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Abstract. The aim of the present paper is to report on our recent
results for GPU accelerated simulations of compressible flows. For nu-
merical simulation the adaptive discontinuous Galerkin method with
the multidimensional bicharacteristic based evolution Galerkin opera-
tor has been used. For time discretization we have applied the explicit
third order Runge-Kutta method. Evaluation of the genuinely multi-
dimensional evolution operator has been accelerated using the GPU
implementation. We have obtained a speedup up to 30 (in compari-
son to a single CPU core) for the calculation of the evolution Galerkin
operator on a typical discretization mesh consisting of 16384 mesh cells.

1 Introduction

A characteristic feature of many geophysical flows is their multidimensional character
with different localized structural phenomena such as cloud environment interface. In
order to approximate these local structures efficiently, mesh adaptivity is a necessary
tool that has to be used in computer simulations.

In [1] we have proposed new large time step finite volume evolution Galerkin
(FVEG) methods for geophysical flows. They combine the simplicity of the finite vol-
ume methods with the theory of bicharacteristics yielding a genuinely multidimen-
sional finite volume scheme. The evolution Galerkin operator used in order to evaluate
fluxes over the cell interfaces can be interpreted as a multidimensional approximate
numerical flux function [2,3]. Numerical simulations confirm high efficiency and good
multidimensional resolution of the FVEG scheme. However, the FVEG schemes pro-
posed in [1] have been considered only on regular rectangular meshes. The aim of
this paper is to generalize genuinely multidimensional evolution Galerkin schemes for
adaptive irregular meshes in order to allow more efficient simulations of various lo-
calized flow structures. Another important requirement for practical applications of
computer simulations are low computational times. Hence, the next goal of this paper
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is to report on the acceleration of the EG methods by means of implementation on a
graphics processing unit (GPU).

Since the introduction of CUDA by NVidia in 2007, many scientific algorithms
have been successfully ported to GPUs. Examples include the simple Ising model
from statistical physics [4–6], molecular dynamics simulations [7–11] and the analysis
of financial market data [12] to name just a few. Application of the GPUs for mul-
tidimensional flow problems using modern higher order numerical schemes has just
been recently started, see, e.g., [13,14] for the GPU simulations of the shallow water
equations, [15] for the Euler equations and [16,17] for the Navier-Stokes equations.
In this paper we port the most time consuming part of our Computational Fluid
Dynamics code, the EG operator, to the GPU while the rest of the code is still being
executed on the CPU. By doing so, we are able to speed up the multidimensional
evolution operator by a factor of 30 (GTX580 vs single core Nehalem i7 2.67Ghz),
resulting in a roughly sixfold speedup of the overall code.

2 Mathematical model

We start with the description of mathematical model. Motion of compressible flows
is governed by the Euler equations

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u+ p Id) = − ρgk (1)

∂t(ρθ) +∇ · (ρθu) = 0 ,

where ρ denotes the density, u = (u, v)
T
is a two-component velocity vector, p pressure

and θ the potential temperature. Further, g stays for the gravitational constant, Id
is the identity matrix in R

2 and k the unit vector in the vertical direction. In order
to close the system we determine pressure from the equation of state

p = p0

(

Rρθ

p0

)γ

,

where γ = cp/cv is the adiabatic constant, cp and cv the isobaric and isochoric specific
heat constants, and p0 = 105Pa the reference pressure. Denoting by T temperature
of air at pressure p, the potential temperature θ can be obtained from the equation
of adiabatic process in an ideal gas:

θ = T

(

p0
p

)R/cp

, R = cp − cv.

In many geophysical applications, flows can be considered as a perturbation of
some reference equilibrium state. For example, atmospheric flows are typically repre-
sented as a perturbation over the background hydrostatic state (ρ̄, ū(= 0), p̄, θ̄), cf.,
e.g., [18,19],

∂p̄

∂y
= −ρ̄g.

