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Abstract In this paper we present a kinetic relaxation scheme for thlerEequa-
tions of gas dynamics in one space dimension. The methodsily @pplicable to
solve any complex system of conservation laws. The numedbame is based on a
relaxation approximation for conservation laws viewed dgsarete velocity model
of the Boltzmann equation of kinetic theory. The discreteekic equation is solved
by a splitting method consisting of a convection phase andllsgsion phase. The
convection phase involves only the solution of linear tpams equations and the
collision phase instantaneously relaxes the distribufiimetion to an equilibrium
distribution. We prove that the first order accurate metlsambnservative, preserves
the positivity of mass density and pressure and entropylest&m anti-diffusive
Chapman-Enskog distribution is used to derive a secondr aclurate method.
The results of numerical experiments on some benchmarkemsbconfirm the
efficiency and robustness of the proposed scheme.

1 Introduction

Over the past few decades, the intense research on shockingpchemes has
lead to the development of several numerical methods foctmepressible Euler
equations of gas dynamics. Of the various methods develepéat, the finite vol-
ume methods have been the most popular. The main advanfapedioite volume
methods are the simplicity of the scheme and automatic abafrconservation,
which is a crucial property. These methods can be broad$sifiad into two cate-
gories: central schemes and upwind schemes.
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The central schemes originated as the central finite diffexdormulation of
conservation laws. Some prototypes of these schemes drastHeriedrichs scheme
and the Lax-Wendroff scheme. In recent years, the centr@rses have gained a
lot of renewed interest due to their new interpretation ad@ov type schemes on
staggered grids [18]. We refer the reader to [24] for a revaésentral schemes.

Upwind methods include Riemann solvers (exact and apprabemflux splitting
methods, kinetic theory based schemes [7, 6], relaxatiberses [14] etc. Most of
these schemes are based on the hyperbolic structure of deelying conservation
laws. Reviews of the mostly commonly used upwind method,glpatine Riemann
solver, can be found in many text-books, e.g. [11, 25]. Anantgnt category of
upwind methods is the kinetic schemes which are based ondhznBann equation
of kinetic theory. The kinetic schemes exploit the fact thatlinear conservation
laws can be recovered by taking various moments of the Baltunequation. We
refer the reader to the text book by Cercignani [4] for a caghpnsive treatment
of kinetic theory. One of the most fascinating aspects okihetic schemes is that
when applied to Euler equations of gas dynamics, they presée positivity of
mass density and pressure. As a result, the kinetic schemeseonditionally sta-
ble in theL1-norm. Further, they also possess the entropy property assequence
of the celebrated Boltzmart-theorem; see [11, 20] for more details.

The recently introduced relaxation schemes [14], basedchernrdlaxation ap-
proximation of conservation laws [5], is a new category ofvirgl methods. In this
method, the given nonlinear system of conservation lawgpgaced by a larger
semi-linear system, known as the relaxation system. Ttexaébn system has a
stiff source term containing a small relaxation parametefhe original system
of conservation laws can be recovered from the relaxatistesy in the limit as
€ — 0. In[14] the authors have developed a variety of numerca¢mes which are
classified into two categories: relaxing schemes and rdlagkemes. The relaxing
schemes are obtained by directly discretising the relaraystem and hence they
contain the stiff parameter explicitly. A relaxed scheme is the limit of a relaxing
scheme wherg = 0. Due to the presence @f it is in general difficult to attain
high order time accuracy in relaxing schemes. However,iapBange-Kutta time
stepping schemes have been proposed in [13, 19] to develbponder relaxation
schemes with MUSCL or WENO type space discretisations.ifitegesting to note
that the diagonal form of a Jin-Xin type relaxation system ba interpreted as a
discrete velocity Boltzmann equation [1, 3].

The goal of the present work is to develop a relaxation scHentee compress-
ible Euler equations in one space dimension based on a @is@®city Boltzmann
equation. The main advantages of the discrete Boltzmanrehaoe the linearity of
the convective part, simplicity compared to classical Boknn equation, the diag-
onal form and the ease for upwinding. Further, we can exfieitvast literature of
kinetic theory to design and study numerical schemes basedah discrete kinetic
models. We solve the discrete Boltzmann equation by aisiglithethod consisting
of a convection phase and a collision phase. The convectiaseinvolves only
the solution of linear transport equations and the colligibase instantaneously re-
laxes the distribution function to an equilibrium distrilmn. However, as remarked
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in [13], such a simple splitting strategy reduces the remylbumerical scheme
to formally first order accurate in time. Moreover, the firster scheme suffers
from a large amount of numerical dissipation. Nonethelesthe context of clas-
sical kinetic schemes, Deshpande [7] has circumventee tifculties by the use
of an anti-diffusive Chapman-Enskog distribution insteddhe Maxwellian. Re-
cently, Kunik et al. [15] employed same mechanism to desiggrand order kinetic
scheme for the relativistic hydrodynamics equations.dvatg [7, 15] we derive an
anti-diffusive Chapman-Enskog distribution for the deterBoltzmann equation to
develop a second order upwind relaxation scheme. It is toebearked that the
Chapman-Enskog method is always associated with nonlawsection-diffusion
equations [4] and the use of Chapman-Enskog distributioetfan to reduce the
excess numerical diffusion in the first order relaxationesohb is novel. Moreover,
our scheme avoids intricate and time consuming solving efrRinn problems and
complicated flux splittings. In [22] the authors have intnodd a relaxation scheme
based on characteristics and interpolation which doesauptire the discretisation
of any derivatives. Our scheme also possess this new featdrgvhich makes our
approach different from the traditional finite differenéajte volume and finite el-
ement methods.

