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Abstract. In this paper we present the results of a kinetic relaxation scheme for an arbitrary
hyperbolic system of conservation laws in two space dimensions. We propose a new discrete velocity
Boltzmann equation, which is an improvement over the previous models in terms of the isotropic
coverage of the multidimensional domain by the foot of the characteristic. The discrete kinetic
equation is solved by a splitting method consisting of a convection step and a collision step. The
convection step involves only the solution of linear transport equations whereas the collision step
instantaneously relaxes the distribution function to a local Maxwellian. An anti-diffusive Chapman-
Enskog distribution is used to derive a second order accurate method. Finally some numerical results
are presented which confirm the robustness and correct multidimensional behaviour of the proposed
scheme.

1. Introduction

The numerical simulation of a hyperbolic system of conservation laws in several space variables is a
challenging task. The underlying difficulty is that even for a small initial datum, there is no existence
result for a multidimensional Riemann problem needed to construct a numerical approximation. It
is well known in the case of a hyperbolic system in general that regardless of the smoothness of
the initial datum, the solutions can develop discontinuities in a finite time. The structure of these
discontinuities, such as shocks, in multiple dimensions is very complex and resolving them using
a numerical scheme is also challenging. Despite all these difficulties, however, the intense research
over the past few decades has lead to the development of several numerical methods for solving
multidimensional systems of conservation laws. Among the various methods developed so far, the
finite volume methods have been the most popular. The main advantages of the finite volume
methods are their simplicity and the automatic control of conservation, which is a crucial property.
These methods can be broadly classified into two categories: central schemes and upwind schemes.

The central schemes originated as the central finite difference formulation of conservation laws.
Some prototypes of these schemes are the Lax-Friedrichs scheme and the Lax-Wendroff scheme.
The central schemes are less dependent on the eigenstructure of the conservation laws. However,
if no characteristic information is taken into account, the resolution of the numerical scheme may
not be satisfactory; particularly when small time steps are enforced by the stability condition.
Nonetheless, in recent years, the central schemes have gained a lot of renewed interest due to their
new interpretation as Godunov type schemes on both staggered and unstaggered grids. We refer
the reader to [29] for a review of central schemes.

The upwind schemes include the Riemann solvers, flux-splitting methods, kinetic theory based
methods, recently introduced relaxation schemes [14], etc. Among them, the Riemann solvers and
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flux-splitting methods particularly make use of quasi-dimensional splitting and the solution of one-
dimensional (1-D) Riemann problems. If one is interested to approximate only some features that
are just 1-D, these schemes can produce good qualitative results. However, for complex genuinely
multidimensional structures, such as oblique shocks or circular expansions, the dimensional splitting
approach can yield spurious local wave structure resolutions, e.g. see [18, 23, 27, 28]. This led to
the development of the so-called genuinely multidimensional numerical methods for solving systems
of conservation laws in several space variables. Looking back to the literature, we can find several
genuinely multidimensional methods: the wave residual method due to Roe [27], the method of
transport due to Fey [10] and its improved version due to Noelle [22], the wave propagation algorithm
of LeVeque [17], the finite volume evolution Galerkin scheme due to Lukáčová and collaborators
[2, 20], to name but a few.

An important category of upwind methods is the kinetic schemes, which are based on the Boltz-
mann equation of kinetic theory. The kinetic schemes exploit the fact that the physical systems
of conservation laws arising in continuum mechanics can be obtained as an appropriate limit of
the various moments of the Boltzmann equation [6]. One of the most fascinating features of the
kinetic schemes is that when applied to the Euler equations of gas dynamics, they preserve the
positivity of mass density and pressure. As a result, the kinetic schemes are unconditionally stable
in the L1-norm. Moreover, the kinetic schemes are entropy stable as a consequence of the celebrated
Boltzmann H-theorem and they also enjoy the property of being genuinely multidimensional. For
a review of kinetic schemes we refer the reader to [9, 11, 25, 26, 31] and the references cited therein.

Recently, Jin and Xin [14] introduced a new category of upwind methods called relaxation
schemes, based on the relaxation approximation of conservation laws. In this method, the given
nonlinear system of conservation laws is replaced by a larger semi-linear system known as the relax-
ation system. The relaxation system has a stiff source term containing a small relaxation parameter
ε. The original system of conservation laws can be recovered from the relaxation system in the limit
as ε → 0. In [14] Jin and Xin have developed a variety of numerical schemes which are classified
into two categories: relaxing schemes and relaxed schemes. The relaxing schemes are obtained by
directly discretising the relaxation system and hence they contain the stiff parameter ε explicitly. A
relaxed scheme is the limit of a relaxing scheme when ε = 0. Due to the presence of ε, it is in general
difficult to attain high order time accuracy in relaxing schemes. Nevertheless, special Runge-Kutta
time stepping schemes with appropriate MUSCL or WENO type space discretisations have been
proposed in [13, 14, 24], to develop high order relaxing schemes.

A new interpretation of a relaxation system in the form of a discrete velocity model of the Boltz-
mann equation has been proposed in [1, 5]. One of the important aspects of this correspondence
is that we can exploit the vast literature of kinetic theory and develop relaxation schemes which
possess all the desired properties of kinetic schemes, such as the positivity preservation, entropy
stability, genuine multidimensional nature, etc. The goal of the present work is to make use of this
analogy and to develop a genuinely multidimensional relaxation scheme for the compressible Euler
equations in two space dimensions. The main advantages of the discrete Boltzmann model are the
linearity of the convective part, simplicity compared to classical Boltzmann equation, diagonal form
of the flux Jacobian matrices and the ease for upwinding. We solve the discrete Boltzmann equa-
tion by a splitting method consisting of a convection phase and a collision phase. The convection
phase involves only the solution of linear transport equations and the collision phase instanta-
neously relaxes the distribution function to an equilibrium distribution. However, as pointed out
in [13], such a simple splitting strategy reduces the resulting numerical scheme to formally first
order accurate in time. Moreover, the first order scheme suffers from a large amount of numerical
dissipation. Nonetheless, in the context of classical kinetic schemes, Deshpande [8] had already cir-
cumvented these difficulties by the use of an anti-diffusive Chapman-Enskog distribution instead of
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the Maxwellian. Recently, Kunik et al. [15] also employed same mechanism to design a second order
kinetic scheme for the relativistic hydrodynamics equations. Along similar lines of [8, 15], we derive
an anti-diffusive Chapman-Enskog distribution for the discrete Boltzmann equation to develop a
second order upwind relaxation scheme. It is to be remarked that the Chapman-Enskog method is
always associated with nonlinear convection-diffusion equations [6] and the use of Chapman-Enskog
distribution function to reduce the excess numerical diffusion in the first order relaxation scheme
is novel. Moreover, our scheme avoids intricate and time consuming solving of Riemann problems
and complicated flux-splittings. In [3] we have already introduced a second order accurate 1-D
relaxation scheme with the use of Chapman-Enskog distribution and the present work is its genuine
multidimensional extension to the two-dimensional (2-D) case. Our scheme uses the discrete ve-
locity Boltzmann equation, appropriate equilibrium distributions, characteristics and interpolation.
This makes our approach different from the conventional relaxation schemes.

