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Abstract

We first conduct a comparative numerical study of two recently proposed two-species chemo-
taxis models. We show that different scenarios are possible: depending on the initial masses,
either one or both cell densities may blow up, or a global solution may exist. In particular,
our numerical results indicate answers on some open questions of possible blow up stated
in [4, 7]. We then introduce two regularizations of the studied models and demonstrate that
their solutions are capable of developing spiky structure without blowing up.
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1 Introduction

Chemotaxis is one of the most important mechanism in movement of biological species. It describes
a collective movement of cells or biological species that is oriented towards the chemoattractant
gradient. A classical PDE-based model of chemotaxis, the Patlak-Keller-Segel (PKS) system,
was first proposed in [27] and [18, 19]. The classical PKS system as well as its more recent
modifications (see, e.g., [2, 14, 16, 17, 28] and references therein) are capable of describing the
aggregation of biological species and consequently a mechanism for self-organization of biological
systems. In some of the above models, the cell aggregation may lead to a finite time blow-
up of the solution provided the total initial cell mass is above a certain threshold (see [3, 11, 24]).
However, the formation of singularities in the PKS model may be viewed as a purely mathematical
artifact. Many regularized PKS-type systems admit global classical (yet spiky) solutions, which
may better describe the biological aggregation phenomenon (as, e.g., in the regularized models
studied in [2, 23, 26, 29, 33], see also a recent review [14]).
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The aim of this paper is twofold. We first numerically investigate two models proposed and
analytically studied in [4–9, 20, 34]. The first system reads





(ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1,

(ρ2)t + χ2∇ · (ρ2∇c) = µ2∆ρ2,

ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ R
d, t > 0, (1.1)

where ρ1 and ρ2 denote the cell densities of the first and second species, respectively, and c
is the concentration of the chemoattractant. The positive constants µi, χi, αi (i = 1, 2) and
β are parameters of cell diffusion, chemotactic sensitivities, production and consumption rates,
respectively. Finally, D is the chemoattractant diffusion coefficient. Throughout the paper we will
assume that the second species has larger chemotactic sensitivity than the first one, that is,

χ1 < χ2.

Since the molecular diffusion is typically much faster than the cell diffusion, that is, both µ1 � D
and µ2 � D, the system (1.1) can be simplified by assuming that µi/D ≈ 0, i = 1, 2, which lead
to the following system:





(ρ1)t + χ1∇ · (ρ1∇c) = µ1∆ρ1,

(ρ2)t + χ2∇ · (ρ2∇c) = µ2∆ρ2,

∆c+ γ1ρ1 + γ2ρ2 − ζc = 0,

x ∈ Ω ⊂ R
d, t > 0. (1.2)

The models (1.1) and (1.2) can be viewed as direct extensions of the PKS system to the case
of the chemotaxis motion of two noncompeting species that both consume and produce the same
chemoattractant. As in the case of the classical PKS model, the main question we numerically
investigate is: what are the conditions on initial masses and chemotactic parameters that determine
whether the solution remain smooth and bounded or it blows up in a finite time? In the latter case,
we would also like to determine whether the cell densities of both species blow up simultaneously
or the cell density of the species with a larger chemosensitivity constant blows up first. These
questions were first raised in [34] and further studied in [4,5,7]. More precisely, it has been proven
analytically that depending on a particular set of parameter values and initial cell densities the
solution may be globally regular or it may blow up within a finite time. However, in some cases,
the theory fails to predict the behavior of the solution. Our numerical simulations indicate answers
to some of these open questions.

The second main goal of our paper is to present and study two regularizations of (1.1). The
first regularized system reads





(ρ1)t +∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1,

(ρ2)t +∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2,

ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ R
d, t > 0, (1.3)

where the functions Q1 andQ2 are smooth saturated chemotactic fluxes Qi(u1, . . . , ud) = Qi(u) =(
Q

(1)
i (u), . . . , Q

(d)
i (u)

)
that satisfy the following properties:

Qi(0) = 0, |Q
(j)
i | ≤ Cj

i ,
∂Q

(j)
i

∂uj
> 0 ∀u, ∀i = 1, 2; j = 1, . . . , d, (1.4)
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where Cj
i are constants. This regularization is similar to the one proposed in [2] for the PKS

system. It is based on a fundamental biological property of the chemotactic flux—its boundedness
(this feature is almost always lost in weakly nonlinear, small gradients expansions, underlying the
derivation of most continuum models). The synthesized form of the saturated fluxes a function,
which has the following universal features: It is linear at small gradients of c and is bounded at
large gradients of c. There is a certain arbitrariness in the choice of the chemotactic flux functions
Qi. A typical example of saturated chemotactic fluxes, which is used in all of our numerical
experiments, is for i = 1, 2

Qi(χi∇c) =





χi∇c, if χi|∇c| ≤ s∗i ,(
χi|∇c| − s∗i√

1 + (χi|∇c| − s∗i )
2
+ s∗i

)
∇c

|∇c|
, otherwise,

(1.5)

where s∗i are switching parameters, which define small gradient values, for which the system (1.3)
reduces to the original system (1.1) (or (1.2)) so that the effect of saturated chemotactic flux is
felt at large gradient regimes only. This is expected to result in solutions which are spiky but yet
bounded for all times.

