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Abstract In this paper we present a kinetic relaxation scheme for the Euler equa-
tions of gas dynamics in one space dimension. The method is easily applicable to
solve any complex system of conservation laws. The numerical scheme is based on a
relaxation approximation for conservation laws viewed as adiscrete velocity model
of the Boltzmann equation of kinetic theory. The discrete kinetic equation is solved
by a splitting method consisting of a convection phase and a collision phase. The
convection phase involves only the solution of linear transport equations and the
collision phase instantaneously relaxes the distributionfunction to an equilibrium
distribution. We prove that the first order accurate method is conservative, preserves
the positivity of mass density and pressure and entropy stable. An anti-diffusive
Chapman-Enskog distribution is used to derive a second order accurate method.
The results of numerical experiments on some benchmark problems confirm the
efficiency and robustness of the proposed scheme.

1 Introduction

Over the past few decades, the intense research on shock capturing schemes has
lead to the development of several numerical methods for thecompressible Euler
equations of gas dynamics. Of the various methods developedso far, the finite vol-
ume methods have been the most popular. The main advantages of the finite volume
methods are the simplicity of the scheme and automatic control of conservation,
which is a crucial property. These methods can be broadly classified into two cate-
gories: central schemes and upwind schemes.
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Institut für Mathematik, Johannes Gutenberg Universität Mainz, Staudingerweg 9, D-55099 Mainz,
Germany, e-mail: lukacova@uni-mainz.de

Phoolan Prasad
Department of Mathematics, Indian Institute of Science, Bangalore 560012, India, e-mail:
prasad@math.iisc.ernet.in

S. V. Raghurama Rao
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India, e-
mail: raghu@aero.iisc.ernet.in

1
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The central schemes originated as the central finite difference formulation of
conservation laws. Some prototypes of these schemes are theLax-Friedrichs scheme
and the Lax-Wendroff scheme. In recent years, the central schemes have gained a
lot of renewed interest due to their new interpretation as Godunov type schemes on
staggered grids [18]. We refer the reader to [24] for a reviewof central schemes.

Upwind methods include Riemann solvers (exact and approximate), flux splitting
methods, kinetic theory based schemes [7, 6], relaxation schemes [14] etc. Most of
these schemes are based on the hyperbolic structure of the underlying conservation
laws. Reviews of the mostly commonly used upwind method, namely the Riemann
solver, can be found in many text-books, e.g. [11, 25]. An important category of
upwind methods is the kinetic schemes which are based on the Boltzmann equation
of kinetic theory. The kinetic schemes exploit the fact thatnonlinear conservation
laws can be recovered by taking various moments of the Boltzmann equation. We
refer the reader to the text book by Cercignani [4] for a comprehensive treatment
of kinetic theory. One of the most fascinating aspects of thekinetic schemes is that
when applied to Euler equations of gas dynamics, they preserve the positivity of
mass density and pressure. As a result, the kinetic schemes are unconditionally sta-
ble in theL1-norm. Further, they also possess the entropy property as a consequence
of the celebrated BoltzmannH-theorem; see [11, 20] for more details.

The recently introduced relaxation schemes [14], based on the relaxation ap-
proximation of conservation laws [5], is a new category of upwind methods. In this
method, the given nonlinear system of conservation laws is replaced by a larger
semi-linear system, known as the relaxation system. The relaxation system has a
stiff source term containing a small relaxation parameterε. The original system
of conservation laws can be recovered from the relaxation system in the limit as
ε → 0. In [14] the authors have developed a variety of numerical schemes which are
classified into two categories: relaxing schemes and relaxed schemes. The relaxing
schemes are obtained by directly discretising the relaxation system and hence they
contain the stiff parameterε explicitly. A relaxed scheme is the limit of a relaxing
scheme whenε = 0. Due to the presence ofε, it is in general difficult to attain
high order time accuracy in relaxing schemes. However, special Runge-Kutta time
stepping schemes have been proposed in [13, 19] to develop high order relaxation
schemes with MUSCL or WENO type space discretisations. It isinteresting to note
that the diagonal form of a Jin-Xin type relaxation system can be interpreted as a
discrete velocity Boltzmann equation [1, 3].

The goal of the present work is to develop a relaxation schemefor the compress-
ible Euler equations in one space dimension based on a discrete velocity Boltzmann
equation. The main advantages of the discrete Boltzmann model are the linearity of
the convective part, simplicity compared to classical Boltzmann equation, the diag-
onal form and the ease for upwinding. Further, we can exploitthe vast literature of
kinetic theory to design and study numerical schemes based on such discrete kinetic
models. We solve the discrete Boltzmann equation by a splitting method consisting
of a convection phase and a collision phase. The convection phase involves only
the solution of linear transport equations and the collision phase instantaneously re-
laxes the distribution function to an equilibrium distribution. However, as remarked
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in [13], such a simple splitting strategy reduces the resulting numerical scheme
to formally first order accurate in time. Moreover, the first order scheme suffers
from a large amount of numerical dissipation. Nonetheless,in the context of clas-
sical kinetic schemes, Deshpande [7] has circumvented these difficulties by the use
of an anti-diffusive Chapman-Enskog distribution insteadof the Maxwellian. Re-
cently, Kunik et al. [15] employed same mechanism to design asecond order kinetic
scheme for the relativistic hydrodynamics equations. Following [7, 15] we derive an
anti-diffusive Chapman-Enskog distribution for the discrete Boltzmann equation to
develop a second order upwind relaxation scheme. It is to be remarked that the
Chapman-Enskog method is always associated with nonlinearconvection-diffusion
equations [4] and the use of Chapman-Enskog distribution function to reduce the
excess numerical diffusion in the first order relaxation scheme is novel. Moreover,
our scheme avoids intricate and time consuming solving of Riemann problems and
complicated flux splittings. In [22] the authors have introduced a relaxation scheme
based on characteristics and interpolation which does not require the discretisation
of any derivatives. Our scheme also possess this new featureand which makes our
approach different from the traditional finite difference,finite volume and finite el-
ement methods.