The paper is organised as follows. In section 2 we introduce a relaxation system for the Euler
equations of gas dynamics in the form of a discrete velocity Boltzmann equation. The first order
accurate numerical scheme and its properties are presented in section 3. In section 4 we extend the
first order scheme to second order with aid of an anti-diffusive Chapman-Enskog distribution. The
section 5 is devoted to the results of numerical experiments. Finally, we conclude the paper with
some remarks in section 6.

2. Relaxation Systems for Conservation Laws

In this section we introduce a relaxation system for the 2-D compressible Euler equations of
an ideal gas in the form of a discrete velocity Boltzmann equation. However, we follow a general
approach and therefore, the present ideas can be easily extended to any complex system of conser-
vation laws. The Euler equations forms a nonlinear hyperbolic system of conservation laws which
represents the fundamental conservation principles of mass, momentum and energy, given by

(2.1)
∂w

∂t
+
∂g1(w)

∂x
+
∂g2(w)

∂y
= 0,

where the vector of conserved variables w, the flux-vectors g1(w) and g2(w) are given as

(2.2) w =









ρ
ρu
ρv
E









, g1(w) =









ρu
ρu2 + p
ρuv

(E + p)u









, g2(w) =









ρv
ρuv

ρv2 + p
(E + p)v









.

Here, ρ is the density, ρu and ρv are respectively the momentum components in x- and y-directions
and E is the total energy given by

(2.3) E = ρe+
1

2
ρ
(

u2 + v2
)

,

where e is the internal energy density, which is related to the pressure p via the relation

(2.4) p = (γ − 1)ρe.

In the sequel, we shall frequently denote the momentum components by m and n, i.e. (m,n) =
(ρu, ρv). Since ρ and p represents the mass density and pressure, they remain positive always.
Thus, the state space for the system (2.1), the so-called admissible space, is the set

(2.5) W :=

{

(ρ,m, n,E) ∈ R
4 : ρ > 0, E − 1

2ρ

(

m2 + n2
)

> 0

}

.

The following proposition follows immediately.
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Proposition 2.1. The set W has the property: if w1, w2 ∈ W and α1, α2 > 0, then α1w1 +α2w2 ∈
W. In particular, W is a convex set.

A relaxation phenomenon arises when the equilibrium state of a physical system is perturbed.
One of the most common occurrences of relaxation processes is in rarefied gas dynamics which
is represented by the well known Boltzmann equation, see [6]. The Boltzmann equation for a
monatomic perfect gas in two space dimensions is given by

(2.6)
∂f

∂t
+ k · ∇xf =

1

ε
Q(f),

where f(x, t,k) is the particle density function, which depends on the phase-space coordinates
x = (x, y),k = (k1, k2) and the time t. The macroscopic conserved variables, the mass, momenta
and energy are defined as the moments of f , i.e.

(2.7) w(x, t) :=

∫

R2

ψ(k)f(x, t,k)dk,

where

(2.8) ψ(k) =





1
k

1
2k

2



 .

The Boltzmann collision operator Q consists of a very complex integral term. An interesting
property of the collision operator is that Q(f) = 0 if and only if f is the Maxwellian, i.e.

(2.9) f(x, t,k) =M(w,k) :=
ρ

2πϑ
e−

(|k1−u|2+|k2−v|2)
2ϑ ,

where ϑ denotes the temperature. In their work [4], Bhatnagar et al. introduced a simple model for
Q based on the relaxation process of a swarm of molecules towards an equilibrium state. This led
to the so-called BGK model of the Boltzmann equation (2.6), which reads

(2.10)
∂f

∂t
+ k · ∇xf =

1

ε
(M(wf ,k)− f) .

Here, ε > 0 is a small parameter known as the relaxation time and wf is defined by (2.7) as a
moment of f .

The BGK Boltzmann equation (2.10) facilitated the development of kinetic schemes, which have
been very successful in the numerical modelling of many initial and boundary value problems in
fluid dynamics. These kinetic schemes are based on the fact that the Euler equations (2.1) are the
first moments of the Boltzmann equation (2.6) when the distribution function is the Maxwellian
(2.9), see [9, 11, 25, 26, 31] for more details. The kinetic schemes possess many fascinating fea-
tures: robustness, upwind bias, preservation of the positivity of mass density and pressure, entropy
stability, etc.

As a generalisation of kinetic BGK models, in [5] Bouchut has introduced a general framework
for constructing a BGK model for any system of conservation laws endowed with a convex entropy.
An important feature of this formulation is that the constructed BGK model possesses a large
family of kinetic entropies. There exists an analogue of the classical Boltzmann H-theorem [6],
the exploitation of which yields the entropy inequality in the hydrodynamic limit, see [5] for more
details. In this work we use the discrete velocity relaxation model introduced in [1, 5]. The BGK
equation then reads

(2.11)
∂fk
∂t

+ a1(k)
∂fk
∂x

+ a2(k)
∂fk
∂y

=
1

ε
(Mk(wf )− fk)
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for k ∈ {1, 2, . . . , N}. Here fk = fk(x, y, t) ∈ R
4 is unknown, (a1(k), a2(k)) ∈ R

2 is a constant,

wf =
∑N

k=1 fk and the so-called Maxwellian Mk : W → R
4 satisfy the consistency conditions

(2.12)

N
∑

k=1

Mk(w) = w,

N
∑

k=1

a1(k)Mk(w) = g1(w),

N
∑

k=1

a2(k)Mk(w) = g2(w).

The conditions (2.12) are the necessary conditions for the BGK model (2.11) to converge to the Euler
equations (2.1) in the limit ε → 0, see also [1, 21] for more details. We note that the BGK model
(2.11) is completely determined once the discrete velocities (a1(k), a2(k)) and the MaxwellianMk are
obtained. The choices of (a1(k), a2(k)) and Mk are to be done according to some suitable stability
conditions. It is well known that even for general relaxation models [7, 19, 21] an approximation of
the type (2.11) has to obey some stability criterion so as to possess the correct hydrodynamic limit,
e.g. in the case of 2×2 relaxation systems the well known sub-characteristic condition [7, 19] has to
be satisfied. We use the entropy extension condition of Bouchut [5] so that the BGK model (2.11) is
compatible with the entropies of (2.1). The main result of [5] for the discrete velocity BGK models
of the type (2.11) states: under the necessary and sufficient condition

(2.13) σ(M ′

k(w)) ⊂ [0,∞) ∀k,
corresponding to any entropy h(w) of (2.1), there exist a kinetic entropy Hk(fk) of (2.11) such that

(i) Hk is a convex function,

(ii)
∑N

k=1Hk(Mk(w)) = h(w),

(iii)
∑N

k=1Hk(Mk(wf )) ≤
∑N

k=1Hk(fk).