The second regularized system,





(ρ1)t + χ1∇ ·
( ρ1
1 + κρ1

∇c
)
= µ1∆ρ1,

(ρ2)t + χ2∇ ·
( ρ2
1 + κρ2

∇c
)
= µ2∆ρ2,

ct = D∆c+ α1ρ1 + α2ρ2 − βc,

x ∈ Ω ⊂ R
d, t > 0, (1.6)

is similar to the density-dependent regularization from [31,32]. Here, κ is a (small) regularization
parameter and κ → 0 leads to the original system (1.1). As in the single species case [13, 31],
one expects a global classical solution of (1.6) to exist. At the same time, we will numerically
demonstrate that the solutions of (1.6) typically have spiky structure and thus the system (1.6)
can be used to model the aggregation phenomenon.

Throughout the paper, we will consider the systems (1.1), (1.2), (1.3) and (1.6) subject to the
initial conditions ρ1(x, 0) = ρ01(x) ≥ 0, ρ2(x, 0) = ρ02(x) ≥ 0, c(x, 0) = c0(x) and the homogeneous
Neumann boundary conditions. These boundary conditions are zero-flux conditions for both the
cell densities and chemoattractant concentration, which guarantee mass conservation.

The present paper will be organized as follows. In Section 2, we prove a-priori estimates for the
regularized system (1.3). Section 3 is devoted to the description of the numerical method, which
is a modification of the second-order positivity preserving upwind scheme from [1, 2]. Finally,
Section 4 is devoted to the presentation and discussion of our numerical simulations.
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2 L∞ Bounds via Moser-Alikakos Iteration

Let us consider the original initial-boundary value problem (IBVP) for the system (1.3):




(ρ1)t +∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1, x ∈ ∂Ω, t > 0,

(ρ2)t +∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2, x ∈ ∂Ω, t > 0,

ct = D∆c+ α1ρ1 + α2ρ2 − βc, x ∈ ∂Ω, t > 0,

ρi(x, 0) = ρ0i (x), c(x, 0) = c0(x), x ∈ ∂Ω, i = 1, 2,
∂ρ1
∂n

=
∂ρ2
∂n

=
∂c

∂n
= 0, x ∈ ∂Ω, t > 0,

(2.1)

where ∂Ω is a Lipschitz continuous boundary with the outer normal n.
In this section, we will prove a-priori estimates for positive solutions of (2.1). The following

result is a generalization of analogous result for the one-species chemotaxis system from [2].

Theorem 2.1 Let (ρ1(x, t), ρ2(x, t), c(x, t)) be a positive classical solution of the IBVP (2.1) with
bounded nonnegative initial data. Then, for all x ∈ Ω̄ and t ≥ 0,

ρ1(x, t) ≤ C

(
1 +

C1

µ1

)d

max
{
‖ρ01‖L∞(Ω), ‖ρ

0
1‖L1(Ω)

}
, (2.2)

ρ2(x, t) ≤ C

(
1 +

C2

µ2

)d

max
{
‖ρ02‖L∞(Ω), ‖ρ

0
2‖L1(Ω)

}
, (2.3)

c(x, t) ≤ ‖c0‖L∞(Ω)

+ C

(
β

α1

(
1 +

C1

µ1

)d

+
β

α2

(
1 +

C2

µ2

)d
)
max
i=1,2

{
‖ρ0i ‖L∞(Ω), ‖ρ

0
i ‖L1(Ω)

}
, (2.4)

where C = C(d,Ω) is a constant, which depends on d and Ω only, and Ci = maxj C
(j)
i , i = 1, 2.

Proof: We begin by multiplying the density equations in (2.1) by ρs−1
1 and ρs−1

2 (s ≥ 2), respec-
tively. Then, integrating by parts, applying the chain rule, using the boundedness of |Qi| and the
inequality (see [2, 21])

‖u‖2L2(Ω) ≤ ε‖∇u‖2L2(Ω) +K
(
1 + ε−

d
2

)
‖u‖2L1(Ω) (2.5)

with a suitable ε yields the following estimates:

