 1 + 1/Fr upon the time step ∆t: one would
like to choose a time step which is as large as that for a purely advective flow, with no
gravitational waves present.

In the next section we explain briefly a basic tool of any FVEG scheme, the so-called
evolution operators. In Section 3 we introduce an explicit large time step FVEG method.
The semi-implicit FVEG method is described in Section 4. Finally, in Section 5 we present
numerical experiments comparing accuracy and stability of both large time step FVEG
methods with the standard explicit FVEG scheme.

2 Evolution operators

In the predictor step of finite volume evolution Galerkin methods we need firstly to de-
termine point values on cell interfaces. It is here that the classical bicharacteristic theory
comes into play. Taking all infinitely many directions of wave propagation into account
it provides exact integral formulae for point values of solutions to multidimensional hy-
perbolic systems.

Time evolution of a solution of a multidimensional system of hyperbolic balance laws
takes place along the so-called bicharacteristics. In general, these are curves that evolve
in time according to the ray velocities determined by the eigenvalues of hyperbolic systems.
If the system is linear or locally linearized, the bicharacteristics are just straight lines.
Rewriting the shallow water system (1.1) for characteristic variables and integrating each
equation along the corresponding bicharacteristic yields the exact integral representation,
see, e.g. [4] for a detailed derivation.

h (P) =
1

2π

∫ 2π

0

h (Q)− c̃

g
(u (Q) cos θ + v (Q) sin θ) dθ

− 1

2π

∫ tn+τ

tn

1

tn + τ − t̃

∫ 2π

0

c̃

g

(

u(Q̃) cos θ + v(Q̃) sin θ
)

dθdt̃

+
1

2π
c̃

∫ tn+τ

tn

∫ 2π

0

(

bx(Q̃) cos θ + by(Q̃) sin θ
)

dθdt̃

− 1

2π

c̃f

g

∫ tn+τ

tn

∫ 2π

0

(

v(Q̃) cos θ − u(Q̃) sin θ
)

dθdt̃,

u (P) =
1

2
u (Q0) +

1

2π

∫ 2π

0

−g

c̃
h (Q) cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ dθ (2.1)

−g

2

∫ tn+τ

tn

(

hx(Q̃0) + bx(Q̃0)
)

dt̃

− g

2π

∫ tn+τ

tn

∫ 2π

0

(

bx(Q̃) cos2 θ + by(Q̃) sin θ cos θ
)

dθdt̃

+
1

2π

∫ tn+τ

tn

1

tn + τ − t̃

∫ 2π

0

(

u(Q̃) cos 2θ + v(Q̃) sin 2θ
)

dθdt̃

+
f

2

∫ tn+τ

tn

v(Q̃0)dt̃+
f

2π

∫ tn+τ

tn

∫ 2π

0

(

v(Q̃) cos2 θ − u(Q̃) sin θ cos θ
)

dθdt̃.

3

The equation for the velocity v is analogous to that for u. In fact, evolution takes place
along the bicharacteristic cone, see Fig. 1 for a locally linearized case, where P = (x, y, tn+
τ) is the peak of bicharacteristic cone, Q0 = (x− ũτ, y − ṽτ, tn) denotes the center of the
sonic circle at time tn, Q̃0 = (x− ũ(tn+ τ− t̃), y− ṽ(tn+ τ − t̃), t̃), Q̃ = (x− ũ(tn+ τ − t̃)+
c(tn + τ − t̃) cos θ, y− ṽ(tn + τ − t̃) + c(tn + τ − t̃) sin θ, t̃) stands for an arbitrary point on

the mantle, ũ, ṽ, c̃ are locally fixed flow and wave velocities at (x, y, tn), and Q = Q(t̃)
∣
∣
∣
t̃=tn

denotes a point at the perimeter of the sonic circle at time tn.

P = (x, y, tn + τ)

Q0

Q(θ)

x
y

t

Figure 1: Bicharacteristic cone.

In [4] we have derived a well-balanced time explicit approximation of exact evolution
equations (2.1). For the sake of completeness we recall here the approximate evolution

operator Eτ ; for piecewise constant data U = (h, hu, hv) we denote Û = EτU .