The organisation of this paper is as follows. In section 2 we introduce a relaxation
system for Euler equations in the form of a discrete velocityBoltzmann equation. In
section 3 we derive a first order accurate, unconditionally stable relaxation scheme
which is continuous in space and discrete in time. In order toget a fully discrete
scheme, we use a simple interpolation strategy. We prove thepositivity preserving
property and entropy stability of the first order scheme. In section 4 we present an
extension of the first order scheme to second order with the aid of an anti-diffusive
Chapman-Enskog distribution function. The results of numerical experiments on
some benchmark problems are reported in section 5. Finally,we conclude the paper
with some remarks in section 6.

2 Relaxation System for Euler Equations

In this section we introduce a relaxation system for the one-dimensional Euler equa-
tions of an inviscid compressible fluid. Nevertheless, the generalisation of this idea
to any complex system of conservation laws is straight forward. The Euler equations
forms a nonlinear hyperbolic system of conservation laws which represents the fun-
damental conservation principles of mass, momentum and energy. The system of
equations reads

∂w
∂ t

+
∂g(w)

∂x
= 0, (1)

with the vector valued conserved variablew and the fluxg(w) given as
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w=





ρ
ρu
E



 , g(w) =





ρu
ρu2+ p
(E+ p)u



 . (2)

Here,ρ ,ρu andE respectively denote the densities of mass, momentum and energy
and p is the pressure. In order to close the system (1), we assume the equation of
state of a polytropic ideal gas so thatp is related to the other state variables as
p= (γ −1)(E−ρu2/2), whereγ is the ratio of specific heats. The set of values of
the state variablew forms the admissible set

W =

{

(ρ ,ρu,E)t : ρ > 0,u∈ R,E−
ρu2

2
> 0

}

, (3)

which is an open convex subset ofR
3. It is to be noted that the differential equations

(1) hold only at regular points and for weak solutions containing singular surfaces
(1) is to be replaced by the appropriate jump conditions. Thephysically relevant
unique weak solution can be obtained using the entropy condition, which is a rem-
iniscent of the second law of thermodynamics. The Euler equations (1) admits a
strictly convex entropy functionh and an associated entropy fluxϕ given as a func-
tion of the densityρ and pressurep:

h(ρ , p) = cv log

(

p
ργ

)

, ϕ(ρ , p) = ρh(ρ , p)u. (4)

A relaxation problem occur quite often in many physical problems, e.g. in non-
equilibrium thermodynamics, kinetic theory and nonlinearwaves. The relaxation
phenomenon arises when the equilibrium state of a physical system is perturbed.
One of most common occurrence of relaxation processes is in rarefied gas dynamics
which represented by the well known Boltzmann equation. TheBoltzmann equation
for a monatomic perfect gas in one space dimension is given by

∂ f
∂ t

+ ξ
∂ f
∂x

=
1
ε

Q( f ), (5)

where f (x, t,ξ ) ≥ 0 is the particle density function. The macroscopic conserved
variables, viz. the mass, momentum and energy, are obtainedfrom the moment re-
lations

w(x, t) =
∫

R

Ψ(ξ ) f (x, t,ξ )dξ , (6)

where

Ψ(ξ ) =





1
ξ

1
2ξ 2



 . (7)

The Boltzmann collision operatorQ consists of a very complex integral term. An
interesting property of this collision operatorQ is thatQ( f ) = 0 if and only if f is a
Maxwellian, i.e.
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f (x, t,ξ ) = M(w,ξ ) :=
ρ

(2πϑ)1/2
e−

|ξ−u|2

2ϑ , (8)

whereϑ = RT, Rbeing the gas constant.
In [2] Bhatnagar et al. has introduced a simple model forQ based on the re-

laxation process of a swarm of molecules towards an equilibrium state. With this
hierarchy, the so-called BGK model, the Boltzmann equation(5) reads

∂ f
∂ t

+ ξ
∂ f
∂x

=
1
ε
(

M(wf ,ξ )− f
)

, (9)

whereε > 0 is a small parameter known as the relaxation time andwf is defined by

wf :=
∫

R

Ψ(ξ ) f (x, t,ξ )dξ . (10)

Here we wish to put a subscriptf on w, just to emphasise that in the construction
of M in (9), wf is the macroscopic conserved variable obtained fromf . The BGK
Boltzmann equation (9) facilitated the development of kinetic schemes, which have
been very successful in the numerical modelling of many initial and boundary value
problems in fluid dynamics. The kinetic schemes to solve the compressible Euler
equations have been mainly developed in [7, 20, 21]. These schemes are based on
the fact that the Euler equations (1) are the first moments of the Boltzmann equation
(5) when the distribution function is the Maxwellian (8); see [4] for more details.
The kinetic schemes admit many fascinating features, such as robustness, preserving
the positivity of mass density and pressure and entropy stability.

As a generalisation of kinetic BGK models, in [3] Bouchut hasintroduced a
general framework for constructing a BGK model for any system of conservation
laws endowed with a convex entropy. A striking property of this formulation is that
the constructed BGK model possesses a large family of kinetic entropies. There
exists an analogue of the classical BoltzmannH-theorem, the exploitation of which
yields the entropy inequality in the hydrodynamic limit. Inthis work we use the
discrete velocity relaxation model introduced in [1, 3]. The BGK equation reads

∂ fk
∂ t

+a(k)
∂ fk
∂x

=
1
ε
(

Mk(wf )− fk
)

(11)

for k ∈ {1,2, . . . ,N}. Here fk = fk(x, t) ∈ R
3 is unknown,a(k) ∈ R is a constant,

wf = ∑N
k=1 fk and the so-called MaxwelliansMk : W → R

3 satisfy the consistency
conditions

N

∑
k=1

Mk(w) = w,
N

∑
k=1

a(k)Mk(w) = g(w), w∈ W . (12)

