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Abstract

We present a new adaptive genuinely multidimensional method within the frame-
work of the discontinuous Galerkin method. The discontinuous evolution Galerkin
(DEG) method couples a discontinuous Galerkin formulation with approximate evo-
lution operators. The latter are constructed using the bicharacteristics of multidi-
mensional hyperbolic systems, such that all of the infinitely many directions of wave
propagation are considered explicitly. In order to take into account multiscale phe-
nomena that typically appear in atmospheric flows nonlinear fluxes are split into a
linear part governing the acoustic and gravitational waves and to the rest nonlinear
part that models advection. Time integration is realized by the IMEX type ap-
proximation using the semi-implicit second-order backward differentiation formulas
(BDF2) scheme. Moreover in order to approximate efficiently small scale phenom-
ena adaptive mesh refinement using the space filling curves via AMATOS function
library is applied. Three standard meteorological test cases are used to validate
the new discontinuous evolution Galerkin method for dry atmospheric convection.
Comparisons with the standard one-dimensional approximate Riemann solver used
for the flux integration demonstrate better stability, accuracy as well as reliability
of the new multidimensional DEG method.
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1 Introduction and Meteorological Motivation

A characteristic property of atmospheric flows is their multiscale nature with wave speeds
differing by orders of magnitude. If the Mach and Froude numbers are small, the acoustic
and gravitational waves are much faster than advection, but only the latter is of primary
interest for numerical weather prediction. Naive explicit time integration would yield
prohibitively expensive numerical simulations, which makes a suitable splitting of fast and
slow waves highly desirable. This idea is not new and has been used extensively in previous
meteorological simulations. Many operational nonhydrostatic weather models use split-
explicit methods, where different time steps are used for slow and fast waves, respectively,
cf. [14], [23], the National Center for Atmospheric Research [22], Pennsylvania State
University/National Center for Atmospheric Research [41] or German Weather Service
[37]. Another common approach is based on semi-implicit time discretization; here the
fast waves that are of less interest are approximated implicitly, whereas slow advection is
treated explicitly. Several methods following this idea can be found, e.g., in [2, 8, 14, 20,
21, 31, 30, 35, 40] to name just a few.

Another characteristic of many atmospheric flows is their multidimensional character with
different localized structural phenomena such as, e.g., the cloud-environment interface. A
convenient tool to approximate these local structures efficiently is mesh adaptivity. In-
deed, adaptive mesh refinement has been applied in the atmospheric sciences quite suc-
cessfully over the past decades, see, e.g. [38, 3, 5]. Of course, the strategy where and how
the mesh has to be refined is a difficult scientific problem and depends on the particu-
lar application. The final application we have in mind is the simulation of an evolving
cumulus cloud and its interaction with the environment. This is an important meteo-
rological problem, since the evaporative cooling at the cloud-environment boundary and
its impact on the cloud evolution are not well understood [30], [18]. Consequently, effi-
cient adaptive numerical schemes can be expected to improve the insight into underlying
physical processes by explicitly resolving the interplay between the larger scales of the
cloud environment and the smaller scales inside the cloud and at its boundary. In order
to approximate localized structures efficiently, we will work with adaptive meshes using
the space filling curves via the AMATOS function library, cf. [4].

In this paper we develop a new semi-implicit genuinely multidimensional method within
the framework of discontinuous Galerkin scheme. The method is implemented in the
discontinuous Galerkin solver by Giraldo and Warburton [15], see also recent results
[29, 30] for applications to the Euler equations. However, instead of a standard one-
dimensional approximate Riemann solver, the flux integration within the discontinuous
Galerkin method is now realized by means of a genuinely multidimensional evolution op-
erator. The latter is constructed using the theory of bicharacteristics in order to take all
infinitely many directions of wave propagation into account. The approximate evolution
operator can be interpreted as a multidimensional numerical flux function. In the finite
volume framework the finite volume evolution Galerkin (FVEG) method has been used
successfully for various physical applications, e.g., wave propagation in heterogeneous
media [1], the Euler equations of gas dynamics [6, 27] or the shallow water equations
[10, 19, 24]. The FVEG method has been shown to be more accurate than standard FV
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methods based on one-dimensional Riemann solver, see also, [25] for further references.
One interesting question arising in this context is the following: does the multidimensional
evolution operator bring some advantages also in the discontinuous Galerkin framework?
In order to illustrate high accuracy, stability and robustness of the new DEG method we
will concentrate on two-dimensional dry atmospheric flows and standard meteorological
test cases.

The paper is organized as follows. In the next section we will describe the mathematical
model governing dry atmospheric flow, in Section 3 we derive the discontinuous Galerkin
method for spatial discretization and the IMEX type approximation for time discretiza-
tion. An emphasis is put on a non-standard discretization of the cell interface fluxes
by means of multidimensional EG operators, cf. Subsection 3.2. Numerical experiments
presented in Section 4 illustrate high accuracy and stability of the new EG method and
show comparisons with the DG method that uses the standard Rusanov numerical flux.

2 Mathematical Model

We start with the description of the mathematical model. Motion of compressible flows
is governed by the Euler equations

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u+ p Id) = − ρgk (2.1)

∂t(ρθ) +∇ · (ρθu) = 0 ,

where ρ denotes the density, u velocity, p pressure and θ the potential temperature.
Further, g represents the gravitational constant, Id is the identity matrix and k the unit
vector in the vertical direction. Denoting T temperature, the potential temperature can
be obtained from the equation of adiabatic process in an ideal gas

θ = T

(

p0
p

)R/cp

, R = cp − cv.

We use potential temperature as a variable since it is better suited for generalization to
moist atmospheric flow. In order to close the system we determine pressure from the state
equation

p = p0

(

Rρθ

p0

)γ

,

where γ = cp/cv is the adiabatic constant and p0 = 105Pa the reference pressure.

Many geophysical flows can be considered as a perturbation of some reference equilibrium
state. For example, atmospheric flows are typically represented as a perturbation over
the background hydrostatic state (ρ̄, ū(= 0), p̄, θ̄), cf., e.g. [14], [30],

∂p̄

∂y
= −ρ̄g.
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Here we assume that θ̄ = θ̄(y) or a particular case θ̄ = 300K. Then ρ̄ = p0
Rθ̄
π̄

cv
R , p̄ =

p(ρ̄, θ̄) = p0

(

Rρ̄θ̄
p0

)γ

with the Exner pressure π̄(y) := 1− gy/cpθ̄.

In order to avoid numerical instabilities due to the multiscale behaviour of (2.1) numerical
simulations are typically realized for perturbations ρ′ = ρ− ρ̄, θ′ = θ− θ̄, p′ = p− p̄. The
latter satisfy the following equation

∂tρ
′ +∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u+ p′ Id) = − ρ′gk (2.2)

∂t(ρθ)
′ +∇ · (ρθu) = 0.