ĥ (P) = −b(P) +
1

2π

∫ 2π

0

[

(h (Q) + b(Q))− c̃

g
(u (Q) sgn(cos θ) + v (Q) sgn(sin θ))

]

dθ

+
τ

2π

∫ 2π

0

(ũbx(Q) + ṽby(Q)) dθ, (2.2)

û (P) =
1

2π

∫ 2π

0

[

−1

c̃
K (Q) sgn(cos θ) + u (Q)

(

cos2 θ +
1

2

)

+ v (Q) sin θ cos θ

]

dθ,

here K := g(h + b) − f
∫
vdx is the potential energy in the x-direction. An analogous

operator has been derived for bilinear data.

Further, in [8] the so-called local approximate operator has been derived by Sun and Ren.
The main idea of the method is to apply the approximate evolution operator in the limiting
case as τ → 0. Hence only the integrals along the base of the bicharacteristic cones are
taken into account, mantle integrals in (2.1) vanish, see [8] for a detailed derivation. The
approximate evolution operator E0 reads

ĥ(P) = −b(P) +
1

2π

∫ 2π

0

[

h(Q) + b(Q)− c̃

g
(u(Q)cos θ + v(Q)sin θ)

]

dθ,

û(P) =
1

π

∫ 2π

0

[

−1

c̃
K(Q) cos θ + u(Q) cos2 θ + v(Q) sin θ cos θ

]

dθ. (2.3)

The main advantage of the local evolution is a decoupling of time evolution and spatial
integration. Thus, the local evolution operator may be easily used in semi-discrete FV
schemes.

4

In what follows we will use the above approximate evolution operators in the large time
step FVEG method. In Section 3 the approximate evolution operator (2.2) will be used in
order to derive the explicit large time step FVEG method. Note that the evolution may
take place in the positive as well as negative temporal direction, i.e. from tn to tn +∆t as
well as from tn+∆t to tn. Applying the approximate evolution operators E+

∆t and E−
∆t we

can obtain predicted data at cell interfaces at different time instances, i.e. Û
n+1

:= E+
∆tU

n,

Û
n
:= E−

∆tU
n+1. These can be used in the semi-implicit finite volume update in order to

evaluate fluxes along cell interfaces, see Section 4. Unfortunately, this approach yields an
unstable scheme. Indeed, even for the scalar Burgers equation a semi-implicit character-
istics based finite volume method is unstable for large time steps. This is the reason to
construct the semi-implicit FVEG scheme by means of the local evolution operator (2.3),
see Section 4, (4.3).

3 Explicit large time step FVEG method

Let us divide a computational domain Ω into a finite number of regular finite volumes
Ωij = [xi− 1

2

, xi+ 1

2

]×[yj− 1

2

, yj+ 1

2

] = [xi−~/2, xi+~/2]×[yj−~/2, yj+~/2], i, j ∈ {1, . . . , N},
where ~ is the mesh size. Denote by Un

ij the piecewise constant approximate solution on
a mesh cell Ωij at time tn and start with initial approximations obtained by the integral
averages U 0

ij =
1

|Ωij |

∫

Ωij
U(·, 0).

Further, let us divide the time interval [0, T] into M large time steps [tn, tn+1] with
length ∆t, tn+1 = tn + ∆t. In order to construct a method that approximates advec-
tion waves explicitly we enforce a stability CFL condition max(|u|, |v|)∆t/~ ≤ 1. Ad-
ditionally, we divide a large time step[tn, tn+1] into L small evolution time steps with
length τ := ∆t/L. Here the substep τ is chosen in such a way that a classical CFL
stability condition is fulfilled, i.e. max(|u|+ c, |v|+ c)τ/~ ≤ 1. Consequently, we have the
following intermediate time steps: tn, tn + τ, tn + 2τ, . . . , tn + Lτ ≡ tn+1.