The organisation of this paper is as follows. In section 2nteduce a relaxation
system for Euler equations in the form of a discrete veldBaitzmann equation. In
section 3 we derive a first order accurate, unconditionadlgle relaxation scheme
which is continuous in space and discrete in time. In ordegetba fully discrete
scheme, we use a simple interpolation strategy. We provpdhitivity preserving
property and entropy stability of the first order scheme dctisn 4 we present an
extension of the first order scheme to second order with thefen anti-diffusive
Chapman-Enskog distribution function. The results of ndoaé experiments on
some benchmark problems are reported in section 5. Finalgonclude the paper
with some remarks in section 6.

2 Relaxation System for Euler Equations

In this section we introduce a relaxation system for the dingensional Euler equa-
tions of an inviscid compressible fluid. Nevertheless, theagalisation of this idea
to any complex system of conservation laws is straight fodwahe Euler equations
forms a nonlinear hyperbolic system of conservation lawkvhepresents the fun-
damental conservation principles of mass, momentum andygrnehe system of

equations reads
ow  dg(w)

ot oXx
with the vector valued conserved variabland the fluxg(w) given as

=0, (2)
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o pu
w= (pU),g(W)= (pu2+p). @)
E (E+p)u

Here,p, pu andE respectively denote the densities of mass, momentum amgyene
andp is the pressure. In order to close the system (1), we assueneqiination of
state of a polytropic ideal gas so thatis related to the other state variables as
p=(y—1)(E — pu?/2), wherey is the ratio of specific heats. The set of values of
the state variables forms the admissible set

2
W:{(p,pu,E)‘:p>0,ueR,E—p7u>O}, (3)

which is an open convex subsetl®i. It is to be noted that the differential equations
(1) hold only at regular points and for weak solutions caritag singular surfaces
(1) is to be replaced by the appropriate jump conditions. pimgsically relevant
unigue weak solution can be obtained using the entropy tiondivhich is a rem-
iniscent of the second law of thermodynamics. The Euler &gpus (1) admits a
strictly convex entropy functioh and an associated entropy flgpgiven as a func-
tion of the densityp and pressure:

h(p, p) = cvlog <p—py> ¢(p,p) = ph(p,p)u. (4)

A relaxation problem occur quite often in many physical peats, e.g. in non-
equilibrium thermodynamics, kinetic theory and nonlineaves. The relaxation
phenomenon arises when the equilibrium state of a physysa¢s is perturbed.
One of most common occurrence of relaxation processesaseéfied gas dynamics
which represented by the well known Boltzmann equation.Bélezmann equation
for a monatomic perfect gas in one space dimension is given by

= +&=-=2-Q(f), (5)

where f(x,t,&) > 0 is the particle density function. The macroscopic coreerv
variables, viz. the mass, momentum and energy, are obtfioecthe moment re-
lations

wixt) = [ W(E)F(xt,E)de. (6)

1
W)= ( ¢ ) (7)
152
2

The Boltzmann collision operat@ consists of a very complex integral term. An
interesting property of this collision operaiQris thatQ(f) =0 ifand only if f is a
Maxwellian, i.e.

where
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00, 8) =M ) = (5o o ®)

whered = RT, Rbeing the gas constant.

In [2] Bhatnagar et al. has introduced a simple model@obased on the re-
laxation process of a swarm of molecules towards an equitibstate. With this
hierarchy, the so-called BGK model, the Boltzmann equafimeads

E_:

o'?f 1
ox ¢

(M(ws, &) —f), (9)

whereg > 0 is a small parameter known as the relaxation timevanis defined by

W —/w f(x,t,E)dE. (10)

Here we wish to put a subscrifiton w, just to emphasise that in the construction
of M in (9), w; is the macroscopic conserved variable obtained fforfihe BGK
Boltzmann equation (9) facilitated the development of ksxechemes, which have
been very successful in the numerical modelling of manyaigind boundary value
problems in fluid dynamics. The kinetic schemes to solve trapressible Euler
equations have been mainly developed in [7, 20, 21]. Thdsenses are based on
the fact that the Euler equations (1) are the first momentsoBbltzmann equation
(5) when the distribution function is the Maxwellian (8)eskl] for more details.
The kinetic schemes admit many fascinating features, suioblbaistness, preserving
the positivity of mass density and pressure and entropylisyab

As a generalisation of kinetic BGK models, in [3] Bouchut hasoduced a
general framework for constructing a BGK model for any syst# conservation
laws endowed with a convex entropy. A striking property @ flormulation is that
the constructed BGK model possesses a large family of kiregttropies. There
exists an analogue of the classical Boltzmahitheorem, the exploitation of which
yields the entropy inequality in the hydrodynamic limit. this work we use the
discrete velocity relaxation model introduced in [1, 3] €TBGK equation reads

0 fy 0 fy

St +a( )W = % (Mk(Wf) — fk) (11)

for k € {1,2,...,N}. Here fy = fx(x,t) € R® is unknown,a(k) € R is a constant,
wi = YR, f and the so-called Maxwelliardy: 7 — R3 satisfy the consistency

conditions .