Here we assume θ̄ = 300K and ρ̄ = p0

Rθ̄
π̄

cv
R , p̄ ≡ p(ρ̄, θ̄) = p0

(

Rρ̄θ̄
p0

)γ

with the Exner

pressure π̄(x, y) := 1− gy/
(

cpθ̄
)

.
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In order to avoid numerical instabilities due to the multiscale behaviour of (1),
numerical simulations are typically realized for perturbations ρ′ = ρ − ρ̄, θ′ = θ −
θ̄, p′ = p− p̄. The latter satisfy the following equation

∂tρ
′ +∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u+ p′ Id) = − ρ′gk (2)

∂t(ρθ
′) +∇ · (ρθu) = 0.

Our aim in what follows is to approximate (2) with the discontinuous Galerkin
method. However, instead of the classical, one-dimensional numerical flux function
(e.g., the Rusanov flux), we will apply a genuinely multidimensional evolution oper-
ator. To this extent let us rewrite (2) in the form of hyperbolic balance law for the

vector variable q = (ρ, ρu, ρv, ρθ)
T

∂q

∂t
+∇ · F(q) = S(q), (3)

where

F(q) =





ρu
ρu⊗ u+ p′ Id

ρθu



 , S(q) =





0
−ρ′gk

0





is the nonlinear flux function and the source term, respectively. We should note that
in our numerical experiments we will also use a stabilization through the artificial
viscosity [19,20], which results in the following source term

S(q) =





0
−ρ′gk+∇ · (µρ∇u)

∇ · (µρ∇θ′)



 , µ > 0 is an artificial viscosity parameter.

In the following, Eq. (3) will be approximated in space by the discontinuous
Galerkin method and in time by the explicit Runge-Kutta scheme. The paper is
organized as follows: The genuinely multidimensional evolution operator used for flux
integration along cell interfaces is described in Section 3. In our numerical experiments
discussed in Section 4, we benchmark the new GPU accelerated code on regular and
adaptive grids, using quadratic polynomials for spatial approximation and explicit
third order Runge-Kutta scheme for time integration. In Section 5 we will discuss
implementation of the evolution operator on the GPU. In our forthcoming paper [21]
we will compare different time integration schemes, in particular we will also use semi-
implicit schemes in order to overcome the strong stability condition for time steps
given by the Courant-Friedrichs-Lewy (CFL) number CFL = u∆t

∆x .

3 Discontinuous Galerkin method and the multidimensional EG

operator

In this section we follow [19,22,23] and derive the strong formulation of (3). Let us
divide the computational domain Ω into a finite number of mesh cells Ωe with a
boundary ∂Ωe. In our numerical experiments we work with triangular mesh elements
Ωe and use the nodal basis functions {ψj , j = 1, . . . , N}, N is a number of degrees
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of freedom. Now, multiplying (3) with a nodal basis ψi(x), integrating over Ωe and
applying twice integration by parts we obtain the strong formulation

∫

Ωe

(

∂qh

∂t
+∇ · F(qh)− S(qh)

)

ψi(x)dx =

∫

∂Ωe

(F(qh)− F(q∗))ψi(x)dS, i = 1, . . . , N.

Here qh denotes a numerical solution qh(x) :=
∑N

j qjψj(x) and q∗ := EGqh a cell
interface value predicted by the multidimensional evolution Galerkin EG operator. As
in [24] Lagrange polynomials are used for the basis functions ψj with the Fekete points
for the interpolation and Gauss points for the integrations. In the previous simula-
tions using the discontinuous Galerkin method for atmospheric flows one-dimensional
numerical flux functions, such as the Rusanov flux have been used, cf. e.g., [19,23,
24] and the references therein. The novelty of our work relies on the application of a
multidimensional evolution operator in order to compute q∗.