The FVEG method is a predictor-corrector method. In the predictor step the approxi-
mate evolution operators are used to evolve the solution along the cell interfaces up to
intermediate time levels. In the corrector step the finite volume update is done over a
large time step

Un+1
ij = Un

ij −
∆t

~

2∑

k=1

δijxk
f̄

n+1/2
k +

∆t

~
B̄

n+1/2
ij . (3.1)

Here δijxk
stands for the central difference operator in the xk-direction, k = 1, 2 and f̄

n+1/2
k

represents a time average of the edge flux over [tn, tn+1], cf. (3.3). Further, B̄
n+1/2
ij stands

for the approximation of the source term multiplied by the mesh size, ~b.

To approximate a nonlinear evolution from tn to tn+1 in the predictor step we apply L small
evolution steps along the corresponding bicharacteristic cones from tn+`τ to tn+(`+1)τ,

` = 0, 1, . . . , L−1. The cell interface fluxes f
n+(2`−1)/2L
k are evolved using an approximate

evolution operator denoted by Eτ from the old small time step into a new one, i.e. from
tn to tn + τ/2, from tn + τ/2 to tn + 3τ/2, etc. In order to increase the accuracy of the
method we apply a recovery step after each small evolution time step, e.g. we have for
` = 2, 3, . . . , L and a suitable bilinear recovery Rh

Û
n+(2`−1)/2L

:= EτRhU
n+(2`−3)/2L and Û

n+1/2L
:= Eτ/2RhU

n.

5

Now the fluxes are averaged along the cell interface edge,

f
n+(2`−1)/2L
k :=

∑

j

ωjfk(Û
n+(2`−1)/2L

(xj)), ` = 1, 2, . . . , L. (3.2)

Here xj are the nodes and ωj the weights of the quadrature for the flux integration along
the edges. Finally, applying the composite midpoint rule for time integration we obtain
the time average of cell interface fluxes

f̄
n+1/2
k :=

τ

∆t

L∑

`=1

f
n+(2`−1)/2L
k . (3.3)

Further, in order to describe the well-balanced approximation of sources we introduce
the following notation. Along the edges we have quadrature nodes (xi± 1

2

, yj+j′) resp.

(xi+i′, yj± 1

2

), where i′, j′ ∈ {0,±1
2
}. These nodes are already sufficient for the midpoint,

the trapezoidal and Simpson’s rule. In order to discretize the source term in a well-
balanced manner we apply again the same quadrature rule for edge integration as for the
flux interface integration

B
n+(2`−1)/2L
ij = − g






0
∑

j′ ωj′ (µ
i,j+j′

x1
ĥ
(2`−1)/2L
i,j+j′) (δi,j+j′

x1
(b̂− V̂)

(2`−1)/2L
i,j+j′)

∑

i′ ωi′ (µ
i+i′,j
x2

ĥ
(2`−1)/2L
i+i′,j) (δi+i′,j

x2
(b̂+ Û)

(2`−1)/2L
i+i′,j)




 . (3.4)

Here Û and V̂ are the discrete primitives of the Coriolis forces, defined by

δi,j+j′

x1
V̂

(2`−1)/2L
i,j+j′ =

f

g
µi,j+j′

x1
v̂
(2`−1)/2L
i,j+j′ δi+i′,j

x2
Û

(2`−1)/2L
i+i′,j =

f

g
µi+i′,j
x2

û
(2`−1)/2L
i+i′,j

and µx1
, µx2

the average operators µij
x1
a = (ai+1/2,j + ai−1/2,j)/2, µij

x2
a = (ai,j+1/2 +

ai,j−1/2)/2. Consequently, the time average of the source term is defined analogously
to (3.3) as

B̄
n+1/2
ij :=

τ

∆t

L∑

`=1

B
n+(2`−1)/2L
ij . (3.5)

Let us note that if L = 1 the large time step explicit FVEG method reduces to the
standard FVEG developed in [4].