We now proceed to give the explicit expressions for the discrete velocities a(k) and the Maxwellian
Mk in accordance with the stability requirement (2.13). Henceforth, we take N = 4 and make a
symmetric choice

(2.14)
(a1(1), a2(1)) = (−λ,−λ), (a1(2), a2(2)) = (λ,−λ),
(a1(3), a2(3)) = (λ, λ), (a1(4), a2(4)) = (−λ, λ),

where λ is a parameter to be determined. In order to satisfy (2.13), we choose Mk to be a linear
combination of w, g1(w) and g2(w), i.e.

(2.15) Mk(w) = α0(k)w + α1(k)g1(w) + α2(k)g2(w).

With the aid of (2.14), the relations (2.12) immediately give the expressions

(2.16)
M1(w) =

w

4
− g1(w)

4λ
− g2(w)

4λ
, M2(w) =

w

4
+
g1(w)

4λ
− g2(w)

4λ
,

M3(w) =
w

4
+
g1(w)

4λ
+
g2(w)

4λ
, M4(w) =

w

4
− g1(w)

4λ
+
g2(w)

4λ
.

The expression for the parameter λ can now be easily obtained. Since the eigenvalues of the Jacobian
of g1(w) and g2(w) are known, the condition (2.13) can be exactly evaluated to yield

(2.17) λ = ‖|u|+ |v|+
√
2a‖∞,

where a denotes the sound speed.

Remark 2.2. If we assume that the functions Mk(w) are continuously differentiable, then {Mk(w)}
gives a wavemodel [22] for the system (2.1) with (a1(k), a2(k)) as the corresponding advection
velocities. The relation (2.12) precisely shows that this wavemodel is consistent with both the
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statevector w and the fluxvectors g1(w) and g2(w). In other words, we can decompose the statevector
w into N (in our case N = 4) waves Mk(w) which advect with velocities (a1(k), a2(k)).

In the following lemma we prove that the Maxwellian Mk : W → R
4 maps W to itself. This

lemma is very useful in the numerical approximation stage.

Lemma 2.3. The Maxwellian Mk leaves the domain W to be invariant, i.e. Mk(w) ∈ W, whenever

w ∈ W.

Proof. For w = (ρ,m, n,E) ∈ R
4 we define

(2.18) ρ̂(w) := ρ, p̂(w) := E − m2 + n2

2ρ
.

Therefore, w ∈ W is equivalent to ρ̂(w) > 0 and p̂(w) > 0. Now,

ρ̂

(

w

4
± g1(w)

4λ
± g2(w)

4λ

)

=
ρ

4
± ρu

4λ
± ρv

4λ

=
ρ

4

(

1± u

λ
± v

λ

)

(2.19)

and the right hand side of (2.19) is clearly positive under the stability condition (2.17). Thus, the
density part of Mk is positive. We can now show that the pressure part is positive.

p̂

(

w

4
± g1(w)

4λ
± g2(w)

4λ

)

=
E

4
± (E + p)u

4λ
± (E + p)v

4λ

−

{

m
4 ±

(

m2

ρ
+p

)

4λ ±
(

mn
ρ

)

4λ

}2

+

{

n
4 ±

(

mn
ρ

)

4λ ±
(

n2

ρ
+p

)

4λ

}2

2
( ρ
4 ± ρu

4λ ± ρv
4λ

)

=
E

4

(

1± u

λ
± v

λ

)

±
(pu

4λ
+
pv

4λ

)

−

{

m
4

(

1± u
λ ± v

λ

)

± p
4λ

}2
+
{

n
4

(

1± u
λ ± v

λ

)

± p
4λ

}2

ρ
2

(

1± u
λ ± v

λ

)

=
1

4

(

1± u

λ
± v

λ

)

{

E − m2 + n2

2ρ

}

− p2

4λ2ρ
(

1± u
λ ± v

λ

)

=
1

4

(

1± u

λ
± v

λ

)

{

1− p2

ρ2e(λ± u± v)2

}

ρe.(2.20)

It can easily be seen that the quantity in the curly brackets remains positive under the stability
criterion (2.17). Hence, the pressure part of Mk is also positive and this completes the proof. �

3. Kinetic Relaxation Scheme

In this section we derive a discrete kinetic scheme for the Euler equations (2.1) using the discrete
velocity Boltzmann equation (2.11). In the first step, we start with a bounded, integrable initial
data for the macroscopic variables, i.e.

(3.1) ρ(x, y, 0) > 0, u(x, y, 0), v(x, y, 0), p(x, y, 0) > 0.

Let 0 = t0 < t1 < · · · < tn < · · · be an increasing sequence of times. We denote the solution at time
t = tn by wn(x, y), i.e. wn(x, y) ∼ w(x, y, tn). Given the values of wn(x, y), we compute λ from
(2.17) and form the Maxwellian densities Mk(w

n(x, y)). We assume that the distribution function
relaxes instantaneously to the Maxwellian at time t = tn, i.e. fk(x, y, t

n) = Mk(w
n(x, y)). This
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process has been referred to as collision phase in the literature of classical kinetic schemes [8]. In
the next stage we solve an initial value problem for the collision-free Boltzmann equation

∂fk
∂t

+ a1(k)
∂fk
∂x

+ a2(k)
∂fk
∂y

= 0,(3.2)

fk(x, y, t
n) =Mk(w

n(x, y)).(3.3)

Let tn+1 = tn +∆tn. The initial value problem (3.2)-(3.3) can be solved exactly to get the solution

fk(x, y, t
n+1) = fk(x− a1(k)∆t

n, y − a2(k)∆t
n, tn)

=Mk (w
n(x− a1(k)∆t

n, y − a2(k)∆t
n)) .(3.4)

This leads to an iterative scheme for the macroscopic conserved variable w, defined via

(3.5) wn+1(x, y) =

4
∑

k=1

Mk (w
n(x− a1(k)∆t

n, y − a2(k)∆t
n)) .

Thus, our numerical scheme consists of two steps: a collision phase and a convection phase. In the
collision phase the distribution function fk relaxes instantaneously to the equilibrium distribution
Mk(w). It tantamount to performing particle collisions instantaneously to make the transition from
a non-equilibrium state to an equilibrium state. On the other hand, the convection phase drives
the system away from the equilibrium state, i.e. fk becomes different from the equilibrium Mk.
Therefore, our numerical scheme (3.5), derived in the spirit of kinetic schemes, is termed as kinetic
relaxation scheme.