3.1 Multidimensional EG operator

In this subsection we will give a brief description of the approximate evolution oper-
ator that is based on the theory of bicharacteristics for multidimensional hyperbolic
conservation laws. More detailed derivation will be presented in our forthcoming pa-
per [21]. First, let us rewrite (2) in a quasilinear form using the primitive variables
w = (ρ′, u, v, p′)

∂tw+A1(w) ∂xw+A2(w) ∂yw = s(w) (4)

with

A1 =









u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u









, A2 =









v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v









, s = −









∂yρ̄ v
0
ρ′

ρ g

∂yp̄ v









. (5)

Using the above thermodynamic relationship for ρ̄, p̄ we obtain

∂yρ̄ = − p0 cv g

(Rθ̄)2cp

(

1− gȳ

cp θ̄

)
cv
R

−1

, ∂yp̄ = −g p0
R θ̄

(

1− gȳ

cp θ̄

)
cv
R

.

We first linearize (4) by freezing the Jacobian matrices A1, A2 at a suitable inter-

mediate state ρ̃′, ũ, ṽ, p̃′. Since our problem is hyperbolic we have real eigenvalues
and a full set of linearly independent eigenvectors corresponding to the matrix pencil
P := A1nx +A2ny, where ‖(nx, ny)‖ = 1. Indeed, the eigenvalues of P are

λ1 = ũ nx + ṽ ny − a, λ2 = λ3 = ũ nx + ṽ ny, λ4 = ũ nx + ṽ ny + a,

where a :=
√

γ p̃
ρ̃ =

√

γRθ
(

ρRθ
p0

)
R
cv

is a sonic speed. Now multiplying (4) by a matrix

R−1, R consists of the right eigenvectors of P , we can rewrite (4) using the so-called
characteristic variables v = R−1w

∂tv+B1∂xv+B2∂yv = r ,
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Fig. 1. Bicharacteristic cone used for the EG evolution operator

where r := R−1s(w). Equivalently, we have

∂tv+ diag(B1)∂xv+ diag(B2)∂yv = S+ r (6)

with
S(x, θ) := − [(B1 − diag(B1))∂xv+ (B2 − diag(B2))∂yv] .

Integrating each equation of (6) along the corresponding bicharacteristic

dxj

dt
:= [B1,jj , B2,jj ]

T, j = 1, . . . , 4,

we obtain after some lengthy manipulations [21] the following exact integral repre-
sentation

ρ′(P) =
ρ̃

2πa

∫ 2π

0

[

− cos(θ)u(Q1(θ))− sin(θ) v(Q1(θ)) +
1

ρ̃ a
p′(Q1(θ))

]

dθ

+ ρ′(Q2)−
p′(Q2)

a2

− ρ̃

2πa

∫ 2π

0

∫ tn+∆t

tn

β(t, θ) dt dθ

− ρ̃

2πa

∫ 2π

0

∫ tn+∆t

tn

− sin(θ)g
ρ′

ρ
(x1(t, θ)) +

v(x1(t, θ))

ρ̃ a
∂yp̄ dt dθ

+

∫ tn+∆t

tn

v(x2(t))

(

−∂yρ̄+
∂yp̄

a2

)

dt (7)

u(P) =
1

2π

∫ 2π

0

[

−p
′(Q1(θ))

ρ̃a
cos(θ) + u(Q1(θ)) cos

2(θ) + v(Q1(θ)) sin(θ) cos(θ)

]

dθ

+
1

2
u(Q2)

+
1

2π

∫ 2π

0

∫ tn+∆t

tn

cos(θ)β(t, θ) dt dθ
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+
1

2π

∫ 2π

0

∫ tn+∆t

tn

− sin(θ) cos(θ)g
ρ′

ρ
(x1(t, θ)) + cos(θ)

v(x1(t, θ))

ρ̃ a
∂yp̄ dt dθ

− 1

2ρ̃

∫ tn+∆t

tn

∂xp
′(x1(t)) dt , (8)

v(P) =
1

2π

∫ 2π

0

[

−p
′(Q1)

ρ̃a
sin(θ) + u(Q1) cos(θ) sin(θ) + v(Q1) sin

2(θ)

]

dθ

+
1

2
v(Q2)