1

s

d

dt

∫

Ω

ρsi dx = −µi

∫

Ω

∇ρi · ∇
(
ρs−1
i

)
dx+

∫

Ω

ρiQi(χi∇c) · ∇
(
ρs−1
i

)
dx

≤ −
4µi(s− 1)

s2

∫

Ω

∣∣∣∇
(
ρ

s
2

i

)∣∣∣
2

dx+
2Ci(s− 1)

s

∫

Ω

ρ
s
2

i

∣∣∣∇
(
ρ

s
2

i

)∣∣∣ dx

≤ −
4µi(s− 1)

s2

∫

Ω

∣∣∣∇
(
ρ

s
2

i

)∣∣∣
2

dx+
Ci(s− 1)

s

∫

Ω

(2µi

Cis

∣∣∣∇
(
ρ

s
2

i

)∣∣∣
2

+
Cis

2µi
ρsi

)
dx

≤ −
2µi(s− 1)

s2

∫

Ω

∣∣∣∇
(
ρ

s
2

i

)∣∣∣
2

dx+
C2

i (s− 1)

2µi

∫

Ω

ρsi dx, i = 1, 2. (2.6)
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The last term in (2.6) is estimated using the inequality (2.5) with u = ρ
s
2

i and ε such that
C2

i (s−1)

2µi
= 2µi(s−1)

s2ε
−

C2

i (s−1)

2µi
⇐⇒ ε = 2( µi

Cis
)2.

This results in

C2
i (s− 1)

2µi

∫

Ω

ρsi dx =
2µi(s− 1)

s2ε

∫

Ω

ρsi dx−
C2

i (s− 1)

2µi

∫

Ω

ρsi dx

≤
2µi(s− 1)

s2

∥∥∥∇
(
ρ

s
2

i

)∥∥∥
2

L2(Ω)
+

2µi(s− 1)K(1 + ε−
d
2 )

s2ε

∥∥∥ρ
s
2

i

∥∥∥
2

L1(Ω)
−

C2
i (s− 1)

2µi

∫

Ω

ρsi dx.

(2.7)
Substituting (2.7) into (2.6), we obtain

d

dt

∫

Ω

ρsi dx ≤ −
C2

i s(s− 1)

2µi

∫

Ω

ρsi dx+
C2

i s(s− 1)K
(
1 +

(
sCi√
2µi

)d )

µi

(∫

Ω

ρ
s
2

i dx

)2

.

We then fix T ∈ (0,∞), multiply both sides of the last inequality by the integrating factor eκt,
where κ := C2

i s(s− 1)/(2µi), and integrate over the time interval [0, t] for t ∈ [0, T ] to obtain

∫

Ω

ρsi (x, t) dx ≤

∫

Ω

(ρ0i )
s(x) dx+ 2K

(
1 +

sCi

µi

)d

sup
0≤t≤T

(∫

Ω

ρ
s
2

i (x, t) dx

)2

. (2.8)

Let us now define the function

Mi(s) := max

{
‖ρ0i ‖L∞(Ω), sup

0≤t≤T

(∫

Ω

ρsi dx

)1

s

}
, (2.9)

which satisfies (from (2.8)):

Mi(s) ≤

(
K̃

(
1 +

sCi

µi

)d
) 1

s

Mi(s/2), ∀s ≥ 2,

where the constant K̃ depends on d and Ω only. Taking s = 2k, k = 1, 2, . . . and applying the
above inequality recursively we obtain

Mi(2
k) ≤ C(1 + Ciµi)

dMi(1),

where C = C(d,Ω). Now letting k → ∞, we conclude that

‖ρi(·, t)‖L∞(Ω) ≤ C

(
1 +

Ci

µi

)d

Mi(1), ∀t ≥ 0. (2.10)

Finally, we note the total mass of the cells remains constant in time (this can be verified by
integrating the density equations in (2.1) over Ω), and therefore

Mi(1) = max
{
‖ρ0i ‖L∞(Ω), ‖ρ

0
i ‖L1(Ω)

}
, i = 1, 2, (2.11)
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and the estimate (2.2) for the cell densities ρi(x, t) follows from (2.10), (2.11).
Let us denote byM(1) := maxi=1,2 (M1(1),M2(1)) . In order to obtain a bound on chemoattrac-

tant concentration c(x, t), we compare it with the solution of the following initial value problem
(IVP): 





dw

dt
= −βw + C

(
α1

(
1 +

C1

µ1

)d

+ α2

(
1 +

C1

µ1

)d
)
M(1),

w(0) = ‖c0‖L∞(Ω).

The comparison principle then yields

0 ≤ c(x, t) ≤ w(t) = e−βt‖c0‖L∞(Ω) + C
(
1− e−βt

)
(
α1

β

(
1 +

Ci

µi

)d

+
α1

β

(
1 +

Ci

µi

)d
)
M(1)

≤ ‖c0‖L∞(Ω) + C

(
α1

β

(
1 +

C1

µ1

)d

+
α2

β

(
1 +

C2

µ2

)d
)
max
i=1,2

{
‖ρ0i ‖L∞(Ω)‖ρ

0
i ‖L1(Ω)

}
,

(2.12)
which completes the proof of Theorem 2.1. �

Remark 2.1 An alternative L∞ bounds on ρ1 and ρ2 can be obtained using the results from [15].
However, the estimates (2.2) and (2.3) explicitly show the dependence of the bounds on the number
of dimensions d and the viscosity coefficients µ1 and µ2.