Remark 3.1. It has to be noted that the scheme (3.5) is discrete in time, but continuous in space.
Further, it is unconditionally stable, i.e. it does not require any restriction on the timestep ∆tn.
However, as mentioned in [5], the simple splitting strategy we have employed here reduces the time
accuracy of the scheme to just first order. This follows easily from the calculation of truncation
error for (3.5).

We now proceed to discretise (3.5) in an upwind fashion to derive a fully discrete scheme. As a
first step, we introduce a mesh, which for simplicity is assumed to be uniform with mesh sizes ∆x
and ∆y respectively in x- and y-directions. In the following, we shall always abbreviate by φni,j , the

approximation to the value of a grid function φ at a point (xi, yj) at time tn, i.e. φni,j ∼ φ(xi, yj , t
n).

Using a1(1) = −λ, a2(1) = −λ, λ > 0 we get from (3.4)

(3.6) f1(x, y, t
n+1) =M1(w

n(xi + λ∆tn, yj + λ∆tn)).

Since the values of M1 are available only at the mesh points, we need to use some interpolation to
compute the right hand side expression in (3.6), see Figure 1.

The upwind schemes are based on the inherent signal or wave propagation property of the hy-
perbolic equations. In multidimensional cases, the signals come from infinitely many directions
and hence a numerical scheme should also take the information from all directions into account.
However, the traditional upwind schemes consider the only the waves propagating in the coordinate
directions and therefore they are typically grid dependent. This means that in the interpolation
needed in (3.6), a grid-aligned upwind scheme would suggest to use the values of M1 at the three
points A,B and D and ignore the contribution from the cross wind direction C to get

(3.7) f1
n+1
i,j =M1

n
i,j + η1δ

+
x M1i,j + η2δ

+
y M1i,j,

where η1 := λ∆tn/∆x and η2 := λ∆tn/∆y are the mesh ratios and δ+x is the forward difference
operator defined by

(3.8) δ+x φ(x, y) := φ(x+∆x, y)− φ(x, y)
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λ∆t
∆y

λ∆t
∆x

(xi, yj)
(xi+1, yj)(xi−1, yj)

(xi−1, yj+1)
(xi, yj+1) (xi+1, yj+1)

(xi−1, yj−1) (xi, yj−1) (xi+1, yj−1)

A B

CD

P

Figure 1. Nine-point stencil used for interpolation

with an analogous definition for δ+y . However, as already mentioned in the introduction, this
approach will typically result in a bad smearing of the flow features which are oblique to the grid.

The success of a well conceived genuinely multidimensional scheme depends on how accurately
the information from all the directions is taken into account. In our scheme, instead of accessing
the points via grid-aligned upwinding, we interpolate using the point values from all the four points
A,B,C and D in the stencil. In this way, our algorithm naturally leads to a genuinely multi-
dimensional approach and avoids the dimension-by-dimension treatment. Thus, using a bilinear
interpolation instead of (3.7), we get

(3.9) f1
n+1
i,j =M1

n
i,j + η1δ

+
x M1

n
i,j + η2δ

+
y M1

n
i,j + η1η2δ

+
x δ

+
y M1

n
i,j.

Employing analogous interpolations for other distribution functions we can obtain

f2
n+1
i,j =M2

n
i,j − η1δ

−

x M2
n
i,j + η2δ

+
y M2

n
i,j − η1η2δ

−

x δ
+
y M2

n
i,j,(3.10)

f3
n+1
i,j =M3

n
i,j − η1δ

−

x M3
n
i,j − η2δ

−

y M3
n
i,j + η1η2δ

−

x δ
−

y M3
n
i,j,(3.11)

f4
n+1
i,j =M4

n
i,j + η1δ

+
x M4

n
i,j − η2δ

−

y M4
n
i,j − η1η2δ

+
x δ

−

y M4
n
i,j.(3.12)

Finally, the fully discrete iterative scheme reads

(3.13) wn+1
i,j =

4
∑

k=1

fk
n+1
i,j .

The rest of this section is devoted to the analysis of the scheme (3.13). The main results are
summarised in the following theorem.

Theorem 3.2. Under the CFL condition

(3.14)
λ∆tn

∆x
< 1,

λ∆tn

∆y
< 1,

the iterative scheme (3.13) possesses the following features:
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(1) the discrete conservation property, i.e.

(3.15)
∑

i,j∈Z

wn+1
i,j =

∑

i,j∈Z

wn
i,j,

(2) preserves the positivity of density and pressure, i.e.

(3.16) ρni,j > 0, pni,j > 0 ∀i, j ∈ Z =⇒ ρn+1
i,j > 0, pn+1

i,j > 0, ∀i, j ∈ Z.

(3) entropy property, i.e. for any convex entropy h of the Euler equations (2.1) we have the

inequality

(3.17)
∑

i,j∈Z

h
(

wn+1
i,j

)

≤
∑

i,j∈Z

h
(

wn
i,j

)

.

Proof. (1) We make use of the interpolation formulae (3.9)-(3.12) on the right hand side of
(3.13) and recast the resulting expression as a nine-point difference scheme

(3.18) wn+1
i,j =

4
∑

k=1

1
∑

i′,j′=−1

α
(k)
i′,j′Mk

n
i+i′,j+j′,

where the coefficients α
(k)
i′,j′ satisfy

(3.19)

1
∑

i′,j′=−1

α
(k)
i′,j′ = 1, k = 1, 2, 3, 4.

Since
∑4

k=1Mk(w) = w, the discrete conservation property (3.15) follows very easily by
summing (3.18) over i, j ∈ Z and using (3.19).

(2) In the light of (3.19) we observe that for each k = 1, 2, 3, 4, the right side expression in
(3.18) is a convex linear combination of the Mk

n
i,j. In lemma 2.3 we have already proved

that Mk(w) ∈ W whenever w ∈ W. Hence, each of four summands with respect to k is in
W. This in turn shows that their sum also belongs to W, in view of the proposition 2.1.

(3) As mentioned in section 2, corresponding to any convex entropy h of (2.1), there exists a
kinetic entropy Hk so that

h
(

wn+1
i,j

)

=

4
∑

k=1

Hk

(

wn
i,j

)

≤
4
∑

k=1

Hk

(

fk
n+1
i,j

)

=

4
∑

k=1

Hk





1
∑

i′,j′=−1

α
(k)
i′,j′Mk

n
i+i′,j+j′





≤
4
∑

k=1

1
∑

i′,j′=−1

α
(k)
i′,j′Hk

(

Mk
n
i+i′,j+j′

)

,(3.20)

where the last inequality follows by using Jensen’s inequality for convex functions. The
entropy inequality now easily follows from (3.20) by summation and using (3.19).