+
1

2π

∫ 2π

0

∫ tn+∆t

tn

sin(θ)β(t, θ) dt dθ

+
1

2π

∫ 2π

0

∫ tn+∆t

tn

− sin2(θ)g
ρ′

ρ
(x1(t, θ)) + sin(θ)

v(x1(t, θ))

ρ̃ a
∂yp̄ dt dθ

− 1

2ρ̃

∫ tn+∆tn

tn

∂yp
′(x2(t)) dt−

1

2
g

∫ tn+∆t

tn

ρ′

ρ
(x2(t)) dt , (9)

p′(P) =
1

2π

∫ 2π

0

[p′(Q1(θ))− ρ̃au(Q1(θ)) cos(θ)− ρ̃av(Q1(θ)) sin(θ)] dθ

− ρ̃a
1

2π

∫ 2π

0

∫ tn+∆t

tn

β(t, θ) dt dθ

− 1

2π

∫ 2π

0

∫ tn+∆t

tn

− sin(θ)ρ̃a g
ρ′

ρ
(x1(t, θ)) + v(x1(t, θ))∂y p̄ dt dθ. (10)

Here β(t, θ) = a [∂xu sin2(θ)−(∂yu+∂xv) sin(θ) cos(θ)+∂yv cos2(θ)] andP = (x, y, t+
∆t),Q1(θ) = (x−(ũ−a cos(θ))∆t, y−(ṽ−a sin(θ))∆t, tn),Q2 = (x−ũ∆t, y−ṽ∆t, tn)
are respectively the pick and footpoints of the bicharacteristics that generate the
mantle of the bicharacteristic cone, cf. Figure 1.

To obtain a time explicit approximate evolution operator the above exact integral
representation needs to be approximated. First, time integrals along the mantle of the
bicharacteristic cone are approximated using the rectangle rule. Integrals along the
base perimeter, that obtain β(tn, θ) terms, are replaced by means of the integration

by parts, cf. Lemma 2.1 [25]. Further we approximate ρ′

ρ with ρ′

ρ̃ and substitute the

condition for hydrostatic balance ∂yp̄ = −ρ̄g. This yields ∂yρ̄ = −π−1 cv
cp Rθ̄

ρ̄g =

− ρ̄g
ā2 used in the approximation for ρ′(P). For more details on the derivation of the

approximate evolution operator see [21]. This procedure yields finally the desired cell
interface values q∗ ≡ (ρ′(P), u(P), v(P), p′(P)) = EGqh in (4). We should point out
that all integrals along the base perimeter (sonic circle), i.e. integrals with respect
to θ, are evaluated exactly. We make a transformation of the actual triangle to the
reference triangle, where the corresponding integrals along the arcs of sonic circle
were precomputed with the help of the computer algebra package Mathematica.

4 Numerical experiments

To verify the accuracy and computational performance of the GPU accelerated code,
we carry out two test case simulations. For our tests we have chosen free convection
of a smooth warm air bubble as introduced by Giraldo and Restelli [26] as well as
free convection of a large warm bubble with a small cold bubble placed on top of the
warm one as introduced by Robert [27].
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In the first experiment shown in Figure 2, the warm bubble is placed at xc = 500m,
yc = 350m with the initial temperature perturbation:

θ′ =

{

0 for r > rc
(θ′c/2) [1 + cos (πr/rc)] for r ≤ rc

where θ′c = 0.5oC is the maximal initial amplitude, the bubble radius rc = 250m, and
r the distance to the center of the bubble (xc, yc).