The conditions (12) are the necessary conditions for the BGKmodel (11) to con-
verge to the Euler equations (1) in the limitε → 0; see [17] for more details. We
note that the BGK model (11) is completely determined once the discrete veloci-
tiesa(k) and the MaxwelliansMk are obtained. The choices ofa(k) andMk are to
be done according to some suitable stability conditions. Itis well known that even
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for general relaxation models [5, 16, 17] an approximation of the type (11) has to
obey some stability criterion so as to possess the correct hydrodynamic limit. In the
case of 2×2 relaxation systems it is the well known sub-characteristic condition
[5, 16]. In the present work we use the entropy extension condition in [3] so that the
BGK model (11) is compatible with the entropies of (1). The main result of [3] for
the discrete velocity BGK models of the type (11) states: under the necessary and
sufficient condition

σ(M′
k(w))⊂ [0,∞) ∀k, (13)

corresponding to any entropyh(w) of (1), there exist a kinetic entropyHk( fk) of (11)
such that∑N

k=1 Hk(Mk(wf ))≤∑N
k=1Hk( fk). Hk is a convex function,∑N

k=1Hk(Mk(w))=
h(w), We now proceed to give the explicit expressions for the discrete velocitiesa(k)
and the MaxwelliansMk in accordance with the stability requirement (13). Firstly,
we chooseN = 2 and take

a(1) =−λ , a(2) = λ , (14)

whereλ is a parameter to be determined. In order to satisfy (13), we chooseMk to
be a linear combination ofw andg(w), i.e.

Mk(w) = αkw+βkg(w). (15)

Using (14), the relations (12) immediately give the expressions

M1(w) =
1
2

w−
1

2λ
g(w), M2(w) =

1
2

w+
1

2λ
g(w). (16)

Note that an expression for the parameterλ remains to be determined. The eigen-
values of the JacobianA(w) = ∂g(w)/∂w areu−a,u,u+a, wherea=

√

γ p/ρ is
the sound speed. Evaluating the expression on the right handside of (13) yields the
expression forλ as

λ = ‖|u|+a‖∞. (17)

3 Kinetic Relaxation Scheme

In this section we derive a first order accurate, unconditionally stable discrete kinetic
scheme for the Euler equations (1) using the discrete velocity Boltzmann equation
(11). For an analogous formulation in the context of classical kinetic schemes, see
[7, 15]. Firstly, we start with a bounded, integrable initial data for the macroscopic
variables, i.e.

ρ(x,0) = ρ0(x)> 0, u(x,0) = u0(x), p(x,0) = p0(x)> 0. (18)

Let us denote the solution at timet = tn bywn(x), i.e.wn(x)∼w(x, tn). Using the val-
ues ofwn(x) we obtainλ from (17) and form the Maxwellian densitiesMk(wn(x)).
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In other words, we assume that the distribution function relaxes instantaneously to
the Maxwellian at timet = tn, i.e. fk(x, tn) = Mk(wn(x)). This process has been re-
ferred to as collision phase in the literature of kinetic schemes [7, 10]. In the next
stage we solve the initial value problem for the collision free Boltzmann equation

∂ fk
∂ t

+a(k)
∂ fk
∂x

= 0, (19)

fk(x, t
n) = Mk(w

n(x)). (20)

The initial value problem (19)-(20) can be solved exactly toyield the solution

fk(x, t
n+∆ t) = fk(x−a(k)∆ t, tn) = Mk (w

n(x−a(k)∆ t)) . (21)

This leads to an iterative scheme for the macroscopic conserved variablew, defined
by

wn+1(x) =
2

∑
k=1

Mk (w
n(x−a(k)∆ t)) . (22)

Thus, our numerical scheme consists of two phases: a collision phase and a convec-
tion phase. In the collision phase the distribution function fk relaxes instantaneously
to the equilibrium distributionMk(w). It tantamount to performing particle collisions
instantaneously to make the transition from a non-equilibrium state to an equilib-
rium state. On the other hand, the convection phase drives the system away from
the equilibrium state, i.e.fk becomes more and more different from the equilibrium
Mk. Therefore, our numerical scheme (22), derived in the spirit of kinetic schemes
is termed as kinetic relaxation scheme (KRS). It is interesting to note that this KRS
(22) is discrete in time, but continuous in space. Further, it is unconditionally stable,
i.e. it does not require any restriction on the time-step∆ t.

Remark 1.It has been proved by Jin [13] that a simple splitting strategy of the type
we employed here reduces the resulting scheme to formally first order accurate in
time. Therefore, the scheme (22) is only first order accuratein time.

The rest of this section is devoted to analysis of the scheme (22). Firstly, we
derive a fully discrete and conditionally stable scheme from (22). Let us introduce a
mesh, which for simplicity is assumed to be uniform with meshsize∆x. We denote
by wn

j , the point value ofw atx= x j at timet = tn. It has to be noted that the formula
involves the values ofMk(w) at non-mesh points, see Figure 1.

x j−1 x j x j+1x j −λ ∆t x j +λ ∆t

λ ∆tλ ∆t

Fig. 1 Computational stencil used in the interpolation scheme.
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As in the classical kinetic scheme [7, 15] we use an interpolation scheme to
evaluate the term on the right hand side of (22). Since the set{M1,M2} represents
two waves travelling to the left and right respectively, we introduce an upwind bias
in interpolating via

M1(w
n(x j +λ ∆ t)) = M1

n
j +

λ ∆ t
∆x

(

M1
n
j+1−M1

n
j

)

, (23)

whereM1
n
j is a shortcut forM1(wn(x j)). In an analogous manner we derive

M2(w
n(x j −λ ∆ t)) = M2

n
j −

λ ∆ t
∆x

(

M2
n
j −M2

n
j−1

)

. (24)

Introducing (23)-(24) in (22) finally yields the fully discrete scheme

wn+1
j = M1

n
j +

λ ∆ t
∆x

(

M1
n
j+1−M1

n
j

)

+M2
n
j −

λ ∆ t
∆x

(

M2
n
j −M2

n
j−1

)

. (25)

3.1 Conservation Property of the Scheme

It is not however, apparent that the difference scheme (25) is conservative, i.e. it pos-
sesses discrete versions of the fundamental conservation laws of mass, momentum
and energy. We now prove that (25) can be recast into a conservative scheme.