Our aim in what follows is to approximate (2.2) with the discontinuous Galerkin method.
However, instead of the classical one-dimensional numerical flux function we will apply
a genuinely multidimensional evolution operator. To this end let us rewrite (2.2) in the
form of hyperbolic balance law

∂q

∂t
+∇ · F(q) = S(q), (2.3)

where

q =





ρ′

ρu
(ρθ)′





and

F(q) =





ρu
ρu⊗ u+ p′ Id

ρθu



 , S(q) =





0
−ρ′gk

0





is the nonlinear flux function and the source term, respectively. We should note that in
our numerical experiments we will also use a stabilization through the artificial viscosity
[39], [30], which results in the following source term

S(q) =





0
−ρ′gk+∇ · (µρ∇u)

∇ · (µρ∇θ′)



 ,

where µ > 0 is an artificial viscosity parameter that will be specified later.

3 Discontinuous Galerkin method and the multidi-

mensional EG operator

In the last decades the discontinuous Galerkin (DG) method has been used extensively for
approximation of partial differential equations, see, e.g., [7, 9, 11, 17, 32, 36] and the ref-
erences therein. The method is popular due to its flexibility: it is based on the Galerkin,
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i.e. variational, formulation, allows handling unstructured triangulations of complex ge-
ometries, mesh adaptation, and flexible choice of the polynomial basis. Consequently,
both mesh (h−) and polynomial (p−) adaptivity can be applied quite naturally.

In this section we follow [35], [29], [30] and derive the strong formulation of (2.3). Let us
divide the computational domain Ω into a finite number of mesh cells Ωe with a boundary
∂Ωe. In our numerical experiments we work with triangular elements Ωe and use the nodal
basis functions {ψj, j = 1, . . . , N}, N is a number of degrees of freedom. Now, multiplying
(2.3) with a nodal basis ψi(x), integrating over Ωe and applying twice integration by parts
we obtain the strong formulation

∫

Ωe

(

∂qh

∂t
+∇ · F(qh)− S(qh)

)

ψi(x)dx = (3.4)

∫

∂Ωe

(F(qh)− F∗)ψi(x)dS, i = 1, . . . , N.

Here qh denotes a numerical solution qh(x) :=
∑N

j qjψj(x) and F∗ is a suitable numerical
flux function that approximates cell interface fluxes.

We use the Lagrange polynomials having the basis functions ψj with the Fekete points for
the interpolation and the Gauss points for the integrations. In the numerical experiments
presented below approximations with the second order Lagrange polynomials will be used.
In the previous papers [13, 15, 29, 30] , where geophysical flows were simulated by the
discontinuous Galerkin method the one-dimensional Rusanov flux has been chosen as the
numerical flux, i.e.

F∗ :=
1

2
(F(qL) + F(qR))− λ (qR − qL)n. (3.5)

Here qL, qR denote the limiting left and right values of the approximate solution at the
cell interface, n is the outer normal to the cell interface and λ the maximum wave speed
‖u‖+ a, a denotes the speed of sound.

The novelty of our work relies on the use of multidimensional evolution operator in order
to compute F∗. More precisely, in the predictor step the cell interface values q∗ are
computed by the multidimensional evolution Galerkin operator (EG), q∗ := EGqh. The
multidimensional numerical flux is then obtained as follows

F∗ := F(q∗). (3.6)

Derivation of the multidimensional evolution operator will be presented in Section 3.2.

3.1 IMEX time integration

In order to approximate efficiently multiscale phenomena we follow the ideas of Restelli
and Giraldo [12], [35] and split the system (2.3) into two parts governing fast and slow
waves. The fast waves are approximated implicitly and the slow waves explicitly. More
precisely,

∂q

∂t
= N (q),

5



where the full nonlinear operator N (q) = ∇ · F(q)− S(q) is split in the following way

N (q) = L(q) +R(q)

with R := N − L and

L(q) :=









div(ρu)
∂p′/∂x

∂p′/∂y + gρ′

div(θρu)









.

Here we use a linearized version of gradients of p′ and set ∂p′

∂x
= cpp

cvρθ

∂(ρθ)′

∂x
= γ̃ ∂(ρθ)′

∂x
, where

γ̃ = γR = const. Consequently, the operator L is indeed a linear operator with respect
to the variables q := (ρ′, ρu, ρv, (ρθ)′)T . Denoting S(q) := (0, 0, gρ′, 0)T the semi-discrete
form of the linear subsystem reads

∂q

∂t
+ J1

∂q

∂x
+ J2

∂q

∂y
= S(q). (3.7)

Here the Jacobians are

J1 =









0 1 0 0
0 0 0 γ̃
0 0 0 0
0 θ̄ 0 0









J2 =









0 0 1 0
0 0 0 0
0 0 0 γ̃
0 0 θ̄ 0









,

where θ̄ = θ̄(y).

Now, computing the eigenstructure of the matrix pencil of the system (3.7) shows that

(3.7) is a hyperbolic system with eigenvalues λ1 = −c, λ2,3 = 0, λ4 = c, where c :=
√

γ̃θ̄.
It should be pointed out that for the non-dimensional form of (2.2) we would have γ̃ = γR

M2 ,
whereM = uref/cref is the Mach number and the system (3.7) indeed models fast acoustic
waves, see also [34]. Consequently, it has to be approximated in an implicit way. In what
follows we use the second order backward difference formula of implicit-explicit (IMEX)
type

1

γ∆t

1
∑

m=−1

αmq
n−m
h =

1
∑

m=0

βm
[

N (qn−m
h )− L(qn−m

h )
]

+ L(qn+1
h ), (3.8)

where for the fixed time step ∆t we have α−1 = −1, α0 = 4/3, α1 = −1/3, γ = 2/3, β0 =
2, β1 = −1.

The scheme can be also rewritten as the explicit predictor and implicit corrector scheme,
which yields

qex
h :=

1
∑

m=0

αmq
n−m
h + γ∆t

1
∑

m=0

βmN (qn−m
h ) (3.9)

and
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[1− γ∆tL] qn+1
h = qex

h − γ∆t
1

∑

m=0

βmL(qn−m
h ). (3.10)

The resulting system of linear algebraic equations is solved by a suitable algebraic solver.
In our experiments presented below we have used the GMRES with the Jacobi precon-
ditioner, more sophisticated choices of linear solvers may further decrease computational
costs.

3.2 Multidimensional EG operators

The evolution Galerkin method has been firstly proposed by Lukáčová, Morton and War-
necke [26] for linear acoustic equation and later generalized by Lukáčová and coworkers
in the framework of finite volume evolution Galerkin schemes for more complex hyper-
bolic conservation laws, such as the Euler equations of gas dynamics [27], the shallow
water equations [24, 19, 10] just to mention a few of them. Since the flux integrals are
approximated using the multidimensional evolution operators the interaction of complex
multidimensional waves is approximated more accurately in comparison to schemes us-
ing just one-dimensional approximate Riemann solvers. Extensive numerical experiments
also confirm good stability as well as high accuracy of the evolution Galerkin methods
[26, 27, 24, 19].

In this subsection we will derive approximate evolution operators for both operators N
as well as L that are based on the theory of bicharacteristics for multidimensional hyper-
bolic conservation laws. We will describe the derivation of the evolution operator for the
operator N in more details, the derivation of the evolution operator L is analogous.