Remark 2.2 Note that using the L∞-bounds established in Theorem 2.1, parabolic boundary Lp-
estimates and Schauder estimates (see, e.g., [21]), one can obtain that (ρ1)t, (ρ2)t, ct and all spatial
partial derivatives of ρ1, ρ2 and c up to order two are bounded on Ω̄× [0,∞). This will lead to a
global existence result similar to the one established in [2] for the one-species chemotaxis system.
As it has been illustrated by our numerical experiments (shown in Section 4), the regularized
solution while being bounded for all times, may develop spiky (even multi-spiky) structures that
model aggregation phenomena.

3 Numerical Scheme

The numerical results presented in this paper are obtained using a second-order positivity preserv-
ing upwind scheme, which is a rather straightforward extension of the hybrid finite-volume-finite-
difference scheme developed in [1, 2] for the single species chemotaxis models. In this section, we
briefly describe the scheme for the two-species chemotaxis system





(ρ1)t +∇ ·
(
g(ρ1)Q1(χ1∇c)

)
= µ1∆ρ1,

(ρ2)t +∇ ·
(
g(ρ2)Q2(χ2∇c)

)
= µ2∆ρ2,

εct = D∆c+ α1ρ1 + α2ρ2 − βc,

(3.1)

where ε = 0 or ε = 1 and the functions g, Q1 and Q2 may be either linear or nonlinear so that the
system (3.1) reduces to either (1.1), (1.2), (1.3) or (1.6).

We introduce a Cartesian mesh consisting of the uniform cells Cj,k = [xj− 1

2

, xj+ 1

2

]× [yk− 1

2

, yk+ 1

2

]

of the size ∆x∆y centered at (xj , yk). The computed quantities are the cell averages of cell densities
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ρi,

(ρ̄i)j,k(t) ≈
1

∆x∆y

∫∫

Cj,k

ρi(x, y, t) dxdy,

and the point values of the chemoattractant concentration c, cj,k(t) ≈ c(xj , yk, t), which are evolved
in time according to the semi-discrete scheme:




d(ρ̄i)j,k
dt

= −
(Hi)

x
j+ 1

2
,k
− (Hi)

x
j− 1

2
,k

∆x
−

(Hi)
y

j,k+ 1

2

− (Hi)
y

j,k− 1

2

∆y

+ µi

(
(ρ̄i)j−1,k − 2(ρ̄i)j,k + (ρ̄i)j+1,k

(∆x)2
+

(ρ̄i)j,k−1 − 2(ρ̄i)j,k + (ρ̄i)j,k+1

(∆y)2

)
, i = 1, 2,

ε
dcj,k
dt

= D

(
cj−1,k − 2cj,k + cj+1,k

(∆x)2
+

cj,k−1 − 2cj,k + cj,k+1

(∆y)2

)
+ α1(ρ̄1)j,k + α2(ρ̄2)j,k − βcj,k.

(3.2)
Here, (Hi)

x
j+ 1

2
,k
and (Hi)

y

j,k+ 1

2

are the following upwind numerical fluxes:

(Hi)
x
j+ 1

2
,k
= (gi)j+ 1

2
,k Q

(1)
i

(
χi

cj+1,k − cj,k
∆x

)
, (Hi)

y

j,k+ 1

2

= (gi)j,k+ 1

2

Q
(2)
i

(
χi

cj,k+1 − cj,k
∆y

)
, (3.3)

where Q
(1)
i and Q

(2)
i are the components of the vector function Qi (see (1.4)) and

(gi)j+ 1

2
,k =





g
(
(ρi)

E
j,k

)
, if Q

(1)
i

(
χi

cj+1,k − cj,k
∆x

)
> 0,

g
(
(ρi)

W
j+1,k

)
, otherwise,

(gi)j,k+ 1

2

=





g
(
(ρi)

N
j,k

)
, if Q

(2)
i

(
χi

cj,k+1 − cj,k
∆y

)
> 0,

g
(
(ρi)

S
j,k+1

)
, otherwise.