�
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Remark 3.3. The positivity of the mass density and pressure is intimately related to the L1 stability
of the scheme. Since the quantities ρ and E remain positive and the scheme is conservative, we
have

‖ρn+1‖L1 =
∑

i,j∈Z

ρn+1
i,j

=
∑

i,j∈Z

ρni,j

= ‖ρn‖L1 .

In an analogous manner we can show

‖En+1‖L1 = ‖En‖L1 .

For the momentum we obtain

‖ρn+1un+1‖L1 =
∑

i,j∈Z

ρn+1
i,j |u|n+1

i,j

=
∑

i,j∈Z

(

ρn+1
i,j

)1/2
(

ρn+1
i,j

(

un+1
i,j

)2
)1/2

≤





∑

i,j∈Z

ρn+1
i,j





1/2



∑

i,j∈Z

ρn+1
i,j

(

un+1
i,j

)2





1/2

≤ 2‖ρn+1‖1/2
L1





∑

i,j∈Z

En+1
i,j





1/2

= 2‖ρn+1‖1/2
L1 ‖En+1‖1/2

L1

= 2‖ρn‖1/2
L1 ‖En‖1/2

L1

≤ ‖ρn‖L1 + ‖En‖L1 .

Analogous inequalities can be derived also for the y-momentum ρv. Hence, we have established the
L1 stability of the difference scheme (3.13).

4. Second Order Accurate Kinetic Relaxation Scheme

In this section we present an extension of the first order scheme (3.5) to second order. As already
mentioned in the introduction, our approach is along the lines of that advocated by Deshpande
[8]. Even though the first order fully discrete scheme (3.13) has many desirable properties, such as
conservativity, positivity preservation and entropy stability, however, it suffers from a large amount
of numerical dissipation. We shall see later in this section that the numerical dissipation of the first
order discrete kinetic scheme (3.13) is proportional to the timestep ∆tn. Following Deshpande [8],
we employ a Chapman-Enskog type expansion to derive a higher order numerical dissipation. With
the aid of this mechanism the resulting numerical scheme not only achieves overall second order
time accuracy, but also reduces the excess numerical dissipation.

There are two steps in deriving a second order scheme. In the first step, we proceed to achieve
second order accuracy in time. For this we employ the Chapman-Enskog type procedure, which leads
to an anti-diffusive flux correction strategy. The second step is to achieve second order accuracy in
space, which consists of using a second order interpolation method.
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4.1. Second Order Accuracy in Time. Expanding the exact solution w(x, y, t) in the Taylor
series to second order accuracy yields

(4.1) w(x, y, tn +∆tn) = w(x, y, tn) + ∆tn
∂w

∂t
(x, y, tn) +

(∆tn)2

2

∂2w

∂t2
(x, y, tn) +O

(

(∆tn)3
)

.

We make use of the conservation law (2.1) to replace the time derivatives of w by space derivatives
to obtain

w(x, y, tn +∆tn) = w(x, y, tn)−∆tn
(

∂g1
∂x

+
∂g2
∂y

)

(x, y, tn) +
(∆tn)2

2

{

∂

∂x

(

A2
1

∂w

∂x
+A1A2

∂w

∂y

)

+
∂

∂y

(

A2A1
∂w

∂x
+A2

2

∂w

∂y

)}

(x, y, tn) +O
(

(∆tn)3
)

,(4.2)

where we have denoted A1(w) = ∂g1/∂w and A2(w) = ∂g2/∂w, the flux Jacobian matrices. Our
aim is to compare (4.2) with a corresponding second order Taylor expansion of the right hand side
of (3.5). This comparison will give us the missing terms in the first order kinetic relaxation scheme,
the so-called anti-diffusive terms. In order to proceed, we first expand the summands on the right
hand side of (3.5) to second order accuracy, resulting in

Mk((w
n(x− a1(k)∆t

n, y − a2(k)∆t
n)) =Mk (w

n(x, y)) −∆tn
(

a1(k)
∂

∂x
+ a2(k)

∂

∂y

)

Mk (w
n(x, y))

+
(∆tn)2

2

(

a1(k)
∂

∂x
+ a2(k)

∂

∂y

)2

Mk (w
n(x, y))

+O((∆tn)3).(4.3)

Taking the moments, i.e. summing over k and using the relations (2.12) yields

w(x, y, tn +∆tn) = w(x, y, tn)−∆tn
(

∂g1
∂x

+
∂g2
∂y

)

(x, y, tn) +
(λ∆tn)2

2

(

∂2w

∂x2
+
∂2w

∂y2

)

(x, y, tn)

+O
(

(∆tn)3
)

.(4.4)

Remark 4.1. Notice that in the limit ∆tn → 0, the above equation (4.4) yields the modified partial
differential equation for the scheme (3.5). It is easy to see that in the resulting equation the diffusion
term is of O(∆tn), as in the classical kinetic schemes.

We can now rewrite the second order Taylor expansion (4.2) by adding and subtracting the
O
(

(∆tn)2
)

term appearing in (4.4) to get

w(x, y, tn +∆tn) = w(x, y, tn)−∆tn
(

∂g1
∂x

+
∂g2
∂y

)

(x, y, tn) +
(λ∆tn)2

2

(

∂2w

∂x2
+
∂2w

∂y2

)

(x, y, tn)

− (∆tn)2

2

[

∂

∂x

{

(

λ2I −A2
1

) ∂w

∂x
−A1A2

∂w

∂y

}

+
∂

∂y

{

−A2A1
∂w

∂x
+
(

λ2I −A2
2

) ∂w

∂y

}]

(x, y, tn) +O
(

(∆tn)3
)

.(4.5)

Note that the first three terms in the above equation (4.5) are coming from the first order scheme
(3.5). We can give a physical meaning to the last term involving (∆tn)2. For this, let us first define
the matrices

(4.6) B11 := λ2I −A2
1, B12 := −A1A2, B21 := −A2A1, B22 := λ2I −A2

2,
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where I denotes the 4× 4 identity matrix. The matrices Bij have the generic form, cf. (2.16)

(4.7) Bij(w) =

4
∑

k=1

ai(k)aj(k)M
′

k(w)−Ai(w)Aj(w), i, j = 1, 2.

With the aid of these matrices Bij, we can define

(4.8) D1 := −∆tn

2

(

B11
∂w

∂x
+ B12

∂w

∂y

)

, D2 := −∆tn

2

(

B21
∂w

∂x
+ B22

∂w

∂y

)

.