First, let us rewrite (2.2) in a quasilinear form using the primitive variablesw = (ρ′, u, v, p′)

∂tw+A1(w) ∂xw+A2(w) ∂yw = s(w) (3.11)

with

A1 =









u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u









, A2 =









v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v









, s = −









∂yρ̄ v
0
ρ′

ρ
g

∂yp̄ v









. (3.12)

Using the above thermodynamic relationship for ρ̄, p̄ we obtain

∂yρ̄ = − p0 cv g

(Rθ̄)2cp

(

1− gȳ

cp θ̄

)
cv
R
−1

, ∂yp̄ = −g p0
R θ̄

(

1− gȳ

cp θ̄

)
cv
R

.

We first linearize (3.11) by freezing the Jacobian matrices A1,A2 at a suitable interme-
diate state ρ̃′, ũ, ṽ, p̃′. In the numerical experiments presented below this intermediate
state is obtained as the local average of (left/right) limiting values at cell interfaces. Since
our problem is hyperbolic we have real eigenvalues and a full set of linearly independent
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Figure 1: Bicharacteristic cone used for the evolution operator

eigenvectors corresponding to the matrix pencil P := A1nx +A2ny, where (nx, ny) is an
arbitrary unit vector ‖(nx, ny)‖ = 1. Indeed, the eigenvalues of P are

λ1 = ũ nx + ṽ ny − ã,

λ2 = λ3 = ũ nx + ṽ ny,

λ4 = ũ nx + ṽ ny + ã,

where ã :=
√

γ p̃
ρ̃
=

√

γRθ̃
(

ρ̃Rθ̃
p0

) R
cv

is the speed of sound. Now multiplying (3.11) by a

matrix R−1, R consists of the right eigenvectors of P , we can rewrite (3.11) using the
so-called characteristic variables v = R−1w

∂tv+B1∂xv+B2∂yv = r ,

where Bi := R−1AiR and r := R−1s(w). Equivalently, we have

∂tv+ diag(B1)∂xv+ diag(B2)∂yv = S+ r (3.13)

with

S(x, θ) := − [(B1 − diag(B1))∂xv+ (B2 − diag(B2))∂yv] .

Integrating each equation of (3.13) along the corresponding bicharacteristic xj from tn to
tn + τ :

dxj

dt
:= [B1,jj ,B2,jj ]

T, j = 1, . . . , 4,
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we obtain after some lengthy manipulations, analogous to those in [26, 27], the following
exact integral representation

ρ′(P) =
ρ̃

2πã

∫ 2π

0

[

− cos(ω) u(Q1(ω))− sin(ω) v(Q1(ω)) +
1

ρ̃ ã
p′(Q1(ω))

]

dω

+ ρ′(Q2)−
p′(Q2)

ã2

− ρ̃

2πã

∫ 2π

0

∫ tn+τ

tn

β(t, ω) dt dω

− ρ̃

2πã

∫ 2π

0

∫ tn+τ

tn

− sin(ω)g
ρ′

ρ
(x1(t, ω)) +

v(x1(t, ω))

ρ̃ ã
∂yp̄ dt dω

+

∫ tn+τ

tn

v(x2(t))

(

−∂yρ̄+
∂yp̄

ã2

)

dt ,

u(P) =
1

2π

∫ 2π

0

[

−p
′(Q1(ω))

ρ̃ã
cos(ω) + u(Q1(ω)) cos

2(ω) + v(Q1(ω)) sin(ω) cos(ω)

]

dω

+
1

2
u(Q2) +

1

2π

∫ 2π

0

∫ tn+τ

tn

cos(ω) β(t, ω) dt dω

+
1

2π

∫ 2π

0

∫ tn+τ

tn

cos(ω)
v(x1(t, ω))

ρ̃ ã
∂yp̄− sin(ω) cos(ω)g

ρ′

ρ
(x1(t, ω)) dt dω

− 1

2ρ̃

∫ tn+τ

tn

∂xp
′(x2(t)) dt ,

v(P) =
1

2π

∫ 2π

0

[

−p
′(Q1)

ρ̃ã
sin(ω) + u(Q1) cos(ω) sin(ω) + v(Q1) sin

2(ω)

]

dω

+
1

2
v(Q2) +

1

2π

∫ 2π

0

∫ tn+τ

tn

sin(ω) β(t, ω) dt dω

+
1

2π

∫ 2π

0

∫ tn+τ

tn

sin(ω)
v(x1(t, ω))

ρ̃ ã
∂yp̄− sin2(ω)g

ρ′

ρ
(x1(t, ω)) dt dω

− 1

2ρ̃

∫ tn+τ

tn

∂yp
′(x2(t)) dt−

1

2
g

∫ tn+τ

tn

ρ′

ρ
(x2(t)) dt ,

p′(P) =
1

2π

∫ 2π

0

[p′(Q1(ω))− ρ̃ãu(Q1(ω)) cos(ω)− ρ̃ãv(Q1(ω)) sin(ω)] dω

− ρ̃ã
1

2π

∫ 2π

0

∫ tn+τ

tn

β(t, ω) dt dω

− 1

2π

∫ 2π

0

∫ tn+τ

tn

− sin(ω)ρ̃ã g
ρ′

ρ
(x1(t, ω)) + v(x1(t, ω))∂yp̄ dt dω.

Here β(t, ω) = ã [∂xu sin2(ω)−(∂yu+∂xv) sin(ω) cos(ω)+∂yv cos2(ω)] and P = (x, y, tn+
τ), Q1 ≡ Q1(ω) = (x− (ũ− ã cos(ω))τ, y− (ṽ− ã sin(ω))τ, tn), Q2 = (x− ũτ, y− ṽτ, tn)
are respectively the pick and footpoints of the bicharacteristics that generate the mantle
of the bicharacteristic cone, cf. Figure 1.
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To obtain an explicit approximate evolution operator the above exact integral represen-
tation needs to be approximated. First, all time integrals are approximated using the
rectangle rule. Integrals along the base perimeter, that contain β(tn, ω) terms, are re-
placed by means of integration by parts. More precisely, applying Lemma 2.1 [26] we
obtain

τ

∫ 2π

0

β(tn, ω) =

∫ 2π

0

u(Q1) cos(ω) + v(Q1) sin(ω) dω

τ

∫ 2π

0

β(tn, ω) cos(ω) =

∫ 2π

0

u(Q1)(2 cos
2(ω)− 1) + 2v(Q1) sin(ω) cos(ω) dω

τ

∫ 2π

0

β(tn, ω) sin(ω) =

∫ 2π

0

2u(Q1) sin(ω) cos(ω) + v(Q1)(2 sin
2(ω)− 1) dω.

Further we approximate ρ′

ρ
with ρ′

ρ̃
and substitute the condition for hydrostatic balance

∂yp̄ = −ρ̄g in the equations for ρ′(P), u(P), v(P), p′(P). The state equation also yields

∂yρ̄ = −π−1 cv
cpRθ̄

ρ̄g = − ρ̄g
ā2
.

This implies that the last term in the equations for ρ′(P) vanishes approximately

∫ tn+τ

tn

v(x2(t))

(

−∂yρ̄+
∂yp̄

ã2

)

dt ≈ 0.