The point values (ρi)
E (W,N,S)
j,k are obtained using the piecewise linear reconstruction

(ρ̃i)(x, y) = (ρ̄i)j,k + ((ρi)x)j,k(x− xj) + ((ρi)y)j,k(y − yk), (x, y) ∈ Cj,k,

with the slopes ((ρi)x)j,k and ((ρi)y)j,k calculated using the minmod2 limiter (see, e.g., [22,25,30]):

((ρi)x)j,k = minmod

(
2
(ρ̄i)j+1,k − (ρ̄i)j,k

∆x
,

(ρ̄i)j+1,k − (ρ̄i)j−1,k

2∆x
, 2

(ρ̄i)j,k − (ρ̄i)j−1,k

∆x

)
,

((ρi)y)j,k = minmod

(
2
(ρ̄i)j,k+1 − (ρ̄i)j,k

∆y
,
(ρ̄i)j,k+1 − (ρ̄i)j,k−1

2∆y
, 2

(ρ̄i)j,k − (ρ̄i)j,k−1

∆y

)
,

where the minmod function is defined by

minmod(z1, z2, . . . , zm) :=






min(z1, z2, . . . , zm), if z` > 0 ∀` = 1, . . . , m,

max(z1, z2, . . . , zm), if z` < 0 ∀` = 1, . . . , m,

0, otherwise.

Thus, we have for i = 1, 2

(ρi)
E
j,k = (ρ̃i)(xj+ 1

2

, yk), (ρi)
W
j,k = (ρ̃i)(xj− 1

2

, yk), (ρi)
N
j,k = (ρ̃i)(xj , yk+ 1

2

), (ρi)
S
j,k = (ρ̃i)(xj , yk− 1

2

).
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Remark 3.1 Notice that in the above formulae, the quantities (ρ̄i)j,k, cj,k, (Hi)
x
j+ 1

2
,k
, (Hi)

y

j,k+ 1

2

,

(ρi)j+ 1

2
,k, (ρi)j,k+ 1

2

, (ρi)
E (W,N,S)
j,k , ((ρi)x)j,k, ((ρi)y)j,k and the functions (ρ̃i)(x, y), i = 1, 2 depend on

time, but we suppress this dependence for brevity.

If ε = 1, then the semi-discrete scheme (3.2) is a system of time-dependent ODEs, which has
to be integrated numerically using a stable and accurate ODE solver. In this paper, we have used
the third-order strong stability preserving (SSP) Runge-Kutta method from [10]. The efficiency
of the fully discrete method can be improved by applying an SSP implicit-explicit Runge-Kutta
method (see, e.g., [12] and references therein), as discussed in [1].

If ε = 0, then the last equation in (3.1) becomes an elliptic equation for c, and consequently
the last equation in (3.2) becomes a system of linear algebraic equations. This system has to be
solved using a proper linear algebra solver. One time step of the resulting algorithm will then
consist of an explicit time advance of ρ1 and ρ2 followed by solving the last equation in (3.2) for
c using the values of ρ1 and ρ2 from the new time level.

4 Numerical Experiments

In this section, we present the results of our numerical experiments that clarify the behavior of
the solutions of the studied two-species chemotaxis systems in two space dimensions. We restrict
our consideration to the two-dimensional (2-D) case since the theoretical results/open questions
in [4, 5, 7] were obtained/formulated for the 2-D version of the system (1.2).

In all of the examples below, we take α1 = α2 = β = γ1 = γ2 = ζ = 1.

4.1 Parabolic-Elliptic Systems

We first consider the parabolic-elliptic system (1.2) and its regularization with a bounded chemo-
taxis fluxes (with Q1 and Q2 satisfying (1.4)):






(ρ1)t +∇ · (ρ1Q1(χ1∇c)) = µ1∆ρ1,

(ρ2)t +∇ · (ρ2Q2(χ2∇c)) = µ2∆ρ2,

∆c+ γ1ρ1 + γ2ρ2 − ζc = 0.

(4.1)

Without loss of generality we set µ2 = 1. We denote by θ1 and θ2 the initial masses

θ1 :=

∫

Ω

ρ1(x, t) dx =

∫

Ω

ρ01(x) dx, θ2 :=

∫

Ω

ρ2(x, t) dx =

∫

Ω

ρ02(x) dx.
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Following [4, 7], we split the (θ1, θ2)-plane into the following four regions, outlined in Figure 4.1:

• Region A:
8πµ1θ1
χ1

+
8πθ2
χ2

− (θ1 + θ2)
2 ≥ 0 and θ2 ≤

8π

χ2

;

• Region B:
8πµ1θ1
χ1

+
8πθ2
χ2

− (θ1 + θ2)
2 ≥ 0 and θ2 ≥

8π

χ2
;

• Region C: θ1 + θ2 ≤
8π

χ1

and
8πµ1θ1
χ1

+
8πθ2
χ2

− (θ1 + θ2)
2 ≤ 0;

• Region D: θ1 + θ2 >
8π

χ1
.

θ1

χ1

8πµ1

χ1

8πµ1

χ2

8π

θ2

χ2

8π

C

E

A B

D

Figure 4.1: Four different regions in the (θ1, θ2)-plane.