In the Robert experiment, two bubbles are placed at (xc, yc) = (500m, 300m) and
(xc, yc) = (560m, 640m), for the warm and the cold bubbles, respectively (Figure 3).
The maximal initial temperature amplitudes are θ′c = 0.5oC and θ′c = −0.15oC, re-
spectively. The profiles of the initial perturbation for the excess potential temperature
are given by a Gaussian distribution

θ′ =

{

θ′c for r ≤ rc

θ′c exp
[

− (r − rc)
2
/502

]

for r > rc

with a flat core of radius rc = 150 for the warm bubble and rc = 0 for the cold bubble.
As already mentioned above, in order to simulate efficiently localized structures

arising in geophysical flows, such as cloud boundaries, adaptive mesh refinement is a
very suitable tool. In our work, both numerical experiments were performed on the
domain of 1km×1km with no-flux boundary conditions, using the h-adaptive mesh
refinement method, where the spatial resolution is adapted by refining or coarsening
the mesh cells. The maximal resolution degree of the mesh is n = 12, which yields

the finest resolution of about 1000/
√
2
n+1 ≈ 11m per shortest edge in the simulation

domain. We work with the function library AMATOS of Behrens et al. [28], where
h-adaptive mesh refinement is based on the space filling curve approach. Analogously
as in [19], in the numerical experiments presented below we use a slightly modified,
simple refinement criterion

max
x∈Ωe

[sgn(θ′c)θ
′(x, t)] ≥ σ|θ′c| (11)

for the deviation of the potential temperature from the background state θ′ = θ − θ̄;
σ ≪ 1 is a test dependent parameter (for the numerical experiments in this work
we use σ = 0.1), and θ′c is the maximal initial amplitude for the perturbation of the
potential temperature (discussed below).

If condition (11) holds on some element Ωe, the element will be recursively refined
up to a specified finest mesh resolution. In the rest of the computational domain the
mesh is adaptively coarsened, see also [19] for further details. Furthermore, we have
used the software package CLOUD-FLASH of Müller, Giraldo et al. [19,23] where the
discontinuous Galerkin method (4) is implemented. In our work we have generalized
the toolbox CLOUD-FLASH by including the GPU implementation of the genuinely
multidimensional EG operator.

In both experiments, due to the differences in the air density of the bubbles and
the isothermal environment, the initially resting bubbles develop a vertical motion. In
the Giraldo–Restelli test shown in Figure 2 for both the GPU and CPU simulations,
the warm bubble rises and deforms symmetrically due to the shear friction with
the surrounding air at the warm/cold air interface, adapting a mushroom-like shape
gradually. The results for the GPU simulations in the Robert experiment are shown in
Figure 3. The shape of the rising warm bubble is affected in addition by the small cold
bubble, which slides downwards along the right-hand side of the interface, destroying
the symmetry of the warm bubble.
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Fig. 2. Excess potential temperature θ′ for the rising thermal bubble experiment as intro-
duced by Giraldo and Restelli [26], on an adaptive resolution grid with the coarse/fine grid
resolution levels n = 1− 12, respectively. The left-hand side: CPU simulations, on the right-
hand side: accelerated GPU implementation. The real-world domain is 1km×1km (only a
half of the squared computational domain is shown in the x-direction); the shortest edge of
the adaptive mesh elements corresponds to ≈ 11m. The simulation times are as indicated.
Contour levels correspond to θ′ = 0.025, 0.075, 0.125, 0.175, 0.225, 0.275, 0.325, 0.375, and
0.425oC.

By comparing the GPU and CPU results, one can recognize no difference between
the solutions obtained by CPU and GPU program codes (shown in Figure 2). This
is an important issue since our simulations were performed in single precision on the
GPU and in double precision on the CPU. When solving differential equations, slight
deviations in initial data or higher inaccuracy of intermediate solution can develop
to a different final solution in long time simulations. In order to quantify expected
deviations between the GPU and CPU solutions we calculate the L2 norm
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Fig. 3. Excess potential temperature θ′ for a large warm air bubble with a small cold bubble
on top, as introduced by Robert [27], obtained by the accelerated GPU simulations on an
adaptive resolution grid with the coarse/fine grid resolution levels n = 2− 11, respectively.
The real-world domain is 1km×1km; the shortest edge the adaptive grid element corresponds
to ≈ 15.6m. The simulation times are as indicated. Contour levels correspond to θ′ = −0.05,
0.05, 0.15, 0.25, 0.35, and 0.45oC.