Thus, (4.5) can be recast in the equivalent, but compact, form
(4.9)

w(x, y, tn +∆tn) =

4
∑

k=1

Mk (w
n(x− a1(k)∆t

n, y − a2(k)∆t
n)) + ∆tn

(

∂D1

∂x
+
∂D2

∂y

)

+O
(

(∆tn)3
)

,

which is the required second order extension of the kinetic relaxation scheme (3.5).
The results in [1, 5] guarantees that under the stability condition (2.13), the matrices Bij in (4.7)

are all nonnegative definite. Hence, both D1 and D2 behave like viscous stress terms with Bij as
the corresponding diffusion matrices. These new stress terms D1 and D2 are the analogues of the
heat flux vector and viscous stress obtained by Deshpande [8], for the compressible Euler equations,
in the context of classical kinetic schemes. The gradients ∂D1/∂x and ∂D2/∂y will therefore act as
dissipative fluxes. The crucial point to note here is that the signs of D1 and D2 in (4.8) are negative.
As a result, both the terms ∂D1/∂x and ∂D2/∂y in (4.9) are negative diffusive fluxes, or in other
words, they are anti-diffusive fluxes. We have already pointed out that the first term in (4.9) is
coming from the first order scheme (3.5). Hence, in order to achieve second order time accuracy for
the discrete kinetic scheme (3.13), we need to consider not only the upwind relaxation term but also
the anti-diffusive terms. In addition to serving as second order corrections, the anti-diffusive terms
also reduces the excess amount of numerical diffusion present in the first order upwind relaxation
scheme (3.13).

It is well known that the Maxwellian equilibrium distributions of the typeMk(w) gives an inviscid
system of conservation laws in the hydrodynamic limit, e.g. see [5, 7]. However, in the second order
scheme (4.9) we have incorporated diffusive flux terms. Therefore, in order to get dissipative flux
like terms ∂D1/∂x and ∂D2/∂y we need to change the Maxwellian distribution to the so-called
Chapman-Enskog distribution. The latter is always associated with diffusion equations, such as
the Navier-Stokes equations and hence it can give rise to nonzero viscous terms. Moreover, the
method of replacing the time derivatives by space derivatives we performed to derive (4.2) is also
a characteristic of the Chapman-Enskog procedure. In what follows, we derive a Chapman-Enskog
distribution and examine its relation to the second order accurate scheme (4.9).

From the BGK Boltzmann equation (2.11) we infer that Mk(wf )− fk = O(ε) and as a result

fk =Mk(wf )− ε

{

∂fk
∂t

+ a1(k)
∂fk
∂x

+ a2(k)
∂fk
∂y

}

,

=Mk(wf )− ε

{

∂Mk(wf )

∂t
+ a1(k)

∂Mk(wf )

∂x
+ a2(k)

∂Mk(wf )

∂y

}

+O
(

ε2
)

.(4.10)

Note that the right hand side of (4.10) is a perturbation of the Maxwellian Mk. Motivated by this,

the Chapman-Enskog distribution function M̃k is defined by

(4.11) M̃k(w) := Mk(w)− τ

{

∂Mk(w)

∂t
+ a1(k)

∂Mk(w)

∂x
+ a2(k)

∂Mk(w)

∂y

}

,
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where τ is a parameter to be determined. Analogous to the consistency conditions (2.12), the

Chapman-Enskog distribution function M̃k(w) is required to satisfy the moment relations

(4.12)

4
∑

k=1

M̃k(w) = w,

4
∑

k=1

a1(k)M̃k(w) = g1(w) +D1,

4
∑

k=1

a2(k)M̃k(w) = g2(w) +D2.

Note that the first relation in (4.12) is the conservation property. The second and third relations
precisely state that unlike the Maxwellian, the Chapman-Enskog distribution should give a nonzero
viscous flux in addition to the inviscid flux. We can now obtain the precise form M̃k(w) by evaluating
the expressions in curly brackets on the right hand side of (4.11), e.g. we get from (2.16)

(4.13)
∂M1

∂t
=

1

4

∂w

∂t
− 1

4λ

∂g1(w)

∂t
− 1

4λ

∂g2(w)

∂t
.

Using chain rule and the conservation law (2.1) we can replace all the time derivatives by spatial
derivatives to get

(4.14)
∂M1

∂t
=

1

4λ

(

−λA1 +A2
1 +A1A2

) ∂w

∂x
+

1

4λ

(

−λA2 +A1A2 +A2
2

) ∂w

∂y
.

In an analogous manner we can compute from (2.16)

(4.15)
∂M1

∂x
=

1

4λ
(λI −A1 −A2)

∂w

∂x
,
∂M1

∂y
=

1

4λ
(λI −A1 −A2)

∂w

∂y
.

Thus, from (4.13)-(4.15) we finally get
(4.16)
∂M1

∂t
− λ

∂M1

∂x
− λ

∂M1

∂y
=

1

4λ

(

A2
1 +A2A1 + λA2 − λ2I

) ∂w

∂x
+

1

4λ

(

A1A2 +A2
2 + λA1 − λ2I

) ∂w

∂y
.

Along similar lines we can obtain the relevant factors involving M2,M3 and M4. Assembling all the
required expressions in (4.11), it can easily be seen that we must take τ = −2/∆tn in order to satisfy
the second and third relations in (4.12). Thus, from (4.11) we can obtain the Chapman-Enskog
distribution function

M̃1 =M1 −
∆tn

8λ

(

A2
1 +A2A1 + λA2 − λ2I

) ∂w

∂x
− ∆tn

8λ

(

A1A2 +A2
2 + λA1 − λ2I

) ∂w

∂y
,(4.17)

M̃2 =M2 −
∆tn

8λ

(

−A2
1 +A2A1 − λA2 + λ2I

) ∂w

∂x
− ∆tn

8λ

(

−A1A2 +A2
2 − λA1 − λ2I

) ∂w

∂y
,(4.18)

M̃3 =M3 −
∆tn

8λ

(

−A2
1 −A2A1 + λA2 + λ2I

) ∂w

∂x
− ∆tn

8λ

(

−A1A2 −A2
2 + λA1 + λ2I

) ∂w

∂y
,(4.19)

M̃4 =M4 −
∆tn

8λ

(

A2
1 −A2A1 − λA2 − λ2I

) ∂w

∂x
− ∆tn

8λ

(

A1A2 −A2
2 − λA1 + λ2I

) ∂w

∂y
.(4.20)

Remark 4.2. It is to be noted that unlike the Maxwellian Mk, the Chapman-Enskog distribution
M̃k depends also on the derivatives of the conservative variable w. In other words, the support of
the Chapman-Enskog distribution is larger than the corresponding Maxwellian.

We can give an interpretation of the second order scheme as coming from an initial value problem
of the type (3.2)-(3.3), with the exception that the initial value of fk is M̃k instead of Mk, i.e.

(4.21) fk(x, y, t
n) = M̃k(w

n(x, y)).