In [4, 7], the following results were proved for the 2-D IVP for the parabolic-elliptic system
(1.2) with γ1 = γ2 = ζ = µ2 = 1:

• There is a global classical solution in Region A (the proof is based on the energy functions that
provide a-priori estimates for the entropy of (1.2));

• In Region C, ρ2 blows up faster than ρ1;

• In Region D, ρ1 and ρ2 blow up at the same rate.

The question on the solution behavior in Region B remains open and we investigate it numeri-
cally. We study the systems (1.2) and (4.1) on a large square domain (either [−1.5, 1.5]×[−1.5, 1.5]
or [−3, 3] × [−3, 3]) and use the Neumann boundary conditions, which are typically used to rep-
resent open boundary conditions on truncated computational domains. In none of the numerical
examples reported below, the solution behavior was affected by the boundary conditions, that is,
all of the numerical solutions remain flat near the boundaries. This makes us to believe that the
solution in R

2 should behave similarly.
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4.1.1 The Original System (1.2)

Example 1: Global Existence in Region A. We first consider the system (1.2) with χ1 = 1,
χ2 = 10, µ1 = 1, and subject to the following initial data:

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 50 e−100(x2+y2). (4.2)

As one can see in Figure 4.2, the magnitude of both ρ1 and ρ2 decays and the solution remains
smooth and bounded.

Figure 4.2: Example 1: ρ1 and ρ2 at time t = 0.05, computed on the 200× 200 uniform mesh.

Example 2: Different Types of Blow-Up of ρ1 and ρ2 in Region B. We now consider
the system (1.2) with χ1 = 1, χ2 = 20, µ1 = 1, and subject to the same, radially symmetric
initial data (4.2). Figure 4.3 suggests that ρ2 blows up while ρ1 remains bounded. Moreover, the
magnitude of ρ1 seems to decay in time.

However, this would contradict the analytical results on simultaneous blow-up in Region B
proved in [5,7] for radially symmetric initial data. We therefore perform a mesh refinement study
to carefully monitor the behavior of maxΩ ρ1(x, y, 0.05) and maxΩ ρ2(x, y, 0.05) as a function of
N , where the computational grid is N ×N . The dependence of maxΩ ρ1(x, y, 0.05) on N together
with the algebraic function ξ1(N) = 1.266(2N +10)1/4 are shown in Figure 4.4 (left). This results
indicate that ρ1 still blows up, but does not develop a δ-type singularity and therefore its blow-up
is extremely hard to verify numerically.

In contrast, ρ2 collapses to a δ-function as indicated in Figure 4.4 (right), where we plot
maxΩ ρ2(x, y, 0.05) as a function ofN together with the quadratic function ξ2(N) = 0.0266(N−8)2.
Note that this quadratic increase indeed reflects a δ-type singularity since using either a finite-
volume, finite-difference or finite-element method 2-D δ-functions can only be resolved so that

max
j,k

(ρ2)j,k ∼
1

∆x∆y
.



Two-Species Chemotaxis 11

Figure 4.3: Example 2: ρ1 and ρ2 at time t = 0.05, computed on the 400× 400 uniform mesh.
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Figure 4.4: Example 2: max
(x,y)∈Ω

ρ1(x, y, 0.05) together with ξ1(N) = 1.266(2N + 10)1/4 (left) and

max
(x,y)∈Ω

ρ2(x, y, 0.05) together with ξ2(N) = 0.0266(N − 8)2 (right) as functions of N .

Example 3: Blow-Up of ρ1 and ρ2 with Non-Radial Initial Data in Region B. The
theoretical blow-up results for Region B reported in [5,7] only apply to radially symmetric initial
data. However, behavior of solutions with non-radially symmetric initial data is still an open
problem. In order to numerically investigate this case we take the following initial data:

ρ1(x, y, 0) = 12.5 e−100(x2/16+y2), ρ2(x, y, 0) = 12.5 e−100(x2+y2/16), (4.3)

and numerically solve the IVP (1.2), (4.3) with χ1 = 1, χ2 = 20 and µ1 = 1 in the domain
Ω = [−3, 3]× [−3, 3]. The results obtained using a uniform 400× 400 mesh are shown in Figure
4.5. They are quite similar to the corresponding results obtained in the radially symmetric case,
see Figure 4.3.

To better understand the difference in the behavior of ρ1 and ρ2, we perform a mesh refinement
study similar to the one conducted in Example 2. The results shown in Figure 4.6 support the
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Figure 4.5: Example 3: ρ1 and ρ2 at time t = 0.15, computed on the 400× 400 uniform mesh.

conjecture that non-radially symmetric initial data from Region B lead to the same different types
of blow-up as in the radially symmetric case.