N
3 Mi(w) =w. 3 alk)Mc(w) = gw), we 7. (12)
—1 k=1

The conditions (12) are the necessary conditions for the BKel (11) to con-
verge to the Euler equations (1) in the lingit— O; see [17] for more details. We
note that the BGK model (11) is completely determined oneediscrete veloci-
tiesa(k) and the Maxwellian$/, are obtained. The choices afk) andMy are to
be done according to some suitable stability conditionis. ltell known that even
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for general relaxation models [5, 16, 17] an approximatibthe type (11) has to
obey some stability criterion so as to possess the corretbldynamic limit. In the
case of 2« 2 relaxation systems it is the well known sub-characteristindition
[5, 16]. In the present work we use the entropy extensionitiondn [3] so that the
BGK model (11) is compatible with the entropies of (1). Theimmasult of [3] for
the discrete velocity BGK models of the type (11) states:eurde necessary and
sufficient condition

o (Mg (w)) C [0,) VK, (13)

corresponding to any entropiyw) of (1), there exist a kinetic entropy( fx) of (11)
such that R, H(My(ws)) < TR He( fi). Hk is a convex functiony N _; H(Mk(w)) =
h(w), We now proceed to give the explicit expressions for therdisovelocities(k)
and the Maxwellian®/ in accordance with the stability requirement (13). Firstly
we chooséN = 2 and take

a(l)=-X,a(2)=A4, (14)

whereA is a parameter to be determined. In order to satisfy (13), ve®seMy to
be a linear combination aff andg(w), i.e.

M (W) = axw+ Bg(w). (15)
Using (14), the relations (12) immediately give the expimss

M (W) = S0 o gW), Mp(w) = S+ - g(w). (16
Note that an expression for the parameéteiemains to be determined. The eigen-
values of the Jacobiafy(w) = dg(w)/dw areu — a,u,u+ a, wherea= +/yp/p is
the sound speed. Evaluating the expression on the rightsidadf (13) yields the
expression foA as
A= [Jul+alfe. (17)

3 Kinetic Relaxation Scheme

In this section we derive a first order accurate, unconditigistable discrete kinetic
scheme for the Euler equations (1) using the discrete wglBgltzmann equation

(11). For an analogous formulation in the context of clametic schemes, see
[7, 15]. Firstly, we start with a bounded, integrable iditdata for the macroscopic
variables, i.e.

P(x,0) = po(X) > 0, u(x,0) = up(x), p(x,0) = po(x) > 0. (18)

Let us denote the solution at tihe-t" by w"(x), i.e.w"(x) ~w(x,t"). Using the val-
ues ofw"(x) we obtainA from (17) and form the Maxwellian densiti&& (W"(x)).
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In other words, we assume that the distribution functioaxes$ instantaneously to
the Maxwellian at time =t", i.e. f(x,t") = Mx(W"(x)). This process has been re-
ferred to as collision phase in the literature of kineticesdles [7, 10]. In the next

stage we solve the initial value problem for the collisioeefiBoltzmann equation

oy of
= Tak 5 =0, (19)
fi(x,t") = Mic(W'(X)). (20)

The initial value problem (19)-(20) can be solved exactlyitid the solution
fk(x,t"+ At) = f(x—a(k)At,t") = Mg (W' (x— a(k)At)). (21)

This leads to an iterative scheme for the macroscopic ceedesariablew, defined
by

wl(x) = f My (W (x— a(k)At)). (22)
k=1

Thus, our numerical scheme consists of two phases: a oollgiase and a convec-
tion phase. In the collision phase the distribution funttiprelaxes instantaneously
to the equilibrium distributioMy (w). It tantamount to performing particle collisions
instantaneously to make the transition from a non-equilibrstate to an equilib-
rium state. On the other hand, the convection phase drivesystem away from
the equilibrium state, i.efy becomes more and more different from the equilibrium
M. Therefore, our numerical scheme (22), derived in thetspirkinetic schemes
is termed as kinetic relaxation scheme (KRS). Itis inténgdb note that this KRS
(22) is discrete in time, but continuous in space. Furthérunconditionally stable,
i.e. it does not require any restriction on the time-si¢p

Remark 11t has been proved by Jin [13] that a simple splitting stratithe type
we employed here reduces the resulting scheme to formadlydider accurate in
time. Therefore, the scheme (22) is only first order accuretiene.

The rest of this section is devoted to analysis of the sche&t@g Firstly, we
derive a fully discrete and conditionally stable schemenf(82). Let us introduce a
mesh, which for simplicity is assumed to be uniform with msizleAx. We denote
byw*j‘, the point value ofv atx = x; at timet =t". It has to be noted that the formula
involves the values dl,(w) at non-mesh points, see Figure 1.