Moreover, pressure derivatives ∂xp
′(x2) and ∂yp

′(x2) in the equations for u(P), v(P) can
be approximated using the midpoint rule and the Gauss theorem

− τ

2ρ̃
∂xp

′(Q2) = − 1

2πρ̃ã

∫ 2π

0

p′(Q1) cos(ω) dω +O(τ 2)

− τ

2ρ̃
∂yp

′(Q2) = − 1

2πρ̃ã

∫ 2π

0

p′(Q1) sin(ω) dω +O(τ 2).

These approximations yield finally the desired approximate evolution operator in order
to predict the cell interface values q∗ ≡ (ρ′(P), u(P), v(P), p′(P)) = EGN qh in (3.4).
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Approximate evolution operator EGN for the nonlinear operator N (3.11)

ρ′(P) =
1

2π ã

∫ 2π

0

[

−2ρ̃ cos(ω) u(Q1(ω))− 2ρ̃ sin(ω) v(Q1(ω)) +
p′(Q1(ω))

ã

]

dω

+ ρ′(Q2)−
p′(Q2)

ã2
+

τ

2π ã

∫ 2π

0

[

sin(ω)ρ′(Q1) g +
v(Q1)

ã
ρ̄g

]

dω ,

u(P) =
1

2π

∫ 2π

0

[

−2p′(Q1)

ρ̃ã
cos(ω) + u(Q1)(3 cos

2(ω)− 1) + 3v(Q1) sin(ω) cos(ω)

]

dω

+
1

2
u(Q3)−

τ

2πρ̃

∫ 2π

0

cos(ω)

[

sin(ω)ρ′(Q1)g +
v(Q1)

ã
ρ̄g

]

dω ,

v(P) =
1

2π

∫ 2π

0

[

−2p′(Q1)

ρ̃ã
sin(ω) + 3u(Q1) sin(ω) cos(ω) + (3 sin2(ω)− 1)v(Q1)

]

dω

+
1

2
v(Q3)−

τ

2πρ̃

∫ 2π

0

sin(ω)

[

sin(ω)ρ′(Q1) g +
v(Q1)

ã
ρ̄g

]

dω − τ

2ρ̃
ρ′(Q3)g ,

p′(P) =
1

2π

∫ 2π

0

[p′(Q1(ω))− 2ρ̃ãu(Q1(ω)) cos(ω)− 2ρ̃ãv(Q1(ω)) sin(ω)] dω

+
τ ã

2π

∫ 2π

0

[

sin(ω)ρ′(Q1) g +
v(Q1)

ã
ρ̄g

]

dω. (3.14)

We should point out that all integrals along the base perimeter (sonic circle), i.e. integrals
with respect to ω, are evaluated exactly for given discrete data. We make a transformation
of the actual triangle to the reference triangle, where the corresponding integrals along
the arcs of sonic circle were precomputed with the help of the computer algebra package
Mathematica.

Our next goal is to derive the approximate evolution operator for the system (3.7). Since
the acoustic subsystem (3.7) is linear, the derivation of the exact evolution operator is
even easier and it has been already obtained, e.g., in [27]. Indeed, applying the above
procedure we obtain in an analogous way the following exact evolution operator for the
acoustic system (3.7), cf. [27], [28].
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ρ′(P) = ρ′(Q2)−
γ̃(ρθ)′(Q2)

c̃2

+
1

2πc̃

∫ 2π

0

− cos(ω) (ρu)(Q1(ω)− sin(ω) (ρv)(Q1(ω)) +
γ̃

c̃
(ρθ)′(Q1(ω))dω

− 1

2πc̃

∫ 2π

0

∫ tn+τ

tn

1

tn + τ − t
[cos(ω)(ρu)(x1(t, ω)) + sin(ω)(ρv)(x1(t, ω))] dt dω

− 1

2πc̃

∫ 2π

0

∫ tn+τ

tn

sin(ω)gρ′(x1(t, ω)) dt dω ,

(ρu)(P) =
1

2
(ρu)(Q2)−

γ̃

2

∫ tn+τ

tn

∂x(ρθ)
′(x2(t))dt

+
1

2π

∫ 2π

0

cos2(ω) (ρu)(Q1(ω)) + sin(ω) cos(ω) (ρv)(Q1(ω))−
γ̃

c̃
(ρθ)′(Q1(ω)) cos(ω)dω

− 1

2πc̃

∫ 2π

0

∫ tn+τ

tn

1

tn + τ − t
[cos(2ω) (ρu)(x1(t, ω)) + sin(2ω) (ρv)(x1(t, ω))] dt dω

+
1

2πc̃

∫ 2π

0

∫ tn+τ

tn

sin(ω) cos(ω)gρ′(x1(t, ω)) dt dω ,

(ρv)(P) =
1

2
(ρv)(Q2)−

γ̃

2

∫ tn+τ

tn

∂y(ρθ)
′(x2(t))dt

+
1

2π

∫ 2π

0

cos(ω) sin(ω) (ρu)(Q1(ω)) + sin2(ω) (ρv)(Q1(ω))−
γ̃

c̃
(ρθ)′(Q1(ω)) sin(ω)dω

− 1

2πc̃

∫ 2π

0

∫ tn+τ

tn

1

tn + τ − t
[sin(2ω) (ρu)(x1(t, ω))− cos(2ω) (ρv)(x1(t, ω))] dt dω

+
1

2πc̃

∫ 2π

0

∫ tn+τ

tn

sin2(ω)gρ′(x1(t, ω)) dt dω ,

(ρθ)′(P) =
1

2π

∫ 2π

0

(ρθ)′(Q1(θ))−
c̃

γ̃
cos(ω) (ρu)(Q1(ω))−

c̃

γ̃
sin(ω) (ρv)(Q1(ω))dω

− 1

2π

∫ 2π

0

∫ tn+τ

tn

c̃

γ̃(tn + τ − t)
[cos(ω) (ρu)(x1(t, ω)) + sin(ω) (ρv)(x1(t, ω))] dt dω

− 1

2πγ̃

∫ 2π

0

∫ tn+τ

tn

sin(ω)gρ′(x1(t, ω)) dt dω.

Here c̃ =

√

γ̃ ˜̄θ and ˜̄θ is obtained as a local average of θ̄. Note that we have used analogous
notation for bicharacteristics x1(t, ω), x2(t) and Q1, Q2 as for the nonlinear operator
above. Of course, in the case of the linear operator L the corresponding eigenvalues
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determine the geometry of the bicharacteristic cone. Consequently, we now have Q1 =
(x− c̃ cos(ω)τ, y − c̃ sin(ω)τ, tn), Q2 = (x, y, tn) and P = (x, y, tn + τ).

In order to approximate the above exact integral representation we apply the rectangle
rule for time integrations and the second and third equation of (3.7) to eliminate space
derivatives of (ρθ)′(Q2(t)) in the equations for ρu and ρv. This yields the approximate
evolution operator EGL that has been denoted as the EG3 in [28]. Consequently, we have
for the acoustic system (3.7) q∗ ≡ (ρ′(P), ρu(P), ρv(P), (ρθ)′(P)) = EGL qh.