4 Semi-implicit large time step FVEG method

Another way to overcome a restrictive CFL condition (1.5) dictated by fast gravitational
waves is to use semi-implicit time discretization. In the semi-implicit FVEG method we
apply the trapezoidal rule for time integration of cell interface fluxes and sources

Un+1
ij = Un

ij −
∆t

2~

2∑

k=1

(
δijxk

fn
k + δijxk

fn+1
k

)
+

∆t

2~

(
Bn

ij +Bn+1
ij

)
. (4.1)

6

Integrals along cell interfaces are approximated by a suitable quadrature rule; for ` = 0, 1
and quadrature weights ωj we have

fn+`
k :=

∑

j

ωjfk(Û
n+`

(xj)). (4.2)

Using the local evolution operator E0 we predict data at cell interfaces at the correspond-
ing quadrature points

Û
n
:= E0RhU

n and Û
n+1

:= E0RhU
n+1. (4.3)

Note that the source termsBn
ij andBn+1

ij , cf. (3.4), are also evaluated using Û
n
and Û

n+1
,

respectively.

The fully nonlinear semi-implicit equation (4.1) will now be solved iteratively by the
Newton method. For this let us rewrite (4.1) in the following way

F(Un+1) = G(Un), U = (U 1,1, . . .UN,N)
T

with

F(Un+1
i,j) = Un+1

i,j +
∆t

2~

[
2∑

k=1

δijxk
fn+1

k −Bn+1
ij

]

(4.4)

G(Un
i,j) = Un

i,j −
∆t

2~

[
2∑

k=1

δijxk
fn

k −Bn
ij

]

.

We are looking for a solution Un+1 satisfying

T (Un+1) := F(Un+1)− G(Un) = 0. (4.5)

Starting with Un+1,1 := Un and applying the Newton method for (4.5) we obtain

dT (Un+1,k)

dU
(Un+1,k+1 −Un+1,k) = −T (Un+1,k), k = 1, 2, . . . ,

This leads to a linear system AX = R

dF(Un+1,k)

dU
︸ ︷︷ ︸

A

(Un+1,k+1 −Un+1,k)
︸ ︷︷ ︸

X

= G(Un)− F(Un+1,k)
︸ ︷︷ ︸

R

. (4.6)

The Jacobian matrix A ∈ R3N2 × R3N2

consists of blocks corresponding to the update
equations for conservative variables h, hu, hv.

dF(Un+1,k)

dU
=









I +
dF1

(

U
n+1,k

)

d h

dF1
(

U
n+1,k

)

d (hu)

dF1
(

U
n+1,k

)

d (hv)

dF2
(

U
n+1,k

)

d h
I +

dF2
(

U
n+1,k

)

d (hu)

dF2
(

U
n+1,k

)

d (hv)

dF3
(

U
n+1,k

)

d h

dF3
(

U
n+1,k

)

d (hu)
I +

dF3
(

U
n+1,k

)

d (hv)









,

7

here Fm,m = 1, 2, 3, are the respective parts of the update operator ∆t
2~

[∑2
k=1 δ

ij
xk
f k −Bij

]
,

cf. (4.4), corresponding to the update equations for h, hu and hv.

The structure of the system matrix has a crucial influence on the performance of the overall
iteration. In the numerical experiments the number of Newton steps depends on the time
step size ∆t and thus on the CFL number. Furthermore, we should point out that the low
Froude number problems yield a badly conditioned matrix A and special preconditioning
techniques have to be used to solve (4.6) iteratively, see, e.g., techniques developed in [5]
for the case of low Mach number flows. On the other hand, if the size of discrete problem
is moderate, i. e. the computational mesh contains less than O(105 − 106) cells, efficient
direct solvers can be applied as well. In the numerical experiments presented in this paper
the direct solver UMFPACK [2] has been successfully to the linear problems (4.6). The
abort criterion for the Newton method is given by ‖T (Un+1,k+1)‖ ≤ ε with a tolerance
ε := 10−4 in all computations presented below. Typically the Newton iteration terminates
after a small number of steps and we get Un+1 := Un+1,k+1 as an approximate solution
of (4.5).