AAt AAt

I ® I ® I
Xj—1 Xj —AAt Xj Xj +AAt Xj+1

Fig. 1 Computational stencil used in the interpolation scheme.
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As in the classical kinetic scheme [7, 15] we use an intetmyascheme to
evaluate the term on the right hand side of (22). Since th¢MetM,} represents
two waves travelling to the left and right respectively, wedduce an upwind bias
in interpolating via

AAt

My(W'(xj +AAL)) = My + = (M1, —M1T), (23)

whereM; is a shortcut foM; (w"(xj)). In an analogous manner we derive

At
M2(W'(xj — AAL)) = M — —== (M2} — Mg]._,).. (24)

Introducing (23)-(24) in (22) finally yields the fully disete scheme

AAt AAt
Wit =My + T (Mafys = M) +Maf — === (M2 = M2 1) . (25)

3.1 Conservation Property of the Scheme

Itis not however, apparent that the difference scheme €&)nservative, i.e. it pos-
sesses discrete versions of the fundamental conservatigndf mass, momentum
and energy. We now prove that (25) can be recast into a catergcheme.

Proposition 1. The numerical scheme (25) can be written as a conservatifer-di

ence scheme
wlowl Y19
i j I+3

i-3
= 2
At + Ax 0 (26)

where the numerical qu&’H% is defined by

A
Gy WD) = 2 (0 0) +O0D) — 5 Wy W) (2D)

Proof. We use the expressions (16) tdi, M, and the consistency conditions (12)
in (25). Rearranging the terms yields (26).

Remark 21t has to be noted that the numerical flgk, ,/, in (26) contains the
parametei explicitly. From (17) we infer thad depends on the values wfin the
whole domain. Therefore, the conservative equation (2&)isn-local relation.

Remark 3The Maxwellians{M1, M} gives a flux consistent wave decomposition,
i.e. the flux vectog(w) can be split as

g(W) = —AMz(W) + AMz(W) = g* (W) +g~ (W), (28)

whereg™ (w) = A Mz(w) andg™ (w) = —AMz(w). As a result of (28), the numerical
flux %H% can be written as the sum of split fluxes
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ngr%(VV?Jrlavv?) = g+ (\NT) +g_ (\NTJrl)' (29)

As in the classical kinetic schemes, the flux decomposit$) (s the result of
treating the continuum as an ensemble of particles. The memeof particles to the
left and right naturally gives a splitting of the fluxes of masiomentum and energy
into negative and positive parts. This is the fundamenta ioehind the kinetic flux-
vector splitting (KFVS) scheme introduced in [8]. Therefoour scheme (26) also
shares the spirit of KFVS scheme.

3.2 Positivity Preserving Property

One of the most important characteristics of kinetic scheim¢heir positivity pre-
serving property under a suitable CFL stability conditi@f,[20, 21]. In what fol-
lows, we prove that the discrete kinetic scheme (26) alsegoves the positivity
of the mass density and pressure. This is a very desirabpepyo particularly for
problems involving nearly vacuum states. It is well knowattmany of the Rie-
mann solver based schemes do not possess this feature] Baenjdre details. For
the kinetic schemes, the positivity preserving propertglies thel1-stability. We

now prove that the discrete kinetic scheme also admits tine $aature.

Theorem 1. Under the CFL condition
At
A—<1 30
Sl (30)

and A chosen according to the stability condition (13), the déserkinetic scheme
(26) preserves the positivity of mass density and pressare,

pf >0, pl>0,vj=p™* >0, pj** >0,V (31)

Further, the scheme isltstable.

Remark 4Under some technical assumptions on the Maxwellian dessiti has
been proved in [3] that the BGK model (11) preserves the pigibf mass density
and pressure. We now prove that our discretisation alsotaiagithe same charac-
teristic, i.e. we establish the positivity property for fadly discrete scheme (26). In
fact, the positivity of the mass density can be readily irddras follows. Note that
the first components dfl; andM, are given by

_bP_u _h u
MW =2 (1-3), Mews=2 (1+5). (32)
Using the assumptions of the theorem 1 and the stability iiond13), the right
hand sides of both the expressions in (32) are positive. K&Gjit is now easy
to see that under the CFL condition (30), the first componétievector valued
expression on the right hand side is positive,;b.l%*.1 is positive.
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However, in order to give a complete proof we proceed asvi@ldn [10] the
authors have given a characterisation for a flux-splittiolgesne to preserve the
positivity of mass density and pressure. Since the scheBleal8o admits a flux
decomposition (29), we make use of the theorem of [10] tabdistathe result.

Proof (Proof of theorem 1).et us assume that and p remain positive at all mesh
points at timg =t", i.e.

2
(ZE) >0, v, (33)
J

wherem = pj'u]. In other words, we assume thaf € 7. Therefore, according
to the theorem 2.1 of [10], in order to prove the positivitggerving property, it is
sufficient to show thag™ (') € . We denote the componentsgf(w]) by ¢f, m'"
ande{ respectively, i.e.

1 1 (mf)?
t?zi(/\p}#m?), m?:§</\mrj-‘+< o +p7] ]

J

n 1 n n n rnT
¢ =3 /\|5J-+(Ej+pj)F . (34)
J

We need to show thaf > 0 and¢] — (m’j‘)Z/(Zt'j‘) > 0. Clearly,

1
o = ép}‘(/\ +uj) > 0. (35)

Therefore, the density componentgdf(vv’j‘) is positive. We now prove the same for
the pressure like term. Now,

2€7! — (m1)?