Approximate evolution operator EGL for the linear operator L (3.7)

ρ′(P) = ρ′(Q2)−
γ̃(ρθ)′(Q2)

ã2

+
1

2πã

∫ 2π

0

[

−2 cos(ω) (ρu)(Q1(ω)− 2 sin(ω) (ρv)(Q1(ω)) +
γ̃

ã
(ρθ)′(Q1(ω))

]

dω

− τ

2πã

∫ 2π

0

sin(ω)gρ′(x1(t, ω)) dω

(ρu)(P) =
τ

2πã

∫ 2π

0

sin(ω) cos(ω)gρ′(x1(t, ω)) dω

+
1

π

∫ 2π

0

[

(3 cos2(ω)− 1) (ρu)(Q1(ω)) + 3 sin(ω) cos(ω) (ρv)(Q1(ω))

− γ̃

ã
(ρθ)′(Q1(ω)) cos(ω)

]

dω

(ρv)(P) =
τ

2πã

∫ 2π

0

sin2(ω)gρ′(x1(t, ω)) dω

+
1

π

∫ 2π

0

[

3 cos(ω) sin(ω) (ρu)(Q1(ω)) + (3 sin2(ω)− 1) (ρv)(Q1(ω))

− γ̃

ã
(ρθ)′(Q1(ω)) sin(ω)

]

dω

(ρθ)′(P) = − τ

2πγ̃

∫ 2π

0

sin(ω)gρ′(x1(t, ω)) dω

+
1

2π

∫ 2π

0

[

(ρθ)′(Q1(θ))− 2
ã

γ̃
cos(ω) (ρu)(Q1(ω))− 2

ã

γ̃
sin(ω) (ρv)(Q1(ω))

]

dω.

(3.15)

The resulting discontinuous evolution Galerkin scheme is based on the spatial discretiza-
tion (3.4), IMEX type time discretization (3.9), (3.10) and the multidimensional approx-
imate evolution operators (3.14) and (3.15) in order to approximate cell interface fluxes
for the nonlinear and linear operators N and L, respectively. The parameter τ describes
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the time step of the evolution. In our numerical experiments we have taken τ ≪ ∆t,
where ∆t is the time step of the IMEX time integration, cf. Section 3.1. Consequently,
the operator models the local evolution. In the numerical experiments presented below
piecewise quadratic approximate functions in space are used, that yield six degrees of
freedom (DoF) per a triangular finite element: three DoFs are located at the vertices of
the triangular mesh cells and three DoFs at the centers of the cell interfaces. When we
benchmark our model comparing it to the DG method with the Rusanov flux function, we
do not use any kind of limiter or filter except for the artificial viscosity as described in Sec-
tion 2. In our recent work [6] we have also generalized the discontinuous Galerkin solver
of Giraldo and Warburton [15] by including the GPU implementation of the genuinely
multidimensional EG operator.

4 Numerical Experiments

To verify the new discontinuous evolution Galerkin method, we carry out three numerical
experiments for the test cases: (i) free convection of a smooth warm air bubble, (ii)
collision of a large warm bubble with a small cold bubble placed on top of the warm one,
and (iii) a density current caused by a falling cold air bubble. In these experiments, due
to the buoyancy forces caused by differences in the density of the air bubbles and the
isothermal environment, the initially resting air bubbles develop a vertical motion with
low Mach number M ≪ 1.

4.1 Test 1: Free convection of a smooth warm air bubble due
to Giraldo and Restelli [13]

In the Giraldo–Restelli experiment shown in Figure 2, the warm bubble rises and deforms
symmetrically due to the shear friction with the surrounding air at the warm/cold air
interface, adapting a mushroom-like shape gradually. The warm air bubble is placed at
xc = 500m, yc = 350m with the initial potential temperature perturbation:

θ′ =

{

0 for r > rc

(θ′c/2) [1 + cos (πr/rc)] for r ≤ rc
(4.16)

where θ′c = 0.5K is the maximal initial amplitude of the perturbation, rc = 250m is the
bubble radius, and r the distance to the center of the bubble (xc, yc).

In order to simulate efficiently localized structures arising in geophysical flows, such as
cloud boundaries, adaptive mesh refinement is a very suitable tool. We work with the
function library AMATOS of Behrens et al. [4], where h−adaptive mesh refinement is
based on the space filling curve approach. Our numerical experiments were performed
on the domain of 1km×1km with no-flux boundary conditions, using the h−adaptive
mesh refinement method, where the spatial resolution is adapted by refining or coarsen-
ing the mesh cells. The maximal resolution degree of the mesh is n = 11, which yields
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1000m/
√
2
n+1 ≈ 15.6m per the finite element shortest edge in the simulation domain.

Since we use the second order polynomials, the finest resolution of the grid is 7.8m corre-
sponding to a half of the length of a shortest edge.

Analogously as in [30], in the numerical experiment presented in Figure 2 we use a slightly
modified, simple refinement criterion

max
x∈Ωe

[sgn(θ′c)θ
′(x, t)] ≥ σ|θ′c| (4.17)

for the deviation of the potential temperature from the background state θ′ = θ − θ̄;
σ ≪ 1 is a test dependent parameter (for the numerical experiments in this work we use
σ = 0.1), and θ′c is the maximal initial amplitude for the perturbation of the potential
temperature.

If condition (4.17) holds on some element Ωe, the element will be recursively refined up
to a specified finest mesh resolution. In the rest of the computational domain the mesh
is adaptively coarsened, see also [30] for further details.

In Figure 2 we show the simulation results obtained using the newly derived multidi-
mensional DEG method (left-hand side of the shown snapshots) and the DG method
with the standard Rusanov numerical flux (3.5) (right-hand side). The latter model will
be simply referred to as the Rusanov method later on in this paper. Both simulations
were performed using the IMEX type approximation for time discretization as described
in Section 3.1. The artificial viscosity in both tests is kept constant µ = 0.1 over the
computational domain and time. The integration time step is ∆t = 0.1s. The corre-
sponding Courant-Friedrichs-Lewy conditions calculated on the smallest mesh element is

CFL ≡ max
[

(|u|+a)∆t
∆x

]

≈ 4.43 for the total velocity, CFLu ≡ max
[

|u|∆t
∆x

]

≤ 3.3 · 10−2 for

the advective part. The time step for the evolution of EG operator is τ = 1.25 · 10−3s,
which corresponds to CFLEG ≈ 5.5 · 10−2.

Both models yield very similar solutions of the Euler equations model for the time t <
600s. The differences between both solutions become however noticeable at t = 600s.
The solution obtained with the Rusanov flux exhibits short length scale oscillations (cf.
isolines at x ≈ 350m, y ≈ 800 in Figure 2, right-hand side, t = 600s) whereas the isolines
are quite smooth for the DEG method (on the left-hand side in the same figure). A very
pronounced oscillation of the perturbation front can be observed on the top of the air
bubble for the Rusanov flux. The snapshots for the time t = 900s in the same figure show
that the solutions become very different for later time.