 1.6
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Figure 4.6: Example 3: max
(x,y)∈Ω

ρ1(x, y, 0.15) together with η1(N) = 0.429(2N + 10)1/4 (left) and

max
(x,y)∈Ω

ρ2(x, y, 0.15) together with η2(N) = 0.0263(N − 8)2 (right) as functions of N .

Example 4: ρ2 Blows Up Faster than ρ1 in Region C. Next, we consider the system (1.2)
with χ1 = 6, χ2 = 100, µ1 = 1, and subject to the following initial data:

ρ1(x, y, 0) = 10 e−100(x2+y2), ρ2(x, y, 0) = 90 e−100(x2+y2).

Figure 4.7 shows that both ρ2 and ρ1 blow up, while c stays bounded. One can also observe that
ρ2 seems to blow up faster than ρ1. To verify this, we perform the mesh refinement study and plot
the results obtained on the 200× 200 and 400× 400 uniform grids at the same time t = 0.007. As
one can see, the magnitude of ρ2 increases by a factor of about 4 (from 8.9258 ·103 to 3.2590 ·104),
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which clearly indicates that by this time ρ2 has already blown up. At the same time, ρ1 increases
only by a factor of about 2 (from 55.9119 to 105.1929), which means that ρ1 is going to blow up
a little later. Notice that this numerical experiment confirms the analytical result from [4, 5, 7].

Remark 4.1 We have conducted more numerical experiments (not reported here for the sake of
brevity) that confirm the analytical results from [4, 7]: global existence of the solution in Region
A as well as simultaneous blow-up in Region D.

4.1.2 The Regularized System (4.1)

Example 5: Region B, Regularized Solution. We now consider the system (4.1), (1.5) with
s∗1 = s∗2 = 20 and the same data as in Example 2. A mesh refinement study presented in Figure
4.8 clearly demonstrates that saturated chemotaxis flux prevents blow-up of ρ2 though a spiky
structure is developed.

Example 6: Region C, Regularized Solution. Here, we consider the regularized system
(4.1), (1.5) with s∗1 = s∗2 = 20 and the same data as in Example 4. The obtained solution is shown
in Figure 4.9, where one can see a spiky structure in both density components. Note that while
the magnitude of ρ2 has increased, the magnitude of ρ1 has slightly decreased. A mesh refinement
study (not presented here for the sake of brevity) indicates that unlike the solution of the original
system (1.2) (shown in Example 4), the solution of the regularized system (4.1) does not blow up.
Moreover, by the time t = 0.05 the regularized solution has already reached its (numerical) steady
state.

4.2 Parabolic Systems

In this section, we numerically study behavior of solutions of the parabolic system (1.1) and its
two regularizations (1.3) and (1.6). In the parabolic case, no analytical results that could have
split the (θ1, θ2)-plane into particular regions (as it has been done in the parabolic-elliptic case
in Section 4.1) are available. However, one can expect the solutions of the parabolic system to
behave rather similarly to the solutions of the parabolic-elliptic systems, especially when µ1/D
and µ2/D are small (in all of our numerical experiments, we take µ1 = µ2 = 1 and D = 10).

As in Section 4.1, we perform the numerical experiments on a large square domain (either
[−1.5, 1.5] × [−1.5, 1.5] or [−3, 3] × [−3, 3] or [0, 10] × [0, 10]) and use the Neumann boundary
conditions.

4.2.1 The Original System (1.1)

Example 7: Global Existence. We first consider the system (1.1) with χ1 = 1, χ2 = 5, and
subject to the following initial data:

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 500 e−100(x2+y2), c(x, y, 0) ≡ 1. (4.4)

Our numerical experiments suggest that the solution of this IBVP remains smooth and bounded,
and the magnitude of both ρ1 and ρ2 monotonically decays in time. A snapshot of the computed
solution at time t = 0.01 is plotted in Figure 4.10.
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Figure 4.7: Example 4: ρ1, ρ2 and c at time t = 0.007, computed on the 200×200 (left) and 400×400
(right) uniform meshes.
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Figure 4.8: Example 5: ρ1 and ρ2 at time t = 0.05, computed on the 200× 200 (left) and 400× 400
(right) uniform meshes.

We then double the chemotactic sensitivity of the second species and take χ2 = 10. This leads
to the nonmonotone behavior of ρ2: Its magnitude first increases, but then starts decreasing and
by time t = 0.05 (see Figure 4.11) the solution looks similar to the one obtained with χ2 = 5 (the
only difference is that the ratio between the maximum values of ρ2 and ρ1 is now about 3 times
larger.