L2(q) = N−1





N
∑

j=1

(

qi,CPU − qi,GPU

)2





1/2

(12)

where N is the number of degrees of freedom. Of course, the grids in both simulations
(performed on GPU and CPU) must have the same structure for this comparison,
that cannot be expected in the simulations using adaptive grids. For this reason we
have additionally performed simulations on a regular grid with the resolution level
n = 10, which yields 4096 mesh cells (triangles). This corresponds approximately to
the number of mesh elements in simulations on the adaptively refined grid with fine
resolution level n = 12. In Figure 4 one can see that discrepances are indeed present
in both the experiments, Giraldo–Restelli and Robert, however, they are of the order
of magnitude of rounding errors in the single precision arithmetics and they remain
bounded during the simulations. The largest error has been found for the energy
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Fig. 4. The L2 norm calculated from (12) for the solutions obtained by GPU and CPU
codes on regular mesh with n = 10 in a) Giraldo–Restelli and b) Robert experiments.

variable, ρθ, which is due to the fact that the potential temperature, θ, is by 2-3
orders of magnitude larger than the other variables in our tests.

5 GPU implementation

To evaluate the runtime spent in different parts of the program, we used the Giraldo–
Restelli test case with 16384 mesh cells. The total procedure for the calculation of the
EG operator takes up to about 85% of the computation time of the whole program
in this special case. To date, all of the GPU related work has been done to speed
up this procedure, which is structured into a few subprocedures taking the following
CPU times in the above described test case:
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compute EG procedure:

• change basis



















−compute quadrature points [0.11 %]

−compute basis transformation [3.90 %]

• find intersections of wave
fronts with elements’ edges



















−compute linearized state [1.10 %]

−compute arcs [4.80 %]

• calculate approx. fields, cf. (7-10)







−compute ρ′(P), u(P), v(P), p′(P) [90.01 %]

The first step was to port all the code related to the computation of this operator
from FORTRAN to C which consisted of several thousand lines of code. Since the data
of the main program is stored in the main computer memory, for the calculation of the
EG operator on the GPU, the input and output fields have to be transferred to/from
the GPU before/after execution. Furthermore, the host program calculates all the
fields and quantities in double precision. Therefore, before being transferred to the
GPU, the data must be converted into a single precision floating point representation.

We noticed that the data transfer time as well as the conversion time are very
low compared to the calculations that are running on the GPU. The last part that
takes up over 90% of the execution time was ported to GPU first, to process all the
mesh cells in parallel as a heavy weight kernel that needs 63 registers and 1000 bytes
of stack memory. This limits GPU occupancy to 33%, but this version of the kernel
still performs so fast that the rest of the subprocedures become the new bottleneck
of the program. In future work we plan to optimize the kernel to increase the GPU
occupancy and, hence, the overall performance of the code.

The next step was to bring the computation of the linearized state, arcs, and basis
transformation to the GPU. The computation of basis transformation proved to be
the most problematic and least efficient on the GPU, but it was necessary to process
it on the GPU since copying the data back and forth between CPU and GPU memory
in the middle of the computation is unacceptable.

We define the speedup of a GPU implementation as the ratio

s =
tCPU

tGPU

(13)

between the time tCPU that is spent on computation in a nonaccelerated implemen-
tation and the time tGPU that is spent on computations in a GPU accelerated imple-
mentation.

Since not all of the program code can be accelerated using a GPU, a fraction of
the program code will always be executed on the CPU. Hence, we split the time tGPU

into two parts

tGPU = tGPU, accel + tunaccel, (14)

where tGPU, accel is the execution time for the part of the program that is actually
executed in parallel on a GPU and tunaccel is for the rest of the code that stays in the
CPU and is not executed in parallel.

For the CPU time, we can do the same split
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tCPU = tCPU, accel + tunaccel, (15)

which yields the following formula for the speedup of the GPU accelerated program

s =
tCPU, accel + tunaccel
tGPU, accel + tunaccel

. (16)

Here tCPU, accel refers to the execution time on CPU of that part of the program
which we have also implemented in parallel in GPU accelerated version.