€] — (mf)?/(2e]) = 27 : (36)
Using the expressions from (34) yields
2 2
m? p"
1
2t} — (m])? Ef — ( J) (Ap]-+m)* —( J) (37)

R T 4

2 2 2
P 4 G LV I

Note that here we have used = yp/p. Thus, the proof of positivity property is
completed. We next consider thé-stability. Since the quantitigs andE remain
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positive and the scheme is conservative, we have

o™= P =S of = [P0 (38)

JEZ JEZ

In an analogous manner we can shigf+1|| 1 = ||E"|| 1. Now

n+1, n+1 n+1p, ,n+1 n+1 1/2 n+1 n+1 2 1/2
o™ = 5 ol :_zz(p,- ) (ot (ur)
IB je

1/2 ) 1/2 1/2
< <Z pjn+1> (z pjn+1 (UTH) ) < 2|‘pn+1”t{2 (z EJn+1>
JEZ JEZ JEZ

1/2 1/2 1/2 1/2
=2/|p"™ Y IE™ L2 = 2/l AIEM T < 1o ls + [E 1.

Hence, the proof of ! stability is complete.

3.3 Entropy Stahility of the Scheme

Yet another important feature of kinetic schemes is thetirogy stability property,
which is a consequence of the Boltzmanrtheorem. Our next aim is to establish
the same property for our scheme (26). In the next theorenpraee that there
exists a discrete entropy inequality for the scheme (26).

Theorem 2. Under the CFL condition
At
A—<1 39
Sl (39)

and A chosen according to the stability condition (13), the déserkinetic scheme
(26) is entropy stable, i.e. it satisfies the discrete entiogquality

W) —hw!) @),y — @

i-3

- <
At AX <0, (40)
where the entropy quQ)H% is given by
@, 1 (W1, W) = AH (Ma(W])) — AHL (My(Wf,4)) . (41)

Proof.
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fuftt = f1(x,t" + At = fa(x; —a(1)At,t")
ANt

AAt

SinceHs is a convex function, an application of Jensen’s inequgl#jds

AAt AAt
In an analogous manner we can derive
AAt AAt
Ho (f2?+l) < HHZ (M2]_q) + (1_ E) Hz (M2]). (44)

We note that

1) - 05 o)
< Hy (flfj‘“) +H, (fzfj‘“) : (45)

We now add (43) and (44) and rearrange the terms, which dieeesult.

Remark 5Like the numerical ﬂu>€¢j+% in (26), the entropy qux:DH% can also be
decomposed into a positive and negative part

0,y (W00) = 97 (W) +97 (W], 1) (46)
where the split fluxes are given by

¢ (W) = AHa(M2(W)), ¢~ (W) = —AH1(Ms(W)). (47)

4 Second Order Accurate Kinetic Relaxation Scheme

In this section we extend our kinetic relaxation scheme {@2econd order. We
follow the approach of Deshpande [7] which he used to obtaiacmnd order ki-
netic scheme for the compressible Euler equations of gaandips. The first order
fully discrete scheme (25) has many desirable propertig$) as it is conservative,
positivity preserving and entropy stable. However, it stgffrom a large amount of
numerical dissipation. It was remarked in [7, 15] that fastforder kinetic schemes,
the numerical dissipation is proportional to the time-sf¢pWe shall see later in
this section that it is true also for the discrete kineticesuk (25). Following Desh-
pande [7], we employ a Chapman-Enskog type expansion teedarigher order
numerical dissipation. The resulting scheme will then lmed order accurate.
There are two steps in deriving a second order scheme. Inrthetép we pro-
ceed to achieve second order accuracy in time. For this wdogrtipe Chapman-
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Enskog type procedure, which leads to an anti-diffusive dlosrection to gain sec-
ond order time accuracy. The second step is to achieve sewded accuracy in
space, which consists of using a second order interpolatrategy.

4.1 Second Order Accuracy in Time

Expanding the exact solutian(x, t) in Taylor series to second order accuracy yields

2 52
f?—‘;v(x,t”) + A—ta—w(x,t”) +0(A3). (48)

w(x, t"+ At) = w(x t") + At
(} A"+ 48) = Wi ") + —

Note that the Taylor expansion (48) contains first and setiomelderivatives ofv.
We make use of the conservation law (1) to replace this timivatéeszes by space
derivatives to obtain

2
W(x,t"+At) = w(x,t") —Atd%—(xm(x,t”) + % % (A(w)z‘;—"x"> (xt"+ 0o (Aat%).
(49)

Our aim is to compare (49) with a corresponding second oragoT expansion of
the right hand side of (22). This comparison will give us thissimg terms in the
first order kinetic relaxation scheme, the so-called aiftitsive terms. The addition
of these terms to the first order scheme enables us to gaindecder accuracy in
time. In order to proceed, we expand the first term on the hghtd side of (22) to
second order accuracy, resulting in

My (W' (x— a(1)At)) = My (W' (x+ A At)) = My (W (x,t"))

oMy | AZAE2 92My n 3
+/\AtW((W”(x,t )+ o (W'(x,t") + & (At°).
(50)
In an analogous way we obtain
Mo (WP (x a(2)A0)) = MW (x17)) — AAt N (W (1)
A2At2 92M,
T W (x,t") + @ (At3) (51)