Proposition 1. The numerical scheme (25) can be written as a conservative differ-
ence scheme

wn+1
j −wn

j

∆ t
+

G j+ 1
2
−G j− 1

2

∆x
= 0, (26)

where the numerical fluxG j+ 1
2

is defined by

G j+ 1
2
(wn

j+1,w
n
j ) =

1
2

(

g(wn
j+1)+g(wn

j )
)

−
λ
2

(

wn
j+1−wn

j

)

. (27)

Proof. We use the expressions (16) forM1,M2 and the consistency conditions (12)
in (25). Rearranging the terms yields (26).

Remark 2.It has to be noted that the numerical fluxG j+1/2 in (26) contains the
parameterλ explicitly. From (17) we infer thatλ depends on the values ofw in the
whole domain. Therefore, the conservative equation (26) isa non-local relation.

Remark 3.The Maxwellians{M1,M2} gives a flux consistent wave decomposition,
i.e. the flux vectorg(w) can be split as

g(w) =−λM1(w)+λM2(w) = g+(w)+g−(w), (28)

whereg+(w) = λM2(w) andg−(w) =−λM1(w). As a result of (28), the numerical
flux G j+ 1

2
can be written as the sum of split fluxes
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G j+ 1
2
(wn

j+1,w
n
j ) = g+(wn

j )+g−(wn
j+1). (29)

As in the classical kinetic schemes, the flux decomposition (29) is the result of
treating the continuum as an ensemble of particles. The movement of particles to the
left and right naturally gives a splitting of the fluxes of mass, momentum and energy
into negative and positive parts. This is the fundamental idea behind the kinetic flux-
vector splitting (KFVS) scheme introduced in [8]. Therefore, our scheme (26) also
shares the spirit of KFVS scheme.

3.2 Positivity Preserving Property

One of the most important characteristics of kinetic schemes is their positivity pre-
serving property under a suitable CFL stability condition [10, 20, 21]. In what fol-
lows, we prove that the discrete kinetic scheme (26) also preserves the positivity
of the mass density and pressure. This is a very desirable property, particularly for
problems involving nearly vacuum states. It is well known that many of the Rie-
mann solver based schemes do not possess this feature; see [9] for more details. For
the kinetic schemes, the positivity preserving property implies theL1-stability. We
now prove that the discrete kinetic scheme also admits the same feature.

Theorem 1. Under the CFL condition

λ
∆ t
∆x

≤ 1, (30)

andλ chosen according to the stability condition (13), the discrete kinetic scheme
(26) preserves the positivity of mass density and pressure,i.e.

ρn
j ≥ 0, pn

j ≥ 0, ∀ j ⇒ ρn+1
j ≥ 0, pn+1

j ≥ 0, ∀ j. (31)

Further, the scheme is L1-stable.

Remark 4.Under some technical assumptions on the Maxwellian densities, it has
been proved in [3] that the BGK model (11) preserves the positivity of mass density
and pressure. We now prove that our discretisation also maintains the same charac-
teristic, i.e. we establish the positivity property for thefully discrete scheme (26). In
fact, the positivity of the mass density can be readily inferred as follows. Note that
the first components ofM1 andM2 are given by

M1(w)1 =
ρ
2

(

1−
u
λ

)

, M2(w)1 =
ρ
2

(

1+
u
λ

)

. (32)

Using the assumptions of the theorem 1 and the stability condition (13), the right
hand sides of both the expressions in (32) are positive. From(25) it is now easy
to see that under the CFL condition (30), the first component of the vector valued
expression on the right hand side is positive, i.e.ρn+1

j is positive.
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However, in order to give a complete proof we proceed as follows. In [10] the
authors have given a characterisation for a flux-splitting scheme to preserve the
positivity of mass density and pressure. Since the scheme (26) also admits a flux
decomposition (29), we make use of the theorem of [10] to establish the result.

Proof (Proof of theorem 1).Let us assume thatρ andp remain positive at all mesh
points at timet = tn, i.e.

ρn
j ≥ 0, En

j −

(

mn
j

)2

2ρn
j

≥ 0, ∀ j, (33)

wheremn
j = ρn

j u
n
j . In other words, we assume thatwn

j ∈ W . Therefore, according
to the theorem 2.1 of [10], in order to prove the positivity preserving property, it is
sufficient to show thatg+(wn

j )∈W . We denote the components ofg+(wn
j ) by rn

j ,m
n
j

andEn
j respectively, i.e.

r
n
j =

1
2

(

λ ρn
j +mn

j

)

, m
n
j =

1
2

(

λmn
j +

(

(mn
j )

2

ρn
j

+ pn
j

))

,

E
n
j =

1
2

(

λEn
j +
(

En
j + pn

j

)mn
j

ρn
j

)

. (34)

We need to show thatrn
j > 0 andEn

j − (mn
j )

2/(2rn
j )> 0. Clearly,

r
n
j =

1
2

ρn
j (λ +un

j )> 0. (35)

Therefore, the density component ofg+(wn
j ) is positive. We now prove the same for

the pressure like term. Now,

E
n
j − (mn

j )
2/(2rn

j ) =
2En

j r
n
j − (mn

j )
2

2rn
j

(36)

Using the expressions from (34) yields

2En
j r

n
j − (mn

j )
2 =

1
2ρn

j






En

j −

(

mn
j

)2

2ρn
j







(

λ ρn
j +mn

j

)2
−

(

pn
j

)2

4
(37)

=
ρn

j pn
j

2(γ −1)

(

λ +un
j

)2
−

(

pn
j

)2

4
=

ρn
j pn

j

2







(

λ +un
j

)2

γ −1
−

(

an
j

)2

2γ






> 0.