The solution of the transport equation (3.2) with the above initial datum is clearly

(4.22) fk(x, y, t
n +∆tn) = M̃k (w

n(x− a1(k)∆t
n, y − a2(k)∆t

n)) .
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Taking moments we get

(4.23) w(x, y, tn +∆tn) =

4
∑

k=1

M̃k (w
n(x− a1(k)∆t

n, y − a2(k)∆t
n)) .

Expanding the right hand side of the above equation (4.23) in the Taylor series and using the
moment relations (4.12), it can be seen that we recover the second order scheme (3.5). Thus, (4.23)
is the upwind version of (3.5) with the Chapman-Enskog distribution instead of the Maxwellian.

4.2. Second Order Accuracy in Space. Our next aim is to achieve second order accuracy in
space. The equation (4.9) shows that in the second order scheme also the values of Mk are to be
evaluated at non-mesh points. Since the anti-diffusive correction terms are O((∆tn)2), we need to
evaluate the first term in (4.9) to second order accuracy. Therefore, like the first order scheme we
should employ an interpolation procedure, but which should be second order accurate. Note that in
our first order scheme, we have used a bilinear interpolation method for this purpose and the overall
scheme turned out to be positivity preserving. This is due to the fact that the bilinear interpolation
formulae in (3.9)-(3.12) can be written as convex linear combinations of the values of the Maxwellian
densities Mk(w). Thus, when using a second order interpolation instead of (3.9)-(3.12), we must
ensure that the interpolated values should not give any non-physical negative density or pressure.

A second order interpolation method can be easily obtained by replacing the first order interpo-
lation formulae (3.9)-(3.12) by corresponding second order difference formulae, e.g.

(4.24)
f1

n+1
i,j =M1

n
i,j +

η1
2

(

δ+x + δ−x
)

M1
n
i,j +

η21
2

(

δ+x − δ−x
)

M1
n
i,j

+
η2
2

(

δ+y + δ−y
)

M1
n
i,j +

η22
2

(

δ+y − δ−y
)

M1
n
i,j + η1η2δ

+
x δ

+
y M1

n
i,j.

However, it is not possible to write the expression on the right hand side as a convex combination
of the values of M1 in the stencil. In addition, the density and energy components of the above
vector valued interpolated expression need not be positive even if the corresponding values of M1

at the mesh points are positive. This is particularly true in the presence of shocks and other high
gradients, where the second order slopes can have wild variation. This gives an indication that in
(4.24) we must use some limiter type functions to suppress the oscillations and unphysical values.
We recast (4.24) in an alternate form

(4.25)
f1

n+1
i,j =M1

n
i,j + η1δ

+
x M1

n
i,j + η2δ

+
y M1

n
i,j + η1η2δ

+
x δ

+
y M1

n
i,j

− η1
2
(1− η1)

(

δ+x − δ−x
)

M1
n
i,j −

η2
2
(1− η2)

(

δ+y − δ−y
)

M1
n
i,j.

Note that the first four terms together gives the first order bilinear interpolation formula. Since
the first order formula is positivity preserving and non-oscillatory, we must switch over to it in the
presence of high gradients. However, we must use the second order interpolation scheme in smooth
regions of the flow in order to achieve second order accuracy in space. This can be achieved with
the use of an adaptive parameter, say χ, so that in equilibrium or smooth flow regions χ ∼ 0 and
in discontinuity region χ ∼ 1. We limit the second order contribution terms in (4.25) to get

(4.26)
f1

n+1
i,j =M1

n
i,j + η1δ

+
x M1

n
i,j + η2δ

+
y M1

n
i,j + η1η2δ

+
x δ

+
y M1

n
i,j

− η1
2
(1− η1)χ1

(

δ+x − δ−x
)

M1
n
i,j −

η2
2
(1− η2)χ2

(

δ+y − δ−y
)

M1
n
i,j .
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Here, χ1 and χ2 are appropriate discontinuity indicators and we have used the switching function
of the JST scheme [12] for this purpose, i.e.

(4.27) χ1 =
|pni+1,j − 2pni,j + pni−1,j|
|pni+1,j + 2pni,j + pni−1,j|

,

with an analogous definition for χ2. Along similar lines, we can define the second order interpolated
values of M2,M3 and M4.

Remark 4.3. It has to be noted that in the second order kinetic schemes of [8, 15] different inter-
polation and limiting strategies were employed . However, our numerical experiments confirm the
non-oscillatory nature of the interpolation method of the type (4.26).

To complete the second order scheme we need to evaluate also the anti-diffusive flux terms
∂D1/∂x and ∂D1/∂y. Note that the evaluation of D1 and D2 requires the computation of the slopes
∂w/∂x and ∂w/∂y. As explained above, when strong discontinuities, such as shocks and contacts
are present in the solution, these gradients can have very drastic variation. This can also lead
the second order scheme (4.9) to give some unphysical solutions. Therefore, we must apply some
nonlinear limiter functions also in the calculation of the these gradients. A possible computation
of such slopes, which results in an overall non-oscillatory scheme is given by a family of discrete
derivatives parametrised by 1 ≤ θ ≤ 2, e.g.

(4.28)
∂w

∂x
(xi, yj , t

n) =MM

(

θ
wn
i+1,j −wn

i,j

∆x
,
wn
i+1,j −wn

i−1,j

2∆x
, θ
wn
i,j − wn

i−1,j

∆x

)

with an analogous expression for the y-slope. Here, MM denotes the nonlinear minmod function
defined by

(4.29) MM {x1, x2, · · · } =











minp{xp} if xp > 0 ∀p,
maxp{xp} if xp < 0 ∀p,
0 otherwise.

After computing the values of D1 and D2 at all the mesh points, the derivatives ∂D1/∂x and
∂D1/∂y are also calculated using the same minmod recovery procedure. Thus, we have completed
the evaluation of all the terms required by the second order scheme (4.9).

5. Numerical Results

In this section we present the results of our numerical experiments on some benchmark problems
for the Euler equations. We consider a range of test-problems and demonstrate the second order
convergence of the scheme and its ability to capture genuine multidimensional flow features.

5.1. Experimental order of convergence. In order to numerically verify the second order con-
vergence of the scheme (4.9) we compute the experimental order of convergence (EOC) for a smooth
solution. We consider a smooth periodic solution of the 2-D Euler equations, given by

ρ(x, y, t) = 1.0 + 0.5 sin (π(x+ y − t(u+ v))) ,

u(x, y, t) = v(x, y, t) = p(x, y, t) = 1.0.