In order to analyse in more detail the evolution of the solutions at later times we plot
a few selected iso-levels of the excess potential temperature for intermediate times in
Figure 3. The isolines shown for θ′ = 0.05, 0.25, and 0.4K represent the structure of the
solution close to the background, in the middle, and near the maximum of the background
perturbation, respectively. The solution based on the EG operator can be characterized
as being stable against the short length scale perturbations (all isolines are smooth). A
large scale oscillation appears at the bottom of the air bubble interface at time t = 800s
(x ≈ 850m, y ≈ 600m) that seems to be due to the Kelvin-Helmholtz instability caused
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Figure 2: Excess potential temperature θ′ for the rising thermal bubble in the numerical
experiment proposed by Giraldo and Restelli [13], obtained by the new semi-implicit
method on the h−adaptive grid with the coarse/fine grid resolution levels n = 1 − 11,
respectively, and the constant artificial viscosity µ = 0.1m2/s: On the left-hand side is
with novel multidimensional EG operator in the numerical flux function, on the right-hand
side with the Rusanov flux function. The real-world domain is 1km×1km (only a half of
the squared computational domain is shown in the x-direction); the shortest edge of the
adaptive mesh elements is ≈ 15.6m, the spatial resolution ≈ 7.8m. The simulation times
are as indicated; CFL ≈ 4.43, advective CFLu ∈ {0, 0.0238, 0.0331, 0.0286} for DEG
method and CFLu ∈ {0, 0.0238, 0.0332, 0.0313} for the Rusanov flux model. CFLEG ≈
0.055. Contour levels correspond to θ′ = 0.05, 0.15, 0.25, 0.35, and 0.45K.
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Figure 3: Giraldo-Restelli test for the DEG method a) and the DG method with the
Rusanov flux b), with constant viscosity µ = 0.1m2/s at times as shown; CFL ≈ 4.43,
advective CFLu ∈ {0.0331, 0.0312, 0.0278, 0.0286} for DEG model (from top to bottom)
and CFLu ∈ {0.0332, 0.0314, 0.0279, 0.0313} for the Rusanov flux. Contour levels are for
θ′ = 0.05, 0.25, and 0.4K. The structure of the adaptive meshes is shown once for clarity.
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Figure 4: Giraldo-Restelli test for the DG method with the Rusanov flux, with
constant viscosity µ = 0.25m2/s at times as shown, CFL ≈ 4.43, CFLu ∈
{0.0306, 0.0299, 0.0269, 0.0248} (from top to bottom). Contour levels are for θ′ = 0.05,
0.25, 0.4K.
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Figure 5: Comparison of the contour level θ′ = 0.05K of the excess potential temperature
in the Giraldo and Restelli test for time t = 900s using the DEG method with constant
viscosity µ = {0.1, 0.18, 0.25}m2/s (red, green, and yellow curves, respectively), and the
Rusanov flux model with constant viscosity µ = 0.25m2/s (blue curves). The coarse/fine
mesh resolution is n = 1−11, corresponding to the spatial resolution of ≈ 7.8m along the
shortest element edge (15.6m), CFL ≈ 4.43, CFLu ≈ 0.0286 (DEG) and CFLu ≈ 0.0248
(Rusanov).

19



by the shear flow interactions along the interface between the rising bubble with the
surrounding air at rest. These long wave-length oscillations of the interface lead to the
turbulent structure at later times (e.g., t = 900s shown in the same figure), typical
for the Kelvin-Helmholtz phenomenon. This has been studied intensively by numerical
experiments, see, e.g., [16, 30, 33]; note that the exact solution to this problem is unknown.

We compare results obtained by the DEG method with those obtained by the DG method
with the Rusanov flux model shown on the right-hand side in Figure 3 for which the isolines
exhibit high frequency oscillations, as mentioned above. At late time (t ≥ 700s) island-
like tiny-scale isolated spots (mini-bubbles) develop due to the reconnections between the
close located, oscillating isolines. Such structure can be seen for all iso-levels (not only
for that one located close to the background level θ′ = 0, where the oscillations of the
background could yield such artifacts).

A simple increasing of the artificial viscosity in order to damp the oscillations cannot really
be considered as a reliable method to eliminate this issue. Although it is known that by
increasing the viscosity one can damp the oscillations, we show that the final solution can
change on large scales significantly, too. In Figure 4 we show the simulation results using
the Rusanov flux model with the constant artificial viscosity µ = 0.25m2/s. This value of
the viscosity has been chosen because it is just enough to make the model stable against
the short length scale fluctuations and hence to remove the high frequency oscillations.
However, this value of µ is already so high that the obtained solution looks very different,
if compared to the previously discussed results for µ = 0.1m2/s: i) the Kelvin-Helmholtz
instability along the outer interface has been completely damped, and ii) the solution
became very dissipative which can be deduced from the shape of the isolines for θ′ = 0.4
(the red curve in Figure 4). This isoline shrunk in length for times t = 600s and t = 700s
and it has completely disappeared for later times that means a significantly decreased
amplitude of the perturbation, if compared to µ = 0.1m2/s in Figure 3.

In Figure 5 we show a comparison of the solutions obtained by the DEG model for several
values of the viscosity parameter µ = 0.1, 0.18, 0.25m2/s and by the Rusanov flux model
with the viscosity parameter µ = 0.25m2/s chosen for the stability reason. The results of
both models agree very well in some regions of the computational domain, e.g., along the
interfaces located in the interior of the air bubble where the shear forces are negligible.
The outer interface calculated by the DEG method shows significant difference in the
details of the simulated structure for the low value of the artificial viscosity parameter
(µ = 0.1m2/s) and it approaches the solution of the Rusanov model as the viscosity
parameter increases. We would like to point out that the DEG solution remains stable
for different choices of the constant viscosity parameter, whereas for the Rusanov model
either higher constant viscosity or adaptive viscosity (4.18) has to be applied to stabilize
the solution.
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4.2 Test 2: Collision of a large warm bubble with a small cold
bubble due to Robert [33]

Robert [33] has proposed the experiment shown in Figure 6. The shape of the rising warm
bubble is affected by the small cold bubble, which slides downwards along the right-hand
side of the interface, destroying the symmetry of the warm bubble. Two bubbles are
initially placed at (xc, yc) = (500m, 300m) and (xc, yc) = (560m, 640m), for the warm
and the cold bubbles, respectively (cf. Figure 6). The maximal amplitudes of the initial
potential temperature perturbation are θ′c = 0.5K and θ′c = −0.15K, respectively. The
profiles of the initial perturbation for the excess potential temperature are given by a
Gaussian distribution

θ′ =

{

θ′c for r ≤ rc
θ′c exp

[

− (r − rc)
2 /502

]

for r > rc

with a flat core of radius rc = 150m for the warm bubble and rc = 0 for the cold bubble.

In the previous tests we have seen that one can obtain a stable and an oscillating solution
on an adaptive mesh, depending on the value of the viscosity. A high viscosity stabilizes
the solution, but changes it too much. Here we perform the simulations with both: on a
regular static and on an adaptive mesh, with a constant and an adaptive viscosity in order
to study the impact of these approaches on the stability of the methods. The integration
time step is set to ∆t = 0.1s.