From (16), the maximum possible speedup corresponding to the case tGPU,accel = 0
is

smax =
tCPU, accel

tunaccel
+ 1. (17)

In our case the maximum speedup to be expected, if the whole procedure ‘compute
EG’ is brought to GPU is smax = 6.7 for grid size 12. This clearly justifies the effort
of a GPU implementation of the procedure in our case.

To benchmark our implementation, we use a NVidia Geforce GTX 580 with a Intel
Core i7 Nehalem processor at 2.67 GHz. The measured execution times are reported
in Table 1 and compared in Figure 5 for the CPU and GPU implementations with the
grid size level up to n = 12, which corresponds to up to 16384 finite volume elements
on our computation domain.

Grid size level, n 8 9 10 11 12
Number of finite elements 1024 2048 4096 8192 16384

tCPU, accel/sec 0.077 0.152 0.307 0.650 1.650
tGPU, accel/sec 0.0045 0.0065 0.0126 0.0026 0.0569

sEG = tCPU,accel/tGPU, accel 17.11 23.38 24.36 25.00 29.70
stot 5.0 5.4 5.5 5.5 6.6

Table 1. Execution times in the Giraldo–Restelli experiment for regular grid of different grid
sizes. The net speedup of the GPU implemented parts of the code, sEG, is by a factor up to
30 faster if compared to the CPU execution times. However, due to the non-parallelized parts
of the program still running on the CPU, the performance speedup of the whole program,
stot, is much lower (cf. (16)).

Since the kernels are very complex and large, it is hard to predict execution times
for finer resolved grids. In our simulations we were restricted to n = 12 due to the
CFL condition, which relates the sizes of finite elements to the time step used in
the explicit time integration scheme for our problems. However, one can see in Fig-
ure 5 that we achieved the most efficient speedup for ‘compute EG’ using our current
implementation for n = 12. The raw acceleration factor for the GPU implemented
‘compute EG’ procedure is nearly 30 for grid size 12, which means we are nearly
reaching the theoretically maximum possible speedup of about 6.7 for this grid size.

Because of the massive speedups gained in the parts of the program executed on
the GPU, the execution time of the whole program is largely determined by the parts
of the program that remain on the CPU. This means in practice that the differences
in speedup for the different grid sizes are barely noticeable in reality and we can
expect a relatively stable speedup factor of about 5.0-6.6 for the overall simulation
in a real-world example. As the computation of the EG operator is no longer the
bottleneck of our program, future work will focus on parallelizing the rest of the code
base.
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Fig. 5. a) Execution times in the Giraldo–Restelli experiment for regular grids of different
resolutions. b) Numerical speedup of the GPU implemented code for different number of
mesh cells in the computation domain. The numbers annotating the symbols are for the grid
resolution level, n, (cf. Table 1).

6 Concluding remarks

In the present paper we reported on our recent results for a GPU accelerated im-
plementation of the Euler equations for fully compressible flows. The numerical sim-
ulations were performed using a discontinuous Galerkin method coupled with the
genuinely multidimensional, bicharacteristic based evolution operator used for the
flux integration along cell interfaces. For spatial approximation we use second or-
der polynomials with the h-adaptive mesh refinement method and the explicit third
order Runge-Kutta method for time integration. Evaluation of the multidimensional
evolution operator has been accelerated using NVidia’s CUDA Framework. We bench-
marked the GPU accelerated code on regular and adaptive grids and compared to
the results obtained from CPU simulations showing good agreement. For the GPU
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accelerated parts of the code we have obtained a significant speedup of a factor up to
30 in comparison to a single CPU core, with a potential for further improvement of
the performance of the code.
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1. Hundertmark, A., Lukáčová-Medvid’ová, M., Prill, F., J. Sci. Comp. 48, (2011), 227-240.
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