Note that here we have useda2 = γ p/ρ . Thus, the proof of positivity property is
completed. We next consider theL1-stability. Since the quantitiesρ andE remain
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positive and the scheme is conservative, we have

‖ρn+1‖L1 = ∑
j∈Z

ρn+1
j = ∑

j∈Z

ρn
j = ‖ρn‖L1. (38)

In an analogous manner we can show‖En+1‖L1 = ‖En‖L1. Now

‖ρn+1un+1‖L1 = ∑
j∈Z

ρn+1
j |u|n+1

j = ∑
j∈Z

(

ρn+1
j

)1/2
(

ρn+1
j

(

un+1
j

)2
)1/2

≤

(

∑
j∈Z

ρn+1
j

)1/2(

∑
j∈Z

ρn+1
j

(

un+1
j

)2
)1/2

≤ 2‖ρn+1‖
1/2
L1

(

∑
j∈Z

En+1
j

)1/2

= 2‖ρn+1‖
1/2
L1 ‖En+1‖

1/2
L1 = 2‖ρn‖

1/2
L1 ‖En‖

1/2
L1 ≤ ‖ρn‖L1 + ‖En‖L1.

Hence, the proof ofL1 stability is complete.

3.3 Entropy Stability of the Scheme

Yet another important feature of kinetic schemes is their entropy stability property,
which is a consequence of the BoltzmannH-theorem. Our next aim is to establish
the same property for our scheme (26). In the next theorem, weprove that there
exists a discrete entropy inequality for the scheme (26).

Theorem 2. Under the CFL condition

λ
∆ t
∆x

≤ 1, (39)

andλ chosen according to the stability condition (13), the discrete kinetic scheme
(26) is entropy stable, i.e. it satisfies the discrete entropy inequality

h(wn+1
j )−h(wn

j )

∆ t
−

Φ j+ 1
2
−Φ j− 1

2

∆x
≤ 0, (40)

where the entropy fluxΦ j+ 1
2

is given by

Φ j+ 1
2
(wn

j+1,w
n
j ) = λH2

(

M2(w
n
j )
)

−λH1
(

M1(w
n
j+1)

)

. (41)

Proof.
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f1
n+1
j = f1(x j , t

n+∆ t) = f1(x j −a(1)∆ t, tn)

= M1(w
n(x j +λ ∆ t)) =

λ ∆ t
∆x

M1
n
j+1+

(

1−
λ ∆ t
∆x

)

M1
n
j . (42)

SinceH1 is a convex function, an application of Jensen’s inequalityyields

H1

(

f1
n+1
j

)

≤
λ ∆ t
∆x

H1
(

M1
n
j+1

)

+

(

1−
λ ∆ t
∆x

)

H1
(

M1
n
j

)

. (43)

In an analogous manner we can derive

H2

(

f2
n+1
j

)

≤
λ ∆ t
∆x

H2
(

M2
n
j−1

)

+

(

1−
λ ∆ t
∆x

)

H2
(

M2
n
j

)

. (44)

We note that

h
(

wn+1
j

)

= H1

(

M1

(

wn+1
j

))

+H2

(

M2

(

wn+1
j

))

≤ H1

(

f1
n+1
j

)

+H2

(

f2
n+1
j

)

. (45)

We now add (43) and (44) and rearrange the terms, which gives the result.

Remark 5.Like the numerical fluxG j+ 1
2

in (26), the entropy fluxΦ j+ 1
2

can also be

decomposed into a positive and negative part

Φ j+ 1
2

(

wn
j+1,w

n
j

)

= ϕ+
(

wn
j

)

+ϕ−
(

wn
j+1

)

, (46)

where the split fluxes are given by

ϕ+(w) = λH2(M2(w)), ϕ−(w) =−λH1(M1(w)). (47)

4 Second Order Accurate Kinetic Relaxation Scheme

In this section we extend our kinetic relaxation scheme (22)to second order. We
follow the approach of Deshpande [7] which he used to obtain asecond order ki-
netic scheme for the compressible Euler equations of gas dynamics. The first order
fully discrete scheme (25) has many desirable properties, such as it is conservative,
positivity preserving and entropy stable. However, it suffers from a large amount of
numerical dissipation. It was remarked in [7, 15] that for first order kinetic schemes,
the numerical dissipation is proportional to the time-step∆ t. We shall see later in
this section that it is true also for the discrete kinetic scheme (25). Following Desh-
pande [7], we employ a Chapman-Enskog type expansion to derive a higher order
numerical dissipation. The resulting scheme will then be second order accurate.

There are two steps in deriving a second order scheme. In the first step we pro-
ceed to achieve second order accuracy in time. For this we employ the Chapman-
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Enskog type procedure, which leads to an anti-diffusive fluxcorrection to gain sec-
ond order time accuracy. The second step is to achieve secondorder accuracy in
space, which consists of using a second order interpolationstrategy.

4.1 Second Order Accuracy in Time

Expanding the exact solutionw(x, t) in Taylor series to second order accuracy yields

w(x, tn+∆ t) = w(x, tn)+∆ t
∂w
∂ t

(x, tn)+
∆ t2

2
∂ 2w
∂ t2 (x, tn)+O

(

∆ t3) . (48)

Note that the Taylor expansion (48) contains first and secondtime derivatives ofw.
We make use of the conservation law (1) to replace this time derivatives by space
derivatives to obtain

w(x, tn+∆ t) = w(x, tn)−∆ t
∂g(w)

∂x
(x, tn)+

∆ t2

2
∂
∂x

(

A(w)2 ∂w
∂x

)

(x, tn)+O
(

∆ t3) .

(49)
Our aim is to compare (49) with a corresponding second order Taylor expansion of
the right hand side of (22). This comparison will give us the missing terms in the
first order kinetic relaxation scheme, the so-called anti-diffusive terms. The addition
of these terms to the first order scheme enables us to gain second order accuracy in
time. In order to proceed, we expand the first term on the righthand side of (22) to
second order accuracy, resulting in

M1(w
n(x−a(1)∆ t)) = M1(w

n(x+λ ∆ t)) = M1 (w
n(x, tn))

+λ ∆ t
∂M1

∂x
((wn(x, tn))+

λ 2∆ t2

2
∂ 2M1

∂x2 (wn(x, tn))+O
(

∆ t3) .