Adding (50) and (51), making use of (22) and the moment i@tat(12) yields

ag(w) A2At?% 9°w 3

n _ n n b n

WX, t" -+ At) = w(x,t") M—= (x,t") + > (xt")+ 0 (At°). (52)
Notice that (52) is the modified partial differential eqoat(MPDE) for the scheme
(22). It can be observed that the diffusion term igx§fAt) as in the classical kinetic
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schemes. We can now rewrite the second order Taylor expaf#3 by adding and
subtracting the (At?) term appearing in (52) to get

ag(w) At? 9 [ ,0w
n _ ny __ n _ _
w(x,t" + At) = w(x,t") — At ox (x,t") + > ax A X
_70_x<()‘ | —A(w) )W)qtﬁ(m )
2 09
= 5 Mc(W'(x—a(k)At)) + At——+ & (At%), (53)
=1 ox
where we define Ao
9= —?@d—‘;v, %= (A — AW)?). (54)

Herel denotes the & 3 identity matrix. It has been proved in [3] that under the
stability condition (13), the matri¥# has nonnegative real eigenvalues. Therefore,
2 behaves like a viscous stress term. This new stress flimanalogous to the
heat flux vector and viscous stress obtained by Deshpander[ffje compressible
Euler equations using similar arguments. The gradied afe.d 2 /dx will act as
dissipative flux. At this point, it is very important to noteat sign ofZ in (54) is
negative. As a result, the teraz/dx in (53) is a negative diffusive flux. In other
words, it is an anti-diffusive flux. Note that the first term(88) is coming from the
first order scheme (22). Hence, in order to achieve secoret tirde accuracy for
the discrete kinetic scheme (25) we need to consider nottbalypwind relaxation
term but also the anti-diffusive term. Further, the anfiugive term reduces the
excess amount of numerical diffusion present in the upwahalsation scheme (25).

Notice that in the second order scheme (53) we have incagmbeediffusive flux
term. However, it is a characteristic of the Maxwellian éitpuium distributions of
the typeM(w) to give an inviscid system of conservation laws in the hygirainic
limit, see [3, 5]. Therefore, in order to get a dissipativeflike term 9% /dx we
need to change the Maxwellian distribution to a Chapmark&gsdistribution. The
latter is always associated with the Navier-Stokes equoaitil hence it can give rise
to nonzero viscous terms. Moreover, the method of replattiegime derivatives
by space derivatives we performed to get (49) is a charatitedf the Chapman-
Enskog procedure. We now proceed to derive a Chapman-Eml$tipution and
show that the second order accurate scheme (53) can beiretteestorm (22) using
the Chapman-Enskog distribution instead of the MaxwediMdp(w).

From (11) we infer thaMy(ws) — fx = &(¢) and as a result

- o . 0%
fe= M) - { T+ 5.

— )~ { TH) 4 qg ML o e2). (o5
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Note that the right hand side of (55) is a perturbation of trexiellianM. Moti-
vated by this, our new ansatz, viz. the Chapman-Enskogllisitin functionMy is
defined by

- My (w) My (w)

M =M — k 56

) =)~ 7{ g P 56)

wherert is a parameter to be determined. Analogous to (12), the Caagimskog
distribution functionMy(w) is required to satisfy the moment relations

2
3 Nikw) =w, 3 alkNi(w) = g(w) + 2. (57)
k=1

Note that the first relation in (57) is the conservation properhe second rela-
tion precisely states that unlike the Maxwellian, the ChapfiEnskog distribution
should give a nonzero viscous flux in addition to the invidtict. We now obtain
the precise forrm7lk(w) by evaluating the expressions in curly brackets on the right
hand side of (56).

OMi(w) 1low 1 dg(w)

1 ow 1A 20W

= —EA(W)& + o (w) X (58)
Analogously we obtain
OMa(w) 1y OW L 0w
a2 W T AW (59)
Similar calculations shows that
OMi(w) 1dw 1 ow
ax 2ax 2 Wi (60)
OMp(w)  1dw 1 ow
ax 2ax Ttk (61)
Thus, we obtain the required expressions for the terms ipn (56
dMy(w) OMg(w) 1 5 o\ OW
ot +a(1) X __ﬁ()‘ I —A(w) >W’ (62)
OM(w) oMa(w) 1 ., o\ OW
Using (62)-(63) and the expressions f{ andM in (56) yields
~ 1 1 T ..o 2 OW
My (w) = W= ag(w) ~ox (A% —A(w)?) % (64)
~ 1 1 T ..o 2 OW
Ma(w) = SW+ ag(W) +oy (A% —A(w)?) = (65)
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The consistency conditions (57) immediately givess —At/2. Thus, we finally
obtain the Chapman-Enskog distribution function

My (w) = %w— %g(w) + % (A% - Aw)?) (;—VXV, (66)
Vo (w) = Jw+ oglw) — ok (A2~ Aw)?) 2. 67)

It is to be noted that unlike the Maxwelliai, the Chapman-Enskog distribution
My depends also on the derivatives of the conservative varniabin other words,
the support of the Chapman-Enskog distribution is largantthe corresponding
Maxwellians. The second order accurate kinetic relaxareme (53) can be re-
cast in an upwind form with the aid of

N

W) = 3 M (W(x— a(k)At) (68)
k=1

4.2 Second Order Accuracy in Space

We now proceed to achieve second order accuracy in spacediagon (68) shows
that the values offy are to be evaluated at non-mesh points. This consists af-eval
ating the two terms on the right hand side of (53) to secondraadcuracy.