The computation of the Jacobian matrix A was based on forward mode automatic dif-
ferentiation. More precisely, the C++ library Sacado has been employed, which is part
of the Trilinos package [7]. For an efficient assembly of (4.6), the derivatives of the sep-
arable sum (4.1) were computed cell-wise, with the exception of the non-local Coriolis
force terms. On structured cartesian meshes the FVEG method results in compact 3× 3
and 5 × 5 stencils for the first and second order method, respectively. In order to attain
cache efficiency, the unknowns of the state vector have been reordered in a pointwise
manner and the differentiation of the stencils was distributed over multiple cores of an
Intel Xeon Quad Core architecture. The whole approach makes use of template directives
and operator overloading.

5 Numerical experiments

In what follows we present behavior of both large time steps FVEG schemes on a set of
numerical experiments. The time step is controlled just by the CFL condition dictated
by the advection velocity

CFLadv :=
max(|u|, |v|)∆t

~
, CFLadv ≤ 1. (5.1)

Numerical results presented below demonstrate stability and robustness of the large time
step FVEG schemes; in particular also in the case of small Froude numbers when

CFLtotal � 1, CFLtotal :=
max(|u|+ c, |v|+ c)∆t

~
. (5.2)

Example 1

We the choose bottom topography and the initial data as

b(x, y) = sin(2πx) + cos(2πy), h(x, y, 0) = 10 + exp(sin(2πx)) cos(2πy),

hu(x, y, 0) = sin(cos(2πx)) sin(2πy), hv(x, y, 0) = cos(2πx) cos(sin(2πy)).

The gravitational constant is set to g = 9.812 and the Coriolis parameter is f = 10. The
computational domain [0, 1] × [0, 1] was divided into 200 × 200 mesh cells and periodic

8

boundary conditions have been applied. In this experiment small Froude number flow
develops with the Froude number varying from about 10−2 to 0.36.

In Figure 2 results obtained by the first and second order large time step semi-implicit
FVEG schemes at time t = 0.05 are presented. In the second order method a bilinear
recovery with minmod limiter has been applied. At the beginning of the simulation fast
dynamics take place with large velocities. In order to approximate appropriately rapidly
changing quantities we set CFLadv = 0.01 in the first time step and allow a new time step
to be at most twice larger as a previous one at the beginning, afterwards CFLadv = 0.8.
The reference solution has been computed by the standard second order explicit FVEG
scheme [4] using small time steps, CFLtotal = 0.5.

In Table 1 variations of the Froude number Fr, CFLtotal, number of Newton’s iterations
as well as the corresponding time steps during the evolution process are illustrated for
the second order semi-implicit FVEG method using a mesh with 100 × 100 cells and
CFLadv = 0.6. Table 2 illustrates the performance of semi-implicit FVEG scheme on
different meshes. Additionally, this table contains the wall clock time required by the
UMFPACK linear solver.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2

yx
0

0.2
0.4

0.6
0.8

1

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2

yx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

2.ord.
1.ord
reference sol.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−2

−1

0

1

2

yx
0.4 0.45 0.5 0.55 0.6 0.65

0.2

0.25

0.3

0.35

0.4

u, 2.ord. semi-implicit, CFLadv = 0.8 u, explicit, CFLtotal = 0.5

u, 1.ord. semi-implicit, CFLadv = 0.8u comparison, y = 0.5

Figure 2: Solution obtained on a mesh with 200×200 cells by the first (bottom right) and
second order (top left) semi-implicit FVEG method, u-velocity component. Reference
solution (top right), graph of cross section at y = 0.5 (bottom left).

Figure 3 compares results obtained by the first and second order large time step explicit
FVEG method. We set CFLadv = 0.9 for the second order method, for the first order
method it has to be reduced to CFLadv = 0.5. The reference solution is the same as in
Figure 2. Setting CFLadv = 0.9 we have CFLtotal ∈ (5.46, 89.89). Thus, the number
of τ−substeps may vary from 6 up to 90. Despite of this fact the results presented in
Figure 3 demonstrate robustness of the explicit large time step FVEG method even for
flows with strongly varying Froude numbers.