(50)

In an analogous way we obtain

M2(w
n(x−a(2)∆ t)) = M2(w

n(x, tn)) − λ ∆ t
∂M2

∂x
(wn(x, tn))

+
λ 2∆ t2

2
∂ 2M2

∂x2 (wn(x, tn))+O
(

∆ t3) .(51)

Adding (50) and (51), making use of (22) and the moment relations (12) yields

w(x, tn+∆ t) = w(x, tn)−∆ t
∂g(w)

∂x
(x, tn)+

λ 2∆ t2

2
∂ 2w
∂x2 (x, t

n)+O
(

∆ t3) . (52)

Notice that (52) is the modified partial differential equation (MPDE) for the scheme
(22). It can be observed that the diffusion term is ofO(∆ t) as in the classical kinetic
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schemes. We can now rewrite the second order Taylor expansion (49) by adding and
subtracting theO

(

∆ t2
)

term appearing in (52) to get

w(x, tn+∆ t) = w(x, tn)−∆ t
∂g(w)

∂x
(x, tn)+

∆ t2

2
∂
∂x

(

λ 2 ∂w
∂x

)

−
∆ t2

2
∂
∂x

(

(

λ 2I −A(w)2) ∂w
∂x

)

+O
(

∆ t3)

=
2

∑
k=1

Mk (w
n(x−a(k)∆ t))+∆ t

∂D

∂x
+O

(

∆ t3) , (53)

where we define

D =−
∆ t
2

B
∂w
∂x

, B =
(

λ 2I −A(w)2) . (54)

Here I denotes the 3×3 identity matrix. It has been proved in [3] that under the
stability condition (13), the matrixB has nonnegative real eigenvalues. Therefore,
D behaves like a viscous stress term. This new stress termD is analogous to the
heat flux vector and viscous stress obtained by Deshpande [7]for the compressible
Euler equations using similar arguments. The gradient ofD , i.e.∂D/∂x will act as
dissipative flux. At this point, it is very important to note that sign ofD in (54) is
negative. As a result, the term∂D/∂x in (53) is a negative diffusive flux. In other
words, it is an anti-diffusive flux. Note that the first term in(53) is coming from the
first order scheme (22). Hence, in order to achieve second order time accuracy for
the discrete kinetic scheme (25) we need to consider not onlythe upwind relaxation
term but also the anti-diffusive term. Further, the anti-diffusive term reduces the
excess amount of numerical diffusion present in the upwind relaxation scheme (25).

Notice that in the second order scheme (53) we have incorporated a diffusive flux
term. However, it is a characteristic of the Maxwellian equilibrium distributions of
the typeMk(w) to give an inviscid system of conservation laws in the hydrodynamic
limit, see [3, 5]. Therefore, in order to get a dissipative flux like term ∂D/∂x we
need to change the Maxwellian distribution to a Chapman-Enskog distribution. The
latter is always associated with the Navier-Stokes equation and hence it can give rise
to nonzero viscous terms. Moreover, the method of replacingthe time derivatives
by space derivatives we performed to get (49) is a characteristic of the Chapman-
Enskog procedure. We now proceed to derive a Chapman-Enskogdistribution and
show that the second order accurate scheme (53) can be recastin the form (22) using
the Chapman-Enskog distribution instead of the MaxwelliansMk(w).

From (11) we infer thatMk(wf )− fk = O(ε) and as a result

fk = Mk(wf )− ε
{

∂ fk
∂ t

+a(k)
∂ fk
∂x

}

,

= Mk(wf )− ε
{

∂Mk(wf )

∂ t
+a(k)

∂Mk(wf )

∂x

}

+O
(

ε2) . (55)
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Note that the right hand side of (55) is a perturbation of the MaxwellianMk. Moti-
vated by this, our new ansatz, viz. the Chapman-Enskog distribution functionM̃k is
defined by

M̃k(w) = Mk(w)− τ
{

∂Mk(w)
∂ t

+a(k)
∂Mk(w)

∂x

}

, (56)

whereτ is a parameter to be determined. Analogous to (12), the Chapman-Enskog
distribution functionM̃k(w) is required to satisfy the moment relations

2

∑
k=1

M̃k(w) = w,
2

∑
k=1

a(k)M̃k(w) = g(w)+D . (57)

Note that the first relation in (57) is the conservation property. The second rela-
tion precisely states that unlike the Maxwellian, the Chapman-Enskog distribution
should give a nonzero viscous flux in addition to the inviscidflux. We now obtain
the precise formM̃k(w) by evaluating the expressions in curly brackets on the right
hand side of (56).

∂M1(w)
∂ t

=
1
2

∂w
∂ t

−
1

2λ
∂g(w)

∂ t

=−
1
2

A(w)
∂w
∂x

+
1

2λ
A(w)2 ∂w

∂x
. (58)

Analogously we obtain

∂M2(w)
∂ t

=−
1
2

A(w)
∂w
∂x

−
1

2λ
A(w)2 ∂w

∂x
. (59)

Similar calculations shows that

∂M1(w)
∂x

=
1
2

∂w
∂x

−
1

2λ
A(w)

∂w
∂x

, (60)

∂M2(w)
∂x

=
1
2

∂w
∂x

+
1

2λ
A(w)

∂w
∂x

. (61)

Thus, we obtain the required expressions for the terms in (56)

∂M1(w)
∂ t

+a(1)
∂M1(w)

∂x
=−

1
2λ
(

λ 2I −A(w)2) ∂w
∂x

, (62)

∂M2(w)
∂ t

+a(2)
∂M2(w)

∂x
=

1
2λ
(

λ 2I −A(w)2) ∂w
∂x

. (63)

Using (62)-(63) and the expressions forM1 andM2 in (56) yields

M̃1(w) =
1
2

w−
1

2λ
g(w)−

τ
2λ
(

λ 2I −A(w)2) ∂w
∂x

, (64)

M̃2(w) =
1
2

w+
1

2λ
g(w)+

τ
2λ
(

λ 2I −A(w)2) ∂w
∂x

. (65)
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The consistency conditions (57) immediately givesτ = −∆ t/2. Thus, we finally
obtain the Chapman-Enskog distribution function