In order to compute the first term, i.e. the upwind relaxatierm we should
employ an interpolation procedure which should be secodéroaccurate. Note
that our first order accurate scheme is positivity preservirherefore, we must
ensure that the second order interpolated values shouldiveiany nonphysical
negative density or pressure. As a first step, we use a qimittarpolation scheme
to evaluate the upwind relaxation terms to yield

a1 an n v . 1% e n D
Ml(Wn(Xj +)\At)) = Mlj + E (M1j+1— Mljfl) + 7 (M1j+l_ 2M1j + Mljfl) ,
(69)
wheren = AAt/Ax. An analogous expression fdt is given by

2

Ma(W'(x] — AAL)) = Mg — % (M2Dy 1 — Moy + % (M2 3 — 2Mp" 4+ M1y)

(70)
However, as pointed out by Deshpande [7] for classical ldrsgthemes, the differ-
ent components in the vector valued interpolated expresgi0)-(70) need not be
positive even if the corresponding valueshdf andM, at the mesh pointg— 1,
andj + 1 are positive. This is particularly true in the presencehafcks and high
gradients. Adding (69) and (70) yields

A2At?

At
W?H =w] - Ax {oWli) —gwW] )} + A2 (Wi —2wf+wl ). (71)
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Thus, we recover a Lax-Wendroff type scheme. It is well kndwat the Lax-
Wendroff scheme gives rise to oscillations, i.e. the Gilgii'®enomenon near the
shocks. Therefore, high order interpolation methods oftype (69)-(70) can lead
to oscillatory solutions. This suggests that we must useesoonlinear limiter type
functions to suppress the oscillations. We notice that osirdirder scheme is posi-
tivity preserving and non-oscillatory. Therefore, in artteachieve a non-oscillatory
solution we must switch to the first order scheme in the presendiscontinuities
and use the second order interpolation scheme only in smmegibns. This can be
achieved with the use of adaptive parameter,)sap that in equilibrium or smooth
flow regionsy ~ 0 and in discontinuity regioly ~ 1. A possible choice of such a
paramete is the switching function of the JST scheme [12] defined by

n_ [Pla— 2P0+ Py
PRl 2P+ Py

(72)

Let us denote the right hand sides of (69)-(70\MBy andMJ' respectively and the
corresponding first order interpolants M} andM), respectively. Combining both
usingy, a second order non-oscillatory interpolation scheme eawhitained as

M1 (W' (X +AAL)) = x"My + (1— xT) MY (73)
Ma(W'(xj — AAt)) = X7 M} + (1— X[1) M3 . (74)

Note that a different interpolation strategy was employethe kinetic scheme of
[7, 15]. However, our numerical results confirm the non-kettiry nature of the
interpolating scheme (73)-(74).

To complete the second order scheme we need to evaluatéalaati-diffusive
flux term d 2 /dx. Note that the evaluation a¥ requires the computation of the
slopedw/dx. As explained above, when strong discontinuities such askshare
present in the solution, this gradient can have very wildatem. This may lead the
second order scheme (53) to give some unphysical solutidrezefore, we must
apply some nonlinear limiter functions in the calculatidritee required gradients.
A possible computation of such a slope, which results in arall/non-oscillatory
scheme is given by a family of discrete derivatives paraisedrby 1< 6 < 2, for
example

ow wi w

W, —
. ¢+N — MM H‘l ] H‘l

(75)

HereMM denotes the nonlinear minmod function defined by

minp{vp} if vp>0Vp,
MM {v1, V2, } = { maxp{vp} if vp <0Vp, (76)
0 otherwise
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After computing the values a¥ at all the mesh points, the derivatigeZ /dx is also
calculated using the same minmod recovery procedure. Theifiave completed
the evaluation of all the terms required by the second olezrae (53).

5 Numerical Case Studies

The new kinetic relaxation scheme is tested on some staba@achmark problems
for the Euler equations in one space dimension. In all thélpros the computa-
tions were carried out on uniform Cartesian grids. In ordeavoid the formation
of initial and boundary layers in (11), the initial and boamglconditions forfy are
chosen to be consistent with the equilibrium distributidn For example, if Dirich-
let boundary data are given for the macroscopic variableayw = w, the initial
and boundary conditions for (11) are given by

fk(x’t) = Mk(Wb(X’t))v fk(x’ O) = Mk(W(Xv 0)) (77)

In all computations we have used both the JST switching fanas well asviM
limiter with 6 = 2.

Experimental Order of Convergence Despite the simplicity of the algorithm
and operator splitting approach, the kinetic relaxatidmesee gives second order
convergence. In what follows we test the order of convergéoica smooth solution.
We consider an exact periodic solution of the one-dimeradiBaler equations

p(x,t) =1.0+40.2sin(rm(x— ut)),
u(x,t) =0.1, p(x,t) =0.5.
The experimental order of convergence (EOC) can be catmlilay systematically

refining the mesh and examining the behaviour of the glolral.eBince the exact
solution is known, the order of convergence in a certain npifitan be computed

in the following way
&k 2l
zoc= s, ().

whereK denotes the number of mesh points di# || is a suitable norm of the
global error, for example,&k(t") 1 = szﬁ‘zﬂp(xj,t”) =P, Skt =

2

= \/sz'le (p(xj ) — pJ“) ; Sk (t")L= = maxi<j<k|P(xj,t") — p]'|. Note that we
have used only the density to compute errors. The compuotdtitomain|0, 2] is
consecutively divided into 2@0,...,2560 cells. The final time was taken to be
t = 0.5. The table 1 shows the experimental order of convergeno@uted in the

L1, L2 andL*® norms. From the table it is evident that the order of convecgés 2.