9

time step ∆t # Newton’s iter. Fr CFLtotal CPU
1. 0.0009 10 0.0120 0.99 46 s
2. 0.0018 14 0.0233 2.00 1 min 49 s
3. 0.0036 23 0.0627 4.03 3 min 32 s
20. 0.0035 19 0.2248 4.42 23 min 55 s
21. (final) 0.0006 8 0.2084 0.81 24 min 31 s

Table 1: Variation of time steps, Froude numbers, CFLtotal and CPU time during time
evolution. Results obtained for the second order semi-implicit FVEG method on a mesh
with 100× 100 mesh cells, CFLadv = 0.6.

problem size max(CFLtotal) CPU CPU UMFPACK
20× 20 2.987 11.6 s 5.07 s
40× 40 4.184 1 min 24 s 46.2 s
80× 80 4.236 11 min 54 s 7 min 41 s
100× 100 5.078 24 min 31 s 16 min 57 s
160× 160 7.726 1 h 44 min 4 s 1 h 15 min 32 s
200× 200 8.082 3 h 35 min 7 s 2 h 40 min 39 s

Table 2: Performance of the semi-implicit FVEG scheme for different problem sizes,
CFLadv = 0.6.

Table 3 illustrates variations of Fr, CFLtotal and the corresponding time steps for the
second order large time step explicit FVEG method on a grid with 100 × 100 cells,
CFLadv = 0.6. Clearly, the explicit large time step FVEG method is computationally
more efficient, the total CPU time needed for the second order FVEG method is just
about 2 seconds (about 22 seconds on a grid with 200× 200 cells).

time step ∆t # τ -steps Fr CFLtotal CPU
1. 0.0269 30 0.0120 29.993 0.72 s
2. 0.0021 3 0.3140 2.5945 0.87 s
8. 0.0030 4 0.2420 3.7711 1.84 s
9. 0.0034 5 0.2209 4.2947 2.03 s

10.(final) 0.002632 4 0.1952 3.3019 2.10 s

Table 3: Variation of time steps, Froude numbers and CFLtotal and CPU during time
evolution. Results obtained for the second order large time step explicit FVEG method
on a mesh with 100× 100 mesh cells, CFLadv = 0.6.

Figure 4 illustrates the comparison of both second order large time step FVEG methods,
semi-implicit and explicit one. The CFL number CFLadv = 0.8 has been used for both
methods. Numerical results demonstrate clearly that both large time steps FVEG meth-
ods approximate solution in a very good manner. The explicit large time step method is
faster than the semi-implicit FVEG scheme. This is mainly due to the linear solver and
due to the computation of Jacobian matrices by means of the automatic differentiation
that is computationally expensive. In order to decrease computational time further op-
timization and parallelization of the semi-implicit code is required in the future. On the
other hand, the semi-implicit scheme yields slightly more accurate results. In particular,

10

0
0.5

1

0

0.5

1
−2

−1

0

1

2

yx 0
0.5

1

0

0.5

1
−2

0

2

yx

0 50 100 150 200
−1

−0.5

0

0.5

1
u comparison at y=0.5

2.ord.
1.ord.
reference sol.

0
0.5

1

0

0.5

1
−2

0

2

yx

u, 2.ord. LS expl., CFLadv = 0.9

u, 1.ord.LS expl., CFLadv = 0.5

u, explicit CFLtotal = 0.5

Figure 3: Solution obtained on a mesh with 200 × 200 cells by the first (bottom right)
and second order (top left) large time step explicit FVEG method, u-velocity component.
Reference solution (top right), graph of cross section at y = 0.5 (bottom left).

0 0.2 0.4 0.6 0.8 1
10

11

12

13

14

15

16

17

LS expl.
semi−implicit
reference sol.

h, comparison in cross section y = 0.5

Figure 4: Comparison of the second order large time step explicit and semi-implicit FVEG
methods on a mesh with 80× 80 cells, water height h. Graph of cross section at y = 0.5.

the accuracy and stability of the first order explicit FVEG scheme is less favorable. This
is due to many nonconservative evolution steps with constant approximate data.