We start with the static regular grid of the resolution level n = 8 and an adaptive artificial
viscosity in the source term, as mentioned in Section 3. We follow the approach of [30],
[39] to stabilize the simulations through the adaptive artificial viscosity calculated from

µe = max

(

µ0, µref
∆θ′e
α∆θ′0

2(12−n)/2

)

, (4.18)

where µ0 is the constant viscosity parameter given by the test case, µref = (1/17.7)m2/s
and α = 0.4 are the test independent empirical parameters, ∆θ′e is the maximal deviation
of the perturbation θ′ on element e, ∆θ′0 is ∆θ′e at time t = 0. Note: the viscosity µe

is constant within each element e, but is non-constant for different elements. For more
details we refer to [30].

The results for these simulations are shown in Figure 6 for the new DEG method a) and
for the DG method with the Rusanov flux function b). Numerical experiments clearly
indicate that the DEG method yields a more stable solution. Solution obtained by the
Rusanov flux model exhibits oscillations near the background temperature (θ̄ = 300K),
which are not present in the simulations obtained when using the new multidimensional
evolution Galerkin operator. To get rid of these oscillations in the Rusanov model we
increased the artificial viscosity threshold µ0 from 0.1 to 0.7m2/s (cf. b)-d) in Figure 7).
Note that this can influence large scale structures of the solution, too (cf. Test 1).

In the adaptive viscosity approach, the local viscosity on each finite element scales ac-
cording to (4.18) and for strong temperature gradients it can achieve large values. To
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Figure 6: Excess potential temperature θ′ for the Robert test [33], obtained by the
new semi-implicit method and the adaptive artificial viscosity according to (4.18) with
µ0 = 0.1m2/s: a) multidimensional evolution Galerkin operator for the numerical flux
function (DEG); b) DG method with the Rusanov flux function. The real-world domain
is 1km×1km, mesh is regular, the resolution level n = 8, the spatial resolution ≈ 22.1m,
the shortest element edge ≈ 44.2m. The simulation times are as indicated. Note: for the
Rusanov flux the snapshots are shown for the last two times only, where the oscillation of
the background becomes clearly noticeable. Contour levels correspond to θ′ = −0.05, 0.05,
0.15, 0.25, 0.35, and 0.45K. Integration time step ∆t = 0.1s corresponds to CFL ≈ 1.58,
advective CFLu ∈ {0, 0.0117, 0.0123, 0.0146} in a) and CFLu ∈ {0.0123, 0.0173} in b).
CFLEG ≈ 0.0197.
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Figure 7: Robert test with the adaptive viscosity according to (4.18): a) DEG method
with µ0 = 0.1m2/s; b)-d) DG method with the Rusanov flux function and µ0 =
0.1, 0.4, 0.7m2/s, respectively. Mesh is regular, the resolution level n = 8, the spa-
tial resolution ≈ 22.1m, the shortest element edge ≈ 44.2m. Contour curves are for
θ′ = −0.05, 0.05, 0.25, 0.4, CFL ≈ 1.57, advective CFLu ≈ 0.0123 in a) and b),
CFLu ≈ 0.0122 in c), and CFLu ≈ 0.0121 in d). Simulation time t = 600s.
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Figure 8: Robert test with constant viscosity: upper row) DEG method with µ = 0 and
0.1m2/s; bottom row DGmethod with the Rusanov flux function and µ = 0.2 and 0.4m2/s.
Mesh is regular, the resolution level n = 8, the spatial resolution ≈ 22.1m, the shortest
element edge ≈ 44.2m. Contour curves are for θ′ = −0.05, 0.05, 0.25, 0.4; CFL ≈ 1.57,
advective CFLu ≈ 0.0132, 0.0127, 0.0127, 0.0122 in a)-d), respectively, CFLEG ≈ 0.0197.
Simulation time t = 600s.
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Figure 9: Robert test on the h−adaptive mesh with adaptive viscosity according to
(4.18) with µ0 = 0.1m2/s for the DEG method a) and the DG method with the Ru-
sanov flux b). The coarse/fine mesh resolution is n = 1 − 11, corresponding to the
spatial resolution of ≈ 7.8m, the shortest element edge ≈ 15.6m. Contour curves are
for θ′ = −0.05, 0.05, 0.25, 0.4; CFL ≈ 4.45, advective CFLu ≈ 0.0378 (DEG) and
CFLu ≈ 0.0379 (Rusanov), CFLEG ≈ 0.055. Simulation time t = 600s.

understand solution’s behaviour for a certain given value of the viscosity parameter we
compare in Figure 8 the DEG and the Rusanov model for fixed values of µ. In a fully in-
viscid flow regime (when µ = 0) and up to µ = 0.1 the DEG model yields very reasonable
results, stable against the small scale oscillations, although some tiny island-like areas can
be observed around the outer interfaces, if compared with the adaptive artificial viscosity
results in Figure 7 a). Hence, large scale structures can be studied even for a very low
artificial viscosity and we can analyse how small scale oscillations on the outer interface
are developing due to the Kelvin-Helmholtz instability. In the same viscosity regime the
results obtained by the Rusanov model are strongly oscillating (not shown here) and we
had to use larger adaptive viscosity threshold parameter µ0 in (4.18) to obtain stable
results, see Figures 8 c) and d).

Finally, in Figure 9 we compare the DEG model and the Rusanov model using both
the adaptive viscosity and the adaptive mesh. The adaptive viscosity threshold is µ0 =
0.1m2/s and the mesh resolution level changes between n = 1 and n = 11. The DEG
method yields a slightly smoother solution. The outer interfaces for the Rusanov model
exhibit some oscillations on long-wave lengths, but both solutions are comparable. The
tiny island-like areas along the outer interface on the right-hand side is the trace of the
cold bubble. This experiment clearly demonstrates that mesh adaptivity is capable of
additional adaptive numerical viscosity and stabilization of a numerical solution.

We further analyse the convergence of the numerical scheme toward the exact solution
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when the grid resolution becomes finer by the experimental order of convergence (EOC)

EOC = log2
||un − u||
||un+1 − u|| ,

where u is an exact solution, un un+1 are the solutions obtained on grids with the resolution
levels n and n + 1, respectively. Since the exact solution is unknown in our experiments
we take instead the solutions obtained on the grid with higher resolution and calculate the
error between the two solutions and EOC for the DEG and the Rusanov flux methods.
They are shown in Table 1. The solution errors for the DEG model are always lower
than for the Rusanov model, approximately by a factor of 1.5− 2. The EOC of the DEG
model is lower than in the Rusanov model on very coarse grids and becomes higher on
fine resolution grids.

4.3 Test 3: Density current caused by falling cold air bubble
due to Straka et al. [39]

In the density current experiment proposed by Straka et al. [39], the cold air bubble is
placed at (xc, yc) = (0m, 3000m) in the computational domain of 25.6km×6.4km, with
the maximal initial temperature perturbation ∆Tc = −15K and the distribution of the
initial temperature perturbation according to

∆T =

{

0 for r > rc

(∆Tc/2) [1 + cos (πr/rc)] for r ≤ rc

The initial potential temperature, θ′, is calculated from ∆T and the Exner function, π̄,
using the relation T = π̄θ.