M̃1(w) =
1
2

w−
1

2λ
g(w)+

∆ t
4λ
(

λ 2I −A(w)2) ∂w
∂x

, (66)

M̃2(w) =
1
2

w+
1

2λ
g(w)−

∆ t
4λ
(

λ 2I −A(w)2) ∂w
∂x

. (67)

It is to be noted that unlike the MaxwelliansMk, the Chapman-Enskog distribution
M̃k depends also on the derivatives of the conservative variable w. In other words,
the support of the Chapman-Enskog distribution is larger than the corresponding
Maxwellians. The second order accurate kinetic relaxationscheme (53) can be re-
cast in an upwind form with the aid of̃Mk

wn+1(x) =
2

∑
k=1

M̃k (w
n(x−a(k)∆ t)) (68)

4.2 Second Order Accuracy in Space

We now proceed to achieve second order accuracy in space. Theequation (68) shows
that the values of̃Mk are to be evaluated at non-mesh points. This consists of evalu-
ating the two terms on the right hand side of (53) to second order accuracy.

In order to compute the first term, i.e. the upwind relaxationterm we should
employ an interpolation procedure which should be second order accurate. Note
that our first order accurate scheme is positivity preserving. Therefore, we must
ensure that the second order interpolated values should notgive any nonphysical
negative density or pressure. As a first step, we use a quadratic interpolation scheme
to evaluate the upwind relaxation terms to yield

M1(w
n(x j +λ ∆ t)) = M1

n
j +

η
2

(

M1
n
j+1−M1

n
j−1

)

+
η2

2

(

M1
n
j+1−2M1

n
j +M1

n
j−1

)

,

(69)
whereη = λ ∆ t/∆x. An analogous expression forM2 is given by

M2(w
n(x j −λ ∆ t)) = M2

n
j −

η
2

(

M2
n
j+1−M2

n
j−1

)

+
η2

2

(

M2
n
j+1−2M2

n
j +M2

n
j−1

)

.

(70)
However, as pointed out by Deshpande [7] for classical kinetic schemes, the differ-
ent components in the vector valued interpolated expressions (69)-(70) need not be
positive even if the corresponding values ofM1 andM2 at the mesh pointsj −1, j
and j +1 are positive. This is particularly true in the presence of shocks and high
gradients. Adding (69) and (70) yields

wn+1
j = wn

j −
∆ t

2∆x

{

g(wn
j+1)−g(wn

j−1)
}

+
λ 2∆ t2

∆x2

(

wn
j+1−2wn

j +wn
j−1

)

. (71)
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Thus, we recover a Lax-Wendroff type scheme. It is well knownthat the Lax-
Wendroff scheme gives rise to oscillations, i.e. the Gibb’sphenomenon near the
shocks. Therefore, high order interpolation methods of thetype (69)-(70) can lead
to oscillatory solutions. This suggests that we must use some nonlinear limiter type
functions to suppress the oscillations. We notice that our first order scheme is posi-
tivity preserving and non-oscillatory. Therefore, in order to achieve a non-oscillatory
solution we must switch to the first order scheme in the presence of discontinuities
and use the second order interpolation scheme only in smoothregions. This can be
achieved with the use of adaptive parameter, sayχ so that in equilibrium or smooth
flow regionsχ ∼ 0 and in discontinuity regionχ ∼ 1. A possible choice of such a
parameterχ is the switching function of the JST scheme [12] defined by

χn
j =

|pn
j+1−2pn

j + pn
j−1|

|pn
j+1+2pn

j + pn
j−1|

. (72)

Let us denote the right hand sides of (69)-(70) byMII
1 andMII

2 respectively and the
corresponding first order interpolants byMI

1 andMI
2 respectively. Combining both

usingχ , a second order non-oscillatory interpolation scheme can be obtained as

M1(w
n(x j +λ ∆ t)) = χn

j M
I
1+
(

1− χn
j

)

MII
1 (73)

M2(w
n(x j −λ ∆ t)) = χn

j−1MI
2+
(

1− χn
j−1

)

MII
2 . (74)

Note that a different interpolation strategy was employed in the kinetic scheme of
[7, 15]. However, our numerical results confirm the non-oscillatory nature of the
interpolating scheme (73)-(74).

To complete the second order scheme we need to evaluate also the anti-diffusive
flux term ∂D/∂x. Note that the evaluation ofD requires the computation of the
slope∂w/∂x. As explained above, when strong discontinuities such as shocks are
present in the solution, this gradient can have very wild variation. This may lead the
second order scheme (53) to give some unphysical solutions.Therefore, we must
apply some nonlinear limiter functions in the calculation of the required gradients.
A possible computation of such a slope, which results in an overall non-oscillatory
scheme is given by a family of discrete derivatives parametrised by 1≤ θ ≤ 2, for
example

∂w
∂x

(x j , t
n) = MM

(

θ
wn

j+1−wn
j

∆x
,
wn

j+1−wn
j−1

2∆x
,θ

wn
j −wn

j−1

∆x

)

. (75)

HereMM denotes the nonlinear minmod function defined by

MM {v1,v2, · · · }=











minp{vp} if vp > 0 ∀p,

maxp{vp} if vp < 0 ∀p,

0 otherwise.

(76)
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After computing the values ofD at all the mesh points, the derivative∂D/∂x is also
calculated using the same minmod recovery procedure. Thus,we have completed
the evaluation of all the terms required by the second order scheme (53).

5 Numerical Case Studies

The new kinetic relaxation scheme is tested on some standardbenchmark problems
for the Euler equations in one space dimension. In all the problems the computa-
tions were carried out on uniform Cartesian grids. In order to avoid the formation
of initial and boundary layers in (11), the initial and boundary conditions forfk are
chosen to be consistent with the equilibrium distributionMk. For example, if Dirich-
let boundary data are given for the macroscopic variablew, sayw= wb, the initial
and boundary conditions for (11) are given by

fk(x, t) = Mk(wb(x, t)), fk(x,0) = Mk(w(x,0)). (77)

In all computations we have used both the JST switching function as well asMM
limiter with θ = 2.