Example 2

On a computational domain [0, 1] × [0, 1] we simulate a vortex with center starting at
xC = (0.5, 0.5) and moving from left to right with the velocity (u∞, v∞) = (0.6, 0). We

11

apply to the left and right periodic boundary conditions whereas at the top and bottom
the boundary is set to weak farfield conditions. The initial data are the following

h(rC) = 110 +

{
1
g
(1.5

ω
)2(H(ωrC)−H(π)) if ω rC ≤ π

0 otherwise

with

H(x) = 2 cos(x) + 2x sin(x) +
1

8
cos(2x) +

x

4
sin(2x) +

12

16
x2

and

(u, v)(rC) = (u∞, v∞) +

{
1.5(1 + cos(ωrC))(0.5− x2, x1 − 0.5) if ω rC ≤ π
0 otherwise,

Here rC denotes the distance from xC , ω is an angular wave frequency, which we set to
ω = 4π and the gravitational constant is chosen as g = 1 for this case. This is a variant of
a classical example, see e.g. [6], where we have chosen parameters of initial data in such
a way that small Froude number flow develops, Fr ≈ 0.0782.

In what follows we present results of numerical experiments obtained on a grid with
200× 200 cells at final time t = 0.1. In Figure 5 solutions obtained by a standard second
order explicit FVEG method [4], the second order explicit large time step FVEG method
and the second order semi-implicit FVEG method are compared. We use a bilinear
recovery without limiter in this case. In order to obtain a reference solution by the
standard explicit FVEG scheme CFLtotal is set to 0.5. For the large time step methods
(both explicit and semi-implicit) the CFL condition (5.1) is applied with CFLadv = 0.6
Additionally, for the large time step explicit FVEG method small τ -substeps are chosen in
such a way, that max(|u|+ c, |v|+ c)τ/~ = 0.5. Correspondingly, we have CFLtotal ≈ 8.5,
cf. (5.2). Numerical results presented in Figure 5 clearly show that both large time step
FVEG schemes yield very good approximation of the reference solution, see also Figure 6,
where a solution on a mesh with 300 × 300 cells has been computed for a whole period
up to t = 5/3.

In Table 4 experimental order of convergence as well as global L1 errors are presented.
We can notice that the second order semi-implicit method converges slightly faster and
yields smaller global errors on finer meshes than the large time step explicit scheme. As
already mentioned in the previous experiment the semi-implicit scheme is quite expensive
computationally: in this experiment we need about two hours to compute results on a
mesh with 200× 200 cells, whereas the large time step explicit method just needs about
32 seconds.

6 Conclusions

In this paper we have derived two new large time step FVEG methods. In the explicit large
time step FVEG method the finite volume update is realized over a large time step ∆t,
whereas several small evolution steps (τ -substeps) are applied in order to approximate
nonlinear evolution along ∆t. The semi-implicit method is based on the Crank-Nicolson
scheme for time discretization and the use of local evolution operators at the old and
new time levels. The resulting fully nonlinear system is solved iteratively by the Newton
method. The direct solver UMFPACK has been used for linear systems. The time step
is controlled by the CFL condition (5.1) dictated just by the flow velocities with no fast

12

0

0.5

1

0

0.5

1
109.95

109.96

109.97

109.98

109.99

110

110.01

110.02

yx 0

0.5

1

0

0.5

1
109.95

109.96

109.97

109.98

109.99

110

110.01

110.02

yx

0

0.5

1

0

0.5

1
109.95

109.96

109.97

109.98

109.99

110

110.01

110.02

yx0 50 100 150 200
109.95

109.96

109.97

109.98

109.99

110

110.01

110.02

LS expl.
semi−impl.
reference 100 110 120

109.952

109.954

109.956

109.958

h, LS expl., CFLadv = 0.6 h, reference sol.

h, semi-implicit sol., CFLadv = 0.6h comparison, y = 0.5

Figure 5: Water height h at t = 0.1 computed on a mesh with 200×200 cells by the explicit
large time step FVEG method (top left) and the semi-implicit FVEG method (bottom
right). Reference solution is obtained by the standard FVEG method (top right), graph
of cross section at y = 0.5 (bottom left).

gravitational waves present. Since the evolution step as well as the finite volume update
are done in the well-balanced way, cf. [4], both large time step FVEG methods are well-
balanced and preserve lake at rest state and the geostrophic equilibrium in an analogous
way as the standard FVEG scheme with small time steps.