Sod Shock Tube Problem We consider the Sod shock tube problem. The so-

lution consists of a left rarefaction, a contact discontyand a right shock. The
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[ K] LYerror | EOC | L%error [ EOC | L= error | EOC |
20/0.03071610 0.0252346Y |0.033ll41 b
40{0.008066041.9290630.0064694 31.96368450.0091418 B1.856893
80[0.001975582.0295840.001542382.06853$0.002128762.10247(
160/0.00047798.04740%0.000370852.0562040.000480722.14674%
320/0.000117682.0225430.000091452.0197810.000120361.997841
640[0.0000292p2.0092280.0000227 72.005845?0.0000328 11.875149
1280 0.000007262.00891%0.0000056 52.00826(])0.0000086 1.920032
2560 0.000001792.02001(00.000001 4 2.01537$0.0000022 B1.95898¢

Table1 L, L2 andL® errors with experimental order of convergence for a smoetipgic test
case.

initial data reads

(1.0,0.0,1.0), if 0<x<0.5

(p,u, P)(x,0) {(0.125 0.0,0.1), if 05<x<1.
The computations are done with both the first order and seoaa®l schemes on
400 mesh points with a CFL numbei90 Figure 2 shows the density, velocity and
pressure at time= 0.2. The results of first order scheme are highly smeared due the
excess amount of numerical diffusion. The second ordermsehis comparatively
much less dissipative and it resolves the discontinuitezyg well.

Lax Shock Tube Problem This test case is the Lax shock tube problem. The
initial data is given by

(0.445,0.6983.528), if 0<x< 0.5,

(P,u,P)(x,0) {(0.5, 0.0,0.571), if 05<x<L1.
We have used used 400 mesh points for the computations a@Fthaumber was
set to 09. In Figure 3 we give the plots of density, velocity and pueesat time
t = 0.13. The plots show that the second order scheme gives a shesp&ution of
both shocks and expansions.

Strong Rarefactions Riemann Problem We consider the Riemann problem
with initial data

(1.0,-0.2,0.4), if 0<x<0.S5,

(p:u,P)(%,0) = {(1.0, 2.0,04), if 05<x<1

This is a very difficult problem for many methods because a maeuum state is
reached and failure can occur as a result of negative dessitipressures. For in-
stance, linearised Riemann solvers can fail by giving riegatressures or densities
in one or more of the intermediate states for very strongfaatiens, see [9] for a
detailed study. In Figure 4 we give the plots of density arebpure att= 0.15 com-
puted using first and second order schemes using a grid witimé&h points. From
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X-axis X-axis

Fig. 2 Sod shock tube problem resultstat 0.2.

the figure we can notice that both the schemes preserve thwippsf density and
pressure.

Shock Entropy Wave Interaction This test problem is taken from [23]. It de-
scribes of the interaction of a sinusoidal density perttiobband a supersonic shock
wave. A Mach 3 shock wave runs into a smooth acoustic wavewgets amplified
and has a higher frequency behind the shock. The initial reigs

(3.8571432.62936910.333333, if —5<x< —4,
(p,u,p)(X,O):{ : ;

(1+0.2sin5x),0,1), if —4<x<5.
We run the computations on a fine mesh with 1000 points. We xisapslation
boundary conditions at both ends. The CFL number.9ahd final time is set to
t = 1.8. In order to compare the results, we have computed theerafersolution
by running the second order scheme on 4000 mesh points. Ehésrare given
in Figure 5. The first order results are extremely smeareditdgethe use of a fine
mesh. However, the second order scheme resolves the flowdsajuite well.



Second Order Kinetic Relaxation Scheme 21
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Fig. 3 Lax shock tube problem resultstat 0.2.
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Fig. 4 Two strong rarefactions test. The plots of density and presatt = 0.15.

6 Concluding Remarks

In this paper a novel upwind kinetic relaxation scheme isettjped based on a
discrete velocity Boltzmann relaxation system. The firgieoraccurate scheme pre-
serves the positivity of mass density and pressure andrigmnstable. The second
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density density (zoomed)

—reference —reference
- first order - first order
-~ second order 5 -'- second order

-5 -4 -3 -2 -1 0o 1 2 3 4 5 3.5 1 15 2
X—axis X—axis

Fig. 5 The results of shock-acoustic wave interaction problemligatt = 1.8.

order method involves the use of an anti-diffusive Chapfaaskog distribution
function. The present method involves only interpolatiod the use of limiters and
therefore it is different from the conventional numericathods. The kinetic re-
laxation scheme retains many attractive features of desth@mes, such as neither
Riemann solvers nor characteristic decompositions ardeted3oth the first order
and second order schemes are stable up to a CFL number 1.8chidme is tested
on some benchmark problems for Euler equations and thdserhonstrate its ro-
bustness and efficiency in capturing the flow features atelyra&eneralisation to
multi-dimensions can be done, e.g. by directional splittnusing theory of bichar-
acteristics and applying the scheme for one-dimensioned\gaopagation along a
particular bicharacteristic direction.
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