Since the density of the cold air is higher, the bubble sinks gradually to the bottom of
the simulation domain (negative buoyancy) and continues the viscous motion along the
bottom domain boundary. Recall that we have used the no-flux boundary conditions in
our simulations. In the test shown in Figure 10 we choose the constant artificial viscosity
µ = 75m2/s from [39] and a regular grid of the resolution level n = 8, since we first
want to study numerical solutions without any impact of the adaptive mesh on possible
instabilities. The time integration was performed with the time step ∆t = 1s, which
corresponds to the following stability condition numbers CFL ≈ 1.365, CFLu ≈ 0.141.
For this time step τ has been chosen in such a way that CFLEG ≈ 1.7 · 10−3. One
can see that the new DEG method reproduces the flow in a slightly more stable way
than the one-dimensional Rusanov flux model. At later times, the oscillations near the
background temperature are stronger at this (and lower) resolution of the non-adaptive
mesh, even though the viscosity is very high in this test. Recall that the background
potential temperature has been set to θ̄ = 300K in our model and the maximal initial
potential perturbation is about θ′c = −16.6K in this test. When we allow the adaptivity
of the mesh and choose a high resolution of the grid, both models yield very similar
results, as shown in Figure 11 for the h−adaptive grid with coarse/fine resolution levels
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Figure 10: Excess potential temperature θ′ for the density current experiment of Straka
et al. [39] obtained on a regular mesh: a) multidimensional evolution Galerkin operator
for the numerical flux function (DEG); b) DG method with the Rusanov flux function.
Artificial viscosity is constant µ = 75m2/s. The real-world domain is 25.6km×6.4km
(only part is shown), the mesh resolution level n = 8, the spatial resolution ≈ 283m,
the finite element shortest edge ≈ 566m. Contour levels correspond to θ′ = −16 to
−1 by a step of 1K. Note: the range of the color bar and colors in these snapshots
and in Figure 11 has been restricted to −5K to resolve better the fluctuations near the
background θ′ ≈ 0K (background potential temperature is θ̄ = 300K). Integration time
step ∆t = 1s, CFL ≈ 1.365, advective CFLu ≈ 0.141 in a) and CFLu ≈ 0.143 in b),
CFLEG ≈ 1.7 · 10−3. The simulation times are as indicated.

27



Figure 11: Excess potential temperature θ′ for the density current experiment of Straka
et al. [39] obtained on the adaptive mesh: a) multidimensional evolution Galerkin op-
erator for the numerical flux function (DEG); b) DG method with the Rusanov flux
function. Artificial viscosity is constant µ = 75m2/s. Mesh coarse/fine resolution lev-
els n = 1 − 11, the finest spatial resolution ≈ 100m, the finite element shortest edge
≈ 200m. Contour levels correspond to θ′ = −16 to −1 by a step of 1K. Integration
time step ∆t = 0.5s, CFL ≈ 1.91, advective CFLu ∈ {0, 0.194, 0.182, 0.179} in a) and
CFLu ∈ {0, 0.194, 0.182, 0.178} in b). CFLEG ≈ 2.4 · 10−3. The simulation times are as
indicated.
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a) BDF2+EG:
time = 100s

n = gridlevel ‖un − un+2‖/volume ‖un+2 − un+4‖/volume EOC(n, n+ 2, n+ 4)
3 0.056854 0.028865 0.9779
4 0.046331 0.019119 1.2769
5 0.028865 0.006807 2.0842
6 0.019119 0.002648 2.8519
7 0.006807 0.000866 2.9740

time = 150s
n = gridlevel ‖un − un+2‖/volume ‖un+2 − un+4‖/volume EOC(n, n+ 2, n+ 4)

3 0.092453 0.047843 0.9504
4 0.075194 0.030815 1.2870
5 0.047843 0.011797 2.0199
6 0.030815 0.004206 2.8730
7 0.011797 0.001539 2.9383

b) BDF2+Rusanov:
time = 100s

n = gridlevel ‖un − un+2‖/volume ‖un+2 − un+4‖/volume EOC(n, n+ 2, n+ 4)
3 0.068548 0.033892 1.0162
4 0.059404 0.023547 1.3350
5 0.033892 0.010428 1.7004
6 0.023547 0.004046 2.5522
7 0.010428 0.001697 2.6195

time = 150s
n = gridlevel ‖un − un+2‖/volume ‖un+2 − un+4‖/volume EOC(n, n+ 2, n+ 4)

3 0.126310 0.065635 0.9445
4 0.107820 0.040578 1.4099
5 0.065635 0.020024 1.7128
6 0.040578 0.007314 2.4719
7 0.020024 0.003247 2.6246

Table 1: The solution error (L2-norm) and the experimental order of convergence (EOC)
in the large time step simulations with a) BDF2+EG and b) BDF2+Rusanov of the
Robert test [33] with constant viscosity µ = 0.1m2/s.

n = 1−11. Here both the DEG and Rusanov flux models perform very well, the differences
between the solutions are hardly distinguishable anymore. In this simulation the time step
∆t = 0.5s was reduced by a factor of two to adjust it to the finer grid, if compared to the
experiment with the regular mesh n = 8.

29



5 Conclusions

In the present paper we have derived a new adaptive discontinuous evolution Galerkin
method. The novelty of our approach relies in the combination of the discontinuous
Galerkin method with a genuinely multidimensional evolution operators based on the
theory of bicharacteristics for underlying hyperbolic balance laws. In this paper the DEG
method is applied for test cases modeling dry atmospheric convection. In order to take
into account multiscale phenomena that typically arise in atmospheric flows we split fluxes
into a linear part governing acoustic waves and the resulting nonlinear part. The linear
operator has to be chosen in such a way that the fastest waves of the system are retained,
although in their linearized form. Time integration is realized by the IMEX type approx-
imation using the semi-implicit BDF2 method. In order to efficiently resolve small scale
flow structures adaptive mesh refinement is used. This is realized via the AMATOS func-
tion library. Numerical experiments presented in Section 4 demonstrate high accuracy,
stability and robustness of the new method and illustrate that complex multidimensional
flow structures are approximated in a better way than by the discontinuous Galerkin
method with a standard one-dimensional numerical flux, e.g., the Rusanov flux function.
The Rusanov flux model is fast and can yield solutions of similar quality as the DEG
model when adaptive mesh refinement and adaptive artificial viscosity are used. On the
other hand, the DEG method is more stable due to the truly multidimensional nature of
the EG operator. In practice, this implies that less or no artificial viscosity is required. For
low viscosity regimes and for coarse grids, where the Rusanov flux model can be unstable,
the DEG model performs better. Further increase of the efficiency of the DEG method
can be achieved by porting the calculation of the EG operator to graphics processing units
(GPU), as has been done recently for the explicit DEG method [6]. In the future it will
be interesting to generalize the DEG method for three-dimensional flows and apply it to
more complex atmospheric problems, such as simulation of a cloud environment.
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