Example 8: ρ2 Blows Up Faster than ρ1. Next, we consider the system (1.1) subject to
the same initial data (4.4), but with much larger chemotactic sensitivity constants χ1 = 5 and
χ2 = 60. Figure 4.12 shows that both ρ2 and ρ1 blow up, but ρ2 blows up faster than ρ1 as it
is confirmed by the performed mesh refinement study. As one can see, when the mesh size is
doubled, the magnitude of ρ2 increases by a factor of about 4 (from 4.5158 · 104 to 1.8027 · 105),
which clearly indicates that by this time ρ2 has already blown up. At the same time, ρ1 increases
only by a factor of less than 2 (from 1.5263 · 103 to 2.8660 · 103), which means that ρ1 is going to
blow up a little later.
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Figure 4.9: Example 6: ρ1 and ρ2 at time t = 0.05, computed on the 200× 200 uniform mesh.

Example 9: Blow-Up of Large Initial Data. In this example, we take much larger initial
data,

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 5000 e−100(x2+y2), c(x, y, 0) ≡ 1, (4.5)

and the same chemotactic sensitivity constants χ1 = 5 and χ2 = 60. As it can be seen in Figure
4.13, both ρ1 and ρ2 blow up now much faster than in Example 8.

4.2.2 The Regularized Systems (1.3) and (1.6)

Example 10: Spiky Solutions—No Blowup. We now study the behavior of the solutions
of the regularized systems (1.3) and (1.6) subject to the same initial data (4.5) as in Example 9.
We first compute the solution of the system (1.3), (1.5) with s∗1 = s∗2 = 20. As one can see in
Figure 4.14, both ρ1 and ρ2 increase and the spikes are formed (notice that they have about the
same magnitude even though χ2 is much larger than χ1: this is an effect of the regularization).
However, the mesh refinement study clearly demonstrates that the solution has not blown up. Our
further numerical studies indicate that the obtained spiky solution is a steady state: it does not
change as the time increases.

The solution of the second regularized system (1.6) with κ = 0.01 is shown in Figure 4.15.
As one can clearly see, this regularized solution does not blow up as well. However, it behaves
differently: by the time t = 0.01, maxΩ ρ2 has increased, while maxΩ ρ1 has decreased. As in the
previous case, the obtained solution is a numerical steady state.

We finally decrease the regularization parameter and take κ = 0.001. The obtained solution,
plotted in Figure 4.16, is spiky, but bounded. Notice that now both ρ1 and ρ2 increase, but
maxΩ ρ2 is still about 5 times larger than maxΩ ρ1.

Example 11: Multi-Spiky Solutions. In the last example, we take noisy initial data,

ρ1(x, y, 0) ≡ ρ2(x, y, 0) = 10(1 + σ), c(x, y, 0) ≡ 1, (4.6)

where σ is a random variable uniformly distributed on [0, 1]. The solutions of both the first
regularized system (1.3), (1.5) with s∗1 = s∗2 = 20 (see Figure 4.17, left) and the second regularized
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Figure 4.10: Example 7: ρ1 and ρ2 at time t = 0.01, computed for χ1 = 1, χ2 = 5 in the domain
[−1.5, 1.5]× [−1.5, 1.5] using the 200× 200 uniform mesh.

system (1.6) with κ = 0.01 (see Figure 4.17, right) develop a complicated multi-spiky structures.
In both cases, the multi-spiky solutions are numerical steady states.

5 Conclusions

In this paper, we have presented a comprehensive numerical study of several two-species chemotaxis
Patlak-Keller-Segel type models. We have considered both the parabolic-elliptic as well as the
fully parabolic systems. The simplest (yet very challenging for rigorous mathematical analysis)
parabolic-elliptic case has been analytically studied in [4, 7]. It has been proven there that under
certain conditions on the initial cell densities and chemotactic sensitivity coefficients the system
admits global regular solutions, while under a different set of conditions the densities of both
species will simultaneously blow up within a finite time. If none of those conditions is satisfied,
the question of global existence vs. finite time blow-up remains open. The aim of the present
paper has been to present an extensive numerical study of possible configurations and indicate
answers to some open questions posted in [4,7]. More precisely, we have demonstrated that for the
parabolic-elliptic system the following 3 scenarios are possible: a global solution may exist, the
density of one species may blows up faster than the density of the second species, both densities
may blow up simultaneously.

In the fully parabolic case, the situation is more complicated and a complete identification of
the corresponding conditions for the initial data and parameters is not yet available. Nevertheless,
we have demonstrated that the same 3 scenarios are still possible.

Since blow up of the solution can be viewed as a purely mathematical artifact of the classical
Patlak-Keller-Segel type models, we have also studied two different regularizations that yield
spiky but bounded solutions. We have derived a-priori estimates that confirm that the solutions
of the regularized system indeed remain bounded. We have also conducted a number of numerical
experiments to study behavior of the obtained spiky solutions.
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Figure 4.11: Example 7: ρ1 and ρ2 at time t = 0.05, computed for χ1 = 1, χ2 = 10 in the domain
[−3, 3]× [−3, 3] using the 400× 400 uniform mesh.
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