Experimental Order of Convergence Despite the simplicity of the algorithm
and operator splitting approach, the kinetic relaxation scheme gives second order
convergence. In what follows we test the order of convergence for a smooth solution.
We consider an exact periodic solution of the one-dimensional Euler equations

ρ(x, t) = 1.0+0.2sin(π(x−ut)),

u(x, t) = 0.1, p(x, t) = 0.5.

The experimental order of convergence (EOC) can be calculated by systematically
refining the mesh and examining the behaviour of the global error. Since the exact
solution is known, the order of convergence in a certain norm‖·‖ can be computed
in the following way

EOC= log2

(

‖EK/2‖

‖EK‖

)

,

whereK denotes the number of mesh points and‖EK‖ is a suitable norm of the
global error, for example,EK(tn)L1 = ∆x∑K

j=1|ρ(x j , tn) − ρn
j |, EK(tn)L2 =

=

√

∆x∑K
j=1

(

ρ(x j , tn)−ρn
j

)2
, EK(tn)L∞ =max1≤ j≤K |ρ(x j , tn)−ρn

j |. Note that we

have used only the density to compute errors. The computational domain[0,2] is
consecutively divided into 20,40, . . . ,2560 cells. The final time was taken to be
t = 0.5. The table 1 shows the experimental order of convergence computed in the
L1,L2 andL∞ norms. From the table it is evident that the order of convergence is 2.

Sod Shock Tube Problem We consider the Sod shock tube problem. The so-
lution consists of a left rarefaction, a contact discontinuity and a right shock. The
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K L1 error EOC L2 error EOC L∞ error EOC

20 0.03071610 0.02523467 0.03311415
40 0.008066041.9290630.006469481.9636860.009141831.856893
80 0.001975582.0295840.001542332.0685380.002128762.102470

160 0.000477932.0474050.000370852.0562040.000480722.146745
320 0.000117632.0225430.000091452.0197810.000120361.997841
640 0.000029222.0092280.000022772.0058490.000032811.875149

1280 0.000007262.0089150.000005662.0082600.000008671.920032
2560 0.000001792.0200100.000001402.0153750.000002231.958988

Table 1 L1,L2 andL∞ errors with experimental order of convergence for a smooth periodic test
case.

initial data reads

(ρ ,u, p)(x,0) =

{

(1.0,0.0,1.0), if 0 < x< 0.5,

(0.125,0.0,0.1), if 0.5< x< 1.

The computations are done with both the first order and secondorder schemes on
400 mesh points with a CFL number 0.9. Figure 2 shows the density, velocity and
pressure at timet = 0.2. The results of first order scheme are highly smeared due the
excess amount of numerical diffusion. The second order scheme is comparatively
much less dissipative and it resolves the discontinuities very well.

Lax Shock Tube Problem This test case is the Lax shock tube problem. The
initial data is given by

(ρ ,u, p)(x,0) =

{

(0.445,0.698,3.528), if 0 ≤ x< 0.5,

(0.5,0.0,0.571), if 0.5< x≤ 1.

We have used used 400 mesh points for the computations and theCFL number was
set to 0.9. In Figure 3 we give the plots of density, velocity and pressure at time
t = 0.13. The plots show that the second order scheme gives a sharper resolution of
both shocks and expansions.

Strong Rarefactions Riemann Problem We consider the Riemann problem
with initial data

(ρ ,u, p)(x,0) =

{

(1.0,−0.2,0.4), if 0 ≤ x< 0.5,

(1.0,2.0,0.4), if 0.5< x≤ 1.

This is a very difficult problem for many methods because a near vacuum state is
reached and failure can occur as a result of negative densities or pressures. For in-
stance, linearised Riemann solvers can fail by giving negative pressures or densities
in one or more of the intermediate states for very strong rarefactions, see [9] for a
detailed study. In Figure 4 we give the plots of density and pressure att = 0.15 com-
puted using first and second order schemes using a grid with 400 mesh points. From
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Fig. 2 Sod shock tube problem results att = 0.2.

the figure we can notice that both the schemes preserve the positivity of density and
pressure.

Shock Entropy Wave Interaction This test problem is taken from [23]. It de-
scribes of the interaction of a sinusoidal density perturbation and a supersonic shock
wave. A Mach 3 shock wave runs into a smooth acoustic wave, which gets amplified
and has a higher frequency behind the shock. The initial datareads

(ρ ,u, p)(x,0) =

{

(3.857143,2.629369,10.333333), if −5≤ x<−4,

(1+0.2sin(5x),0,1), if −4≤ x≤ 5.

We run the computations on a fine mesh with 1000 points. We use extrapolation
boundary conditions at both ends. The CFL number is 0.9 and final time is set to
t = 1.8. In order to compare the results, we have computed the reference solution
by running the second order scheme on 4000 mesh points. The results are given
in Figure 5. The first order results are extremely smeared despite the use of a fine
mesh. However, the second order scheme resolves the flow features quite well.
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Fig. 3 Lax shock tube problem results att = 0.2.
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Fig. 4 Two strong rarefactions test. The plots of density and pressure att = 0.15.

6 Concluding Remarks

In this paper a novel upwind kinetic relaxation scheme is developed based on a
discrete velocity Boltzmann relaxation system. The first order accurate scheme pre-
serves the positivity of mass density and pressure and is entropy stable. The second
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Fig. 5 The results of shock-acoustic wave interaction problem results att = 1.8.

order method involves the use of an anti-diffusive Chapman-Enskog distribution
function. The present method involves only interpolation and the use of limiters and
therefore it is different from the conventional numerical methods. The kinetic re-
laxation scheme retains many attractive features of central schemes, such as neither
Riemann solvers nor characteristic decompositions are needed. Both the first order
and second order schemes are stable up to a CFL number 1.0. Thescheme is tested
on some benchmark problems for Euler equations and the results demonstrate its ro-
bustness and efficiency in capturing the flow features accurately. Generalisation to
multi-dimensions can be done, e.g. by directional splitting or using theory of bichar-
acteristics and applying the scheme for one-dimensional wave propagation along a
particular bicharacteristic direction.
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