Numerical experiments demonstrate that both large time step schemes yield good resolu-
tion of low Froude number flows. With respect to CPU time the explicit large time step
FVEG method outperforms clearly the semi-implicit scheme. In our future work further
development of the semi-implicit approach is necessary in order to improve the efficiency
of the large time step semi-implicit FVEG method.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
109.94

109.95

109.96

109.97

109.98

109.99

110

semi−impl.
LS expl.
reference sol.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.599

0.6

0.601

0.602

0.603

0.604

0.605

0.606

0.607

semi−impl.
LS expl.
reference sol.

0.45 0.5 0.55
109.95

109.951

109.952

109.953

109.954

109.955

h comparison, y = 0.5 u comparison, y = 0.5

Figure 6: Comparison of the large time step explicit and semi-implicit FVEG methods
and the reference solution (initial data) on a mesh with 300× 300 cells, t = 5

3
.

Large time step explicit FVEG scheme

mesh: N/2N L1 error in u EOC L1 error in v EOC L1 error in h EOC
20/40 3.000 10−3 3.5020 10−3 2.3010 10−3

40/80 7.8794 10−4 1.9761 8.6328 10−4 2.0195 6.3103 10−4 1.8659
80/160 1.6530 10−4 2.2530 1.8246 10−4 2.2422 2.1625 10−4 1.5450

Semi-implicit FVEG scheme

mesh: N/2N L1 error in u EOC L1 error in v EOC L1 error in h EOC
20/40 3.4144 10−3 3.2199 10−3 3.2449 10−3

40/80 8.9582 10−4 1.9304 7.4733 10−4 2.1072 8.5369 10−4 1.9264
80/160 1.6375 10−4 2.4517 1.3772 10−4 2.4400 1.5049 10−4 2.5041

Table 4: Experimental order of convergence for large time step explicit (above) and semi-
implicit (below) schemes CFLadv = 0.3, CFLreal ≈ 4.4.

Acknowledgment:

The authors would like to thank Sebastian Noelle and Andreas Bollermann (Aachen) as
well as Gabriella Puppo (Torino) for fruitful discussions on the topic.

References

[1] Bollermann A., Lukáčová-Medvid’ová M., Noelle S. Well-balanced finite volume Evo-
lution Galerkin methods for the 2D shallow water equations on adaptive grids, Pro-
ceedings of ALGORITMY, 2009:81-90.

[2] Algorithm 832: Davis T.A. UMFPACK, an unsymmetric-pattern multifrontal method,
ACM Transactions on Mathematical Software 2004 30(2):196-199.

[3] Lukáčová-Medvid’ová M., Morton K. W., Warnecke G. Evolution Galerkin methods
for hyperbolic systems in two space dimensions. MathComp. 2000 69:1355–1384.

[4] Lukáčová-Medvid’ová M., Noelle S., Kraft M. Well-balanced finite volume evolution
Galerkin methods for the shallow water equations. J. Comp. Phys. 2007 221:122-147.

14

[5] Meister A. Asymptotic based preconditioning technique for low Mach number flows
ZAMM 2003 83(1):3-25.

[6] Ricchiuto M., Bollermann A. Stabilized residual distribution for shallow water simu-
lations, J. Comp. Phys 2009 228:1071-1115.

[7] SACADO:
http://trilinos.sandia.gov/packages/docs/dev/packages/sacado/doc/html/index.html

[8] Sun Y., Ren Y.- X. The finite volume local evolution Galerkin method for solving the
hyperbolic conservation laws, J. Comp. Phys. 2009 228(13):4945-4960.

[9] Xing Y., Shu C.-W. High order finite difference WENO schemes with the exact conser-
vation property for the shallow water equations, J. Comput. Phys. 2005 208:206-227.

15