The EOC can be calculated by systematically refining the mesh and examining the behaviour of
the global error. Since the exact solution is known, the order of convergence in a certain norm ‖·‖
can be computed in the following way

EOC = log2

(

‖wn
N/2 − wn

ref‖
‖wn

N − wn
ref‖

)

,
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whereN denotes the number of mesh points in both x- and y- directions, w denotes the approximate
and wref the exact solution. A suitable choice for the norm ‖·‖ is L1, L2 or L∞. The computational
domain [−1, 1]× [−1, 1] is consecutively divided into 20× 20, 40× 40, . . . , 320× 320 cells. The final
time was taken to be t = 0.1. In order to evaluate the upwind relaxation term in (4.9) we use
the second order interpolation formulae, such as (4.24) and the Chapman-Enskog terms D1,D2 and
their derivatives are computed using central differences without any limiters. The table 1 shows the
experimental order of convergence calculated in the three norms. It is evident from the table that
the order of convergence is two.

N L1 error EOC L2 error EOC L∞ error EOC

20 0.01801515 0.01993357 0.02794240
40 0.00332742 2.43673590 0.00369252 2.43252224 0.00521205 2.42253293
80 0.00071280 2.22284153 0.00079185 2.22130172 0.00111969 2.21875624
160 0.00016955 2.07173835 0.00018834 2.07189826 0.00026609 2.07310876
320 0.00004183 2.01916530 0.00004647 2.01882292 0.00006616 2.00786708

Table 1. L1, L2 and L∞ errors with EOC for a smooth periodic test case.

5.2. Cylindrical Explosion Problem. The first test case is a two-dimensional Sod problem with
a circular discontinuity. The computational domain is the square [−1, 1] × [−1, 1] and the initial
data read,

(ρ, u, v, p)(x, y, 0) =

{

(1, 0, 0, 1) if
√

x2 + y2 < 0.4,

(0.125, 0, 0, 0.1) otherwise.

The solution is computed at time t = 0.2 on a 400 × 400 mesh with a CFL number 0.45 using
the second order accurate method. The solution exhibits a circular shock and a circular contact
discontinuity moving away from the centre of the circle and a circular rarefaction wave moving in
the opposite direction. In this problem we have used absorbing boundary conditions by simple
zeroth order extrapolation of the variables. The isolines of density, x-, y- components of velocity
and pressure are given in figure 2. It is evident from figure 2 that the scheme resolves circular shocks
and contacts very accurately, confirming its genuinely multidimensional nature.

5.3. 2-D Riemann Problems. Next test case is a two-dimensional Riemann problem. The com-
putational domain [−1, 1]× [−1, 1] is divided into four quadrants. The initial data consist of single
constant states in each of these four quadrants. These constant values are chosen in such a way
that each pair of quadrants defines a one-dimensional Riemann problem.

We choose the initial values in such a way that two forward moving shocks and two standing slip
lines are produced. The initial data read,

(ρ, u, v, p)(x, y, 0) =



















(0.5313, 0.0, 0.0, 0.4) if x > 0, y > 0,

(1.0, 0.0, 0.7276, 1.0) if x > 0, y < 0,

(1.0, 0.7276, 0.0, 1.0) if x < 0, y > 0,

(0.8, 0.0, 0.0, 1.0) if x < 0, y < 0.

The solution is computed at time t = 0.52 with a CFL number 0.45 with both first order and second
order methods. The isolines of the density is given in figure 3. It is evident from the figure that the
second order method is far less dissipative than the first order scheme. Moreover, the second order
scheme resolves the shocks and slip lines very accurately.
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Figure 2. Cylindrical explosion problem. Isolines of the solution obtained by the
second order scheme at t = 0.2 on a 400 × 400 mesh.

5.4. Double Mach Reflection Problem. This test case is the double Mach reflection problem
studied in [30]. The computational domain is [0, 4] × [0, 1] and the setup is as follows. A reflecting
wall lies at the bottom of the domain starting at x = 1

6 . Initially, a right moving shock is situated at

the point (16 , 0), with the shock making an angle 60◦ with the x-axis. At the bottom boundary, the

postshock values are values are imposed for the region from x = 0 to x = 1
6 and reflecting boundary

conditions for the rest. On the top boundary, all the flow parameters specified to represent the exact
motion of a Mach 10 shock. The left boundary is an inflow boundary, whereas the right boundary
is outflow. The isolines of the density and pressure computed on a 240 × 60 mesh with the second
order scheme is given in figure 4. It is clear that the our scheme resolve the complex flow features
of this problem quite well.

5.5. Shock Bubble Interaction Problem. The simulations in this example shows the interaction
between a planar shock and various heterogeneity. The motivation for this problem is the 3-D shock
bubble interaction studied by Langseth and LeVeque [16]. The problem setup is as follows. A bubble
of radius 0.2 lies at rest at (0.4, 0.5) in the domain [0, 1.6]× [0, 1]. The gas is at rest initially and has
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Figure 3. 2-D Riemann problem with two shocks and two slip lines. Isolines of the
density computed using the first order and second order schemes at time t = 0.52 on
a 400 × 400 mesh.
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Figure 4. Double Mach reflection problem. Density and pressure isolines at time
t = 0.2 computed on a 240 × 60 mesh.
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Figure 5. Shock-bubble interaction problem: pseudo-colour images of the density
at different times from t = 0.1 to t = 0.4 calculated with second order scheme on a
640 × 400 mesh.

unit density and pressure. The density inside the bubble is 0.1 while the velocities and pressure has
same values as outside. The incoming shock wave starts at x = 0.1 and propagates in the positive
x-direction. Behind the shock the density is 3.81, pressure is 10, x-velocity is 2.85 and y-velocity
is 0. The pseudo-colour images of the density for different time from t = 0.1 to t = 0.4 is given
in figure 5. We have used reflecting boundary conditions on the top and bottom boundaries. The
right boundary has outflow boundary conditions whereas the left is inflow boundary.

6. Concluding Remarks

A novel genuinely multidimensional discrete kinetic scheme based on a relaxation system in which
the foot of the characteristics traverses all quadrants in an isotropic way is proposed for the solution
of a hyperbolic system of conservation in two dimensions. The scheme achieves second order time
by the use of an anti-diffusive Chapman-Enskog distribution function instead of the Maxwellian,
whereas the second order space accuracy is achieved using second order interpolation with limiters to
avoid oscillations. The proposed scheme is validated against a set of well-known benchmark problems
for the Euler equations in two dimensions and the results demonstrate second order convergence and
its efficiency to capture the flow features accurately. The extension of the present scheme to other
complex hyperbolic systems is straightforward. The discrete kinetic relaxation scheme also retains
many attractive features of the central schemes, such as neither Riemann solvers nor characteristic
decompositions are needed.
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Institut für Geometrie und Praktische Mathematik, RWTH-Aachen, Templergraben 55, D-52056

Aachen, Germany.

E-mail address: arun@igpm.rwth-aachen.de

Institut für Mathematik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, D-55099 Mainz,

Germany.

E-mail address: lukacova@mathematik.uni-mainz.de
URL: http://www.mathematik.uni-mainz.de/Members/lukacova


